ADDITIONS AND CORRECTIONS

2000, Volume 104A

James A. Miller,* Stephen J. Klippenstein, and Struan H. Robertson: A Theoretical Analysis of the Reaction between Vinyl and Acetylene: Quantum Chemistry and Solution of the Master Equation

Page 7527-7528. Although the calculations presented in the paper were performed correctly, there are several errors in the presentation of the theory. Most notably, the partition function $Q_{1}(T)$ was omitted in several equations in the discussion following eq 9 . For clarity we repeat that presentation here, making the appropriate corrections.

Let $x_{\mathrm{R}}(t)=n_{\mathrm{R}}(t) / n_{\mathrm{R}}(0), x_{i}(E, t)=n_{i}(E, t) / n_{\mathrm{e}}(0)$, and $y_{i}(E, t)=$ $x_{i}(E, t) / f_{\mathrm{i}}(E)$. Then dividing by $n_{\mathrm{R}}(0) f_{i}(E)$, eq 2 becomes

$$
\begin{align*}
& \frac{\mathrm{d} y_{\mathrm{i}}(E)}{\mathrm{d} t}=Z \int_{E_{\mathrm{o} i}}^{\infty}\left\{P_{\mathrm{i}}\left(E, E^{\prime}\right) \frac{f_{i}\left(E^{\prime}\right)}{f_{i}(E)}-\right. \\
& \left.\left[\begin{array}{c}
\left.\sum_{j \neq i}^{M} k_{j i}(E)+k_{\mathrm{d} i}(E) \delta_{i 1}\right] \\
1+\frac{\sum^{2}}{}
\end{array}\right] \delta\left(E-E^{\prime}\right)\right\} y_{i}\left(E^{\prime}\right) \mathrm{d} E^{\prime}+ \\
& \sum_{j \neq i}^{M} k_{\mathrm{ij}}(E) \frac{f_{j}(E)}{f_{i}(E)} y_{j}(E)+\frac{K_{\mathrm{eq} i}}{Q_{i}(T)} k_{\mathrm{d} i}(E) f_{i}(E) x_{\mathrm{R}} n_{\mathrm{m}} \delta_{i 1}- \\
& k_{\mathrm{p} i}(E) y_{i}(E) \quad i=1, \ldots, M \tag{10}
\end{align*}
$$

From the detailed balance conditions (8) and (9), one can see that eq 10 is symmetric in E and E^{\prime} and in i and j. By this we mean that the coefficient of $y_{i}\left(E^{\prime}\right)$ in eq 10 is identical to the coefficient of $y_{i}(E)$ in an analogous equation for $\mathrm{d} y_{i}\left(E^{\prime}\right) / \mathrm{d} t$, i.e., for any specific values of E and E^{\prime}. Likewise, the coefficient of $y_{j}(E)$ in (10) is the same as the coefficient of $y_{i}(E)$ in an analogous equation for $\mathrm{d} y_{j}(E) / \mathrm{d} t$ for any values of i and j.

Multiplying eq 5 by $\left(K_{\text {eq } 1} n_{\mathrm{m}} / Q_{1}(T)\right)^{1 / 2} / n_{\mathrm{R}}(0)$, we obtain

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\left(\frac{K_{\mathrm{eq} 1} n_{\mathrm{m}}}{Q_{1}(T)}\right)^{1 / 2} x_{\mathrm{R}}\right]= & \left(\frac{K_{\mathrm{eq} 1} n_{\mathrm{m}}}{Q_{1}(T)}\right)^{1 / 2} \int_{0}^{\infty} k_{\mathrm{d} 1}(E) f_{1}(E) y_{1}(E) \mathrm{d} E- \\
& x_{\mathrm{R}}\left(\frac{K_{\mathrm{eq} 1}(T)}{Q_{1}(T)}\right)^{3 / 2} \int_{0}^{\infty} k_{\mathrm{d} 1}(E) f_{1}^{2}(E) \mathrm{d} E \tag{11}
\end{align*}
$$

Approximating the integrals in eq 11 as sums and rearranging,

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left[\left(\frac{K_{\mathrm{eq} 1} n_{\mathrm{m}}}{Q_{1}(T) \delta E}\right)^{1 / 2} x_{\mathrm{R}}\right]=\sum_{l=1}^{N_{1}} y_{1}\left(E_{l}\right)\left(\frac{K_{\mathrm{eq} 1} n_{\mathrm{m}}}{Q_{1}(T)} \delta E\right)^{1 / 2} f_{1}\left(E_{l}\right) k_{\mathrm{d} 1}\left(E_{l}\right)- \\
& x_{\mathrm{R}}\left(\frac{K_{\mathrm{eq} 1} n_{\mathrm{m}}}{Q_{1}(T)}\right)^{3 / 2}(\delta E)^{1 / 2} \sum_{l=1}^{N_{1}} k_{\mathrm{d} 1}\left(E_{l}\right) f_{1}^{2}\left(E_{l}\right) \tag{12}
\end{align*}
$$

where N_{1} is the number of grid points in the energy space of well 1 and δE is the spacing between grid points. Similarly, if we write eq 10 as a sum, the next-to-last term in the component equation for $\mathrm{d} y_{1}\left(E_{l}\right) / \mathrm{d} t$ can be written as

$$
\begin{equation*}
\left(\frac{K_{\mathrm{eq} 1} n_{\mathrm{m}}}{Q_{1}(T) \delta E}\right)^{1 / 2} x_{\mathrm{R}}\left[\left(\frac{K_{\mathrm{eq} 1} n_{\mathrm{m}}}{Q_{1}(T)} \delta E\right)^{1 / 2} f_{1}\left(E_{l}\right) k_{\mathrm{d} 1}\left(E_{l}\right)\right] \tag{13}
\end{equation*}
$$

Now the coefficient of $y_{1}\left(E_{l}\right)$ in eq 12 is the same as that of $\left(K_{\text {eq } 1} n_{\mathrm{m}} / Q_{1}(T) \delta E\right)^{1 / 2} x_{\mathrm{R}}$ in (13).

Then the vector of unknowns becomes

$$
\begin{aligned}
&|w(t)\rangle \rightarrow\left[y_{1}\left(E_{01}\right), \ldots, y_{1}\left(E_{l}\right), \ldots, y_{i}\left(E_{0 i}\right), \ldots, y_{i}\left(E_{l}\right), \ldots,\right. \\
&\left.\left(\frac{K_{\mathrm{eq} 1} n_{\mathrm{m}}}{Q_{1}(T) \delta E}\right)^{1 / 2} x_{\mathrm{R}}\right]^{T}
\end{aligned}
$$

We apologize if this has caused any inconvenience.
10.1021/jp0031931

Published on Web 10/07/2000

2000, Volume 104A

Karol Jackowski,* Marcin Wilczek, Magdalena Pecul, and Joanna Sadlej: : Nuclear Magnetic Shielding and SpinSpin Coupling of $1,2-{ }^{13} \mathrm{C}$-Enriched Acetylene in Gaseous Mixtures with Xenon and Carbon Dioxide

Page 5956. In the caption for Figure 1, the absolute shielding of liquid TMS should be $\sigma\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}\right]=186.37 \mathrm{ppm}$ and $\sigma\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}\right]=32.775 \mathrm{ppm}$.

Page 5956. In lines 4 and 5 of column two should be σ (liq TMS $)-\sigma_{0}(\mathrm{CO})=185.77 \mathrm{ppm}$ and $\sigma(\mathrm{liq} \mathrm{TMS})-\sigma_{0}\left(\mathrm{CH}_{4}\right)=$ 2.164 ppm .

Page 5957. In line 11 of column one " $J\left({ }^{29} \mathrm{Si}^{19} \mathrm{~F}\right)$ in SF_{6} " should read "1 $J\left({ }^{29} \mathrm{Si}^{19} \mathrm{~F}\right)$ in SiF_{4} ".
10.1021/jp003138c

Published on Web 09/30/2000

