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Recently we presented a new band structure for La2-xSrxCuO4 and other high-temperature superconductors in
which a second narrow band was seen to cross the primary band at the Fermi level. The existence of this
second Fermi level band is in complete disagreement with the commonly accepted LDA band structure. Yet
it provided a crucial piece of physics which led to an explanation for superconductivity and other unusual
phenomena in these materials. In this work, we present details as to the nature of the failure of conventional
methods in deriving the band structure of the cuprates. In particular, we use a number of chemical analogues
to describe the problem of static correlation in the band structure calculations and show how this can be
corrected with the predictable outcome of a Fermi level band crossing.

Introduction

Since their discovery more than a dozen years ago,1 the
cuprate high-temperature superconductors have proven to be
among the most unusual and intriguing materials devised this
century. While their most obvious and important characteristic
is that they superconduct at temperatures far in excess of the
commonly accepted upper limit for conventional BCS super-
conductors, various experimental probes of their superconduct-
ing and normal state properties have revealed anomalous
behavior of a much more general nature. The NMR,2 angle-
resolved photoemission (ARPES),3 neutron scattering,4 Joseph-
son tunneling,5 and IR6 have all characterized these materials
as extremely exotic.

The materials can generally be described as having two-
dimensional CuO2 sheets sandwiched between other metal oxide
sheets which serve as charge reservoirs.7 In the case of
La2-xSrxCuO4, the prototypical high-temperature superconduc-
tor, the environment around each Cu is a distorted octahedron
with the apical O’s, which belong to the La/Sr/O planes, further
from the Cu center than the in-plane O’s. When the material is
undoped,x ) 0, the charge on the La is formally+3, the charge
on each O is formally-2, and the charge on the Cu is formally
+2. The Cu(II) is expected to be in its open-shell d9 configu-
ration, with the La and O ions in closed shell. This leads to the
existence of a “half-filled band” from simple electron counting
arguments. Upon doping, substitution of La(III) with Sr(II), Cu-
(III) ions are formally created as more electrons are removed
from that “half-filled band”. Superconductivity is observed over
the very narrow doping range of approximatelyx ) 0.10-0.25,
with the optimal doping (Tc ) 39 K) at x ) 0.15.8

From early LDA band structure calculations it was generally
concluded that the materials were indeed very two-dimensional.9

A Fermi surface arose from a single half-filled band composed
of the antibonding arrangement of the Cu dx2-y2 and O pσ orbitals
in the signature CuO2 planes, confirming simple expectations.
However, this band structure poses a great problem for physicists
since there is virtually nothing remarkable about it that would
suggest some sort of exotic supercondicting properties. This has
led to the development of a rather odd attitude toward these
LDA calculations. It is clearly agreed that they are missing some

crucial physics. Beyond that, the overwhelming collection of
unusual data which characterizes these materials has led
physicists to agree only that this missing physics must be deeply
complicated. Somehow, in spite of these deficiencies, the
qualtitative picture of the LDA band structure has effectively
become conventional wisdom.

Yet, Tahir-Kheli and Perry10,11recently offered a new theory
of high-temperature superconductivity which is remarkably
simple and explains substantially more than all previous theories.
We showed that much of the confusion about these materials
stems from incorrect assumptions about their band structure.
The LDA band structure calculations are based on the mean-
field approximation, which is known to breakdown in the limit
of weakly interacting particles. Such is the case for the cuprates,
for which it has been well accepted that many-body effects (or
dynamic correlation) are important. Correlation has been
introduced in some models to correct the problem, but to our
knowledge this has always been done in a limited way, applying
the correction only to the three bands produced by the Cu dx2-y2

and two O pσ orbitals.12 These three band Hubbard models,
which are often reduced to one-band Hubbard models, ignore
the effect that correlation has on the other bands in the material
since it is widely assumed that they are irrelevant. Yet we have
argued that this underlying assumption that the single particle
band structure is qualitatively correct is in fact false and such
a limited approach to the incorporation of correlation actually
misses the most important consequence: that the relative energy
of the half-filled band changes with respect to the full bands.
This is due to the improper description ofstatic correlation in
the LDA band structure. In our model, where the correlation
correction is applied more universally, the effect is so dramatic
that a second band appears at the Fermi level. This is shown in
Figure 1. This new band structure still has the approximately
half-filled 2-D Cu dx2-y2/O pσ band, but a second 3-D Cu dz2/O′
pz band is seen at the Fermi level as well, such that electrons
are removed from both bands upon doping. Significantly, we
identified a symmetry-allowed Fermi level crossing of the two
bands which we showed was the crucial element in understand-
ing the physics of these materials. This band crossing allows
for the formation of a new type of interband Cooper pair,
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representing a simple twist on the conventional BCS theory of
superconductivty. Moreover, the wealth of experimental data
which demonstrates more general anomalous behavior can easily
be explained by this unusual band structure, and in a number
of cases has already been quantitatively reproduced.10,11,13,14

In this work, we present arguments as to the nature of the
correlation problem in conventional LDA calculations and why
correcting this problem intuitively leads to the new band
structure. We develop these arguments from a chemist’s
perspective using a number of familiar molecular systems to
illustrate various aspects of the correlation problem. In particular,
the chemistry of H2, benzene, and the Cu ion dimer will be
discussed, leading up to a discussion of the band structure for
La2-xSrxCuO4.

The Problem with H2 Dissociation

To understand the basic problem with the LDA band structure
calculations of the cuprates, it is only necessary to consider the
fundamental problem of dissociation consistency in single
configuration based methods.15 In Figure 2 we show the
dissociation curves for H2 as calculated at the Hartree-Fock
(HF) and the B3LYP16 density functional (DFT) levels using
both a restricted spin and symmetry approach and an unrestricted
spin and symmetry approach. For both methods (and the case

is the same for other DFT functionals), the restricted approach
leads to dissociation to an excited state description of two H
atoms. The unrestricted approach leads to proper dissociation.
This behavior is well understood and represents the primary
motivation behind the development of methods such as general-
ized valence bond (GVB).17

The problem with the restricted approach is that two electrons
are forced to occupy the same orbital (theσg orbital in the case
of H2). This is a fine approximation near the equilibrium bond
length, and indeed both the restricted and unrestricted ap-
proaches lead to the same state in this region. However, upon
dissociation, forcing two electrons to occupy the same orbital
is clearly not appropriate since the local representation of this
can be seen to be 50% covalent (the correct dissociation limit)
and 50% ionic (an excited state). Explicitly, that is

For the HF wave function, the energy of this state is

whereE1s is the ground state energy of an H atom andJ1s,1sis
the self-Coulomb energy associated with the H 1s orbital. The
situation is similar for DFT where the exchange and correlation
functionals will cancel some but not all of the self-Coulomb
term. As a result the error for HF (7.1 eV) is seen to be larger
than that for B3LYP (2.8 eV), but the error for B3LYP and
other DFT functionals is nevertheless nonzero.

The unrestricted approach overcomes the problem of the self-
Coulomb energy by breaking spin and symmetry and localizing
the R spin electron on one H atom and theâ spin electron on
the other. As a result, there is dissociation to the properΨ-
(covalent) limit. Alternatively, a method which introduces static
correlation, such as GVB (or more generally CASSCF),
overcomes this problem without breaking spin by describing
the bond with two configurations as

Figure 1. (a, top) Calculated 2-D band structure for optimally doped
La1.85Sr0.15CuO4 using our Hubbard model and retaining the mean-field
approximation. (b, bottom) Calculated 2-D band structure using our
Hubbard model and including static correlation. The two bands are
seen to cross along the (0, 0)- (π, π) direction very near the Fermi
level. Note: other bands are not shown for clarity.

Figure 2. Calculated dissociation curves for H2 at the HF (top) and
B3LYP (bottom) levels using both a spin and symmetry restricted
approach and a spin- and symmetry-unrestricted approach. For both
computational levels the restricted approach is seen to dissociate to an
incorrect higher limit.

Ψg ) (σg)
2

) 1/2(1s(H1)+ 1s(H2))2

) 1/2((1s(H1))2 + (1s(H2))2 + (1s(H1))1(1s(H2))1 +

(1s(H2))1(1s(H1))1)

) (1/x2)(Ψ(ionic) + Ψ(covalent))

Eg(r)∞) ) 2E1s + 1/2J1s,1s
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wherec1
2 + c2

2 ) 1. The energy upon dissociation is

Clearly sinceEg ) Eu upon dissociation, the optimal set of
coefficients isc1 ) c2 ) 1/x2. Hence the GVB wave function
dissociates properly to

While this is all very familiar, the point is that it is pertinent
to the electronic structure of high-temperature superconductors.
In these materials the Cu(II) d9 spins of the half-filled band are
separated by 3.8 Å. At this separation, a breakdown in the mean-
field approximation is expected, resulting in a substantial
overestimate of the self-Coulomb term. Recognition of this has
been the motivation behind calculations in which the La2CuO4

unit cell has been doubled to allow for spin polarization.18,19In
these calculations,R andâ spins localize to alternating sites in
the undoped material, thus removing the self-Coulomb term
associated with the half-filled band much like the unrestricted
spin and symmetry calculations remove the self-Coulomb term
from dissociated H2. The work of Svane18 is particularly
important in this regard since it also accounts for the fact that
the self-Coulomb term and the self-exchange and correlation
terms do not completely cancel. As a solution, he applies a self-
interaction correction (SIC) to those orbitals that can be well
localized. While in context this is correct, and to some extent
his calculations are in agreement with ours, as we show next,
correlation of delocalized orbitals is important, too.

Static Correlation in Benzene

A more complicated example of static correlation is the case
of aromatic benzene. At the HF level, there are three orbitals
having the symmetriesA2u andE1g under theD6h point group
which represent the delocalized form of the three benzeneπ
orbitals. Yet the six atomic pπ orbitals which form these three
molecular orbitals have only a moderate overlap with each other.
This leads to an overestimate of the self-Coulomb term
associated with the bonds which requires correlation of the type
just described. The easiest way to introduce such correlation is
through the GVB approach in which symmetry is broken and
the three delocalized HFπ orbitals are localized to threeπ bonds
corresponding to one of the two resonating Kekule´ structures.
Similarly, the three correspondingπ antibonding orbitals are
localized and the GVB wave function becomes

The energy of the GVB wave function is 1.12 eV lower than
that of the HF wave function using a 6-311G** basis set.20 This
represents a lowering of 0.37 eV per bond, which can be directly
related to a reduction in the self-Coulomb term associated with
each bond.

Additional correlation to account for spin polarization of the
bonds can be introduced through the RCI wave function which
adds the single excitation configurationc3(πg)1(πu)1 for each
bond in the above equation forΨGVB while also relaxing some
inherent constraints on the GVB coefficients. This correlation
effectively allowsR andâ spins to separate and lowers the total
energy by another 0.30 eV.

Resonance can then be included by allowing all excitations
between the bonds (i.e., all excitations of the six electrons within
the space of the six GVB orbitals). This GVBCI wave function
lowers the total energy by another 0.53 eV. Significantly, this
GVBCI wave function is also strictly equivalent to the com-
monly used CASSCF wave function. The two are related by a
simple transformation from the localized space (GVBCI) to the
delocalized space (CASSCF). The very existence of this
transformation implies that the correlation which exists in the
GVBCI also exists in the CASSCF. Since it is clear that the
most important correlation in the GVBCI is that which reduces
the self-Coulomb energy of theπ bonds, the same must be true
of the CASSCF, although it is much less transparent. In other
words, the correlation which reduces the self-Coulomb energy
is independent of whether the orbitals are localized or delocal-
ized.

The presence of this same type of correlation in systems that
are delocalized is often overlooked. In the case of the super-
conductors, methods that depend on the localization of orbitals
in order to reduce the self-Coulomb energy18 are in fact biased
toward such well localized states since they miss the fact that
the energy can be similarly lowered by application of such
correlation to states that cannot be well localized. This is not
to say that undoped La2CuO4 does not in fact have well-localized
spins, since the undoped material is clearly an antiferromagnet.
But upon doping, when orbitals can no longer be easily
localized, this type of correlation should not be expected to just
disappear. By our argument here, reduction of the self-Coulomb
energy should be considered for both localized and delocalized
orbitals in evaluating the band structure. The consequences of
this are addressed in the next section.

The Problem with Separated Cu Ions

The ground state of Cu(I) is known to be1S d10, the ground
state of Cu(II) is known to be2D d9, and the ground state of
Cu(III) is known to be3F d8.21 While it is the case that there is
only one possible d10 configuration for Cu(I), and the five
possible d9 configurations for Cu(II) are degenerate, for Cu-
(III) the 10 different possible triplet d8 configurations lead to
different mixtures of the3F and higher energy3P states. Only
the two configurations in which one hole is in the dσ orbital
and the other is in a dδ orbital lead to a pure3F state in a single
reference description.

Using a triple-ú contraction of Hay and Wadt’s ECP basis
set,22 we calculate a second ionization potential (the difference
between Cu(I) and Cu(II)) to be 17.54 eV at the HF level and
20.65 eV at the B3LYP level in comparison to the experimental
value of 20.29 eV. Similarly, we calculate a third ionization
potential (the difference between Cu(II) and Cu(III)) to be 34.32
eV at the HF level and 37.06 eV at the B3LYP level in
comparison to the experimental value of 36.83 eV. Clearly,
B3LYP is a suitable method for studying the Cu ions.

Yet we find that when two Cu ions are low spin coupled and
separated by a long distance, these methods have difficulty. As
with H2, an unrestricted spin and symmetry approach will
properly describe the two ions, but attempting to use a restricted
spin and symmetry approach fails. The nature of this failure is
quite revealing, however, in how it relates to the band structure
of the high-temperature superconductors.

Results of calculations on various Cu ion dimers are given
in Table 1. As can be seen, the energy of the Cu(I)+ Cu(I)
dimer where both ions are d10 is correct. The energy of the Cu-
(I) + Cu(II) dimer where each ion is an average of d9 and d10

is also correct. However, the energy of the singlet state of Cu-

ΨGVB ) c1(σg)
2 - c2(σu)

2

EGVB(r)∞) ) c1
2Eg(r)∞) + c2

2Eu(r)∞) - c1c2J1s,1s

EGVB(r)∞) ) 2E(1s)

ΨGVB ) (c1(πg(1))2 - c2(πu(1))2)(c1(πg(2))2 -

c2(πu(2))2)(c1(πg(3))2 - c2(πu(3))2)
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(II) + Cu(II) is high by 14.42 eV at the HF level and high by
4.30 eV at the B3LYP level. This state has the following orbital
occupations

As shown for H2 and benzene, the error in the Cu(II)+ Cu(II)
energy can be unambiguously attributed to the lack of static
correlation in the half-filled dx2-y2 pair of orbitals which leads
to this copper dimer being described as 50% Cu(II)+ Cu(II)
and 50% Cu(I)+ Cu(III). This state can be correctly described
by the GVB or CASSCF method or by breaking symmetry and
spin in an unrestricted approach. Alternatively, changing the
spin to triplet and singly occupying each of the two dx2-y2 orbitals
will lead to the correct ground state.

This Cu(II) + Cu(II) model by itself offers a good argument
for what might be wrong with conventional LDA band structure
calculations of the cuprate superconductors. Doubling the unit
cell to allow breaking of symmetry and spin with localization
of the R and â spins on alternating copper sites may be one
logical solution for understanding the undoped material. Alter-
natively, introducing more rigorous correlation with a Hubbard
model of the isolated Cu dx2-y2/O pσ band may be another logical
solution. However, when our model is taken one step further
to consider Cu(II)+ Cu(III), the most important aspect of the
lack of static correlation in the half-filled band can be seen,
and this point has received little attention until now.

When one more electron is removed from the dx2-y2 pair of
orbitals to form Cu(II)+ Cu(III), the doublet state is again
describedcorrectly even though it corresponds to an excited
state configuration of Cu(III). The state is actually2D Cu(II) +
1G Cu(III), where the1G d8 configuration of Cu(III) corresponds
to having the dx2-y2 orbital empty. We calculate the3F f 1G
excitation energy to be 4.29 eV at the HF level and 3.86 eV at
the B3LYP level. However, when an electron is instead removed
from the dz2 pair of orbitals, which should lead to a ground state
description of2D Cu(II) + 3F Cu(III), the doublet coupling of
the two ions istoo highin energy by 15.67 eV at the HF level
and 5.03 eV at the B3LYP level. Even correcting the improper
exchange interaction between the dz2 and dx2-y2 electrons in this
configuration, the HF energy is still 14.95 eV too high, and the
B3LYP energy is still 4.48 eV too high.

The difference between these two states of Cu(II)+ Cu(III)
can be understood in that removing an electron from the dx2-y2

orbitals removes the problem with static correlation whereas
removing an electron from the dz2 orbitals does not. In the former
case, there is only one electron remaining in the dx2-y2 orbitals
and it is shared equally between the two ions. In the latter case,
there are still two electrons in the dx2-y2 orbitals and without
proper correlation the self-Coulomb energy will remain too high.
In the end, this means that in starting with a half-filled set of
dx2-y2 orbitals in Cu(II)+ Cu(II) there is an improper bias of

14.42 eV at the HF level and 4.30 eV at the B3LYP leveltoward
removing an additional electron from dx2-y2. However, there is
actually a bias of 0.53 eV at the HF level and 0.18 eV at the
B3LYP level againstremoving an electron from dz2. In other
words, the lack of correlation in the dx2-y2 orbitals raises the
energy of'those particular orbitals with respect to all the other
orbitals.

The three models discussed here (H2, benzene, and the Cu
ion dimer) suggest that static correlation needs to be considered
in the band structure of the cuprate superconductors, that it needs
to be applied to all orbitals regardless of whether or not they
can be well localized, and that the primary result will surely be
to lower the energy of the entire half-filled band with respect
to the other filled bands.

Importance of Static Correlation in the Band Structure
of High-Temperature Superconductors

We have chosen to study the band structure of optimally
doped La2-xSrxCuO4 with a Hubbard model which uses
parameters derived from DFT calculations on a CuO6 cluster.
The details of the cluster calculations and the procedure for
extracting the Hubbard parameters are given explicitly in Perry
and Tahir-Kheli.11 All parameters necessary to describe the Cu
dx2-y2/O pσ and Cu dz2/O′ pz bands were derived. These
parameters include orbital energies, Coulomb and exchange
energies, and orbital couplings. Our original set of parameters,
which were published in that work, came from BLYP/6-31+G*
calculations (using an ECP on the Cu). We have since derived
parameters from B3LYP/6-311+G* calculations and found the
resulting 2-D band structure (detailed below) to be qualitatively
the same as that obtained with the earlier parameter set.
However, we have also included a 3-D coupling in this new
band structure and as a result we can now calculate such
experimental observables as the NMR Cu and O spin relaxation
rates,13 the ARPES Fermi surface, the neutron scattering, and
the mid-IR absorption14 with near-quantitative accuracy, some-
thing that has not been done with any other band structure.

The validity of the general approach can be tested by
calculating the Hubbard model band structure within the mean-
field approximation. The calculation must be done iteratively
until self-consistency is achieved because the orbital energies
depend on the Coulomb and exchange field which depends on
the orbital occupations which depend on the orbital energies.
The first step is to calculate the orbital energies as a function
of the orbital occupations. Under the mean-field approximation,
this is

whereEi
0 are the calculated orbital energies when all valence

bands are full (formally La(III), Sr(II), Cu(I), and O(-II)), Nj

are the atomic orbital occupations,Ji,j are the Coulomb terms
between orbitals, andKi,j are the exchange terms. Details of
how the long-range Coulomb field is handled are given in the
cited ref 11. Once the orbital energies are determined, a Hubbard
matrix is constructed at everyk vector on a grid covering the
first Brillouin zone, the eigenvectors and eigenvalues of each
matrix are determined corresponding to the orbitals and orbital
energies at eachk point, the Fermi level is adjusted such that
the correct number of orbitals are occupied for the particular
doping level, the atomic orbital occupations are then determined,
and the process is repeated. It should be noted that in our model
Ji,i ) Ki,i such that when an orbital is half-occupied its energy
is Ei ) Ei

0 - 1/2Ji,i.

TABLE 1: Calculated Energetics for the Cu Ion Dimer (in
eV)a

dimer HF(calc) HF(exact) B3LYP(calc) B3LYP(exact)

Cu(I/1S) + Cu(I/1S) 0.00 0.00 0.00 0.00
Cu(I/1S) + Cu(II/2D) 17.54 17.54 20.65 20.65
Cu(II/2D) + Cu(II/2D) 49.50 35.08 45.60 41.30
Cu(II/2D) + Cu(III/1G) 56.15 56.15 61.57 61.57
Cu(II/2D) + Cu(III/3F) 67.53 51.86 62.74 57.71

a HF(calc) and B3LYP(calc) are computed under a spin- and
symmetry-restricted formalism. HF(exact) and B3LYP(exact) represent
the correct values for two noninteracting ions.

Ei ) Ei
0 - ∑

j

(2 - Nj)(Ji,j - 1/2Ki,j)

Cu(II) + Cu(II) )
(xyg)

2(xyu)
2(xzg)

2(xzu)
2(yzg)

2(yzu)
2(zg

2)2(zu
2)2(x2 - yg

2)2(x2 - yu
2)0
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As shown in Figure 1a, using the mean-field approximation
to determine orbital energies as above and constraining the
model to a 2-D description of the material leads to a band
structure which is nearly quantitatively identical to those
published using conventional LDA band structure techniques.9

A single Cu dx2-y2/O pσ band which is widely dispersing is seen
to cross the Fermi level. A second Cu dz2/O′ pz band is seen to
be several electronvolts lower in energy. This good agreement
effectively validates the procedure.

It is interesting to note, however, that the bottom of the dz2

band is several electronvolts below the bottom of the dx2-y2 band
even though atk ) (0,0) the dx2-y2 orbital represents a
nonbonding combination of the Cu orbitals, having no O pσ
character at all, while the dz2 orbital has significant antibonding
O′ pz character. Ligand field theory would suggest that the dz2

band should be higher in energy than the dx2-y2 band at thisk
point unless the dz2 atomic orbital is itself significantly more
stable than the dx2-y2 atomic orbital. This is indeed the case,
but it cannot be explained by differences in the intrinsicEi

0

atomic orbital energies for dz2 and dx2-y2 since this difference is
only 0.13 eV. The stabilization of the dz2 band with respect to
the dx2-y2 band is seen only upon removal of electrons from the
dx2-y2 band. This is counterintuitive and exactly the opposite
behavior should be expected from such basic principles as
Hund’s rule. It is a direct result though of the improper
accounting of the self-Coulomb energy in the mean-field
approximation for this strongly correlated system. This behavior
is completely analogous to that seen for the Cu ion dimer
discussed above. Thus, we expect that correlation that would
reduce the self-Coulomb term of partially occupied orbitals
would lower the energy of the Cu dx2-y2 orbital with respect to
the Cu dz2 orbital.

Introducing static correlation to the band structure in a
rigorous way is an extremely difficult problem. However, the
effect of this correlation on the self-Coulomb term in the mean-
field equation can easily be approximated. This is best seen by
considering Figure 3 and thinking about what the self-Coulomb
energy should be when a particular atomic orbital is half-filled.

Figure 3 depicts a localized description of the Cu dx2-y2/O pσ
band. Such localization can be exact only when the band is half-
filled. The localization can still be approximately correct with
the addition or removal of electrons if the ensuing delocalized
states are viewed as arising from the resonance of localized
states. Figure 3a shows the mean-field spin coupling in the CuO2

plane while Figure 3b shows an antiferromagnetic spin coupling
which is relevant when the material is undoped. Upon doping,
this antiferromagnetic order is destroyed and a correlated
paramagnetic spin coupling such as that depicted in Figure 3c,d
is expected.

In the mean-field picture, when the Cu dx2-y2 orbital is half-
occupied, the local spin is 50%R and 50%â leading to a self-
Coulomb term which is1/2J. However, in both the antiferro-
magnetic and correlated paramagnetic pictures when the Cu
dx2-y2 orbital is half-occupied, a resonance exists between states
that have a local spin in that orbital that is purelyR or purely
â. This picture is fundamentally different from that of the mean-
field approximation and leads to a self-Coulomb term which is
0J. From the arguments used to make the connection between
the GVBCI and CASSCF descriptions of benzene, the same
can be said of the Cu dz2 and O′ pz orbitals even though
localization of these orbitals is not as straightforward. That is,
delocalized states must be viewed as arising from the resonance
of very low symmetry localized states. So for the Cu dx2-y2 and
dz2 orbitals and the O′ pz orbital, the correlation corrected mean-
field equation becomes

Upon examination, it can easily be seen that if an orbital is
half-occupied or less, the full self-Coulomb term will be
removed fromEi

0.
The situation is a little less clearcut for the O pσ orbitals. In

the antiferromagnetic picture of Figure 3b,R or â spin is
localized to alternating Cu sites, but as a result each O site is
then 50%R and 50%â. Thus, the self-Coulomb term is expected
to be1/2J for the half-occupied orbital as it is under the mean-
field approximation. In the correlated paramagnetic picture of
Figure 3c,d, for the one O atom that lies between two spin-
paired Cu atoms, the self-Coulomb term also turns out to be
1/2J. However, for the three other O atoms surrounding any
particular Cu site, the self-Coulomb term is expected to be1/4J.
This is because the uncorrelated spins between the two Cu atoms
lead to spin on the O which is 25% pureR, 25% pureâ, and
50% half-R/half-â. The latter term leads to the1/4J Coulomb
repulsion. On average then, when the O pσ orbital is half-
occupied, the self-Coulomb term is3/4 × 1/4J + 1/4 × 1/2J )
5/16J. The correlation corrected mean-field equation for this
orbital then becomes

This latter set of equations is clearly approximate and may vary
substantially from that obtained from the exact wave function,

Figure 3. (a) Schematic description of Cu spin couplings under the
mean-field approximation. Each Cu site is 50%R spin and 50%â spin.
(b) Schematic description of the antiferromagnetic state where alternat-
ing Cu sites are eitherR spin or â spin. (c and d) Two schematic
descriptions of the paramagnetic state where a given Cu site may be
spin paired with any of the four adjacent Cu sites.

Ei ) Ei
0 - (2 - Ni)Jii - ∑

j*i

(2 - Nj)(Jij - 1/2Kij), Ni > 1

Ei ) Ei
0 - Jii - ∑

j*i

(2 - Nj)(Jij - 1/2Kij), Ni e 1

Ei ) Ei
0 -

11

16
(2 - Ni)Jii - ∑

j*i

(2 - Nj)(Jij - 1/2Kij), Ni > 1

Ei ) Ei
0 - ( 5

16
(2 - Ni) +

3

8)Jii - ∑
j*i

(2 - Nj)(Jij - 1/2Kij),

Ni e 1
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which is of course unknown. So we should note that we have
generated band structures with a variety of values for the extent
of the self-Coulomb term removed from the O pσ Ei

0 atomic
orbital energies to test the importance of this term. For values
ranging from1/2J removed at half-occupancy to a fullJ removed,
no qualitative difference in the band structure was observed.
We thus feel that the choice of11/16J removed from the orbital
energy for O pσ at half-occupany is reasonable.

The results of including this static correlation in the Hubbard
model can be seen in Figure 1b. Here we present the two-
dimensional band structure obtained with the newer B3LYP/
6-311+G* parameters. As occurs with the older BLYP/6-
31+G* band structure, the Cu dx2-y2/O pσ band is seen to be
stabilized with respect to the Cu dz2/O′ pz band. The change is
so dramatic that the second band is seen now to lie just below
the Fermi level at optimal doping, a rather robust effect. As we
pointed out in our first published work on this subject, a
symmetry allowed crossing of the two bands is observed very
near the Fermi level.11 For this newer set of parameters, it is
just 0.024 eV below the Fermi level. The existence of such a
crossing provides the unique opportunity for a new type of
Cooper pair to form. In conventional BCS superconductors, pairs
of electrons near the Fermi level form an attractive coupling
when one of the electrons is in statek and the other is in state
-k. With the existence of a Fermi level band crossing, such an
attractive coupling (can be formed between electrons in states
k and -k where each of the electrons belongs to adifferent
band. This new and simple twist on the conventional theory
immediately provides an explanation for thed-wave gap
observed in the Josephson tunneling5,10 and ARPES.3,14a

While our early work resorted to empirical modifications to
the Hubbard model to a achieve a band crossing at exactly the
Fermi level, recently we found that the introduction of a small
3-D coupling on the order of 0.05-0.15 eV between O′ pz

orbitals of neighboring planes was enough to produce a Fermi

level band crossing.14c This is shown in Figure 4. The crossing
occurs in a limited area of the 3-D Brillouin zone, but this is
all that is necessary for the formation of interband Cooper pairs.
We should mention that several researchers have previously
notedz2 character near the Fermi level in spin-polarized band
structure calculations on undoped La2CuO4,18,19so this new band
structure should not come as a complete surprise even though
it is radically different from the band structure that has gained
common acceptance. To our knowledge though, no one has ever
noted the band crossing before, and it is this that leads directly
to the unusual physics of high-temperature superconductivity.

Conclusions

We have shown that the conventional LDA band structure
calculations for La2-xSrxCuO4 and other high-temperature
superconductors have failed due to an underestimation of the
static correlation. This same failure affects molecular systems
such as H2, benzene, and the Cu ion dimer in a well-understood
way. We have corrected the problem within the framework of
a Hubbard model by altering the accounting associated with
the self-Coulomb term. The result was a radically different band
structure in which a second Cu dz2/O′ pz band was seen to cross
the primary Cu dx2-y2/O pσ band at the Fermi level. The
observation of this band crossing led to a new interband pairing
theory for the mechanism of superconductivity in these materi-
als.

Finally, we must stress that not only does the new band
structure and interband pairing theory explain the origin of
d-wave superconductivity in these materials, it also explains
the origin of the highTc as resulting from unusual behavior in
the dielectric constant stemming from the band crossing.14b It
also quantitatively explains the anomolous behavior of the NMR
Cu and O spin relaxation rates as simply the result of rapidly
changing orbital character near the Fermi level.13 It explains
the ARPES pseudogap as originating from the very narrowly
dispersing Cu dz2 band.14aIt further explains the incommensurate
peaks of the neutron scattering and the mid-IR absorption.14d

None of the physics associated with understanding these
experiments is particularly difficult when this new band structure
is used. In contrast, the physics that has been proposed by
various sources in reference to the conventional band structure
to explain any one of the above-mentioned experiments has
always been deeply complex and limited in its predictive
capability. We suggest that nature usually prefers the simpler
solution.
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