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Localized-Density-Matrix Method and Its Application to Carbon Nanotubes

WanzZhen Liang, Satoshi Yokojima, DongHao Zhou, and GuanHua Chen*
Department of Chemistry, The Umirsity of Hong Kong, Pokfulam Road, Hong Kong

Receied: March 8, 1999; In Final Form: June 2, 1999

The localized-density-matrix method (Yokojima, S.; Chen, GCHem. Phys. Letl998 292, 379) is employed
to simulate the optical responses of very large carbon nanotubes and polyacetylene oligomers containing
10 000 carbon atoms. The Paris@&arr—Pople Hamiltonian is used to describe thelectrons in these systems,

and the time-dependent Hartreleock approximation is employed to calculate the linear optical responses.
In the calculation, the fast multipole method or the cell multipole method is employed to evaluate the effects
of Coulomb interaction. It is illustrated that the computational time scales linearly with the system size for
carbon nanotubes while high accuracy is achieved.

1. Introduction system to understand the electronic and nuclear dynamics of
the 7 conjugated polymeric systems. It is often employed to
calibrate the validity and accuracy of new theoretical methods.
Carbon nanotubes (CNTs) are graphite sheets rolled up along
some axig! They are a new class of materials with a reduced
dimensionality and are expected to possess very interesting
mechanical properties, such as high stiffness and axial strength,

Recently the localized-density-matrix (LDM) method has
been developed to evaluate ground- and excited-state propetties.
It is based on the truncation of the reduced single-electron
density matrices. The computational time of the LDM method
scales linearly with the system sidé The method has been
tested successfully for evaluating the optical properties of ) .
conjugated polymeri. The time-depgndent Hgﬁﬁmﬁ O’pDHF) and magnetlc., optlcal,.and t.ransport.proper%?eé? They are .
approximatiofi has been employed in the calculatidns.in made of coaxial graphite cylinders with nanometer scale radii

refs 1-5, a cutoff method is used to evaluate the summation of &1d micrometer scale lengths, and are thus ideal quasi-one-
Coulomb interactions dimensional systems for investigating the fundamental issues

of one-dimensional systems. Various experiments carried out
thus far (transmission electron spectroscopy (TEM¥,33.34
Z VikPuk @) scanning tunneling microscopy and spectroscopy (STM/
STS)2428 and Raman scatterify3”) consistently show that
the CNTSs are cylindrical graphene sheets étlspnded carbon
atoms.

Despite the short time since the first CNTs were synthesized,

scaling of the LDM method? since the straightforward POSSible applications of the new materials have been reported,
evaluation of eq 1 for all possiblescales aO(N?). Accurate such as atomic scale field emitters or pinning materials in high-
results have been obtained as compared with those of the fulltémperature superconductéf$”They also have very interesting
TDHF calculation, and this is due to the cancellation of errors OPtical properties and large nonlinear optical responses and may
for structurely ordered molecules such as polyacetyléne. D€ used for electro-optical devices. It is thus important to probe
However, many physical, chemical, and biological systems do the electronic properties of these CNTs. It has been obs?-:’rvgd
not possess such ordered structures. The cutoff approximatiorthat the tubules can be formed from a single layer of graphite.
may thus lead to numerical errdf.A variety of approximate ~ Such tubules would be expected to have unique properties.
methods have been used to calculate accurately the CoulombSingle-wall nanotubes are the best systems for investigating the
interaction such as eq%L° The fast multipole method (FMM) intrinsic properties of this new material class. Theoretical
or cell multipole method (CMM) divides the system into boxes Predictions of the electronic structure of CNTs regarding their
of different sizes, and replaces the pairwise Coulomb interaction Metallic and semiconducting properties depend strongly on the
with multipolar expansions. This leads t¢N) scaling of the tubule diameter and chiraliti€:4% Some of those theoretical

computational time, and thus reduces drastically the computa-predictions have been confirmed experimentally, such as in
tional time for large systenfed1t14 STM/STS% 28 (which reveal the electronic structure and

Conjugatedr electronic systems possess many interesting crystalline structure) and electron energy loss spectroscopy
electric and optical properties. These properties arise mainly (EELSY*#2 (which determines the electronic band structure).
from the dynamics ofr electrons in these systems. Conjugated The optical properties of CNTs have been measured, and a broad
polymers have large nonlinear optical responses and may beabsorption peak has been observed near 1.1% &eoretical
used for the optical devices. Many experimettal and calculations of the optical spectra have been cariée.
theoretical® 20 works have been devoted to investigate their However, these calculations were based on Hubbard-like models
electronic structures. Polyacetylene has been used as a modeind were carried out at the Hartreock level. Better Hamil-

tonians and more accurate methods which include eleetron
* To whom correspondence should be addressed. electron correlation are thus warranted.

wherevi, is the Coulomb interaction between two electrons at
local orbitalsi andk separately ang is the reduced density
matrix. The cutoff was introduced to achieve the ove@{(IN)
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In this work we modify the current LDM method by CNT is uniquely determined by its chiral vectBr= nmig, +
incorporating the FMM or CMM into our existing computer n& around the circumference of the nanotuldsanda, are
code, and calculate the ground- and excited-state properties othe unit vectors of the graphene 2D lattice. The tubule diameter
very large polyacetylene oligomers and zigzag @) CNTSs. In Dy is simply related to the integer pain(n) by D; = +/3ac_c(n?
section 2 we briefly describe the PPP models for polyacetylene + mn+ n?Y2/z. The nearest-neighbor carbecarbon distance
oligomers and CNTs, and outline the TDHF method for linear ac—c is chosen to be 1.421 A. The axis of the CNTs is chosen
optical response. In section 3 the LDM formalisms for the along thez direction in our calculations. Zigzagn( 0) CNTs
ground and excited states are given, and the FMM or CMM are the graphite sheets which are curved along the rolled-up
approximation for eq 1 is described. The absorption spectra of direction. A different form is thus required.
polyacetylene oligomers containing up to 10 000 carbon atoms

are examined in section 4. The calculations for CNTs are 0 atoms andj are not bonded
ogtlined in_ secti(_)n 5 along With the cor_resp(_)nding_results. o1+ 1/mz) atomsi andj are bonded in the
Finally a discussion and conclusion are given in section 6. t = . .

i = rolled-up direction
2. Model and Time-Dependent Hartree-Fock o atomsi andj are bonded along the
Approximation tube axis direction

We can consider only ther electrons in the conjugated Here yq is set to 2.5 eV which is the same as that for the
systems since the electric and optical properties come mainly graphite. For nanotubes with very small radii, the electron
from the responses of electrons to the external fields. The correlation effects cannot be neglected. Thus, the hopping matrix
electrons of conjugated systems in the external fielde well elements along and around the tubule differ slightly, by an
described by the ParisePar—Pople (PPP) Hamiltonid# 20 amount on the order of f2.48

Within the TDHF approximation, the reduced single-electron

H=H+ Hee+ Hoy density matrix satisfies the following relation:

Ho=3 trdne, . d
mn if 4 p(t) = [h() + (), p(0)] (5)
Hee= Vinndy
mh whereh(t) is the Fock matrix and(t) describes the interaction
between an electron and the external fi&t),'° which is

— B T At
Hex = —€E ; e © parallel to thez axis, and they may be expressed as
where a!. (a,) is the creation (annihilation) operator for an Por®) =t + 200 Y V() — Vo (6)
electron at the localized atomic orbitah (n). Hex is the
interaction between the electrons and an external electric field f (t)=0,.e2n) E(t) 7)

E(t), andz is the dipole moment matri¥ecis the two-electron
part of the Hamiltonian which represents the effective Coulomb
interaction between twor electrons. The zero differential
overlap (ZDO) approximatid is used here.Vy, is the
electron-electron Coulomb interaction between two electrons
at local orbitalsm and n, respectively, and may be expressed p= P(o) + 50(1) (8)
by the Ohno formul&

wheredmn is a Kroenecker delta.
Considering the linear response ongymay be expressed as

where p© is the Hartree-Fock ground-state reduced density
Ugle matrix for the PPP HamiltoniaHl whenE(t) = O (or the PPP
Vinn = W @) Hartree-Fock ground-state density matrix) ap@® is the first-
m order induced density matrix iE(t). Similarly, Fock matrixh

whererm, is the distance between two orbitals and n and may be decomposed as

Ugle is the on-site Coulomb repulsioa.is the static dielectric © (1)

constant caused by the polarization of core arelectronsag h=h"+oh 9)
is of the same magnitude as the bond length. In the calculation

Uo=11.13 eV,e = 1.5, anday = 1.2935 A are useddcis the ~ whereh© is the Fock matrix wherk(t) = 0 with
one-electron part of the Hamiltonian which describes the

dynamics of a single electron in the absence of other electrons. hﬁﬁ%(t) =ty + 20,m Vn|P|(|0) ) — v, Wp(no%(t) (10)
The diagonal elements, represent the energy of the electron

in orbitalm, whereas the off-diagonal elemen is the hopping

matrix element betweem andn. In the calculationgymis set andoh® is the first-order induced Fock matrix whéft) = 0
to zero whiletmn (M= n) is of different form for polyacetylene

and CNTs. For polyacetylene OO = 20, > 700 O) — vudpba® (1)
_[B-BAZ, m=n+1
fon = { 0 otherwise )

Equation 5 may thus be rewritten as
where Az, is the bond length deviation from the equilibrium

bond length which is 1.41 A3 andp’ are set to-2.4 eV and ( d ) @ — [r0) 51 @ (0 )
—3.5 eV*A~1, respectively’® The geometrical structure of a I ﬁdt e [N 0p™T + [0, P71 #1171 (12)
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A phenomenological parametgris introduced to simulate  to = —0.05 fs,yo = 1.0 x 10 6 eV, t = 10 fs, At = 0.138 fs,
the dephasing process. R, =1.0x 10%eV, andR, = 1.0 x 108 have been employed.
3.2. Excited State.Equation 12 can be rewritten as
3. Linear-Scaling LDM Method

3.1. Ground State. The PPP HartreeFock ground-state (h +y)ap(1)— Z(h(o) P — o hf(?)) +
density matrixp® may be determined by the equation

(1O, 40 =0 (13) ZZ(Vik — ) o 0p — Z (viplg) 0P’ — vigoll) 0piF) +
- - 0
together with the idempotency condition e@(i) — z(j)) E(t)p{” (20)
p9p@ = ,© (14) Most matrix elements ofi©®, p©, anddp® are virtually zero

when the distance between the two atoms is large enough. The
The TDHF eq 5 is usually used to simulate the electronic following approximations are employed to achieve the linear-

response to the external field. It may also be used to determinescaling calculation for the excited-state properties:

0© by settingE(t) = 0 orf(t) = 0. Starting from an initial guess )

of the density matrixo(t) at timet = to, we follow its time pi’ =0ifry > g (A)

evolution by integrating the equation
y iniegrating fe e Sp=0ifr, > 1, ®)

|, d
'(ha + V)P(t) = [h(V), p(0)] (15) Approximations A and B are the same as those in ref 1. An
immediate consequence of (A) is thgt) = 0 whenry > Io.
y = y(t) is time-dependent, and approaches zero over time. It With the truncation of the density matrix and Fock matrix, the
ensures the eventual Convergence of eq 15 toward eq 13 or thecomputational time is finite for evaluating the first, third, and
convergence of(t) to p©. y(t) may be of different forms, and  fourth terms on the right-hand side (rhs) of eq 20 for each
we choose 6pi(jl). The FMM or CMM is employed to evaluate the second
1 term, and the corresponding computational time is finite for each
Yo = (16) 6p”1) Approximation B means that onl@(N) of 6p needs to
1+ (-t be considered explicitly. Thus, the overall computatlonal time
scales linearly with the system size.
In the calculation of the second term on the rhs of eq 20, the
quantity

y(t) =

wherey, is the dephasing parametertat to andt is the time
constant which is approximately the simulation time. Sip€e
is real, we retain only the real part gf(t) as the current
approximate density matrix after each integration of eq 15 over N — 1 _ 2 2\1/2
a time intervalAt. The idempotency condition is then imposed u() Z VikdPic Z W@+ i) (1)
by applying repeatedfy->°
is to be evaluated for eaéhwhereqx = aoUo(Sp(l)/e Straight-

o' =3()° — 2(p0)° a7 forward computation ofJ(i) requiresO(N?) operations for all
i. The FMM reduces the evaluation of al(i) to O(N)
operationg!-1251Details of the FMM procedure adopted in this
'work are given in the Appendix.

until a convergence is reached. The resuliings then taken
as the new approximate density matrix. The above process
which includes the integration of eq 15 ovat, the retention
of Re[o(t)], and imposing the idempotency, is applied iteratively 4 Polyacetylene Oligomers
until the density matriyp(t) is converged:* Note that the initial .
guessp(to) is preferably close enough to the real ground-state To assess the accuracy of the FMM calculation, the Coulomb
density matrixo©@; otherwise a divergence may occur. energy
To achieve the Imear-scallng computation for the ground state, "
we adopt the following approximatiott i :} 49 (22)
2 2\1/2
pi) =0 for ry>1; SEC R
has been calculated by both the FMM and the exact evaluation
with g; = ¢ = agUo/e. The relative errors are below 0.1% and
saturate forN > 20000. The computational accuracy is
h®)=0 for r, >l comparable to that of ref 8, becaumgs small. The saturation
I ! is due to the fact that the Coulomb energy decreases toward
zero as the distance increases. We check the accuracy of eq 22
with g = g; = 1, setap = 0, and find the error witla, = 1.29
A is a little bit larger than that witlag = 0. The difference of
the errors is about 0.003%.
Z'Z (hiyg = Pichig /N = Ry (18) To evaluate the excited-state properties, the PPP Hartree
Fock ground-state density matri®® must be calculated first.
and for eq 17 We plot the computational time for obtainipg in Figure 1a.
The computational time scales indeed linearly with the Blze
zmij' — PijVN <R, (19) The PPP HartreeFock ground-state energies are calculated by
T using both the cutoff method (denoted as the cutoff-LDM

whererj is the distance between two atomic orbitalandj,
andl; is a critical length for the density matrb Consequently

In the calculation, the convergence criterion for eq 15 is given
by
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Figure 1. (a) CPU time versusl for the calculation of ground-state reduced density matribes 60 A and 16 atoms in the smallest box). (b)
CPU time for the calculation of the excited state=t lo = 37 A and 16 atoms in the smallest box). Each calculation is performed during a time
interval of [-0.5 fs,—0.3 fs] with a time step of 0.01 fs. (c) Absorption spectrumNb+= 200. The crosses are the cutoff-LDM results witk=
lo =50 A andl. = 25 A. The diamonds are the FMM-LDM results= | = 50 A and 25 atoms in the smallest box. The solid lines are the full
TDHF results. Each calculation is performed during the time interval betwe®B and+70.0 fs with a time step of 0.01 f3. = 0.1 eV. (d)

Absorption spectra fol = 10 000 by using the FMM-LDM method with = I, = 50 A. The 8-level FMM is employed. The dephasing parameter
y =0.2eV.

hereafter) withl. = 37 A and the FMM (denoted as FMM- The FMM-LDM method yields slightly more accurate values
LDM hereafter) with the smallest box containing 16 atoms for for the optical gap than the cutoff-LDM method. The difference
eq 1. In both methods; is equal to 50 A. The PPP Hartree of the two results is less than 0.006 eV. The relative error of
Fock ground-state energies calculated by the cutoff-LDM and the cutoff-LDM method for the optical gap is about 0.25%. The
the FMM-LDM methods are almost the same. This is because FMM-LDM and the cutoff-LDM methods give much less

the nuclear charges and the net electron charges at each siteelative numerical errors compared to the FMM or the cutoff

cancel each other. The relative errors are 1.007". calculations of eq 22. For instance, in the excited-state calcula-
To calculate the absorption spectrum, an external field tion, we need to evaluate the teri@vic — vj)p> dpy- The
o errors appearing iFx vkl opli and 3 vy dpyy) cancel

E(t) = (LV/mt) e @Y (23) each other because of the system symmetry for both the FMM

_ and the cutoff methods. Thus, we have relatively small errors
is employed, where= 0.1 fs. The phenomenological dephasing in both methods.
constanty is set to 0.1 eV in the calculation. The fourth-order In Figure 1b, we plot the CPU time of the FMM-LDM
Runge-Kutta metho is used to integrate eq 20. We compare cajculation versusN. A time interval of [-0.5 fs, —0.30 fs]
the full TDHF, the FMM-LDM, and the cutoff-LDM methods  with a time step of 0.01 fs is used. The CPU time is apparently
for N = 200. |0 = |;|_ = 50 A is employed in both LDM proportiona| to the System Sidd

calculations. A four-level hierarchy is used in the FMM We have calculated the absorption spectrum of a polyacet-
calculation. The results are shown in Figure 1c. Clearly three ylene oligomer containing 10 000 carbon atoms. The resulting
sets of results are consistent for> 0.8 eV. Whenw < 0.8 apsorption spectrum is plotted in Figure 1d. The optical gap is

eV as shown in the inset of Figure 1c, the FMM-LDM method 5 og ev. The inset shows the optical gap agaisthe optical
yields much better results than the cutoff-LDM method with gap reduces drastically Asincreases. It saturates Mt~ 200.

= 25 A. This is because the FMM-LDM method considers the
Coulomb interaction in all the space of the system while the

cutoff-LDM method neglects the influences of the charges 5. Carbon Nanotubes

outside the cutoff region. The distance of the charge movement Our objective is to investigate the linear optical response of
is larger in the low-frequency region than that in the high- the zigzag CNTs by using the FMM-LDM method. The linear
frequency region. The cutoff method ignores the charge fluctua- optical spectra of a series of open single-walled zigzag CNTs
tions outside the cutoff region, and thus introduces extra errors. are evaluated. All the nearest-neighboer C distancesc—c are



Application of the LDM Method to Carbon Nanotubes

(@)

Absorption (arbitrary unit)

Absorption (arbitrary unit)

Absorption (arbitrary unit)

1

0 3 4
 (eV)
Figure 2. Absorption spectra of the zigzag (8, 0) CNTs wjth= 0.2
eV. (a) G4Hi6 calculated using the PPP model and PM3 Hamiltonian.
The solid line is for the PPP model, and the dashed line for the PM3
Hamiltonian. The same geometry is used in two calculations. (bi&
calculated using the full TDHF method. The solid line is fo= 128
and the dashed line fod = 256. (c) Absorption spectrum ofsgH s,
Cs1H16, and GooHis calculated using the FMM-LDM method with
critical lengthl; = Io = 36 A. The dotted line is foN = 1024, the
dashed line foN = 512, and the solid line foN = 320.

chosen to be 1.421 A, which are the same as those in graphite
A tube diameterD, is v/3mac_c/m in the zigzag i, 0)
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peak lies at 1.45 eV for g,Hie In the calculation, the
dephasing parameteris set to 0.2 eV. Two-, three-, and four-
level FMM algorithms are employed fa¥d = 320, 512, and
1024, respectivelyN is the number of carbon atoms). The
absorption spectra are similar in the high-frequency region (
> 1.5 eV) forN = 320, 512, and 1024 with slight red shifts of
the absorption peaks &sincreases. The spectral shape looks
quite different in the low-frequency region. For instance, the
first peak near zero faX = 320 andN = 512 disappears when

N increases to 1024. The optical gap (1.45 eV) for the (8, 0)
tubule is larger than those of the tight binding calculations (1.22
eV>* and 1.19 eV®) and that of the ab initio pseudopotential
local density functional calculation (0.62 &Y. An absorption
peak was also observed and located at about 4.6 eW fer
1024. It is in good agreement with the similar absorption peaks
for graphite, which is attributed to the saddle point of transitions
between ther bands at the critical point§ of the two-
dimensional Brillouin zon&%-58 We also find the two absorption
peaks neat» = 5.6 andw = 6.2 eV which are observed in the
EELS experiment?®® These two peaks are attributed to the
collective excitation ofr electrons in the CNTSs.

To understand the nature of the electronic excitations, we
examine the induced density matricés™) corresponding to
the excitations of g dHi at the frequencies 0.16, 1.66, and 3.27
eV. We find that the ground-state density matrix is almost
diagonal. The electronic excitations, however, induce the
electror-hole pairs between atoms that are far apart. The
excitation atw = 0.16 eV includes mainly the electreimole
pairs between two ends of the tubule, and the excitation=at
1.66 eV contains mostly the electroehole pairs in the middle
of the tubule. It is conceivable that the excitation at 1.66 eV
will gain more oscillator strength and red shift to the lower
energy region as the size increases. This is consistent with the
spectral shapes ¢ = 512 and 1024.

To understand the spectral evolutionNaBicreases, we have
calculated the linear optical response of the zigzag (8, 0)
nanotubes with short lengths. The results are shown in Figure
2a,b. The absorption spectrum changes drastically with the
increasing size. The overall spectral shape red shifts and the
amplitude of the first peak reducesMéncreases. For instance,
the first peaks folN = 64 in Figure 2a disappear whéh=
128. The investigation of the corresponding density matrices
reveals that the first peak fof = 64 comes from the electren
hole pairs in the two ends. Two ends play an important role in
the optical responses of the short nanotubes. The influence of
the two ends as well as the relative strength of the first peak
decreases as the size increases.

"It was predicted by the tight binding calculation that the

nanotubes which are formed by wrapping a graphite sheet alonginfinitely long (8, 0) CNT is a semiconductor while the (9, 0)

the zigzag direction g, 0) with m hexagons around the
circumference.

To test the validity of our PPP Hamiltonian for CNTs, we
employ the LDM/PM3 (the LDM with the PM3 Hamiltoni&#)

method and calculate the absorption spectra of a small size CNT,

Cs4H16. The results are compared with those of the LDM/PPP
(the LDM with the PPP Hamiltonian) calculation in Figure 2a.
They agree with each other quite well in both relative oscillator
strengths and the peak locations in the low-frequency ramage (
< 4 eV). The differences appear in the higher frequency range
o > 4 eV because of electrons. Thus, the optical responses
of CNTs in the low-frequency range may be described by the
PPP Hamiltonian.

Figure 2 shows the absorption spectra f@iHGs, CiodH16,
CoseHie, CazoH16, Cs12H1e, and GoadHis (8, 0) CNTs. The first

CNT is a conductof? We have calculated the absorption spectra
of several zigzag (9,0) CNTs. Figure 3 shows the calculated
absorption spectra for (9, 0)168H1s and GigHig by the full
TDHF method and for gzoH1s and GeéHig by the FMM-LDM
method. Different dephasing parameters are used as indicated
in Figure 3. The first peaks lie at 0.34, 0.07, 1.01, and 0.72 eV
for N = 108, 216, 360, and 576, respectively. Note the large
red shifts in Figure 3b. In Figure 3a, &bvaries from 108 to
216, the whole spectrum red shifts, and the oscillator strength
of the first peak decreases drastically. This is similar to behavior
in the (8, 0) CNTs. The collective excitation afelectrons in
CNTs (9, 0) is observed at ~ 5.0—-7.0 eV.

Carbon nanotubes have cylindrical shapes. The anisotropy
effects of the absorption spectrum are shown in Figure 4. Parts
a and b of Figure 4 show, respectively, the absorption spectra
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Figure 3. Absorption spectra of the zigzag (9, 0) CNTgHGs. (a) The solid line is foN = 108 and the dashed lien fof = 216 withy = 0.1
eV calculated using the full TDHF method. The intensities of the absorption spectra are multiplied byNe wit28. (b) The solid line is foN

= 360 and the dashed line fof = 576 withy = 0.2 eV.
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Figure 4. Optical absorption spectra of the zigzag (6, 0) CNEsdi- (a and b) and (7, 0) CNTs&H14 (c and d). In (a) and (c) the electronic
field is parallel to the tube axis. In (b) and (d) the electronic field is perpendicular to the tubeyaxi€.2 eV. The FMM-LDM method is
employed.

of a (6, 0) GacHi2 and a (7, 0) GgHi4, where the electronic  CNTs induced by an electric field has been observed in the
field E is parallel to the tubule axis, while parts b and d of experimenf2 and may be used to determine the orientational
Figure 4 show the absorption spectra witperpendicular to ordering of the CNTSs.

the axis. The spectral shapes are quite different for two different We compare the calculated optical absorption spectra of CNTs
electric field directions. Figure 4a shows that the first peak at (6, 0) GacHi2, (7, 0) GsH14, (8, 0) GaodH1e, and (9, 0) GeoH1s.

1.07 eV has a very strong oscillator strength while the first peak These tubes are of the same length. (7, 0) and (8, 0) or (6, 0)
moves to 0.95 eV with a much weaker peak wikeis vertical and (9, 0) tubules have similar spectral shape. For (7, 0) and
to the axis (see Figure 4b). There are three peaks-8t &V (8, 0) tubes, the larger the diameter, the smaller the gap. The
with E along the axis. More peaks appear when the electronic peaks at aboutw = 5.0-6.5 eV in all the four tubes are
field is vertical to the axis, and these peaks are similar to those identified as the collective excitations of theband, which are

of C70.8%62Parts ¢ and d of Figure 4 also show different spectra. consistent with EEL3?60 These excitations are independent

It is found that the absorption threshold is significantly higher of the tubular chirality.

(by about 0.12 eV in the (6, 0) tubule and 0.60 eV in the (7, 0)  Carbon nanotubes are usually one-dimensional (1D) nano-
tubule) for the electronic fiel& along the tubule axis than for  structures since their lengths are far larger than their diameters.
that vertical to the axis. The optical anisotropy of dispersed To illustrate that the FMM-LDM method is applicable to three-
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Figure 5. (a) CPU time for the excited-state calculation of three-
dimensional CNTs with a large radius. The time interval+9[5 fs,
—0.3 fs] with the time step 0.01 fs. The critical lendttandl, are 15

A. Twenty-six atoms are included in the smallest box. (b) Absorption
spectrum of the zigzag (60, 0) nanotubeddie ¥ = 0.4 eV.

dimensional (3D) systems, we consider the nanotubes with
diameters comparable to their lengths. The diameters range fro
20.370 to 81.478 A, and the lengths from 15.63 to 66.78 A.
The number of carbon atoms corresponds to 416, 1664, 3328

4576, and 6656. The CPU time for propagating eq 20 between

a time interval of 0.5 fs,—0.3 fs] is recorded. The time step
is 0.01 fs. The critical lengthis andl; are set to be 15 A. The
results are shown in Figure 5a. The CPU time scales linearly
with the system siz&l. The maximum number of atoms in the
smallest box is kept at 26.

The absorption spectrum of a CNT with 1200 carbon atoms
is shown in Figure 5b. The critical lengths= 28 A andl; =
43 A are used. The absorption spectrum is quite different from
those of 1D CNTs. It should be similar to the optical properties
of graphité” if the tubule radius is large enough.

6. Discussion and Conclusion

We observe that for small zigzag CNTN & 200) there is
a small absorption peak at the very low energy regisg.8
eV) and the peak red shifts with decreasing oscillation strength
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polyacetylene oligomers. For an unstructured system it is
expected to lead to better results than the cutoff-LDM
method.

In the LDM/PPP calculation we consider only thelectron
in the CNTs. However, the curvature of the tubule leads to the
hybridization ofc and orbitals. The smaller the tubule, the
more the hybridization of the orbitals. This hybridization may
alter significantly the zero-order band structure of the sysf&ms.
Therefore, it is desirable to include explicitly all valence orbitals.

To conclude, the FMM-LDM method has been developed
and implemented to calculate the absorption spectra of very large
polyacetylene oligomers and CNTSs. It is demonstrated for the
first time that the linear-scaling LDM method is applicable to
calculation of the excited-state properties of two- or three-
dimensional systems. Interesting features of the absorption
spectra of CNTs, for instance, low-frequency peaks and ani-
sotropy, have been observed, and the corresponding electron
hole excitations are identified. The influence of the finite length
and chiral symmetry on the optical properties of CNTs has been
investigated. We find the length and chiral symmetry of
nanotubes have a strong influence on the low-energy optical
excitations. In the high-frequency range= 5—7 eV, the two
peaks are observed, which correspond to the collective excita-
tions of thex electron and are independent of the tubular
chirality.
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Appendix

We describe the FMM procedure that is employed to evaluate
our effective Coulomb interaction in the calculation. The

mprocedure is similar to that of ref 8. The only difference arises

from the special form of the effective Coulomb interaction that

'we adopt, the Ohno formuld.

The physical space is arranged in a hierarchy. The box
containing the entire physical space is called the root or level
0. Then each side of the root is bisected, and the space is divided
into 8 smaller boxes. These smaller boxes are called the level
1 of hierarchy. The space may be further divided evenly until
it is consisted of Bsmall boxes. The'$oxes form the level
of hierarchy. The boxes at the same level of hierarchy that share
a boundary point are said to be neighbors, and those that are
not neighbors are said to be separated.

The Coulomb potential of all other charges to chargeay
be divided into two parts

U@y =S U -7+

ketar

(24)
(g + [T, — ;)"

as the size increases. These electronic excitations correspondavhereg is the effective charge &j. The first term is the far-

to electron-hole pairs between two ends of the tubule, and field interaction, and the second is the near-field interaction.
appear to be caused by finite size effects. The critical behavior The near-field interaction is defined as the interaction between
of the polyacetylene oligomer, for instance, the optical gap two charges inside a given box or neighboring boxes, and is
versusN, can be investigated, since the FMM-LDM may be treated exactly to ensure high accuracy. The far-field interaction
applied to very large systems. The linear-scaling FMM-LDM is defined as the interaction between two charges in two
method is quite general. It is applicable to 1D as well as 2D separated boxes, and may be evaluated through the Taylor series
and 3D systems. In addition, it yields more accurate results thanexpansion around the central position of the box containing
the cutoff-LDM method even for structured molecules such as chargei as follows:
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Heref{ =T; — Rn. Rnis the central position of the bax on
which charge is locateda, 5, andy are the indices representing
X, ¥, andz To calculate the Taylor coefficients, the Coulomb

potential of all atoms in a particular box may be represented

by the multipole moments of the box. Thus, the potential of
charges in the far field to chargenay be expressed as
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Here,ﬂRmn = E(n — _Iim is the displacement vector from the center
of boxmto the center of box. We calculate the Taylor series
expansion coefficients of the field at the center of bogue to
the multipole momentg", S, u", T, Q", andO" of the boxes

n.

The boxes in the far field may be further divided into two

groups: One contains the boxes that belong to the neighbors

of m's parent excepin's neighbors (denoted as pnc). Another
includes the area outside the 27 neighbor boxes'sfparent
(denoted as pfc). Thus

V(T) = V() + V() (31)
whereVP'qF;") and VP(F}") are of the form in eq 3OVP"qT}') is
evaluated at the individual box at the same levelhasThe
Taylor series expansion coefficientg][in eq 25 according to
the center of boxn coming from the contribution of the far
field is just the summation of the two expansion coefficients
[VPq and [P, for example
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Here,R = RimandVP, Vi, Vo, andVi,, are the Taylor series
coefficients of celm's parent cell. The Taylor series coefficients
coming from the pfc cells’ contribution have been represented
by the coefficients of celin's parent cell. We just translate those
coefficients with respect to the center of its parent box to the
center of the box which the chargeoccupies.Ty is the
displacement vector from the center of its parent box to the
box which the chargeoccupies. Those Taylor series coefficients
may be calculated level by level, from the root to the leaves.

The multipole moments, i.e., charges, dipoles, quadrupoles,
octapoles, etc., in box A, may be evaluated as follows:

z=5 g (32)
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here, T is the displacement vector from the center A to the

chargek. The contributions of these multipole moments of

different boxes at various levels are summed up and further
expanded irT to obtain the values of Taylor coefficient%,

Vo, Vog, Vagy, and others. Once the multipole moments of the

highest level are known, the multipole moments of other levels
may be calculated readily by utilizing the relationship between
the multipole moments of levéland levell — 1.
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wherer is the displacement vector from the center of a box at
level | to the center of boxXC,—; at levell — 1.
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