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The localized-density-matrix method (Yokojima, S.; Chen, G. H.Chem. Phys. Lett. 1998, 292, 379) is employed
to simulate the optical responses of very large carbon nanotubes and polyacetylene oligomers containing
10 000 carbon atoms. The Pariser-Parr-Pople Hamiltonian is used to describe theπ electrons in these systems,
and the time-dependent Hartree-Fock approximation is employed to calculate the linear optical responses.
In the calculation, the fast multipole method or the cell multipole method is employed to evaluate the effects
of Coulomb interaction. It is illustrated that the computational time scales linearly with the system size for
carbon nanotubes while high accuracy is achieved.

1. Introduction

Recently the localized-density-matrix (LDM) method has
been developed to evaluate ground- and excited-state properties.1-5

It is based on the truncation of the reduced single-electron
density matrices. The computational time of the LDM method
scales linearly with the system sizeN. The method has been
tested successfully for evaluating the optical properties of
conjugated polymers. The time-dependent Hartree-Fock (TDHF)
approximation6 has been employed in the calculations.1-5 In
refs 1-5, a cutoff method is used to evaluate the summation of
Coulomb interactions

whereνik is the Coulomb interaction between two electrons at
local orbitalsi and k separately andF is the reduced density
matrix. The cutoff was introduced to achieve the overallO(N)
scaling of the LDM method,1,2 since the straightforward
evaluation of eq 1 for all possiblei scales asO(N2). Accurate
results have been obtained as compared with those of the full
TDHF calculation, and this is due to the cancellation of errors
for structurely ordered molecules such as polyacetylene.1,2

However, many physical, chemical, and biological systems do
not possess such ordered structures. The cutoff approximation
may thus lead to numerical error.7,8 A variety of approximate
methods have been used to calculate accurately the Coulomb
interaction such as eq 1.9,10 The fast multipole method (FMM)
or cell multipole method (CMM) divides the system into boxes
of different sizes, and replaces the pairwise Coulomb interaction
with multipolar expansions. This leads theO(N) scaling of the
computational time, and thus reduces drastically the computa-
tional time for large systems.7,8,11-14

Conjugatedπ electronic systems possess many interesting
electric and optical properties. These properties arise mainly
from the dynamics ofπ electrons in these systems. Conjugated
polymers have large nonlinear optical responses and may be
used for the optical devices. Many experimental15-17 and
theoretical18-20 works have been devoted to investigate their
electronic structures. Polyacetylene has been used as a model

system to understand the electronic and nuclear dynamics of
the π conjugated polymeric systems. It is often employed to
calibrate the validity and accuracy of new theoretical methods.
Carbon nanotubes (CNTs) are graphite sheets rolled up along
some axis.21 They are a new class of materials with a reduced
dimensionality and are expected to possess very interesting
mechanical properties, such as high stiffness and axial strength,
and magnetic, optical, and transport properties.22-32 They are
made of coaxial graphite cylinders with nanometer scale radii
and micrometer scale lengths, and are thus ideal quasi-one-
dimensional systems for investigating the fundamental issues
of one-dimensional systems. Various experiments carried out
thus far (transmission electron spectroscopy (TEM),21,23,33,34

scanning tunneling microscopy and spectroscopy (STM/
STS),24-28 and Raman scattering35-37) consistently show that
the CNTs are cylindrical graphene sheets of sp2-bonded carbon
atoms.

Despite the short time since the first CNTs were synthesized,
possible applications of the new materials have been reported,
such as atomic scale field emitters or pinning materials in high-
temperature superconductors.38,39They also have very interesting
optical properties and large nonlinear optical responses and may
be used for electro-optical devices. It is thus important to probe
the electronic properties of these CNTs. It has been observed34

that the tubules can be formed from a single layer of graphite.
Such tubules would be expected to have unique properties.
Single-wall nanotubes are the best systems for investigating the
intrinsic properties of this new material class. Theoretical
predictions of the electronic structure of CNTs regarding their
metallic and semiconducting properties depend strongly on the
tubule diameter and chiralities.23,40 Some of those theoretical
predictions have been confirmed experimentally, such as in
STM/STS26-28 (which reveal the electronic structure and
crystalline structure) and electron energy loss spectroscopy
(EELS)41,42 (which determines the electronic band structure).
The optical properties of CNTs have been measured, and a broad
absorption peak has been observed near 1.17 eV.43 Theoretical
calculations of the optical spectra have been carried.44,45

However, these calculations were based on Hubbard-like models
and were carried out at the Hartree-Fock level. Better Hamil-
tonians and more accurate methods which include electron-
electron correlation are thus warranted.* To whom correspondence should be addressed.
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In this work we modify the current LDM method by
incorporating the FMM or CMM into our existing computer
code, and calculate the ground- and excited-state properties of
very large polyacetylene oligomers and zigzag (m, 0) CNTs. In
section 2 we briefly describe the PPP models for polyacetylene
oligomers and CNTs, and outline the TDHF method for linear
optical response. In section 3 the LDM formalisms for the
ground and excited states are given, and the FMM or CMM
approximation for eq 1 is described. The absorption spectra of
polyacetylene oligomers containing up to 10 000 carbon atoms
are examined in section 4. The calculations for CNTs are
outlined in section 5 along with the corresponding results.
Finally a discussion and conclusion are given in section 6.

2. Model and Time-Dependent Hartree-Fock
Approximation

We can consider only theπ electrons in the conjugated
systems since the electric and optical properties come mainly
from the responses ofπ electrons to the external fields. Theπ
electrons of conjugated systems in the external fieldEB are well
described by the Pariser-Parr-Pople (PPP) Hamiltonian18-20

where am
† (an) is the creation (annihilation) operator for an

electron at the localized atomic orbitalm (n). Hext is the
interaction between theπ electrons and an external electric field
EB(t), andµb is the dipole moment matrix.Hee is the two-electron
part of the Hamiltonian which represents the effective Coulomb
interaction between twoπ electrons. The zero differential
overlap (ZDO) approximation46 is used here.Vmn is the
electron-electron Coulomb interaction between two electrons
at local orbitalsm andn, respectively, and may be expressed
by the Ohno formula47

where rmn is the distance between two orbitalsm and n and
U0/ε is the on-site Coulomb repulsion.ε is the static dielectric
constant caused by the polarization of core andσ electrons.a0

is of the same magnitude as the bond length. In the calculation
U0 ) 11.13 eV,ε ) 1.5, anda0 ) 1.2935 Å are used.He is the
one-electron part of the Hamiltonian which describes the
dynamics of a single electron in the absence of other electrons.
The diagonal elementstmm represent the energy of the electron
in orbitalm, whereas the off-diagonal elementtmn is the hopping
matrix element betweenm andn. In the calculationstmm is set
to zero whiletmn (m * n) is of different form for polyacetylene
and CNTs. For polyacetylene

where∆zn is the bond length deviation from the equilibrium
bond length which is 1.41 Å.âh andâ′ are set to-2.4 eV and
-3.5 eV‚Å-1, respectively.19 The geometrical structure of a

CNT is uniquely determined by its chiral vectorRB ) mab1 +
nab2 around the circumference of the nanotubes.ab1 andab2 are
the unit vectors of the graphene 2D lattice. The tubule diameter
Dt is simply related to the integer pair (m, n) by Dt ) x3aC-C(m2

+ mn+ n2)1/2/π. The nearest-neighbor carbon-carbon distance
aC-C is chosen to be 1.421 Å. The axis of the CNTs is chosen
along thez direction in our calculations. Zigzag (m, 0) CNTs
are the graphite sheets which are curved along the rolled-up
direction. A different form is thus required.

Here γ0 is set to 2.5 eV which is the same as that for the
graphite. For nanotubes with very small radii, the electron
correlation effects cannot be neglected. Thus, the hopping matrix
elements along and around the tubule differ slightly, by an
amount on the order of 1/m2.48

Within the TDHF approximation, the reduced single-electron
density matrix satisfies the following relation:

whereh(t) is the Fock matrix andf(t) describes the interaction
between an electron and the external fieldEB(t),19 which is
parallel to thez axis, and they may be expressed as

whereδmn is a Kroenecker delta.
Considering the linear response only,F may be expressed as

whereF(0) is the Hartree-Fock ground-state reduced density
matrix for the PPP HamiltonianH whenE(t) ) 0 (or the PPP
Hartree-Fock ground-state density matrix) andF(1) is the first-
order induced density matrix inE(t). Similarly, Fock matrixh
may be decomposed as

whereh(0) is the Fock matrix whenE(t) ) 0 with

andδh(1) is the first-order induced Fock matrix whenE(t) * 0

Equation 5 may thus be rewritten as

H ) He + Hee+ Hext

He ) ∑
mn

tmnam
†an

Hee) ∑
mn

Vmnam
†aman

†an

Hext ) -eEB‚∑
mn

µbmnam
†an (2)

Vmn )
U0/ε

[1 + (rmn/a0)
2]1/2

(3)

tmn ) {âh - â′∆zn m ) n ( 1
0 otherwise

(4)

tij ) {0 atomsi andj are not bonded
-γ0(1 + 1/m2) atomsi andj are bonded in the

rolled-up direction
-γ0 atomsi andj are bonded along the

tube axis direction

ip
d
dt

F(t) ) [h(t) + f(t), F(t)] (5)

hnm(t) ) tnm + 2δnm∑
l

νnlFll(t) - νnmFnm(t) (6)

fnm(t) ) δnmez(n) E(t) (7)

F ) F(0) + δF(1) (8)

h ) h(0) + δh(1) (9)

hnm
(0)(t) ) tnm + 2δnm∑

l

νnlFll
(0) (t) - νnmFnm

(0)(t) (10)

δhnm
(1)(t) ) 2δnm∑

l

νnlδFll
(1)(t) - νnmδFnm

(1)(t) (11)

i(p d
dt

+ γ)δF(1) ) [h(0), δF(1)] + [δh(1), F(0)] + [f, F(0)] (12)
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A phenomenological parameterγ is introduced to simulate
the dephasing process.

3. Linear-Scaling LDM Method

3.1. Ground State. The PPP Hartree-Fock ground-state
density matrixF(0) may be determined by the equation

together with the idempotency condition

The TDHF eq 5 is usually used to simulate the electronic
response to the external field. It may also be used to determine
F(0) by settingEB(t) ) 0 or f(t) ) 0. Starting from an initial guess
of the density matrixF(t) at time t ) t0, we follow its time
evolution by integrating the equation

γ ≡ γ(t) is time-dependent, and approaches zero over time. It
ensures the eventual convergence of eq 15 toward eq 13 or the
convergence ofF(t) to F(0). γ(t) may be of different forms, and
we choose

whereγ0 is the dephasing parameter att ) t0 andth is the time
constant which is approximately the simulation time. SinceF(0)

is real, we retain only the real part ofF(t) as the current
approximate density matrix after each integration of eq 15 over
a time interval∆t. The idempotency condition is then imposed
by applying repeatedly49,50

until a convergence is reached. The resultingF′ is then taken
as the new approximate density matrix. The above process,
which includes the integration of eq 15 over∆t, the retention
of Re[F(t)], and imposing the idempotency, is applied iteratively
until the density matrixF(t) is converged.3,4 Note that the initial
guessF(t0) is preferably close enough to the real ground-state
density matrixF(0); otherwise a divergence may occur.

To achieve the linear-scaling computation for the ground state,
we adopt the following approximation:3,4

whererij is the distance between two atomic orbitalsi and j,
andl1 is a critical length for the density matrix.1,2 Consequently

In the calculation, the convergence criterion for eq 15 is given
by

and for eq 17

t0 ) -0.05 fs,γ0 ) 1.0 × 10-6 eV, th ) 10 fs,∆t ) 0.138 fs,
R1 ) 1.0× 10-3 eV, andR2 ) 1.0× 10-8 have been employed.

3.2. Excited State.Equation 12 can be rewritten as

Most matrix elements ofh(0), F(0), andδF(1) are virtually zero
when the distance between the two atoms is large enough. The
following approximations are employed to achieve the linear-
scaling calculation for the excited-state properties:

Approximations A and B are the same as those in ref 1. An
immediate consequence of (A) is thathij

(0) ) 0 whenrij > l0.
With the truncation of the density matrix and Fock matrix, the
computational time is finite for evaluating the first, third, and
fourth terms on the right-hand side (rhs) of eq 20 for each
δF̆ij

(1). The FMM or CMM is employed to evaluate the second
term, and the corresponding computational time is finite for each
δF̆ij

(1). Approximation B means that onlyO(N) of δFij
(1) needs to

be considered explicitly. Thus, the overall computational time
scales linearly with the system size.

In the calculation of the second term on the rhs of eq 20, the
quantity

is to be evaluated for eachi, whereqk ≡ a0U0δFkk
(1)/ε. Straight-

forward computation ofU(i) requiresO(N2) operations for all
i. The FMM reduces the evaluation of allU(i) to O(N)
operations.11,12,51Details of the FMM procedure adopted in this
work are given in the Appendix.

4. Polyacetylene Oligomers

To assess the accuracy of the FMM calculation, the Coulomb
energy

has been calculated by both the FMM and the exact evaluation
with qi ) qj ) a0U0/ε. The relative errors are below 0.1% and
saturate for N > 20000. The computational accuracy is
comparable to that of ref 8, becausea0 is small. The saturation
is due to the fact that the Coulomb energy decreases toward
zero as the distance increases. We check the accuracy of eq 22
with qi ) qj ) 1, seta0 ) 0, and find the error witha0 ) 1.29
Å is a little bit larger than that witha0 ) 0. The difference of
the errors is about 0.003%.

To evaluate the excited-state properties, the PPP Hartree-
Fock ground-state density matrixF(0) must be calculated first.
We plot the computational time for obtainingF(0) in Figure 1a.
The computational time scales indeed linearly with the sizeN.
The PPP Hartree-Fock ground-state energies are calculated by
using both the cutoff method (denoted as the cutoff-LDM

i(p
d

dt
+ γ)δFij

(1) ) ∑
k

(hik
(0)δFkj

(1) - δFik
(1) hkj

(0)) +

2∑
k

(νik - νjk) Fij
(0) δFkk

(1) - ∑
k

(νikFkj
(0) δFik

(1) - νkjFik
(0) δFkj

(1)) +

e(z(i) - z(j)) E(t)Fij
(0) (20)

Fij
(0) ) 0 if rij > l0 (A)

δFij
(1) ) 0 if rij > l1 (B)

U(i) ) ∑
k

VikδFkk
(1) ) ∑

k

qk/(a0
2 + rik

2)1/2 (21)

V )
1

2
∑
i*j

qiqj

(a0
2 + rij

2)1/2
(22)

[h(0), F(0)] ) 0 (13)

F(0)F(0) ) F(0) (14)

i(p d
dt

+ γ)F(t) ) [h(t), F(t)] (15)

γ(t) ) γ0
1

1 + (t - t0)/ th
(16)

F′ ) 3(F)2 - 2(F)3 (17)

Fij(t) ) 0 for rij > l1

hij(t) ) 0 for rij > l1

∑
ij

|∑
k

(hikFkj - Fikhkj)|/N < R1 (18)

∑
ij

|Fij ′ - Fij|/N < R2 (19)
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hereafter) withlc ) 37 Å and the FMM (denoted as FMM-
LDM hereafter) with the smallest box containing 16 atoms for
eq 1. In both methods,l1 is equal to 50 Å. The PPP Hartree-
Fock ground-state energies calculated by the cutoff-LDM and
the FMM-LDM methods are almost the same. This is because
the nuclear charges and the net electron charges at each site
cancel each other. The relative errors are 1.0× 10-7.

To calculate the absorption spectrum, an external field

is employed, whereth ) 0.1 fs. The phenomenological dephasing
constantγ is set to 0.1 eV in the calculation. The fourth-order
Runge-Kutta method52 is used to integrate eq 20. We compare
the full TDHF, the FMM-LDM, and the cutoff-LDM methods
for N ) 200. l0 ) l1 ) 50 Å is employed in both LDM
calculations. A four-level hierarchy is used in the FMM
calculation. The results are shown in Figure 1c. Clearly three
sets of results are consistent forω > 0.8 eV. Whenω < 0.8
eV as shown in the inset of Figure 1c, the FMM-LDM method
yields much better results than the cutoff-LDM method withlc
) 25 Å. This is because the FMM-LDM method considers the
Coulomb interaction in all the space of the system while the
cutoff-LDM method neglects the influences of the charges
outside the cutoff region. The distance of the charge movement
is larger in the low-frequency region than that in the high-
frequency region. The cutoff method ignores the charge fluctua-
tions outside the cutoff region, and thus introduces extra errors.

The FMM-LDM method yields slightly more accurate values
for the optical gap than the cutoff-LDM method. The difference
of the two results is less than 0.006 eV. The relative error of
the cutoff-LDM method for the optical gap is about 0.25%. The
FMM-LDM and the cutoff-LDM methods give much less
relative numerical errors compared to the FMM or the cutoff
calculations of eq 22. For instance, in the excited-state calcula-
tion, we need to evaluate the term 2∑k(νik - νjk)Fij

(0) δFkk
(1). The

errors appearing in∑k νikFij
(0) δFkk

(1) and ∑k νjkFij
(0) δFkk

(1) cancel
each other because of the system symmetry for both the FMM
and the cutoff methods. Thus, we have relatively small errors
in both methods.

In Figure 1b, we plot the CPU time of the FMM-LDM
calculation versusN. A time interval of [-0.5 fs, -0.30 fs]
with a time step of 0.01 fs is used. The CPU time is apparently
proportional to the system sizeN.

We have calculated the absorption spectrum of a polyacet-
ylene oligomer containing 10 000 carbon atoms. The resulting
absorption spectrum is plotted in Figure 1d. The optical gap is
2.08 eV. The inset shows the optical gap againstN. The optical
gap reduces drastically asN increases. It saturates atN ≈ 200.

5. Carbon Nanotubes

Our objective is to investigate the linear optical response of
the zigzag CNTs by using the FMM-LDM method. The linear
optical spectra of a series of open single-walled zigzag CNTs
are evaluated. All the nearest-neighbor C-C distancesaC-C are

Figure 1. (a) CPU time versusN for the calculation of ground-state reduced density matrices (l1 ) 50 Å and 16 atoms in the smallest box). (b)
CPU time for the calculation of the excited state (l1 ) l0 ) 37 Å and 16 atoms in the smallest box). Each calculation is performed during a time
interval of [-0.5 fs,-0.3 fs] with a time step of 0.01 fs. (c) Absorption spectrum forN ) 200. The crosses are the cutoff-LDM results withl1 )
l0 ) 50 Å andlc ) 25 Å. The diamonds are the FMM-LDM resultsl1 ) l0 ) 50 Å and 25 atoms in the smallest box. The solid lines are the full
TDHF results. Each calculation is performed during the time interval between-0.5 and(70.0 fs with a time step of 0.01 fs.γ ) 0.1 eV. (d)
Absorption spectra forN ) 10 000 by using the FMM-LDM method withl1 ) l0 ) 50 Å. The 8-level FMM is employed. The dephasing parameter
γ ) 0.2 eV.

E(t) ) (1/xπ th) e-(t/ th)2
(23)
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chosen to be 1.421 Å, which are the same as those in graphite.
A tube diameterDm is x3maC-C/π in the zigzag (m, 0)
nanotubes which are formed by wrapping a graphite sheet along
the zigzag direction (m, 0) with m hexagons around the
circumference.

To test the validity of our PPP Hamiltonian for CNTs, we
employ the LDM/PM3 (the LDM with the PM3 Hamiltonian53)
method and calculate the absorption spectra of a small size CNT,
C64H16. The results are compared with those of the LDM/PPP
(the LDM with the PPP Hamiltonian) calculation in Figure 2a.
They agree with each other quite well in both relative oscillator
strengths and the peak locations in the low-frequency range (ω
< 4 eV). The differences appear in the higher frequency range
ω > 4 eV because ofσ electrons. Thus, the optical responses
of CNTs in the low-frequency range may be described by the
PPP Hamiltonian.

Figure 2 shows the absorption spectra for C64H16, C128H16,
C256H16, C320H16, C512H16, and C1024H16 (8, 0) CNTs. The first

peak lies at 1.45 eV for C1024H16. In the calculation, the
dephasing parameterγ is set to 0.2 eV. Two-, three-, and four-
level FMM algorithms are employed forN ) 320, 512, and
1024, respectively (N is the number of carbon atoms). The
absorption spectra are similar in the high-frequency region (ω
> 1.5 eV) forN ) 320, 512, and 1024 with slight red shifts of
the absorption peaks asN increases. The spectral shape looks
quite different in the low-frequency region. For instance, the
first peak near zero forN ) 320 andN ) 512 disappears when
N increases to 1024. The optical gap (1.45 eV) for the (8, 0)
tubule is larger than those of the tight binding calculations (1.22
eV54 and 1.19 eV55) and that of the ab initio pseudopotential
local density functional calculation (0.62 eV55). An absorption
peak was also observed and located at about 4.6 eV forN )
1024. It is in good agreement with the similar absorption peaks
for graphite, which is attributed to the saddle point of transitions
between theπ bands at the critical pointsQ of the two-
dimensional Brillouin zone.56-58 We also find the two absorption
peaks nearω ) 5.6 andω ) 6.2 eV which are observed in the
EELS experiment.59,60 These two peaks are attributed to the
collective excitation ofπ electrons in the CNTs.

To understand the nature of the electronic excitations, we
examine the induced density matricesδF(1) corresponding to
the excitations of C320H16 at the frequencies 0.16, 1.66, and 3.27
eV. We find that the ground-state density matrix is almost
diagonal. The electronic excitations, however, induce the
electron-hole pairs between atoms that are far apart. The
excitation atω ) 0.16 eV includes mainly the electron-hole
pairs between two ends of the tubule, and the excitation atω )
1.66 eV contains mostly the electron-hole pairs in the middle
of the tubule. It is conceivable that the excitation at 1.66 eV
will gain more oscillator strength and red shift to the lower
energy region as the size increases. This is consistent with the
spectral shapes ofN ) 512 and 1024.

To understand the spectral evolution asN increases, we have
calculated the linear optical response of the zigzag (8, 0)
nanotubes with short lengths. The results are shown in Figure
2a,b. The absorption spectrum changes drastically with the
increasing size. The overall spectral shape red shifts and the
amplitude of the first peak reduces asN increases. For instance,
the first peaks forN ) 64 in Figure 2a disappear whenN )
128. The investigation of the corresponding density matrices
reveals that the first peak forN ) 64 comes from the electron-
hole pairs in the two ends. Two ends play an important role in
the optical responses of the short nanotubes. The influence of
the two ends as well as the relative strength of the first peak
decreases as the size increases.

It was predicted by the tight binding calculation that the
infinitely long (8, 0) CNT is a semiconductor while the (9, 0)
CNT is a conductor.40 We have calculated the absorption spectra
of several zigzag (9,0) CNTs. Figure 3 shows the calculated
absorption spectra for (9, 0) C108H18 and C216H18 by the full
TDHF method and for C360H18 and C576H18 by the FMM-LDM
method. Different dephasing parameters are used as indicated
in Figure 3. The first peaks lie at 0.34, 0.07, 1.01, and 0.72 eV
for N ) 108, 216, 360, and 576, respectively. Note the large
red shifts in Figure 3b. In Figure 3a, asN varies from 108 to
216, the whole spectrum red shifts, and the oscillator strength
of the first peak decreases drastically. This is similar to behavior
in the (8, 0) CNTs. The collective excitation ofπ electrons in
CNTs (9, 0) is observed atω ≈ 5.0-7.0 eV.

Carbon nanotubes have cylindrical shapes. The anisotropy
effects of the absorption spectrum are shown in Figure 4. Parts
a and b of Figure 4 show, respectively, the absorption spectra

Figure 2. Absorption spectra of the zigzag (8, 0) CNTs withγ ) 0.2
eV. (a) C64H16 calculated using the PPP model and PM3 Hamiltonian.
The solid line is for the PPP model, and the dashed line for the PM3
Hamiltonian. The same geometry is used in two calculations. (b) CNH16

calculated using the full TDHF method. The solid line is forN ) 128
and the dashed line forN ) 256. (c) Absorption spectrum of C320H16,
C512H16, and C1024H16 calculated using the FMM-LDM method with
critical length l1 ) l0 ) 36 Å. The dotted line is forN ) 1024, the
dashed line forN ) 512, and the solid line forN ) 320.
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of a (6, 0) C240H12 and a (7, 0) C280H14, where the electronic
field EB is parallel to the tubule axis, while parts b and d of
Figure 4 show the absorption spectra withEB perpendicular to
the axis. The spectral shapes are quite different for two different
electric field directions. Figure 4a shows that the first peak at
1.07 eV has a very strong oscillator strength while the first peak
moves to 0.95 eV with a much weaker peak whenEB is vertical
to the axis (see Figure 4b). There are three peaks at 5-8 eV
with EB along the axis. More peaks appear when the electronic
field is vertical to the axis, and these peaks are similar to those
of C70.61,62Parts c and d of Figure 4 also show different spectra.
It is found that the absorption threshold is significantly higher
(by about 0.12 eV in the (6, 0) tubule and 0.60 eV in the (7, 0)
tubule) for the electronic fieldEB along the tubule axis than for
that vertical to the axis. The optical anisotropy of dispersed

CNTs induced by an electric field has been observed in the
experiment,63 and may be used to determine the orientational
ordering of the CNTs.

We compare the calculated optical absorption spectra of CNTs
(6, 0) C240H12, (7, 0) C280H14, (8, 0) C320H16, and (9, 0) C360H18.
These tubes are of the same length. (7, 0) and (8, 0) or (6, 0)
and (9, 0) tubules have similar spectral shape. For (7, 0) and
(8, 0) tubes, the larger the diameter, the smaller the gap. The
peaks at aboutω ) 5.0-6.5 eV in all the four tubes are
identified as the collective excitations of theπ band, which are
consistent with EELS.59,60 These excitations are independent
of the tubular chirality.

Carbon nanotubes are usually one-dimensional (1D) nano-
structures since their lengths are far larger than their diameters.
To illustrate that the FMM-LDM method is applicable to three-

Figure 3. Absorption spectra of the zigzag (9, 0) CNTs CNH18. (a) The solid line is forN ) 108 and the dashed lien forN ) 216 with γ ) 0.1
eV calculated using the full TDHF method. The intensities of the absorption spectra are multiplied by 2 withN ) 128. (b) The solid line is forN
) 360 and the dashed line forN ) 576 with γ ) 0.2 eV.

Figure 4. Optical absorption spectra of the zigzag (6, 0) CNTs C240H12 (a and b) and (7, 0) CNTs C280H14 (c and d). In (a) and (c) the electronic
field is parallel to the tube axis. In (b) and (d) the electronic field is perpendicular to the tube axis.γ ) 0.2 eV. The FMM-LDM method is
employed.
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dimensional (3D) systems, we consider the nanotubes with
diameters comparable to their lengths. The diameters range from
20.370 to 81.478 Å, and the lengths from 15.63 to 66.78 Å.
The number of carbon atoms corresponds to 416, 1664, 3328,
4576, and 6656. The CPU time for propagating eq 20 between
a time interval of [-0.5 fs,-0.3 fs] is recorded. The time step
is 0.01 fs. The critical lengthsl0 and l1 are set to be 15 Å. The
results are shown in Figure 5a. The CPU time scales linearly
with the system sizeN. The maximum number of atoms in the
smallest box is kept at 26.

The absorption spectrum of a CNT with 1200 carbon atoms
is shown in Figure 5b. The critical lengthsl0 ) 28 Å andl1 )
43 Å are used. The absorption spectrum is quite different from
those of 1D CNTs. It should be similar to the optical properties
of graphite57 if the tubule radius is large enough.

6. Discussion and Conclusion

We observe that for small zigzag CNTs (N j 200) there is
a small absorption peak at the very low energy region (j0.3
eV) and the peak red shifts with decreasing oscillation strength
as the size increases. These electronic excitations correspond
to electron-hole pairs between two ends of the tubule, and
appear to be caused by finite size effects. The critical behavior
of the polyacetylene oligomer, for instance, the optical gap
versusN, can be investigated, since the FMM-LDM may be
applied to very large systems. The linear-scaling FMM-LDM
method is quite general. It is applicable to 1D as well as 2D
and 3D systems. In addition, it yields more accurate results than
the cutoff-LDM method even for structured molecules such as

polyacetylene oligomers. For an unstructured system it is
expected to lead to better results than the cutoff-LDM
method.

In the LDM/PPP calculation we consider only theπ electron
in the CNTs. However, the curvature of the tubule leads to the
hybridization ofσ andπ orbitals. The smaller the tubule, the
more the hybridization of the orbitals. This hybridization may
alter significantly the zero-order band structure of the systems.55

Therefore, it is desirable to include explicitly all valence orbitals.
To conclude, the FMM-LDM method has been developed

and implemented to calculate the absorption spectra of very large
polyacetylene oligomers and CNTs. It is demonstrated for the
first time that the linear-scaling LDM method is applicable to
calculation of the excited-state properties of two- or three-
dimensional systems. Interesting features of the absorption
spectra of CNTs, for instance, low-frequency peaks and ani-
sotropy, have been observed, and the corresponding electron-
hole excitations are identified. The influence of the finite length
and chiral symmetry on the optical properties of CNTs has been
investigated. We find the length and chiral symmetry of
nanotubes have a strong influence on the low-energy optical
excitations. In the high-frequency rangeω ) 5-7 eV, the two
peaks are observed, which correspond to the collective excita-
tions of the π electron and are independent of the tubular
chirality.
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Appendix

We describe the FMM procedure that is employed to evaluate
our effective Coulomb interaction in the calculation. The
procedure is similar to that of ref 8. The only difference arises
from the special form of the effective Coulomb interaction that
we adopt, the Ohno formula.47

The physical space is arranged in a hierarchy. The box
containing the entire physical space is called the root or level
0. Then each side of the root is bisected, and the space is divided
into 8 smaller boxes. These smaller boxes are called the level
1 of hierarchy. The space may be further divided evenly until
it is consisted of 8l small boxes. The 8l boxes form the levell
of hierarchy. The boxes at the same level of hierarchy that share
a boundary point are said to be neighbors, and those that are
not neighbors are said to be separated.

The Coulomb potential of all other charges to chargei may
be divided into two parts

whereqj is the effective charge atrbj. The first term is the far-
field interaction, and the second is the near-field interaction.
The near-field interaction is defined as the interaction between
two charges inside a given box or neighboring boxes, and is
treated exactly to ensure high accuracy. The far-field interaction
is defined as the interaction between two charges in two
separated boxes, and may be evaluated through the Taylor series
expansion around the central position of the box containing
chargei as follows:

Figure 5. (a) CPU time for the excited-state calculation of three-
dimensional CNTs with a large radius. The time interval is [-0.5 fs,
-0.3 fs] with the time step 0.01 fs. The critical lengthl1 andl0 are 15
Å. Twenty-six atoms are included in the smallest box. (b) Absorption
spectrum of the zigzag (60, 0) nanotube C1200H120. γ ) 0.4 eV.

U( rbi) ) ∑
k∈far

U( rbi - rbk) + ∑
j∈near

qj

(a0
2 + | rbi - rbj|2)1/2

(24)

Application of the LDM Method to Carbon Nanotubes J. Phys. Chem. A, Vol. 104, No. 11, 20002451



where

Hererbi′ ) rbi - RBm. RBm is the central position of the boxm on
which chargei is located.R, â, andγ are the indices representing
x, y, andz. To calculate the Taylor coefficients, the Coulomb
potential of all atoms in a particular box may be represented
by the multipole moments of the box. Thus, the potential of
charges in the far field to chargei may be expressed as

Here,RBmn ) RBn - RBm is the displacement vector from the center
of box m to the center of boxn. We calculate the Taylor series
expansion coefficients of the field at the center of boxmdue to
the multipole momentsZn, Sn, µn, Tn, Qn, andOn of the boxes
n.

The boxes in the far field may be further divided into two
groups: One contains the boxes that belong to the neighbors
of m’s parent exceptm’s neighbors (denoted as pnc). Another
includes the area outside the 27 neighbor boxes ofm’s parent
(denoted as pfc). Thus

whereVpnc(rbi′) andVpfc(rbi′) are of the form in eq 30.Vpnc(rbi′) is
evaluated at the individual box at the same level asm. The
Taylor series expansion coefficients [V] in eq 25 according to
the center of boxm coming from the contribution of the far
field is just the summation of the two expansion coefficients
[Vpnc] and [Vpfc], for example

Here,RB ) RBnm andVP, VR
P, VRâ

P , andVRâγ
P are the Taylor series

coefficients of cellm’s parent cell. The Taylor series coefficients
coming from the pfc cells’ contribution have been represented
by the coefficients of cellm’s parent cell. We just translate those
coefficients with respect to the center of its parent box to the
center of the box which the chargei occupies.rbpc is the
displacement vector from the center of its parent box to the
box which the chargei occupies. Those Taylor series coefficients
may be calculated level by level, from the root to the leaves.

The multipole moments, i.e., charges, dipoles, quadrupoles,
octapoles, etc., in box A, may be evaluated as follows:

here,rbk′ is the displacement vector from the center A to the
chargek. The contributions of these multipole moments of
different boxes at various levels are summed up and further
expanded inrb to obtain the values of Taylor coefficientsV0,
VR, VRâ, VRâγ, and others. Once the multipole moments of the
highest level are known, the multipole moments of other levels
may be calculated readily by utilizing the relationship between
the multipole moments of levell and levell - 1.

V( rbi′) ≡ ∑
k∈far

U( rbi - rbk) ) V0 + ∑
R

VRriR′ +

∑
Râ

VRâriR′ riâ′ + ∑
Râγ

VRâγriR′ riâ′ riγ’ + ... (25)

V0 ) V|ri′)0 (26)

VR ) ∂V
∂riR′|ri′)0 (27)

VRâ ) 1
2

∂
2V

∂riR′ ∂riâ′|ri′)0 (28)

VRâγ ) 1
6

∂
3V

∂riR′ ∂riâ′ ∂riγ′|ri′)0 (29)

V( rbi′) ) ∑
n∈far box{ Zn

(a0
2 + | rbi′ - RBmn|2)1/2

-

Sn

(a0
2 + | rbi′ - RBmn|2)5/2

+ ∑
R [ µR

n( rbi′ - RBmn)R

(a0
2 + | rbi′ - RBmn|2)3/2

-

Tn
R( rbi′ - RBmn)R

(a0
2 + | rbi′ - RBmn|2)7/2] +

∑
Râ

( rbi′ - RBmn)R ( rbi′ - RBmn)âQRâ
n

(a0
2 + | rbi′ - RBmn|2)5/2

+

∑
Râγ

( rbi′ - RBmn)R ( rbi′ - RBmn)â ( rbi′ - RBmn)γQRâγ
n

(a0
2 + | rbi′ - RBmn|2)7/2

+ ...} (30)

V( rbi′) ) Vpnc( rbi′) + Vpfc( rbi′) (31)

V0 ) ∑
n∈pnc[ Zn

(a0
2 + R2)1/2

-
Sn

(a0
2 + R2)5/2

+
µbn‚RB

(a0
2 + R2)3/2

-

TBn‚RB

(a0
2 + R2)7/2

+ ∑
µν

Qµν
n RµRν

(a0
2 + R2)5/2

+ ∑
µνλ

Oµνλ
n RµRνRλ

(a0
2 + R2)7/2

+ ...] +

VP + ∑
R

VR
PrpcR + ∑

Râ

VRâ
P rpcRrpcâ + ∑

Râγ

VRâγ
P rpcRrpcârpcγ

VR ) ∑
n∈pnc[-

ZnRR

(a0
2 + R2)3/2

+ 5
SnRR

(a0
2 + R2)7/2

+

µR
n

(a0
2 + R2)3/2

- 3
(µbn‚RB)RR

(a0
2 + R2)5/2

-
TR

n

(a0
2 + R2)7/2

+

7
(TBn‚RB)RR

(a0
2 + R2)9/2

+
2∑νQRν

n Rν

(a0
2 + R2)5/2

- 5
∑µνQµν

n RµRνRR

(a0
2 + R2)7/2

+

3
∑µνORµν

n RµRν

(a0
2 + R2)7/2

- 7
∑µνλOµνλ

n RµRνRλRR

(a0
2 + R2)9/2

+ ...] + VR
P +

2∑
â

VRâ
P rpcâ + 3∑

âγ

VRâγ
P rpcârpcγ

Z ) ∑
k∈A

qk (32)

S) a0
2 ∑

k∈A

(1/2)qkrk′
2 (33)

µR ) ∑
k∈A

qkrkR′ (34)

TR ) a0
2 ∑

k∈A

(3/2)qkrk′
2rkR′ (35)

QRâ ) ∑
k∈A

(1/2)qk[3rkRrkâ′ - rk′
2 δRâ] (36)

ORâγ ) ∑
kŒA

(1/2)qk[5rkR′ rkâ′ rkγ′ -

(δRârkγ′ + δRγrkâ′ + δγârkR′)rk′
2] (37)
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whererbl is the displacement vector from the center of a box at
level l to the center of boxCl-1 at level l - 1.
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