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The competition between thermalization and dissociation in dilute gas-phase unimolecular reactions gives
rise to absolute rate constants as a function of temperature and the number density. Such competitive effects
are fully modeled using a master equation formalism that accounts for conservation of total angular momentum
as well as conservation of total energy. After such modeling, a general functional form of the rate constants
is necessary for approximating the temperature- and pressure-dependent behavior. We present a damped
pseudospectral functional form for such an approximation. It is a computationally efficient and an highly
accurate approximation. We illustrate the method and demonstrate its advantages by application. Comparison
with extant methods of approximation is also given. Given applications pertain to a singe-well, single-channel
reaction, which allows for radiative recombination of radicals in interstellar chemistry, to a single-well, multiple-
channel chemically activated reaction in chemical vapor deposition, and, a multiple-well, multiple-channel
chemically activated reaction in combustion.

1. Introduction

Quantum statistical methods, such as the Rice-Ramsperger-
Kassel-Marcus (RRKM) theory,1-3 have been proved to be
accurate in estimating the microcanonical rate coefficients of
many gas-phase elementary reactions in combustion, atmo-
spheric chemistry, and chemical vapor deposition. In conjunction
with a suitable model of intermolecular collisions, such as a
full master equation treatment, an absolute rate constant may
be derived.4,5 The knowledge of such temperature- and pressure-
dependent rate constants is very important in constructing
predictive gas-phase chemical reactor models using mechanistic
chemical reaction schemes; these are schemes which consist of
a vast number of elementary reactions.

Approximation of absolute rate constants is very important
in simulation and optimization of chemical reactors and in
computational fluid dynamics of reactive flows. For instance,
simulation and optimization of chemical reactors in vapor
deposition and combustion require repeated computations of rate
constants of each elementary reaction of the chemical kinetic
schemes as a function of the controlling parameters over wide
ranges of temperature and pressure. It is computationally
inefficient to invoke an RRKM master equation computation
each time such values of the rate constant are desired. Inference
of these values from an approximant which is both accurate
and computationally efficient is the optimum manner of
incorporating pressure dependence and temperature dependence
of elementary reactions in complex chemical kinetic schemes.

There have been many efforts to devise accurate approxima-
tions of the falloff behavior of thermally- and chemically
activated unimolecular reactions beginning with Lindemann’s
seminal enunciation in the nineteen-twenties. Of recent impor-
tance are the methods due to Troe and co-workers for the
treatment of single-well, thermally activated unimolecular
reactions.6,7 These methods have been specifically developed
for simple dissociation and recombination reactions proceeding
through a single well. In such reactions, the absolute rate

constants are very sensitive to pressure in the low-pressure and
falloff regimes. These methods of approximation, although
accurate for single-well reactions, do not apply well to multiple-
well unimolecular reactions as shown in a recent detailed study
of several sets of unimolecular reactions.8 Chemically activated
reactions, in particular, exhibit pressure-dependent behavior
which is qualitatively and quantitatively different from that
exhibited by single-well dissociation or recombination reac-
tions.6-8

Multiple-well unimolecular reactions are ubiquitous in the
engineering of chemical reactions, particularly, in combustion.
In ref 8, a method based on pure Tchebycheff expansions was
presented for accurately approximating the falloff behavior of
unimolecular reactions proceeding through any number of
isomerization and dissociation channels over wide ranges of
temperature and pressure.

In this paper we present a damped pseudospectral functional
form for approximating the temperature- and pressure depen-
dence of the absolute rate constants. This method, which is
related to the Tchebycheff approximation, is superior to pure
Tchebycheff expansions in several ways. First, it allows the
falloff surface, which is a function of temperature and pressure,
to possess arbitrary discontinuities in any of its derivatives, in
other words, the falloff function is not required to be entire9

for conduciveness to efficient and accurate approximation; here
we note that an entire function is one for which its derivatives
of any order are continuous functions. Second, for the same
number of parameters, it provides approximants of higher
accuracy than a pure Tchebycheff expansion.

The advantages of the damped pseudospectral functional form
developed in this paper are demonstrated by application to
approximation of the falloff behavior of three systems of
reactions. The first, a single-well, single-channel system, is the
recombination reaction of the hydrogen atom with the C6H5

radical allowing for radiative recombination10 due to infrared
emission. The second is the single-well, multiple-channel,
chemically activated reaction of SiHCl+ SiH2Cl2.11,12The third
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is the multiple-well, multiple-channel, chemically activated
system of reactions of the association of oxygen with the ethyl
radical.5,13 The falloff behaviors of these reactions were
determined by computing the absolute rate constants from a
full master equation analysis4,5 in conjunction with a full RRKM
treatment which includes the conservation of angular momentum
in addition to the conservation of total energy available for
randomization.

The remainder of the paper is organized as follows. Section
2 briefly presents the essentials of directly computing the
temperature- and pressure dependence of absolute rate constants
of gas-phase unimolecular reactions within the framework of
transition state theory and recent developments in master
equation analysis. Section 3 develops the damped pseudospectral
functional fitting form. Section 4 presents comparisons of the
accuracy of the damped pseudospectral functional fitting form
for three systems of reactions with extant methods of ap-
proximating the falloff behavior. Finally, section 5 gives a
summary of our findings.

2. Preliminaries: Temperature and Pressure Dependent
Rate Constants

We begin by summarizing the essential theoretical aspects
pertaining to the derivation of temperature- and pressure-
dependent rate coefficients for unimolecular reactions in the gas
phase. It is the functional dependence of these rate constants
on temperature and pressure which we seek to approximate by
the damped pseudospectral functional form presented in section
3.

The physical system of concern is described as follows. We
consider, most generally, irrespective of the form of activation,
multiple-well unimolecular reactions in a concentrated bath
consisting ofN reactive moieties

whereN is the total number of wells. Associated with each well
is a particular moiety and each moiety may isomerize to any of
its N - 1 counterparts. For illustrative purposes, it may simply
be assumed thatA1 is the entrance isomer formed by some
process of activation- thermally, chemically, or otherwise.
Each moiety undergoes collisions with the gaseous bath of a
number density [M]. The moieties may take the form of an
unsaturated molecule or a radical.

Also, each moiety may dissociate into products via a finite
number of product channels pertinent to the well specific to it.
For each product channel, the ultimate quantity of interest is
the absolute rate constantk(T, P) of product formation. In
addition to being a function of temperatureT, this quantity is a
function of pressureP due to the competition between the
collision of the moietyAi with the bath gas and its dissociation
into products; herei is the index variable specifying the pertinent
well. It is the functional dependence ofk(T, P) onT andP which
we seek to approximate by the damped pseudospectral functional
form presented in section 3. There are two aspects to the
theoretical determination of the absolute rate constantk(T, P):
that of computing microcanonical rate coefficientsk(E, J) and
that of computing the effects of intermolecular collisions of
moieties with the bath gas of number density [M].

The microcanonical rate coefficients,k(E, J), are functions
of the total randomization energyE and the angular momentum
quantum numberJ. They may be computed using any version
of transition state theory, including RRKM theory1 and variational-
RRKM theory2, phase space theory,14 statistical adiabatic

channel model,15 variationally adiabatic transition state theory,16

and, whenever computationally feasible, even by semiclassical
and quantum mechanical treatments of transition state theory.17

In the computations described herein we determine the micro-
canonical rate coefficients

by employing variational-RRKM theory. HereG(E, J), which
is variationally determined, is the number of quantum states of
the transition state at the particularE andJ, F(E, J) is the density
of states of the parent molecule with vibrational anharmonicity
taken into account whenever practical, andh is Planck’s
constant.

In the absence of a full quantitative theory of intermolecular
collisions, the effects of intermolecular collisions of the moieties
with the bath gas are best determined from a master equation
analysis.18 At each state of the total energyE and the total
angular momentum quantum numberJ there will be a certain
population of each of theN moieties. The state-specific
population will dynamically change due to interwell energy
transfer, when there is more than one well, due to isomerization
and intrawell energy transfer due to collisions with the bath
gas within each well. A set of conservation equations for the
dynamics of the moieties’ populations over each state subject
to interwell and intrawell transfer may be simply derived and
collectively forms a master equation. The master equation can
then be analyzed to derive the state-specific population of the
moieties [Ai(E, J; [M], t)], 1 e i e N.

The master equation may be written down most generally,
irrespective of the form of activation, as

Here, the master equation kernelκ is composed of micro-
canonical rate coefficients which account for the three funda-
mental reactions that each of the moieties may undergo:
dissociation of each moiety into stable products, isomerization
of each moiety into any one of the otherN - 1 moieties, and
thermalization of each moiety with the bath gas. The internal
spectrum of the master equation kernel represents the time scales
of the dynamics of thermalization within each of the wells, of
isomerization over all of the wells, and of dissociation within
each of the wells.U(t) t [U1(t), ..., UN(t)] denotes an
inhomogeneous source term that is a function of time and takes
appropriate functional forms depending on the kind of the
activation of reaction (thermal or chemical). For chemically
activated reactions,Ui(t) denotes the rate of formation of the
ith moiety [Ai(E, J; [M], t)] from the chemically activated
reactants; in this caseUi(t) will be state-specific, that is, it will
be a function of the total internal energyE as well as the total
angular momentum quantum numberJ. For thermally activated
reactions, Ui(t) denotes the contribution of the thermally
activated flux to theith moiety [Ai(E, J; [M], t)], and it may or
may not be state specific.

That one can identify rate equations which are local in time
for the dissociation processes only in a regime of secular
equilibrium state was rigorously established in ref 4 where it
was also shown that there may exist a subregime wherein the
existence of a nontrivial least-negative eigenvalue separated in

A1, A2, ...,AN (2.1)

k(E, J) )
G(E, J)

hF(E, J)
(2.2)

∂

∂t
[Ai(E, J; [M], t)] )

∑
j)1

N

∑
J′)0

∞ ∫0

∞
〈iEJ|κ|jE′J′〉[Aj(E′, J′; [M], t)]dE′ +

Ui(t) 1 e i e N (2.3)
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magnitude from the time scales of thermalization is possible.
The condition for the occurrence of secular equilibrium has
nothing to do with the internal spectrum of the master equation
kernel but rather with the magnitude of the least-negative
eigenvalue relative to the time rate of change of the inhomo-
geneous term of the master equation. The existence of a state
of secular equilibrium is established by inquiring the validity
of the condition given by

where

with λk being thekth eigenvalue of the kernelκ, andφλk(E, J)
being the associated adjoint eigenfunction ofκ. Very efficient
means of numerically verifying the conditions of the validity
of the state of secular equilibrium, analysis of the internal
spectrum of the master equation kernel, and computation of the
moiety populations [Ai(E, J; [M], t)], 1 e i e N using Hermite-
Laguerre orthogonal collocation have recently been established.5

The population, [Ai(E, J; [M], t)], of the moietyAi, for a
particularE, J, and number density [M], at time t along with
the microcanonical rate coefficientk(E, J) of product formation
pertaining to welli are related to the absolute temperature- and
pressure-dependent rate constant of product formation for the
attendant well by

It is the functional dependence of these rate constants on
temperature and pressure which we seek to approximate by the
damped pseudospectral functional form presented in section 3.

3. A Damped Pseudospectral Functional Form fork(T, P)

The starting point for the development is the Tchebycheff
polynomial representation given in ref 8 which considers the
direct approximation of the logarithm of the absolute rate
coefficientsk(T, P) of eq 2.6 in terms of the inverse temperature
and logarithm of the pressure. Given the ranges of temperature
and pressure over which approximation of the rate coefficients
are desired,

and

a mapping of the temperature and pressure domain onto the
unit square is first performed by the transformations

and

in order to scale the temperature and pressure to vary between
minus one and plus one. This scaling procedure does not alter
the values of the rate coefficient in any way. The logarithm
(which may be fixed to a certain convenient base, e.g., 10) of
the rate coefficient is thus approximated as

where the Tchebycheff polynomial of the first kind of degree
n - 1 is given by

and wherex is the argument of interest defined to lie in the
closed interval [-1, +1]. Here, the integerN denotes the number
of basis functions along the temperature axis, the integerM
denotes the number of basis functions along the pressure axis,
and the{anm; 1 e n e N, 1 e m e M} are theNM coefficients
to be determined from a set of data points at which the rate
coefficients,k(T, P), have been computed exactly from a detailed
theory by eq 2.6. The data points at which the rate coefficients
k(T, P) are computed for the estimation ofa11, a12, ..., anm, ...,
aNM should be the roots of a high-order Tchebycheff polynomial
of the first kind. Such a grid of data points is termed as the
Gauss-Tchebycheff grid. This is necessary to ensure that the
approximation is uniform over the whole domain of the
temperature and pressure interval. The integers,N andM, are
chosen in advance. Their choice serves to control the accuracy
of the approximant, which increases monotonically withN and
M. The rate coefficients,k(T, P), may be computed on adT ×
dP Gauss-Tchebycheff grid. This grid is given by

N andM can be varied to construct approximants of different
orders of accuracy. In the development presented in ref 8, the
coefficients{anm; 1 e n e N, 1 e m e M} were obtained by
least-squares estimation by minimizing the expression

which fits eq 3.5 to the values of logk(T, P) obtained from eq
2.6 evaluated over thedT × dP Gauss-Tchebycheff grid of
equations (3.7-3.9). Needless to say, for such a calculation, to
obtain an overdetermined system,dTdP > NM is a necessary
condition.

At this juncture we are now ready to introduce the new
development. We now propose that the expression denoting the
approximation of eq 3.5 be replaced by

| 1
Uλk

(t)
∂

∂t
Uλk

(t)| , |λk| 1 e k < ∞ (2.4)

Uλk
(t) ) ∑

J)0

∞ ∫0

∞
φλk

(E, J)U(t)dE 1 e k < ∞ (2.5)

k(T, P) )

∑
J)0

∞ ∫0

∞
k(E, J)[Ai(E, J; [M], t)]dE

∑
J)0

∞ ∫0

∞
[Ai(E, J; [M], t)]dE

(2.6)

Tmin e T e Tmax (3.1)

Pmin e P e Pmax (3.2)

T r
2T-1 - Tmin

-1 - Tmax
-1

Tmin
-1 - Tmax

-1
(3.3)

P r
2logP - logPmin - logPmax

logPmax - logPmin
(3.4)

logk(T, P) ≈ ∑
n)1

N

∑
m)1

M

anmæn(T)æm(P) (3.5)

æn(x) ) cos((n - 1) acos(x)) n ) 1, 2, ... (3.6)

Ti ) cos[2i - 1
2dT

π] (3.7)

Pj ) cos[2j - 1
2dP

π] (3.8)

1 e i e dT and 1e j e dP (3.9)

σ2(a11, ...,aNM) )

π2

dTdP
∑
i)1

dT

∑
j)1

dP

[logk(Ti, Pj) - ∑
n)1

N

∑
m)1

M

anmæn(Ti)æm(Pj)]
2 (3.10)
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Here{Snm(N, M); 1 e n e N, 1 e m e M} is an attenuation
factor and all other symbols retain their previously defined
meanings. We also propose that theNM coefficients{anm; 1 e
n e N, 1 e m e M } be computed by the transform

which is exactly a bivariate Fourier cosine transform with respect
to an appropriate change of variables in temperature and
pressure. This manner of evaluating the coefficients{a11, a12,
..., anm, ..., aNM } is vastly more accurate and computationally
simpler than the least-squares minimization of eq 3.10. The
numerical evaluation of eq 3.12 is performed most accurately
by application of the Gauss-Tchebycheff quadrature over the
dT × dP Gauss-Tchebycheff grid of equations (3.7-3.9). The
quadrature formula19 is then written as

and we note that there is no particular constraint relating the
values ofdT and dP to the values ofN and M. However, we
note that as the values ofdT anddP are increased, the difference
between representations of eqs 3.12 and 3.13 rapidly approaches
zero.

The second significant difference between the approximant
of eq 3.11 and the one of eq 3.5 is the introduction of attenuation
factors{Snm(N,M); 1 e n e Ν, 1 e m e M}. The attenuation
factors are very important. They prevent spurious oscillations
in the approximated rate coefficient; additionally, they enable
faster convergence to the true function with fewer terms in the
series expansion as well as accurately capturing any sharp and
sudden changes of the surface representing the absolute rate
constantk(T, P). Spurious oscillations occur because of the
truncation in eq 3.5 in order to retain only a finite number,NM,
of basis functions. To prevent such oscillations each term of eq
3.5 must be attenuated. Each attenuation factor is a function of
the total numbers,N andM, of the retained bases.

The next step is the construction of theNM attenuation factors
{Snm(N, M); 1 e n e Ν, 1 e m e M}. This is done by
formulating a mathematical problem of optimization in a space
of NM degrees of freedom.19 Constraints may then be imposed
in order to reduce the degrees of freedom. Particular constraints
that need be imposed are the positivity of the approximated rate
coefficient at each point in the temperature and pressure domains
and the approximation of sharp features with minimal smearing
or broadening. The latter issue is best addressed by computing
the best approximation of a Dirac-delta function in a minimax
sense, i.e., we seek an approximation to a bivariate delta function
which minimizes the maximum deviation of the approximant
from the true delta function over the entire temperature and
pressure domains. This minimax optimization is performed by
optimizing over the available degrees of freedom. Fortunately,
an analytical solution exists19 to this problem of constructing
attenuation factors by minimax optimization.

Minimax theory19 allows us to construct such an optimum
attenuation factor as follows. We separate the attenuation factors

along the temperature and pressure axes in a multiplicative
fashion as

The computation of the attenuation factors is based on the
Tchebycheff polynomials of the second kind which are given
by

wherex is the argument of interest. The attenuation factor along
the temperature axis may be computed as

with

Equation 3.16 may be simplified and the following expression
may be derived

Similarly, for the pressure axis, the attenuation factor may be
computed as

and it may be derived that

To recapitulate, the damped pseudospectral approximant to
the temperature- and pressure-dependent rate coefficients of eq
2.6 is given by eq 3.11. It requires the computation ofNM basis
coefficients {a11, a12, ..., anm, ..., aNM} as well as theNM
attenuation factors{S11(N, M), S12(N, M), ..., Snm(N, M), ...,
SNM(N, M)}. N and M are appropriately chosen to yield an
approximant ofanydesired accuracy. The basis coefficients are
computed using the quadrature formula of eq 3.13 and the
attenuation factors are determined by the minimax formulas
given by eqs 3.14, 3.18, and 3.20.

4. Applications

The criterion of assessment of the approximation scheme
considered here is based on the maximum and average relative
errors in the approximated rate coefficient over the entire
temperature and pressure domain. The relative error is defined
as

logk(T, P) ≈ ∑
n)1

N

∑
j)1

M

Snm(N, M)anmæn(T)æm(P) (3.11)

anm ) 4

π2 ∫-1

1 ∫-1

1
logk(T, P)

æn(T)æm(P)

x1 - T2 x1 - P2
dPdT

1 e n e N, 1 e m e M (3.12)

anm )
4

dTdP
∑
i)1

dT

∑
j)1

dP

log k(Ti, Pj)æn(Ti)æm(Pj)

1 e n e N, 1 e m e M (3.13)

Snm(N, M) ) øT(n, N) × øP(m, M) (3.14)

ψi(x) )
sin(iacos(x))

sin(acos(x))
i ) 1, 2, ... (3.15)

øT(n, N) ) ∑
l)1

N - n + 1

R(l, N) × R(l + n - 1, N) 1 e n e N

(3.16)

R(l, N) )
ψl(π/(N + 1))

x∑
i)1

N

[ψi(π/(N + 1)) × ψi(π/(N + 1))]2

(3.17)

øT(n, N) ) [N - n + 2
N + 1

sin
π

N + 1
cosπn - 1

N + 1
+

1
N + 1

cos
π

N + 1
sinπn - 1

N + 1]/sinπ/(N + 1) (3.18)

øP(m, M) ) ∑
l)1

M - m +1

R(l, M) × R(l + m - 1, M)

1 e m e M (3.19)

øP(m, M) ) [M - m + 2
M + 1

sin
π

M + 1
cosπ m -1

M + 1
+

1
M + 1

cos
π

M + 1
sinπm - 1

M + 1]/sinπ/(M + 1) (3.20)
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Here, in eq 4.1, the subscript approx refers to the approximant
of the absolute rate constant. The subscript theoretical refers to
the absolute rate constant obtained from a detailed theoretical
calculation. In our study, the detailed theoretical calculations
of the rate constants are based on a variational RRKM theory
for the microcanonical rate coefficients and a full master
equation treatment, including the conservation of angular
momentum, for the treatment of intermolecular collisional
effects.4,5 Without loss of generality, we consider an approxi-
mant to be reliably accurate if it yields a relative error of no
more than 0.2 over the entire temperature and pressure. In this
study we adopt this measure of goodness of approximation in
comparing the various approximation schemes analyzed.

It was confirmed in ref 8 that the presence of multiple wells
and the occurrence of multiple products in a chemically activated
reaction or dissociation reaction leads to complex temperature
and pressure dependences. This was demonstrated on a select
set of three dissociation channels pertaining to the dissociation
of the C3H5O2 radical and ethane, and four chemical-activation
channels pertaining to the reaction of the allyl radical with
molecular oxygen and that of the methyl radical with itself. In
particular, it was shown that on the multiple-well dissociation
channel C3H5O2 T C3H5 + O and the single-well channels
corresponding to the dissociation of ethane the Lindemann-based
methods yielded maximum relative errors greater than 0.2 for
approximation over the wide temperature and pressure ranges
of 300-3000 K and 0.02-200 atm. In the same study it was
demonstrated that the chemical-activation reactions considered
could not be fitted to acceptable accuracy by the conventional
approximation methods for the same ranges of temperature and
pressure. A definitive conclusion was drawn from this study
that conventional approximation schemes are inadequate for
multiple-well, multiple-product dissociation and chemical ac-
tivation reactions.

In this study we present comparisons of various approxima-
tion schemes by focusing on three systems of reaction. For each
system of reaction we compare the following approximation
schemes: Troe’s Fcentmethod as described in ref 6, the scheme
due to Poole and Gilbert as described in ref 7, the pure
Tchebycheff scheme as described in ref 8, and the damped

pseudospectral scheme described in section 3. For the compari-
sons, we have computed the absolute rate coefficients of all of
the reactions on a 50× 50 temperature-pressure grid over the
entire considered domain of temperature and pressure; for each
system of reaction, the considered domain is different and will
be specified shortly. This grid is equidistant for all of the
approximation schemes considered here with the exception of
Tchebycheff and damped pseudospectral approximations which
require a specially chosen nonequidistant grid, the description
of which has been given in section 3. Tables 1-3 present the
results of the four methods of approximation considered over
all three systems of reactions. Both the maximum errors and
average errors incurred over the entire temperature and pressure
domains are tabulated.

The first system of reaction is one of importance in interstellar
chemistry. It is the recombination of the H atom with the C6H5

radical. At low and moderate temperatures infrared radiative
stabilization in the ground state is critical in enhancing the
efficiency of reaction. A full variational RRKM treatment in
conjunction with the full master equation analysis laid out in
ref 4 was undertaken for this recombinative reaction with respect
to an argon bath. Spontaneous emission Einstein coefficients
were determined from the infrared transition intensities available
in the literature (ref 10 and references therein). Absolute rate
constants were calculated for the temperature and pressure
ranges of 20-2000 K and 2× 10-10 - 2 × 10-3 atm. Tables
1-3 present the maximum and average errors of approximation
for these channels incurred by the Lindemann-based empirical
approximants, the Tchebycheff approximants, and the damped
pseudospectral approximants, respectively, for this reaction.

The second system of reactions is one of importance in
chemical vapor deposition. It is the chemically activated reaction
of SiHCl + SiH2Cl2 which proceeds via the formation of the
moiety HCl2SiSiH2Cl to decompose into three product channels.
The moiety may also reversibly decompose into the reactants.
This system of reactions has been well studied11,12using a full
RRKM treatment in conjunction with the full master equation
treatment given in refs 4 and 12 in these studies, the thermal
bath was taken to be one of gaseous hydrogen. Table 4 displays
the limiting high-pressure rate coefficients for the various
channels of this reaction. For these channels, we have compared
the various models of approximation over the wide temperature-
and pressure ranges of 300-3000 K and 2× 10-5-200 atm.

TABLE 1: Maximum Relative Errors in the Rate Coefficient over the Considered Temperature and Pressure Ranges for
Empirical Approximants with Master Equation Analysis of the Collisional Energy Transfer a

Method

channel Troe (Fcent) Poole and Gilbert

Single-Well, Single-Channel H+ C6H5 f C6H6 Reaction with Allowance for Radiative Recombination
H + C6H5 f C6H6 0.3 (0.17) 0.19 (0.13)

Single-Well, Multiple-Channel Reaction of SiHCl+ SiH2Cl2
SiH2 + SiHCl3 0.18 (0.09) 0.10 (0.08)
SiHCl + SiH2Cl2 f SiCl2 + SiH3Cl 1.8 (0.4) 0.8 (0.42)
SiHCl + SiH2Cl2 f Si2HCl3 + H2 3.2 (1.1) 0.33 (0.17)

Multiple-Well, Multiple-Channel Reaction of the Ethyl Radical with Oxygen
[first (entrance) well pertaining to the formation of the chemically activated moiety]

CH3CH2OȮ f C2H5Ȯ + O 0.17 (0.12) 0.1 (0.07)
CH3CH2OO f C2H4 + HO2(elimination) 0.42 (0.23) 0.26 (0.17)

Second well pertaining to the first hydroperoxy radical andâ scission pathway:
ĊH2CH2OOH f C2H4 + HO2(â scission) 4.4 (1.5) 0.33 (0.19)
ĊH2CH2OOH f (cy)H2COCH2 + OH 0.98 (0.72) 0.31 (0.17)

Third Well Pertaining to the Second Hydroperoxy Radical and Formation of Acetaldehyde
CH3ĊHOOH f CH3CHO + OH 0.1 (0.06) 0.15 (0.08)

a The numbers in parentheses indicate average errors in the rate coefficient.

relative error) |1 -
[k(T, P)]approx

[k(T, P)]theoretical
| (4.1)
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Tables 1, 2, and 3 present the maximum and average errors of
approximation for these channels incurred by the empirical
approximants, the Tchebycheff approximants, and the damped
pseudospectral approximants, respectively, for this system of
reactions.

The third system is the multiple-well, multiple-channel
reaction of the ethyl radical with oxygen. This chemically
activated reaction occurs through three wells. The initial well
corresponds to the chemically activated molecule CH3CH2OȮ
formed by the radical addition process via a loose transition
state. This activated molecule can further isomerize to the
hydroperoxy radicals C˙ H2CH2OOH and CH3ĊHOOH. Figure

1 depicts the potential energy diagram. Table 5 displays the
limiting high-pressure rate coefficients for the various channels
of this system. This system of reactions has been the topic of a
recent comprehensive ab initio study20 and a full master equation
analysis5,13 in conjunction with variational RRKM theory. The
system exhibits the presence of competing channels for ethylene
production in two different wells. Our treatment of the reaction
mechanism allows decomposition back to reactants, reversible
isomerization between the initial moiety and each of the
hydroperoxy radicals, and irreversible dissociation of all of the
moieties into products. All isomerizations proceed through tight
transition states, but some decomposition reactions into products
occur through loose transition states. The concentrations of the
reactants are assumed to be infinitely dilute in a thermal bath
of gaseous helium. The RRKM microcanonical rate coefficients
for all of the reaction channels were computed to be functions
of the total internal energy and the total angular momentum
using the variational microcanonical theory of Forst.21 In this
method, the transition state properties are evaluated at the
variational minimum of the integrated density of states along
the reaction coordinate, but only with the knowledge of the
limiting high-pressure rate coefficient and the reactant and
product molecular parameters for each channel. The absolute

TABLE 2: Maximum Relative Errors in the Rate Coefficient over the Considered Temperature and Pressure Ranges for the
Tchebycheff Approximants with Master Equation Analysis of the Collisional Energy Transfera

channel 6× 3 5× 4 7× 3 6× 4 8× 3

Single-Well, Single-Channel H+ C6H5 f C6H6 Reaction with Allowance for Radiative Recombination
H + C6H5 f C6H6 0.15 (0.12) 0.15 (0.11) 0.12 (0.09) 0.08 (0.06) 0.06 (0.05)

Single-Well, Multiple-Channel SiHCl+ SiH2Cl2 reaction
SiHCl + SiH2Cl2 f SiH2 + SiHCl3 0.09 (0.05) 0.09 (0.04) 0.06 (0.03) 0.04 (0.02) 0.01 (0.01)
SiHCl + SiH2Cl2 f SiCl2 + SiH3Cl 0.2 (0.17) 0.2 (0.14) 0.13 (0.09) 0.08 (0.06) 0.07 (0.06)
SiHCl + SiH2Cl2 f Si2HCl3 + H2 0.22 (0.18) 0.17 (0.14) 0.14 (0.1) 0.1 (0.08) 0.08 (0.06)

Multiple-Well, Multiple-Channel Reaction of the Ethyl Radical with Oxygen
[first (entrance) well pertaining to the formation of the chemically activated moiety]

CH3CH2OȮ f C2H5Ȯ + O 0.11 (0.05) 0.11 (0.05) 0.10 (0.04) 0.06 (0.04) 0.05 (0.03)
CH3CH2OȮ f C2H4 + HO2 (elimination) 0.17 (0.08) 0.2 (0.08) 0.13 (0.06) 0.13 (0.05) 0.10 (0.04)

Second Well Pertaining to the First Hydroperoxy Radical andâ Scission Pathway
ĊH2CH2OOH f C2H4 + HO2 (â scission) 0.2 (0.10) 0.2 (0.09) 0.15 (0.08) 0.1 (0.05) 0.08 (0.02)
ĊH2CH2OOH f (cy) H2COCH2 + OH 0.17 (0.08) 0.13 (0.06) 0.08 (0.04) 0.06 (0.02) 0.03 (0.01)

Third Well Pertaining to the Second Hydroperoxy Radical and Formation of Acetaldehyde
CH3ĊHOOH f CH3CHO + OH 0. 15 (0.06) 0.13 (0.05) 0.06 (0.02) 0.06 (0.02) 0.01 (0.01)

a The numbers in parenthesis indicate average errors in the rate coefficient. Nomenclature:m × n means the Tchebycheff approximant hasm
basis functions along the temperature axis andn basis functions along the pressure axis, etc.

TABLE 3: Maximum Relative Errors in the Rate Coefficient over the Considered Temperature and Pressure Ranges for the
Damped Pseudospectral Approximants with Master Equation Analysis of the Collisional Energy Transfera

channel 6× 3 5× 4 7× 3 6× 4 8× 3

Single-Well, Single-Channel Reaction H+ C6H5 f C6H6 with Allowance for Radiative Recombination
H + C6H5 f C6H6 0.11 (0.07) 0.08 (0.06) 0.06 (0.05) 0.03 (0.01) 0.01 (0.01)

Single-Well, Multiple-Channel Reaction of SiHCl+ SiH2Cl2
SiHCl + SiH2Cl2 f SiH2 + SiHCl3 0.08 (0.04) 0.05 (0.03) 0.05 (0.03) 0.02 (0.01) 0.01 (0.01)
SiHCl + SiH2Cl2 f SiCl2 + SiH3Cl 0.11 (0.12) 0.10 (0.10) 0.08 (0.06) 0.07 (0.04) 0.02 (0.01)
SiHCl + SiH2Cl2 f Si2HCl3 + H2 0.15 (0.11) 0.12 (0.1) 0.09 (0.07) 0.06 (0.04) 0.03 (0.01)

Multiple-Well, Multiple-Channel Reaction of the Ethyl Radical with oxygen
[first (entrance) well pertaining to the formation of the chemically activated moiety]

CH3CH2OȮ f C2H5Ȯ + O 0.08 (0.03) 0.07 (0.03) 0.05 (0.02) 0.03 (0.02) 0.01 (0.01)
ĊH3CH2OȮ f C2H4 + HO2 (elimination) 0.1 (0.05) 0.1 (0.05) 0.08 (0.03) 0.05 (0.03) 0.02 (0.01)

Second Well Pertaining to the First Hydroperoxy Radical andâ Scission Pathway
ĊH2CH2OOH f C2H4 + HO2 (â scission) 0.13 (0.06) 0.1 (0.06) 0.1 (0.05) 0.06 (0.03) 0.01 (0.01)
ĊH2CH2OOH f (cy)H2COCH2 + OH 0.1 (0.06) 0.08 (0.04) 0.05 (0.02) 0.01 (0.01) 0.01 (0.01)

Third Well Pertaining to the Second Hydroperoxy Radical and Formation of Acetaldehyde
CH3ĊHOOH f CH3CHO + OH 0.08 (0.05) 0.08 (0.04) 0.04 (0.02) 0.02 (0.01) 0.02 (0.01)

a The numbers in parentheses indicate average errors in the rate coefficient. Nomenclature:m× n means the damped pseudospectral approximant
hasm basis functions along the temperature axis andn basis functions along the pressure axis, etc.

TABLE 4: Limiting High-Pressure Rate Coefficients of the
Reaction Channels in the Chemically Activated Reaction of
SiHCl + SiH2Cl2a

reactions logA E

SiHCl + SiH2Cl2 f HCl2SiSiH2Cl 11.7 6.8
HCl2SiSiH2Cl f SiHCl + SiH2Cl2 13.6 46.9
HCl2SiSiH2Cl f SiH2 + SiHCl3 14.1 51.3
HCl2SiSiH2Cl f SiCl2 + SiH3Cl 14.1 49.6
HCl2SiSiH2Cl f Si2HCl3 + H2 14.3 53.5

a Rate constants in the formA exp(-E/RT). Prefactor,A, in s-1 for
unimolecular reactions and in cm3/(mol s) for bimolecular reactions.
Barriers,E, in kcal/mol.
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rate coefficients of each of the channels were computed using
the master equation treatment described in section 2; the full
details of the numerical methods involved are given in ref 5
and 13. For this system, we have compared the various models
of approximation over the wide temperature- and pressure ranges
of 300-3000 K and 0.02-200 atm. Tables 1, 2, and 3 present
the maximum and average errors of approximation for these
channels incurred by the empirical approximants, the Tcheby-
cheff approximants, and the damped pseudospectral approxi-
mants, respectively, for this system of reactions.

As can be seen from Table 1, the Lindemann-based methods
perform well in some instances while in many instances they
yield a relative error greater than 0.2, the threshold criterion of
goodness of approximation. Furthermore, there are instances
when they possess errors as high as 400%. Essentially, there
does not appear to be a uniformity in the pattern of classification
of approximation errors for these type of approximants. By far,
the most accurate approximants are the damped pseudospectral
approximants, more than even the Tchebycheff approximants.
In general, these approximants are of higher accuracy than the

Lindemann-based methods. They possess the property of
uniform approximation over the entire temperature and pressure
domains. Furthermore, over these domains, they minimize the
maximum deviation of the true absolute rate constants from their
approximated values. For a given number of basis functions
along the temperature and pressure axes they possess the same
number of coefficients while providing approximants of much
higher accuracy than pure Tchebycheff approximants. A sig-
nificantly useful feature of the Tchebycheff and the damped
pseudospectral approximants is that they may be evaluated
rapidly using the fast Fourier transform (FFT) by means of
simple change of variables. This feature is particularly useful
in the incorporation of such approximants in predictive reactor
models in flame dynamics, microelectronics etching processes,
and reactive computational fluid dynamics including turbulence
models where approximants are repeatedly computed in simula-
tion, optimization, and control calculations.

An important issue is the computational overhead incurred
in incorporating full-pressure dependent parameterization into
detailed chemical kinetic mechanisms. To make computational
comparisons of the various parameterization schemes, a small
elementary reaction mechanism was assembled and used to
generate reactant and product concentration profiles over time.
The mechanism is displayed in Table 5 along with the limiting
high-pressure rate coefficient for each reaction. A simulation
of the mechanism using the CHEMKIN-II package22 was
performed using four different parameterization schemes for
incorporating the pressure dependence. The simulation was
carried out for three different temperatures for a total simulation
time duration of 50 ms. The stiffness of the differential equations
will be a function of temperature, and therefore integration times
will be longer for those temperatures at which there is a wider
disparity in the time scales of the species dynamics. All
computations were carried out on a Sun-Ultrasparc-2 worksta-
tion. Table 6 displays the computational times (CPU times) taken
for the whole simulation; in the computations performed, the
damped pseudospectral and Tchebycheff approximants were
evaluated directly without any recourse to fast Fourier trans-
formations. The damped pseudospectral scheme compares well
in being computationally cost-effective. It requires only nomi-
nally more amount of time than the conventionally used
Lindemann-based schemes of approximation and is vastly more

Figure 1. Potential energy diagram for the chemically activated reaction of the ethyl radical with oxygen.

TABLE 5. Limiting High-Pressure Rate Coefficients of the
Reaction Channels in the Chemically Activated Reaction of
the Ethyl Radical with Oxygena

reactions A n E

First (entrance) Well Pertaining to the Formation
of the Chemically Activated Moiety

C2H5 + O2 f CH3CH2OȮ 3.00× 1012 0.000 -0.05
CH3CH2OȮ f C2H5 + O2 4.14× 1019 -1.618 34.67
CH3CH2OȮ f C2H5Ȯ + O 4.10× 1014 0.000 58.30
CH3CH2OȮ f C2H4 + HO2 (elimination) 6.11× 106 1.938 28.50

Second Well Pertaining to the First Hydroperoxy Radical
andâ Scission Pathway

CH3CH2OȮ f ĊH2CH2OOH 9.28× 105 2.170 36.50
ĊH2CH2OOH f CH3CH2OȮ 4.35× 106 1.666 24.23
ĊH2CH2OOH f C2H4 + HO2 (â scission) 1.07× 1015 -0.695 17.50
ĊH2CH2OOH f (cy)H2COCH2 + OH 6.92× 1011 0.185 25.64

Third Well Pertaining to the Second Hydroperoxy Radical
and Formation of Acetaldehyde

CH3CH2OȮ f CH3ĊHOOH 2.58× 1010 0.782 45.10
CH3ĊHOOH f CH3CH2OȮ 9.34× 1010 0.260 37.35
CH3ĊHOOH f CH3CHO + OH 3.30× 1013 0.000 1.00

a Rate constants in the formATn exp(-E/RT). Prefactor,A, in s-1

for unimolecular reactions and in cm3/(mol s) for bimolecular reactions.
Barriers,E, in kcal/mol.
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accurate than the latter. It is possible to accelerate the evaluations
of the damped pseudospectral approximants by the fast Fourier
transformation but for the example chemical kinetic mechanism
studied here it is not a necessity as it is small.

5. Summary

Damped pseudospectral approximants have been shown to
be a reliable means for approximating the temperature- and
pressure-dependent absolute rate constants of elementary gas-
phase reactions over wide ranges of temperature and pressure.
Their application has been demonstrated on the recombination
reaction of radicals leading to benzene formation, taking into
account effects of infrared stabilization, on a complex multiple-
well, multiple-channel system of reactions pertaining to the
reaction of the ethyl radical with oxygen as well as a single-
well, multiple-well channel reaction in chemical vapor deposi-
tion. Absolute rate constants were generated using a master
equation analysis with a variational RRKM computation of the
microcanonical rate coefficients.

The accuracy of the damped-pseudospectral approximants is
superior to that of Tchebycheff approximation; and in general
they are far more accurate than Lindemann-based approximation
methods. Theoretically they possess interesting properties.
Similar to Tchebycheff polynomials, they minimize the maxi-
mum interpolation error among all polynomial basis functions.
Moreover, the approximation error decreases faster than the total
number of basis functions retained in their formalism. There
exists an optimal number of basis functions corresponding to
any arbitrarily specified threshold error for these types of
approximants. Additionally, they allow the falloff surface, which
is a function of temperature and pressure, to possess arbitrary
discontinuities in any of its derivatives. Hence semisharp and
sharp plateaus of the falloff surface may be captured accurately
and with ease.

Most importantly, their computational costs and storage
requirements are very attractive due to their being amenable to
evaluation by the fast Fourier transform. Thus, these approxi-
mants are of immense importance in detailed chemical kinetic
modeling of combustion23 and chemical vapor deposition11,12,24

among many other areas of chemical reaction analysis of the
gas phase.

Last, we wish to mention that a robust computer code for
the construction of the damped pseudospectral approximants

and another one for constructing pure Tchebycheff approximants
are available from the author upon request.
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TABLE 6: Comparison of Simulation Times of a Model Detailed Chemical Kinetic Mechanism Using Different
Parameterization Techniques

parameterization technique
time (µs)

for simulation at 375 K
time (µs)

for simulation at 775 K
time (µs)

for simulation at 1575 K

Troe’sFcentmethod 0.579 0.603 0.558
Poole and Gilbert method 0.586 0.620 0.575

8 × 3 pure Tchebycheff approximant 0.627 0.670 0.602
8 × 3 damped pseudospectral approximant 0.663 0.699 0.620
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