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We investigate a new method (QTA-PIMC) for global optimization on complex potential energy surfaces
which combines the path integral Monte Carlo method with quantum and thermal annealing. This method is
applied to the BLN protein model (Honeycutt, J. D.; Thirumalai,Blopolymers1992 32, 695). We show

that this new approach outperforms simulated (thermal) annealing (SA) and that in fact SA is a subset of our
method. This means that we could invoke the effects of both quantum and/or thermal annealing in the global
optimization process, hence the name quantum thermal annealing (QTA-PIMC). The simulation results also
suggest that QTA-PIMC scales better than SA in terms of system size in the search for the global minimum.

I. Introduction In this paper, we apply the new QTA-PIMC method to the
o ) ] ) global minimization of a 22-mer and a 46-mer of the Honeycutt
Global minimization of arbitrary systems is an important and Thirumalai protein modéf:?> These off-lattice model
problem in many fields of science. A specific class of problems, proteins are constructed from residues based on a three-letter
the so-called NP-complete systems, presents a particularlycode. The codes represent hydrophobic (B), hydrophilic (L),
difficult challenge since the number of local minima in such and neutral (N) residues found in nature. In this paper, we shall
systems increases exponentially with system size. Examples Ofrefer to this model as the BLN mod®i These model proteins
such problems abound: the traveling salesman problem inhave been shown to display fertile thermodynamic and kinetic
mathematics, spin glasses in condensed matter physics, theehavior. In addition, they exhibit many similarities with
routing of chip circuitry in electrical engineering, and the protein theoretical and experimental studies of real proté#827.28n
folding problem in biophysics. In general, to locate the global fact, it has been showhthat the 46-mer is a highly frustrated
minimum of these systems by an exhaustive search of config- system. Consequently, the BLN protein model is a good and
uration space will take an astronomical amount of time, even nontrivial system with which to test our algorithm on. We
for systems which are of only moderate size. Hence efficient present detailed simulation results of our method versus the
methods have to be developed to circumvent this bleak reality. traditional method of simulated annealing. The results show that
The most widely used unbiased global minimization algorithms QTA-PIMC outperforms SA in the global minimization of both
include various incarnations of simulated annedlam genetic the 22- and 46-mer. In addition, the simulation results also
algorithms?2In addition, some useful and promising algorithms  suggest that QTA-PIMC scales better than SA in terms of system
have been developed or enhanced by the chemical-, bio-, andsize in the search for the global minimum. Lastly, we mention
condensed matter physics community. These include the Montepreliminary results on the global minimization of Lennard-Jones
Carlo minimization/“basin-hopping” techniqdé,branch and clusters with the QTA-PIMC method. The global minimum of
bound method$,° multicanonical method¥;1! potential smooth- ~ the hard case of the 38-atom Lennard-Jones cluster has been
ing*?>13and classical density annealing methods like the diffusion obtained with our method.
equation method (DEMY*15> Gaussian density annealing The paper is organized as follows. Section Il presents the
(GDA),1617 and the packet annealing method (PANI? path integral Monte Carlo (PIMC) method for simulating
Quantum annealing methods have also recently been investi-quantum systems. Section Ill gives an outline of the underlying
gated?9-22 |n this paper, we propose a new way to conduct concepts behind quantum annealing. Section IV describes the
quantum annealing called the QTA-PIMC method, where we BLN protein model and the energy functional to be minimized.
use path integral Monte Carlo (PIMC) as the underlying Section V presents the new method of QTA-PIMC. In Section
quantum sampling algorithm. This new method also enables usV! we present and analyze the simulation results from QTA-
to include the effects of thermal annealing if desired. We suggestPIMC and SA on the global minimization of the 22- and 46-
that PIMC presents the most natural way to conduct quantum mer mentioned above. In Section VII, we compare and contrast
annealing, with advantages over other quantum methods like QTA-PIMC with other established methods of global optimiza-
diffusion Monte Carlo (DMC) or the solving of the imaginary ~tion. The conclusions are given in Section VIII.
time Schidinger equation. In addition, we will discuss the
relations between QTA-PIMC and the various nongquantum : .
schemes mentioned above, and how QTA-PIMC actually —Feynman's path integral formulation of quantum théd®
encompasses many of the important and useful features of theséorms a powerful basis for the investigation of real|st|c_ quantum
methods. It is interesting to note that there is now experimental Many-body systems, both analytically and computationally. In

II. Path Integral Monte Carlo

verification of quantum annealirfg. thi_s formulation, the quantum canonical partition function is
written in terms of a path integral32
- - - . 1
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where

Sx@] = [ dr H (x(2)) )
is the Euclidean action that corresponds to the pdtf) in
Euclidean (imaginary) time and H(x(z)) contains the path
dependence of the Hamiltonian. In eq 1, the integration
(represented byii Dx(7)[...]) is taken over all paths starting at
Xo = X1 and ending ak(fh) = X.

To be computationally useful, the Euclidean timeis
discretized in units oé = Sh/P. P is an integer that represents
the number of “time” slices used in the discretization; it is also
known as the Trotter number. It represents the degree of
“quantumness” of a system: a strongly quantum system will
need a high value foP and a purely classical system Has=
1. With this discretization, the continuous patfr) is ap-
proximated by straight-line paths between neighboring Euclidean
times. The above is known as the primitive approximation.
Within this scheme, the partition function becore%*

Pm N P P
exp — ”T;T;: ;'ri,t - ri,t+1|2 - é;vcl({ri};t)) ©))

Equation 3 is the discrete path integral expression for the
quantum canonical partition function in the primitive ap-
proximation. It is written foiN distinguishable particles in three
dimensions which is relevant in this paper, but can easily be
extended tdN indistinguishable particles in arbitrary dimensions.

J. Phys. Chem. A, Vol. 104, No. 1, 20087

one to carry out either quantum or thermal annealing separately
or both types of annealing at the same timeR lis set to 1 in

the above formalism, the system can only be annealed thermally
throughp; for it is now a purely classical system, and thus we
recover the method of simulated annealing. Hence, the popular
method of simulated annealing can be viewed asulasetof
QTA-PIMC.

[ll. Quantum Annealing

The obijective is to find the global minimum of@assical
system. In quantum annealing, this is done by first “quantizing”
the classical system and then gradually “annealing” it back to
the classical regime. In the process, the classical ground state
or global minimum of the system is located, i.e.

classical— quantum— classical ground state

The approach, outlined below, allows for quantum tunneling
in place of purely activated barrier crossings.

A general classical potential in condensed matter physics and
theoretical chemistry is

(I)CI = Vcl({ri})1 i= 1! 2! ,N (6)

It would be the potential to be sampled from if one were to do
simulated annealing with the Metropolis Monte Carlo algorithm.
We “guantize” this system via the imaginary time path integral
formalism in a straightforward manner. In doing so, we end up
with ®p (eq 5), which is the “quantized” version of the classical
potential ®¢ (eq 6). By sampling®p, for instance with
Metropolis Monte Carlo, or by equivalent molecular dynamics
schemes?® one can determine the equilibrium properties of the
guantum system represented ®y. As mentioned before, the

Note that we have expressed the time-slice dependence explicdegree of “quantumness” of the system is controlled through

itly, so thatr; represents the 3-vector coordinates of itk
particle in thet-th time slice.Vg({ri};t) is the total classical
potential energy evaluated at time sliceEquation 3 can be
written in the form of a classical configurational integral

N P
Z,= I]l] Jdri [ expEA@e(r iBH) (@)

Comparing (3) with (4), one can extract the following
effective potential

Pm\MN P 5
Dp({r; }:BeN) = Ezﬁz ;;'ri,t_ri,ﬁl' +

1 P
(I;)Zvcu({ r}t ()

Equation 5 provides the basis for the interpretation of a
guantum system as a classical system of “ring polymers”. This
is the well-knownguantum-classical isomorphighthat results
from the imaginary time path integral formulation of quantum
statistical mechanics. The first term arises from the kinetic

the Trotter numbeP andh. [h = h/2x whereh is Planck’s
constant. However, in the context of quantum annealfini,
used as an adjustabfgarameter] By suitably adjusting the
values ofP and#, it will be possible to bring the quantum
system back to the classical regime, thereby locating the global
minimum. These are the essential ideas behind QTA-PIMC. The
implementation details of our method will be given in Section
V.

It is clear from the path integral formulation that each
guantum degree of freedom is described by a one-dimensional
array of classical degrees of freedom (the size of the array is
the Trotter numbeP). Consequently, the dimensionality goes
from 3N to 3NP when one goes from the quantum to an
isomorphic classical pictur@:3¢ Hence quantum annealing
methods entail an increase in the dimensionality of the original
problem. This increase in dimensionality corresponds to the
guantum dispersion associated with the uncertainty principle
of quantum mechanic¥.This allows for thenonlocalexplora-
tion of the original potential energy surface (PES). In addition,
it also allows for the effect of quantum tunneling so that
classically forbidden energy barriers can be overcéme.

Itis important to consider the extra CPU cost that is associated
with this increase in dimensionality. It is useful to keep in mind

energy operator and the second from the potential energythat we are interested in the global minimum déssical

operator in the Hamiltonian operator of the system.

It should be noted that we have introduced two diffef&at
namely,B; andfq in egs 4 and 5. In a true quantum simulation,
one would require thagi; = fq = 1/(ksT), whereT is the thermal

systems. Since these systems are not quantum in the first place,
it may not be necessary to choose large Trotter nunevge

note that if the original classical system Hdsparticles, the

use of the path integral formulation means that there will now

temperature. For the purpose of quantum annealing, it is usefulbe NP particles. The CPU time for Monte Carlo simulations on

to separate out the true inverse thermal tempergidrem what
will in fact be a factor g,) of the quantum annealing parameter
(PM264272). In fact, this differentiation between tifés enables

classical systems with untruncated nonbonded potentials scales
as N2. Since Trotter beads from different time slices do not
interact through the external potential, the CPU time required
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for the corresponding potential calculations in PIMC would scale
as N2P. However, in our QTA-PIMC scheme, the number of
Trotter time slicesP is actually systematically reduced as we
proceed with the simulation, and consequently the CPU cost is
kept under control as we go from the quantum to the classical
regime. The above is reminiscent of the “relaxation of dimen-
sionality” method of Scheraga and co-workéts'® However,
QTA-PIMC allows for a more general, systematic, and easier

scheme for such a purpose. The increase in particle number is
being offset by the increased search efficiency on the PES, and

ultimately QTA-PIMC outperforms a purely classical method
like simulated annealing, as we shall see in Section VI.

IV. Model Protein Potential

The system used in our simulations is the BLN protein model
of Honeycutt and Thirumaldf.242>41Protein sequences are built
from residues of three types, hydrophobic (B), hydrophilic (L),
and neutral (N). In this paper, we shall study in detail the global
minimization of a 22-mer (LBN2(LB)s, and that of a longer
prOtem chain, the 46-mergBlg(LB)4NngN3(LB)5L.

The potential energy of the BLN protein model used here is
made up of the following terms:

Ep({ I‘i}) = Vbono({ I’i}) + Vbeno({ ei}) + Vtors({ ¢|}) +
Vnon({ rij}) (7)

with

» bond-length potential
N—-1

Voond{r}) = Z E(|ri+l —r;| —a)’ (8)

wherek; = 400¢/a?, a is the average bond length between two
residues, andkp, the average strength of the hydrophobic
interaction, serves as the unit of energy in this model.

 bond-angle potential
N-2 k

Vourd(01) = 5 ;"(ei — 0

©)

where0; is defined by residues i + 1 andi + 2, kg = 20ep/
(radyf, andf = 1.8326 rad or 105

« dihedral-angle potential
N—3
Vier{#i}) = ) [A(1 + cosp) + Bi(1+ cos 3p)] (10)

whereg; is defined by residuesi + 1,i + 2, andi + 3. If two
or more of the four defining residues ¢fare neutral (N), then
A = Oéh, B = O.ZEh, otherwiseA.- =B = 1.2Eh.

« nonbonded potential

N-3 N
Vaorl{Ti}) = Z Z V(i) (11)
I=1 j=1+3
wherer;j = |rj — rjl anda, B = B, L, or N. Vg represents
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Vi) = 46, (,9)2] (B=B.Norl) (13
i
12 6
Ves(ry) = 4€h[(§) - (rg) (14)
ij ij
In addition, we employ a weak boundary potertial
N Ky
Vl{Ti}) = 3 (1 = Teon)” (15)

This potential prevents the protein chain from dissociating at
high temperatures, and it also encourages folding of the protein.
rcom IS the center of mass position of the protein chain &nd

is reduced from 0.05 to 0.005 during the course of our

simulations. At the end of each simulatidg s set to 0.0 before

we refine the energy of the resulting configuration(s) with the

conjugate gradient algorithm.

Unless otherwise stated, all physical quantities are in reduced
units, i.e., the thermal temperatufeis in units of e//kg and
energies are in units ef,. In our simulations, the mass of each
residuem, the bond lengtfa, the hydrophobic energy constant
€n, the Lennard-Jones parameteand the Boltzmann constant
ks are set to unity. The value of theue A is unity as well.
However, sincéi is used as an adjustable parameter in QTA-
PIMC, it can take on other values.

It should be noted that the Hamiltonian of the BLN protein
model is invariant under inversian— —r;. Consequently, there
are two configurations corresponding to each energy, including
the global minimum energy; see Table 1. Hence the global
minimum is twofold degenerate for each protein.

V. Quantum Thermal Annealing with Path Integral
Monte Carlo

A. Quantum-Classical Isomorphism. In Figure 1, the
“quantization” of a protein chain via the path integral formula-
tion is shown. We see that each residue, in its quantum form,
is now represented bl Trotter beads. The lines joining the
beads on each residue signify the harmonic potential coupling
between them.

B. Path Sampling Methods.We use Monte Carlo sampling
of the integrands in egs 3 or 4 as follows?2

1. Local Moves. A single Trotter bead on each residue is
displaced randomly within a cube of siz&.a and the
Metropolis accept/reject criterion is applied to this trial move.
During the simulationAjxca1 is adjusted so as to maintain a 50%
acceptance rate. Each set of local moves consists of a sequential
pass through the Trotter beads of all the residues.

2. Global Maves. The entire chain oP beads representing
each residue is translated by the same amaurgnd the
Metropolis accept/reject criterion is applied to this trial move.
The size of the displacemediis sampled randomly from within
a cube of siz&\gopar During the simulationAgionar is adjusted
so as to maintain a 50% acceptance rate. Each set of global
moves consists of a sequential pass through the Trotter chains
of all the residues.

In regular Monte Carlo simulations, one Monte Carlo sweep
is defined as the attempted moveshfparticles, whereN is
the size of the system. In QTA-PIMC, since Trotter beads from

soft-sphere type repulsions or Lennard-Jones interaction betweeryitferent time slices do not interact through the external classical

residueso andj:

g

) )

Vig(ry) = 4e, (B=BorlL, e =) (12)

potential, the attempted moves of &llx P beads once for a
set of global moves would involvi@ Monte Carlo sweeps. The
attempted moves of alN x P beads once for a set of local
moves would involve® Monte Carlo sweeps as well, although
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TABLE 1: (a) Global Minimum and the Next Three Lowest
Energy Structures of the 22-mer (LB)N(LB)s,2 and (b)
Corresponding Data for the 46-mer BN3z(LB)4sN3BgN3(LB)sLP

(a) 22-mer (LB3N2(LB)s

name energy rmsd from ref struct 22.1A
22.1A —3.060 0.000
221.B 0.579
22.2A —2.728 0.392
22.2B 0.581
22.3A —2.633 0.624
22.3B 0.745
22.4A —1.651 0.823
22.4B N/A
(b) 46-mer BNg(LB)4NngN3(LB)5L
name energy rmsd from ref struct 46.1A
46.1A —49.264 0.000
46.1B 0.862
46.2A —49.186 0.424
46.2B 0.946
46.3A —49.149 0.450
46.3B 0.960
46.4A —49.063 0.577
46.4B 1.050

aThe twofold degeneracy is due to the fact that the BLN Hamiltonian
is invariant under inversion — —r;. The global minimum structures

are labeled 22.1A and 22.1B, and the next lowest 22.2A, 22.2B, and
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N-1

(b)
Figure 2. Initial configurations used in our simulations. Each filled

so on. The rmsd of these structures from 22.1A are listed in the last circle represent®, overlapping Trotter beads at each protein residue

column.® Note that numerically the energy of the minima differ in the

first decimal place, suggesting that the 46-mer has a glassy potentia

energy surface.
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Figure 1. Quantum-classical isomorphism. A classical molecule is
“quantized” with the path integral formalism into cyclic chain polymers.

site. (a) A random extended initial configuration. (b) A nonextended

Iinitial configuration generated using Langevin dynamics.

dynamics afl = 5.0 and keep configurations everyime steps.
Each of these configurations is then quenched dowin=+ol.0

and equilibrated for another time steps before the final
configuration is stored. For the 22-merwas 20 000, and for
the longer 46-mergy was 50 000. For each of these final
configurations, we plac®, overlapping Trotter beads at each
residue site. These configurations serve as nonextended initial
configurations (Figure 2b) for our simulations. [We find that
both sets of initial configurations give comparable results in
terms of average success rate for locating the global minimum
of the 22-mer. Either set should serve as good initial configura-
tions for an arbitrary BLN protein.]

Starting with one of the above initial configurations, the
simulation is carried out as follows:

1. Set the initial value of the Trotter numberto Py, A to A;,

Each Trotter bead on the chains is labeled by a number that indicatesand the thermal temperatufeto T.

the time-slice that it belongs to.

in addition there is a slight overhead due to the calculation o

the harmonic potential between adjacent beads. In this paper,

we define the attempted moves of Bllx P Trotter beads once

as a PIMC pass. Consequently, one PIMC pass of either local

or global moves entail®® Monte Carlo sweeps. In order to

compare the efficiency of QTA-PIMC versus SA, we use the
same number of MC sweeps (thus essentially the same CP

time) for each method.

2. Perform quantum annealing as follows: Keeping the

f number of Trotter bead® and the thermal temperatufdixed,

reduceh from an initial valueh; to a final valueh; linearly in

ngx Steps. [The value df; is typically 0.0001, i.e., close to 0.0.]

At each value o, performngiona global andnigca local PIMC
passes. A fraction of these passes are used for equilibration
during whichAgional @and Ajocar are adjusted so as to maintain a

20% acceptance rate. At the end of thiannealing stage, when

h = hy, all P Trotter beads representing each residue would

Note that there are more advanced path sampling techniqueéqave converged back toward a single point (since the classical

like normal-mode samplingf,*® the staging algorithr®-*6and
others®1-32 However, due to the relatively small number of
Trotter beadsP used in this study, the use of just local and
global moves are sufficient.

C. Simulation Scheme.An initial protein configuration is

regime has been reached). We refer to this wiiotanealing
cycle (wheréh is reduced fronk; to fif) as aquantum annealing
stage and the configuration produced at the end of this cycle
anintermediateclassical configuration. Keep this configuration
for later.

constructed by assigning residue sites randomly on an extended 3. ReduceP by AP, T by dT, k, by dk, and reset to j, then
zig-zagged line (Figure 2a). The distance between each residuego back to step 2. This process is repeated &l 1 (classical

site is approximatelya. Py Trotter beads representing each

regime) and a final temperature & The total MC sweeps in

residue are then placed overlapping one another on these sitesstep 2 is kept constant by adjustingy,a andneca appropriately.

Alternatively, we run a high-temperature walker with Langevin

[If dT = 0, we have plain quantum annealing. If ¢ 0, we
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START
classical particle

introduce thermal annealing into our method. Hence QTA-PIMC
enables us to utilize the effects of quantum and/or thermal hd
annealing.]

4. Apply the conjugate gradient algorithm to the stored
configurations from step 2 and the final configuration obtained
at the end of the whole simulation from step 3 to refine the
energies. The binding potentid}, is not needed at this point,
so it is switched off (by settind, = 0.0 ) before energy
refinement. The global minimum of the protein would be
obtained at this point.

quantize

reduce h reduce h
— — [ ]
intermediate classical
configuration

T

Px1,h=90
In the description above, we see that the molecule is brought
back to the classical regime in the QTA-PIMC methodviro
ways. In step 2, this is done by havihdpeing gradually reduced
to ~0 even thoughP = 1. As mentioned earlier, we call the reduce h reduce
configurations so produced tiermediateclassical configura- —_— —_— °

intermediate classical
configuration
Px1,L=0

tions. At the end of step 3, the classical regime is attained by
having bothh — 0 andP — 1. We call this configuration the
final classical configuration. The reason for keeping the
intermediate classical configurations in step 2 is that the global
minimum is often already found at these stages (wikere 1)
instead of at the very end of the simulation after step 3. This
possibility of locating the global minimum early in the simula-
tion is another advantage of using QTA-PIMC over traditional
methods like simulated annealing. A nice illustration and
discussion of this is given in Section VIB.

The reason for performing energy refinement with the

.oete ...

o [ ]

final classical

conjugate gradient algorithm in step 4 is to pinpoint the global
minimum out of the set of local minima which have energies
very close in value (see Table 1) to that of the true global
minimum.

configuration
P=11=0

Figure 3. QTA-PIMC scheme used in this paper, illustrated with a
single classical patrticle. The classical particle is quantizedArftmtter

A schematic d|agram of the above procedure is shown in beads (Shaded CirCleS). The qUantiZed particle is annealed back to the

Figure 3. Actual numerical values used for the parameters are

given in Section VI.

VI. Results and Analysis
In a previous study of classical density annealing optimiza-

classical regime in two ways: by decreasfingand by decreasinBg.

For a fixedP, the quantized particle is annealed by decreasing the value
of A. Whenh reaches 0, all the Trotter beads would converge back to
a single point which corresponds to an intermediate classical config-
uration (solid circle). At this juncture, we remove one or more of the
overlapping Trotter beads. We reset the valué o6 A;, reduceT by

tion algorithms (Gaussian phase packet kinetic annealing anddT (if thermal annealing is desired), and repeat the whole process again.
adiabatic Gaussian density annealing) using the BLN model, The final classical configuration is obtained when bettandh are
good resuls were obtained with Z2-mers. However, these es, b e ke iues o, L v 0, speeieh T
methods fipparentl_y do r]_qt do very well with the longer 46- oftengthe global minimum W%uld already have beenyfound in onegof
mer. In this paper, in addition to the 22-mer (lB}(LB)s we the intermediate stages.

shall also test our method on the more difficult 46-meNB

(LB)4N3BgN3(LB)sL. From now on whenever we mention the
22-mer and 46-mer we will be referring to the aforementioned
sequences. energy minimum. In fact, a recent stéflyshows that the 46-

A. The Global Minimum of the 22-mer and 46-mer. In mer is a highly frustrated system. In our investigation, we found
Table 1, we list the (twofold degenerate) global minimum and that the energies of the 4 lowest energy configurations differ
the next three lowest energy structures of the 22-mer and 46-essentially in the first decimal place. In addition, while these
mer, respectively. As mentioned before, since the BLN model local minimum structures do take on the form of barrel-like
is invariant underr; — —r;, there are two configurations  structures and look very similar, there is no hard evidence that
corresponding to the same energy value, hence the twofoldthey are actually in the same big funnel on the potential energy
degeneracy. These are the lowest energy structures that we haveurface. This supports the notion that the 46-mer has a much
obtained out of all of our simulation runs. They were first found more glassy (or rougher) potential energy surface than the 22-
by conducting 10 long simulation runs of QTA-PIMC and SA. mer. Consequently, this makes consistent location of the global
No lower energy structures were found in subsequent runs usingminimum of the 46-mer more challenging.
either methods. B. Results from a Simulation Run of QTA-PIMC. In this

The global minimum energy found here for the 22-mer is in section, we present results of using QTA-PIMC in the global
fact lower than that found by Amara et'dlA comparison of minimization of the 46-mer in a typical simulation run. It is
the structure in their Figure 1 with our structures indicates that useful at this point to refer back to the simulation scheme given
their global minimum is in fact our second lowest minimum. in Section VC. In this run, we started with 20 Trotter beads
We cannot tell if we have found a lower energy for the global (i.e.,Po = 20 ) and reduce® by 1 (i.e.,AP = 1) at the end
minimum of the 46-mer since they did not quote a numerical of each quantum annealing stage until we were back to the
value for the global minimum energy found. classical regimeR = 1). The numerical values of the other

From Table 1, it is clear that the energy differences between parameters used weflg = 0.1, Ts = 0.01, df = 0.005,A; =
the local minima of the 22-mer are more pronounced than that 2.0,A; = 0.0001,ng = 200, Ngiobal = Niocal = 200. We monitored

of the 46-mer. It is knowH25that the 46-mer has a huge number
of local minima at low energy as one approaches the global
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Figure 4. Potential energy of the 46-mer versus MC sweeps. The solid

line corresponds to the energy of the configuration represented by time
slice O of the path integral. The dotted line corresponds to the lowest
energy configuration among all the time slices.
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Figure 5. Root-mean-square deviation (rmsd) of the 46-mer versus
MC sweeps. The configuration being monitored is the one correspond-
ing to the 0’th time slice of the path integral. The rmsd is calculated
with respect to the global minimum structure 46.1A. The dotted line
shows the reduction in Trotter numbRas the simulation progresses.
See text for explanation of the labels in the figure.

the progress of the protein configuration corresponding to Trotter
time-slice O (cf Figure 1), unless otherwise stated.
In Figure 4, we show the energy of the 46-mer as the
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Figure 6. Root-mean-square “size” of the classical ring polymers
representing the quantum cloud of the residues in the path integral
formulation versus MC sweeps.

to intermediate classical regimes (whére- 0.0 ) again. This
is indicated by arrows (b) and (c) in Figure 5. However, in the
next annealing stage wheRe= 13 (indicated by arrow (d)),
and beyond, the 46-mer stayed in the global minimum basin.
We note that this “early detection” power of QTA-PIMC was
not unique to this particular run, but is a feature observed in
most of the runs that managed to find the global minimum.

In Figure 6, we show the root-mean-square “size” of the
classical ring polymers as the simulation progressed. This was

calculated with748
1 P
EZ”i,t - ri,com|2 (16)
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is the center of mass (or centroid) of the Trotter chain of the
i-th residuersize is @ measure of the size of the quantum cloud
associated with each quantized residue. The simulation results
show that overall, aB was reduced, the size of the cloud also
decreased, as expected. During each quantum annealing stage,

simulation proceeded. At the end of each quantum annealingwhenP was fixed, buth was decreased froffy to A;, the size
stage, when the 46-mer was back in the classical regime, it wasof each cloud also decreased, all the way@O0 at the end of

also in a local minimum on the potential energy surface. The

the stage. The above observations are as expected from eq 5.

repeated returns to the classical regime at the end of eachEvery time the quantum cloud collapsed back to a single point,

guantum annealing stage allowed for multiple attacks on the
PES in locating the global minimum. In a way, this is
reminiscent of the “basin-hopping” method of Wales and Doye.
We will look at this in more detail in Section VII.

In Figure 5, we show the RMSD (root-mean-square deviation
from structure 46.1A) of the 46-mer configuration as the

we were back in an intermediate classical regime. The above
clearly illustrates the ability of QTA-PIMC to explore the
potential energy surface non-locally.

Finally, in Figure 7, we show the radius of gyration of the
46-mer as the simulation proceeded. We observe that the 46-
mer was in compact configurations for a large part of the

simulation progressed. In the same figure, we show the reductionsimulation. This indicates that QTA-PIMC did not waste

schedule for the number of Trotter time slid@sWe see that
the 46-mer reached the global minimum at the end ofRtkve

16 annealing stage, this is indicated by arrow (a) in Figure 5.
Thus, QTA-PIMC was able to locate the global minimum of
the 46-mer with jusbne-quarterof the target total MC sweeps.

It is interesting to note that in the next two quantum annealing
stages, wher® = 15 andP = 14, respectively, the 46-mer
actually tunneled out of its global minimum before going back

unnecessary time in exploring noncompact configurations but
was actually sorting out the global minimum from the set of
nearly folded structures.

C. Comparison of Results: QTA-PIMC versus SA.In this
section, we compare QTA-PIMC with simulated annealing in
the global optimization of the 22-mer and 46-mer. The annealing
scheme for QTA-PIMC is given in Section VC and will not be
repeated here. For SA, we follow the annealing scheme of
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Figure 7. Radius of gyratiorR; of the 46-mer versus MC sweeps.
The configuration being monitored is the one corresponding to the 0-th 2
time slice of the path integral.

Thirumalai and co-worker®:41 They used a linear annealing
schedule where the thermal temperature is decreased linearly

Energy /¢,
o
T
.

T,=T,—KAT, k=0,1,2,...04,—1) (18) Ll .

where Ty is the initial temperature AT is the change in | e s .
temperature for each annealing step, agfds the total number

of annealing steps. (We adopted the same thermal annealing -4 aTaA SA1  SA2 SA3  SA4

scheme in QTA-PIMC.) We conducteq Monte Carlo sweeps ®)

at each temperature, and 20% of these were used for equilibraFigure 8. (a) Success rates of locating the global minimum of the

tion after each temperature change. The total MC sweeps used?2-mer with QTA-PIMC and SA. 20 independent trials are performed

for each run was thusqr x ny. During the equilibration stage to produce each set of results. The filled bar of SA(avg) is obtained by

. . averaging over the success rates from SA runs using four different
at each temperature, the maximum displacendefur Monte schedules (SA1 to SA4). (b) Minimum energies obtained from these

Carlo moves was adjusted so as to maintain a 50% acceptancgmyiation trials. The dotted line indicates the global minimum energy
rate. The initial configurations were produced using Langevin value of the 22-mer. Note that some of the trials produce results with
dynamics as described in Section VC, but here of course therethe same energy values; these overlap one another on the graph. QTA-
was only 1 particle per residue site (i.8.= 1). PIMC is able to locate the global minimum with a 100% success rate,
hence all the energy values fall on the same point (the filled circle).

1. 22-mer (LBYN,(LB);
SA4. We increasethgr by an order of magnitude from one

In Figure 8, we present results for 20 independent simulation schedule to the next in order to see the dependence of the
runs of QTA-PIMC with the 22-mer. The total number of MC ~ optimization results on the annealing parameters. From Figure
sweeps used in each simulation run was .. In each of 8a, we see that all four annealing schedules gave comparable
these runsPy = 7, AP = 2, i.e.,P was reduced from 75— results (i.e., there was no order-of-magnitude difference) in the
3 — 1. The temperatur@ was fixed at 0.14; = 3.0, A = success rate. The average success rate was 68%. In Figure 8b,
0.0001 g = 650, andgiobal = Niocal = 50. We also did another ~ we show the spectrum of minimum energies obtained by QTA-
set of 20 runs where all the parameters remained the same exceg?IMC and SA. QTA-PIMC was able to locate the global
hi was changed to 4.0. QTA-PIMC was able to achieve 100% minimum consistently. SA, on the other hand, was prone to
success rate in locating the global minimum of the 22-mer with getting stuck at higher energy metastable states. Consequently,
either of these schedules, as shown in Figure 8a. Note that thethere is a large spread of energy values for SA, as shown in
temperatureT was held fixed. We did this to show that the Figure 8b.
effects of quantum annealing alone (without thermal annealing) We also increased the number of Monte Carlo sweeps in order
was sufficient to obtain perfect results in the global optimization to find out how many more sweeps are needed before we can
of the 22-mer. In Figure 8a, we also show results for the global achieve 100% success rate with simulated annealing. As before,
minimization of the 22-mer using simulated annealing. As in we tried four different annealing schedules. In Table 2, we
QTA-PIMC, we conducted 20 independent runs for each summarize our findings. A graphical counterpart of the table is
annealing schedule and used x@0° MC sweeps for each of  given in Figure 9. We observe that the average success rate
these runs. The initial and final temperatuiesand T; were increased, as expected, if we increased the number of MC
set to 1.0 and 0.0001, respectively. We tried four different sweeps used. However, we note that there was no “best”
annealing schedules where we vanggandnr while keeping schedule which consistently gave the highest success rate,
the total number of MC sweeps fixed. The 4 schedules usedtherefore we averaged over the success rates for the four
had ngr x ny =32 x 50 000,320x 5000, 3200x 500, and schedules. From Table 2, we see that a 100% success rate was
32000 x 50. They are labeled as SA1, SA2, SA3, and SA4, first obtained by SA if 7x 10° MC sweeps were used. With
respectively in Figure 8a, SA(avg) is the average of SA1 to QTA-PIMC, a 100% success rate was achieved with justx1.6
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TABLE 2: Results of SA for the 22-mer Using Different
Number of Total MC Sweeps and Different Annealing
Scheduled

total success av success
MC sweeps Ngr X Nt percentage rate (%)

1.0x 1¢° 20000x 50 45 50
2000x 500 65
200 x 5000 45
20 x 50000 45

2.0x 10° 40000x 50 80 70
4000x 500 65
400 x 5000 65
40 x 50000 70

3.0x 10° 60000x 50 90 75
6000x 500 75
600 x 5000 70
60 x 50000 65

4.0x 10° 80000x 50 90 85
8000x 500 95
800 x 5000 80
80 x 50000 75

5.0x 10° 100000x 50 90 89
10000x 500 90
1000 x 5000 80
100 x 50000 95

6.0x 10° 120000x 50 95 86
12000x 500 85
1200 x 5000 95
120 x 50000 70

7.0x 10° 140000x 50 75 86
14000x 500 95
1400 x 5000 75
140 x 50000 100

8.0x 1C° 160000x 50 85 89
16000x 500 90
1600 x 5000 90
160 x 50000 90

9.0x 10° 180000x 50 95 90
18000x 500 95
1800 x 5000 90
180 x 50000 80

10.0x 1¢° 200000x 50 85 91
20000x 500 85
2000x 5000 100
200 x 50000 95

aEach line of results is obtained from 20 independent SA runs.
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Figure 9. Success rates in locating the global minimum of the 22-
mer using QTA-PIMC and SA. The results are plotted with respect to
the number of MC sweeps used. The error bar on each SA data point
is obtained by averaging over the results of four SA annealing schedules.
The filled circle indicates that QTA-PIMC is able to locate the global
minimum with 100% certainty using just 16 10° MC sweeps. SA,

on the other hand, is not able to achieve that, up to the usage »f 10
10° MC sweeps.

locating the global minimum of the 46-mer using 82.0°f MC
sweeps. In this case, we utilized the power of both quantum
and thermal annealing. Notice that the temperature used ranged
from 0.2 to 0.02. These were lower than the unfoldifigiding
transition temperatur&: of the 46-mer, which is approximately
0.652% The possibility of using low thermal temperatures for
QTA-PIMC simulations means that low-temperature structures
could be probed more effectively throughout the simulations.
In other words, the algorithm spent most of its time probing
near the local minima of the PES rather than wasting too much
time searching through the high-energy regions. This increased
the chances of locating the global minimum. In Figure 10a, we
also show results for the global minimization of the 46-mer using
simulated annealing. As before, we conducted 20 runs for each
annealing schedule. The initial and final temperaturgsand

T: were set to 1.0 and 0.0001, respectively. We tried five

10° MC sweeps. Since the number of MC sweeps used is different annealing schedules where we varigdandnr while

proportional to the CPU time utilized, we estimate that QTA-
PIMC is over 4 times more efficient than SA in the global
minimization of the 22-mer. In addition, we observe that with

keeping the total number of MC sweeps fixed at:-32(F. The
five schedules used hatlr x nr = 64 x 50 0000, 640x
50 000, 6400x 5000, 64 000x 500, and 640 00& 50. They

SA, the average success rate reached a maximum of about 909@re labeled as SAL, SA2, SA3, SA4, and SA5, respectively, in

with 5 x 10° MC sweeps. Beyond this, even though we

Figure 10a, SA(avg) is the average of SA1 to SA5. We increased

increased the number of MC sweeps, the average success rat8ar by an order of magnitude from one schedule to the next in
did not increase accordingly but actually plateaued out, staying order to see the dependence of the optimization results on the

approximately constant at about 90%. This is illustrated in
Figure 9.

2. 46-mer BN4(LB),N;BoN4(LB).L

Next, we apply QTA-PIMC and SA to the global minimiza-
tion of the 46-mer. The total number of MC sweeps used in
each simulation run for either method was 3210°. The
strategy used is similar to that used for the 22-mer.

In Figure 10, we present results obtained from 20 simulation
runs of QTA-PIMC. In each of these rungy = 20, AP = 1,
hi = 4.0,hf = 0.0001,ndh = 800, anmg|oba| = Nigcal = 50. The
initial and final temperatures werg = 0.2 andT; = 0.02,

annealing parameters. As in the case of the 22-mer, we see that
all of the annealing schedules gave comparable results in the
success rate. We take the average of these to find an average
success rate of 9%. Consequently, QTA-PIMC on average is
about 6.7 times more effective than simulated annealing in terms
of the success ratén locating the global minimum of the 46-
mer. In Figure 10b, we show the spectrum of minimum energies
obtained by QTA-PIMC and SA. As in the case of the 22-mer,
SA was prone to getting stuck at higher energy metastable states.
This results in the larger spread of energy values in Figure 10b.
Note that the success rate is a quite stringent test of the
effectiveness of a global minimization algorithm. For the 22-
mer, we fixed the total number of MC sweeps used atx.6

respectively. The temperature was reduced once after eachl(® and found that the average success rates for QTA-PIMC

quantum annealing stage until it reacliedWe see from Figure

and SA were 100% and 68%, respectively. This means that

10a that QTA-PIMC was able to achieve a 60% success rate inQTA-PIMC is about 1.5 times more effective than SA in terms
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60 both quantum and thermal annealing and is therefore a stronger
method. We have shown in this paper that QTA-PIMC
outperforms SA in the global minimization of two model protein
sequences. QTA-PIMC can be viewed as an extension of SA
into the quantum regime.

QTA-PIMC is relatively easy to implement in comparison
to certain other quantum annealing methods like those that
involve solving of the imaginary time Schtimger equation. In
that approach, an approximate solution to the equation involves
the extra step of finding the effective potential of the system
with a set of Gaussian functions. In addition to being ap-

I 1 H proximate, this may be tedious to do for a general complex
OTA e SAT S oA S Sh pot.entlal. A better way to conduct pure quantum .ann.eah.ng
@) which does not suffer from the aforementioned difficulties is
with diffusion Monte Carlo (DMC®! With pure quantum
annealing, the quantum ground state wave functioh=at0 is

S
o
T
\

Success Rate (%)

N
o
T
L

—40 |- - i first obtained. This is then annealed to the classical regime by
letting A — 0. However, there are certain problems associated
2| ) | with such a scheme. We will describe two scenarios where pure
o « quantum annealing will likely have difficulties locating the
& correct classical global energy minimum. As a first example,
3 el o we consider the quantum anisotropic rotor potential. Bor
g 0.4, we know that the system goes from an orientationally
-46 + R « N . disordered state at high temperatures to an ordered state below
. . a certain temperature. However, as the system is cooled further
48l s R S . it undergoes another phase transition to a disordered state. This
. T T T is called reentrance’® Thus the quantum ground state is
50 ) disordered. Presumably this is what a quantum algorithm like
ara SA1  SA2  SA3  SA4 SAS DMC would find. The classical ground state is, however,

(b)

) . o ordered. As a second example, we consider a one-dimensional
Figure 10. (a) Success rates of locating the global minimum of the

46-mer with QTA-PIMC and SA. 20 independent trials are performed \?vc;?gtla;va?\:rVert))/ak:rrizer‘dh\‘lvtiltlaSr?;:'?cr)?\tevseflrloi;nszlii Vﬁtfly Ir;e\‘/\r/reorw
to produce each set of results. The filled bar of SA(avg) is obtained by . y 9y ’ . gntly
averaging over the success rates from SA runs using 5 different IN €NErgy than_ the broad well the ground state will haV"?‘ avery
schedules (SA1 to SA5). (b) Minimum energies obtained from these large density in the broad well. Pure quantum annealing will
simulation trials. The dotted line indicates the global minimum energy then not easily locate the global minimum. A series of DMC
value of the 46-mer. Note that some of the trials produce results with simulations with such a potential verified this difficulty: the
the same energy values; these overlap one another on the graph. Sincgnnealed distribution consistently ended up in the broad well
SA tends to produce structures that get stuck at higher energy metastabl? ather than the global minimum which is the narrow well. QTA-

states, we see a larger spread in the SA minimum energy spectrum.
ger sp 9y sp PIMC does not suffer from such a problem and was able to

of average success ratésr the global minimization of the 22- locate the_ narrow well con.5|stently. o
mer. Doing the same type of investigation for the case of the N Section VIB, we mentioned that QTA-PIMC is similar to
46-mer, we found that if the total MC sweeps were held fixed the “basin-hopping” method (BH) in that local minima are
at 32 x 1(ﬁ, the average success rates for QTA_P'MC and SA probed at |ntermed|ate Stages Of the annealing run. HoWeVer,
were 60% and 9%, respectively. This means that QTA-PIMC “Pasin-hopping” clearly entails large computational overhead
is over 6 times more effective than SA in terms a)ferage since the local minimization has to be done aftachMonte
success ratefor the global minimization of the 46-mer. The Carlo step Since we are simulating at a relatively low
efficiency of QTA-PIMC over simulated annealing measured temperature with QTA-PIMC, we expect the sampled configu-
in terms of the amount of MC sweeps (and he@®U time rations to be close to local minima. As a result, the classical
required to achieve the same success rate is expected to be mucglobal minimum could be found more readily. This was
larger, since the success rate scales nonlinearly with the numbefllustrated in Section VIB. In BH, the search is essentially a
of MC sweeps used. series of random quenchings to local potential minima and one
Thus, by comparing the relative success rates of QTA-PIMC hopes that one of these would correspond to the global
and SA in locating the global minimum of the 22-mer and 46- Minimum. In the QTA-PIMC method, we can envision the
mer, we see that QTA-PIMC does much better at a higher quantum clouds of the particles probing the PES in an amoeba-
residue numbeN. This suggests that QTA-PIMC scales better like manner and tunneling through energy barriers if need be.
than SA with respect t&l and is consequently more effective ~Consequently, QTA-PIMC is able to search the PES more
in dealing with larger systems. intelligently.

Multicanonical algorithms (MUCA) have become an useful
method for calculating thermodynamic properties and the
It is useful to compare and contrast QTA-PIMC with some identification of the global minimum of physical and chemical
of the other established methods of global minimization. systems. MUCA'’s advantage is that a random walk in energy

Simulated annealing (SA) is one of the most popular and space means that energy barriers between local minima do not
powerful methods for performing global optimization. However, present a problem, unlike simulated annealing in which one
it allows only thermal annealing while QTA-PIMC encompasses relies solely on thermal processes to overcome potential barriers.

VII. Discussion
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