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We investigate a new method (QTA-PIMC) for global optimization on complex potential energy surfaces
which combines the path integral Monte Carlo method with quantum and thermal annealing. This method is
applied to the BLN protein model (Honeycutt, J. D.; Thirumalai, D.Biopolymers1992, 32, 695). We show
that this new approach outperforms simulated (thermal) annealing (SA) and that in fact SA is a subset of our
method. This means that we could invoke the effects of both quantum and/or thermal annealing in the global
optimization process, hence the name quantum thermal annealing (QTA-PIMC). The simulation results also
suggest that QTA-PIMC scales better than SA in terms of system size in the search for the global minimum.

I. Introduction

Global minimization of arbitrary systems is an important
problem in many fields of science. A specific class of problems,
the so-called NP-complete systems, presents a particularly
difficult challenge since the number of local minima in such
systems increases exponentially with system size. Examples of
such problems abound: the traveling salesman problem in
mathematics, spin glasses in condensed matter physics, the
routing of chip circuitry in electrical engineering, and the protein
folding problem in biophysics. In general, to locate the global
minimum of these systems by an exhaustive search of config-
uration space will take an astronomical amount of time, even
for systems which are of only moderate size. Hence efficient
methods have to be developed to circumvent this bleak reality.
The most widely used unbiased global minimization algorithms
include various incarnations of simulated annealing1 and genetic
algorithms.2,3 In addition, some useful and promising algorithms
have been developed or enhanced by the chemical-, bio-, and
condensed matter physics community. These include the Monte
Carlo minimization/“basin-hopping” technique,4,5 branch and
bound methods,6-9 multicanonical methods,10,11potential smooth-
ing12,13and classical density annealing methods like the diffusion
equation method (DEM),14,15 Gaussian density annealing
(GDA),16,17 and the packet annealing method (PAM).18,19

Quantum annealing methods have also recently been investi-
gated.20-22 In this paper, we propose a new way to conduct
quantum annealing called the QTA-PIMC method, where we
use path integral Monte Carlo (PIMC) as the underlying
quantum sampling algorithm. This new method also enables us
to include the effects of thermal annealing if desired. We suggest
that PIMC presents the most natural way to conduct quantum
annealing, with advantages over other quantum methods like
diffusion Monte Carlo (DMC) or the solving of the imaginary
time Schro¨dinger equation. In addition, we will discuss the
relations between QTA-PIMC and the various nonquantum
schemes mentioned above, and how QTA-PIMC actually
encompasses many of the important and useful features of these
methods. It is interesting to note that there is now experimental
verification of quantum annealing.23

In this paper, we apply the new QTA-PIMC method to the
global minimization of a 22-mer and a 46-mer of the Honeycutt
and Thirumalai protein model.24,25 These off-lattice model
proteins are constructed from residues based on a three-letter
code. The codes represent hydrophobic (B), hydrophilic (L),
and neutral (N) residues found in nature. In this paper, we shall
refer to this model as the BLN model.26 These model proteins
have been shown to display fertile thermodynamic and kinetic
behavior. In addition, they exhibit many similarities with
theoretical and experimental studies of real proteins.24,25,27,28In
fact, it has been shown26 that the 46-mer is a highly frustrated
system. Consequently, the BLN protein model is a good and
nontrivial system with which to test our algorithm on. We
present detailed simulation results of our method versus the
traditional method of simulated annealing. The results show that
QTA-PIMC outperforms SA in the global minimization of both
the 22- and 46-mer. In addition, the simulation results also
suggest that QTA-PIMC scales better than SA in terms of system
size in the search for the global minimum. Lastly, we mention
preliminary results on the global minimization of Lennard-Jones
clusters with the QTA-PIMC method. The global minimum of
the hard case of the 38-atom Lennard-Jones cluster has been
obtained with our method.

The paper is organized as follows. Section II presents the
path integral Monte Carlo (PIMC) method for simulating
quantum systems. Section III gives an outline of the underlying
concepts behind quantum annealing. Section IV describes the
BLN protein model and the energy functional to be minimized.
Section V presents the new method of QTA-PIMC. In Section
VI we present and analyze the simulation results from QTA-
PIMC and SA on the global minimization of the 22- and 46-
mer mentioned above. In Section VII, we compare and contrast
QTA-PIMC with other established methods of global optimiza-
tion. The conclusions are given in Section VIII.

II. Path Integral Monte Carlo

Feynman’s path integral formulation of quantum theory29,30

forms a powerful basis for the investigation of realistic quantum
many-body systems, both analytically and computationally. In
this formulation, the quantum canonical partition function is
written in terms of a path integral31,32
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Q(N,V,â) ) ∫ dx1 ∫x1

x1 Dx(τ) exp(- 1
p
S[x(τ)]) (1)
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where

is the Euclidean action that corresponds to the pathx(τ) in
Euclidean (imaginary) timeτ and H(x(τ)) contains the path
dependence of the Hamiltonian. In eq 1, the integration
(represented by∫x1

x1 Dx(τ)[...]) is taken over all paths starting at
x0 ) x1 and ending atx(âp) ) x1.

To be computationally useful, the Euclidean timeτ is
discretized in units ofε ) âp/P. P is an integer that represents
the number of “time” slices used in the discretization; it is also
known as the Trotter number. It represents the degree of
“quantumness” of a system: a strongly quantum system will
need a high value forP and a purely classical system hasP )
1. With this discretization, the continuous pathx(τ) is ap-
proximated by straight-line paths between neighboring Euclidean
times. The above is known as the primitive approximation.
Within this scheme, the partition function becomes30-34

Equation 3 is the discrete path integral expression for the
quantum canonical partition function in the primitive ap-
proximation. It is written forN distinguishable particles in three
dimensions which is relevant in this paper, but can easily be
extended toN indistinguishable particles in arbitrary dimensions.
Note that we have expressed the time-slice dependence explic-
itly, so that r i,t represents the 3-vector coordinates of thei-th
particle in thet-th time slice.Vcl({r i};t) is the total classical
potential energy evaluated at time slicet. Equation 3 can be
written in the form of a classical configurational integral

Comparing (3) with (4), one can extract the following
effective potential

Equation 5 provides the basis for the interpretation of a
quantum system as a classical system of “ring polymers”. This
is the well-knownquantum-classical isomorphism29 that results
from the imaginary time path integral formulation of quantum
statistical mechanics. The first term arises from the kinetic
energy operator and the second from the potential energy
operator in the Hamiltonian operator of the system.

It should be noted that we have introduced two differentâ’s,
namely,ât andâq in eqs 4 and 5. In a true quantum simulation,
one would require thatât ) âq ) 1/(kBT), whereT is the thermal
temperature. For the purpose of quantum annealing, it is useful
to separate out the true inverse thermal temperatureât from what
will in fact be a factor (âq) of the quantum annealing parameter
(Pm/2âq

2p2). In fact, this differentiation between theâ’s enables

one to carry out either quantum or thermal annealing separately
or both types of annealing at the same time. IfP is set to 1 in
the above formalism, the system can only be annealed thermally
throughât for it is now a purely classical system, and thus we
recover the method of simulated annealing. Hence, the popular
method of simulated annealing can be viewed as asubsetof
QTA-PIMC.

III. Quantum Annealing
The objective is to find the global minimum of aclassical

system. In quantum annealing, this is done by first “quantizing”
the classical system and then gradually “annealing” it back to
the classical regime. In the process, the classical ground state
or global minimum of the system is located, i.e.

The approach, outlined below, allows for quantum tunneling
in place of purely activated barrier crossings.

A general classical potential in condensed matter physics and
theoretical chemistry is

It would be the potential to be sampled from if one were to do
simulated annealing with the Metropolis Monte Carlo algorithm.
We “quantize” this system via the imaginary time path integral
formalism in a straightforward manner. In doing so, we end up
with ΦP (eq 5), which is the “quantized” version of the classical
potential Φcl (eq 6). By samplingΦP, for instance with
Metropolis Monte Carlo, or by equivalent molecular dynamics
schemes,35 one can determine the equilibrium properties of the
quantum system represented byΦP. As mentioned before, the
degree of “quantumness” of the system is controlled through
the Trotter numberP and p. [p ) h/2π whereh is Planck’s
constant. However, in the context of quantum annealing,p is
used as an adjustableparameter.] By suitably adjusting the
values ofP and p, it will be possible to bring the quantum
system back to the classical regime, thereby locating the global
minimum. These are the essential ideas behind QTA-PIMC. The
implementation details of our method will be given in Section
V.

It is clear from the path integral formulation that each
quantum degree of freedom is described by a one-dimensional
array of classical degrees of freedom (the size of the array is
the Trotter numberP). Consequently, the dimensionality goes
from 3N to 3NP when one goes from the quantum to an
isomorphic classical picture.31,36 Hence quantum annealing
methods entail an increase in the dimensionality of the original
problem. This increase in dimensionality corresponds to the
quantum dispersion associated with the uncertainty principle
of quantum mechanics.37 This allows for thenonlocalexplora-
tion of the original potential energy surface (PES). In addition,
it also allows for the effect of quantum tunneling so that
classically forbidden energy barriers can be overcome.37

It is important to consider the extra CPU cost that is associated
with this increase in dimensionality. It is useful to keep in mind
that we are interested in the global minimum ofclassical
systems. Since these systems are not quantum in the first place,
it may not be necessary to choose large Trotter numbersP. We
note that if the original classical system hasN particles, the
use of the path integral formulation means that there will now
beNP particles. The CPU time for Monte Carlo simulations on
classical systems with untruncated nonbonded potentials scales
as N2. Since Trotter beads from different time slices do not
interact through the external potential, the CPU time required

S[x(τ)] ) ∫0

âp
dτ H (x(τ)) (2)

QP(â) ) ( Pm

2πâp2)3NP/2∫ dr1,1...dr i,t...drN,P

exp(-
Pm

2âp2
∑
i)1

N

∑
t)1

P

|r i,t - r i,t+1|2 -
â

P
∑
t)1

P

Vcl({r i};t)) (3)

Zcl ) [∏
i)1

N

∏
t)1

P ∫ dr i,t] exp(-âtΦP({r i,t};âq,p)) (4)

ΦP({r i,t};âq,p) ) ( Pm

2âq
2p2)∑i)1

N

∑
t)1

P

|r i,t - r i,t+1|2 +

(1

P)∑t)1

P

Vcl({ r i};t) (5)

classicalf quantumf classical ground state

Φcl ) Vcl({r i}), i ) 1, 2, ...,N (6)
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for the corresponding potential calculations in PIMC would scale
as N2P. However, in our QTA-PIMC scheme, the number of
Trotter time slicesP is actually systematically reduced as we
proceed with the simulation, and consequently the CPU cost is
kept under control as we go from the quantum to the classical
regime. The above is reminiscent of the “relaxation of dimen-
sionality” method of Scheraga and co-workers.38-40 However,
QTA-PIMC allows for a more general, systematic, and easier
scheme for such a purpose. The increase in particle number is
being offset by the increased search efficiency on the PES, and
ultimately QTA-PIMC outperforms a purely classical method
like simulated annealing, as we shall see in Section VI.

IV. Model Protein Potential
The system used in our simulations is the BLN protein model

of Honeycutt and Thirumalai.17,24,25,41Protein sequences are built
from residues of three types, hydrophobic (B), hydrophilic (L),
and neutral (N). In this paper, we shall study in detail the global
minimization of a 22-mer (LB)5N2(LB)5, and that of a longer
protein chain, the 46-mer B9N3(LB)4N3B9N3(LB)5L.

The potential energy of the BLN protein model used here is
made up of the following terms:17

with

wherekr ) 400εh/a2, a is the average bond length between two
residues, andεh, the average strength of the hydrophobic
interaction, serves as the unit of energy in this model.

whereθi is defined by residuesi, i + 1 andi + 2, kθ ) 20εh/
(rad)2, andθ0 ) 1.8326 rad or 105°.

whereφi is defined by residuesi, i + 1, i + 2, andi + 3. If two
or more of the four defining residues ofφi are neutral (N), then
Ai ) 0εh, Bi ) 0.2εh, otherwiseAi ) Bi ) 1.2εh.

where rij ) |r i - r j| and R, â ) B, L, or N. VRâ represents
soft-sphere type repulsions or Lennard-Jones interaction between
residuesR andâ:

In addition, we employ a weak boundary potential17

This potential prevents the protein chain from dissociating at
high temperatures, and it also encourages folding of the protein.
r com is the center of mass position of the protein chain andkb

is reduced from 0.05 to 0.005 during the course of our
simulations. At the end of each simulation,kb is set to 0.0 before
we refine the energy of the resulting configuration(s) with the
conjugate gradient algorithm.

Unless otherwise stated, all physical quantities are in reduced
units, i.e., the thermal temperatureT is in units of εh/kB and
energies are in units ofεh. In our simulations, the mass of each
residuem, the bond lengtha, the hydrophobic energy constant
εh, the Lennard-Jones parameterσ, and the Boltzmann constant
kB are set to unity. The value of thetrue p is unity as well.
However, sincep is used as an adjustable parameter in QTA-
PIMC, it can take on other values.

It should be noted that the Hamiltonian of the BLN protein
model is invariant under inversionr i f -r i. Consequently, there
are two configurations corresponding to each energy, including
the global minimum energy; see Table 1. Hence the global
minimum is twofold degenerate for each protein.

V. Quantum Thermal Annealing with Path Integral
Monte Carlo

A. Quantum-Classical Isomorphism. In Figure 1, the
“quantization” of a protein chain via the path integral formula-
tion is shown. We see that each residue, in its quantum form,
is now represented byP Trotter beads. The lines joining the
beads on each residue signify the harmonic potential coupling
between them.

B. Path Sampling Methods.We use Monte Carlo sampling
of the integrands in eqs 3 or 4 as follows:31,32

1. Local MoVes. A single Trotter bead on each residue is
displaced randomly within a cube of size∆local and the
Metropolis accept/reject criterion is applied to this trial move.
During the simulation,∆local is adjusted so as to maintain a 50%
acceptance rate. Each set of local moves consists of a sequential
pass through the Trotter beads of all the residues.

2. Global MoVes.The entire chain ofP beads representing
each residue is translated by the same amountδ and the
Metropolis accept/reject criterion is applied to this trial move.
The size of the displacementδ is sampled randomly from within
a cube of size∆global. During the simulation,∆global is adjusted
so as to maintain a 50% acceptance rate. Each set of global
moves consists of a sequential pass through the Trotter chains
of all the residues.

In regular Monte Carlo simulations, one Monte Carlo sweep
is defined as the attempted moves ofN particles, whereN is
the size of the system. In QTA-PIMC, since Trotter beads from
different time slices do not interact through the external classical
potential, the attempted moves of allN × P beads once for a
set of global moves would involveP Monte Carlo sweeps. The
attempted moves of allN × P beads once for a set of local
moves would involveP Monte Carlo sweeps as well, although

Ep({r i}) ) Vbond({r i}) + Vbend({θi}) + Vtors({φi}) +
Vnon({r ij}) (7)

• bond-length potential

Vbond({r i}) ) ∑
i)1

N-1 kr

2
(|r i+1 - r i| - a)2 (8)

• bond-angle potential

Vbend({θi}) ) ∑
i)1

N-2 kθ

2
(θi - θ0)

2 (9)

• dihedral-angle potential

Vtors({φi}) ) ∑
i)1

N-3

[Ai(1 + cosφi) + Bi(1+ cos 3φi)] (10)

• nonbonded potential

Vnon({rij}) ) ∑
i)1

N-3

∑
j)i+3

N

VRâ(rij) (11)

VLâ(rij) ) 4εL[(σ
rij

)12
+ (σ

rij
)6] (â ) B or L, εL ) 2/3εh) (12)

VNâ(rij) ) 4εh[(σ
rij

)12] (â ) B, N, or L) (13)

VBB(rij) ) 4εh[(σ
rij

)12
- (σ

rij
)6] (14)

Vbp({r i}) ) ∑
i)1

N kb

2
(r i - r com)2 (15)
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in addition there is a slight overhead due to the calculation of
the harmonic potential between adjacent beads. In this paper,
we define the attempted moves of allN × P Trotter beads once
as a PIMC pass. Consequently, one PIMC pass of either local
or global moves entailsP Monte Carlo sweeps. In order to
compare the efficiency of QTA-PIMC versus SA, we use the
same number of MC sweeps (thus essentially the same CPU
time) for each method.

Note that there are more advanced path sampling techniques
like normal-mode sampling,42-45 the staging algorithm,35,46and
others.31,32 However, due to the relatively small number of
Trotter beadsP used in this study, the use of just local and
global moves are sufficient.

C. Simulation Scheme.An initial protein configuration is
constructed by assigning residue sites randomly on an extended
zig-zagged line (Figure 2a). The distance between each residue
site is approximatelya. P0 Trotter beads representing each
residue are then placed overlapping one another on these sites.
Alternatively, we run a high-temperature walker with Langevin

dynamics atT ) 5.0 and keep configurations everyτ time steps.
Each of these configurations is then quenched down toT ) 1.0
and equilibrated for anotherτ time steps before the final
configuration is stored. For the 22-mer,τ was 20 000, and for
the longer 46-mer,τ was 50 000. For each of these final
configurations, we placeP0 overlapping Trotter beads at each
residue site. These configurations serve as nonextended initial
configurations (Figure 2b) for our simulations. [We find that
both sets of initial configurations give comparable results in
terms of average success rate for locating the global minimum
of the 22-mer. Either set should serve as good initial configura-
tions for an arbitrary BLN protein.]

Starting with one of the above initial configurations, the
simulation is carried out as follows:

1. Set the initial value of the Trotter numberP to P0, p to pi,
and the thermal temperatureT to Ti.

2. Perform quantum annealing as follows: Keeping the
number of Trotter beadsP and the thermal temperatureT fixed,
reducep from an initial valuepi to a final valuepf linearly in
ndp steps. [The value ofpf is typically 0.0001, i.e., close to 0.0.]
At each value ofp, performnglobal global andnlocal local PIMC
passes. A fraction of these passes are used for equilibration
during which∆global and∆local are adjusted so as to maintain a
50% acceptance rate. At the end of thisp annealing stage, when
p ) pf, all P Trotter beads representing each residue would
have converged back toward a single point (since the classical
regime has been reached). We refer to this wholep annealing
cycle (wherep is reduced frompi to pf) as aquantum annealing
stage, and the configuration produced at the end of this cycle
an intermediateclassical configuration. Keep this configuration
for later.

3. ReduceP by ∆P, T by dT, kb by dkb and resetp to pi, then
go back to step 2. This process is repeated untilP ) 1 (classical
regime) and a final temperature ofTf. The total MC sweeps in
step 2 is kept constant by adjustingnglobalandnlocal appropriately.
[If dT ) 0, we have plain quantum annealing. If dT * 0, we

TABLE 1: (a) Global Minimum and the Next Three Lowest
Energy Structures of the 22-mer (LB)5N2(LB)5,a and (b)
Corresponding Data for the 46-mer B9N3(LB)4N3B9N3(LB)5Lb

(a) 22-mer (LB)5N2(LB)5

name energy rmsd from ref struct 22.1A

22.1A -3.060 0.000
221.B 0.579
22.2A -2.728 0.392
22.2B 0.581
22.3A -2.633 0.624
22.3B 0.745
22.4A -1.651 0.823
22.4B N/A

(b) 46-mer B9N3(LB)4N3B9N3(LB)5L

name energy rmsd from ref struct 46.1A

46.1A -49.264 0.000
46.1B 0.862
46.2A -49.186 0.424
46.2B 0.946
46.3A -49.149 0.450
46.3B 0.960
46.4A -49.063 0.577
46.4B 1.050

a The twofold degeneracy is due to the fact that the BLN Hamiltonian
is invariant under inversionr i f -r i. The global minimum structures
are labeled 22.1A and 22.1B, and the next lowest 22.2A, 22.2B, and
so on. The rmsd of these structures from 22.1A are listed in the last
column.b Note that numerically the energy of the minima differ in the
first decimal place, suggesting that the 46-mer has a glassy potential
energy surface.

Figure 1. Quantum-classical isomorphism. A classical molecule is
“quantized” with the path integral formalism into cyclic chain polymers.
Each Trotter bead on the chains is labeled by a number that indicates
the time-slice that it belongs to.

Figure 2. Initial configurations used in our simulations. Each filled
circle representsP0 overlapping Trotter beads at each protein residue
site. (a) A random extended initial configuration. (b) A nonextended
initial configuration generated using Langevin dynamics.
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introduce thermal annealing into our method. Hence QTA-PIMC
enables us to utilize the effects of quantum and/or thermal
annealing.]

4. Apply the conjugate gradient algorithm to the stored
configurations from step 2 and the final configuration obtained
at the end of the whole simulation from step 3 to refine the
energies. The binding potentialVbp is not needed at this point,
so it is switched off (by settingkb ) 0.0 ) before energy
refinement. The global minimum of the protein would be
obtained at this point.

In the description above, we see that the molecule is brought
back to the classical regime in the QTA-PIMC method intwo
ways. In step 2, this is done by havingp being gradually reduced
to ≈0 even thoughP * 1. As mentioned earlier, we call the
configurations so produced theintermediateclassical configura-
tions. At the end of step 3, the classical regime is attained by
having bothp f 0 andP f 1. We call this configuration the
final classical configuration. The reason for keeping the
intermediate classical configurations in step 2 is that the global
minimum is often already found at these stages (whereP * 1)
instead of at the very end of the simulation after step 3. This
possibility of locating the global minimum early in the simula-
tion is another advantage of using QTA-PIMC over traditional
methods like simulated annealing. A nice illustration and
discussion of this is given in Section VIB.

The reason for performing energy refinement with the
conjugate gradient algorithm in step 4 is to pinpoint the global
minimum out of the set of local minima which have energies
very close in value (see Table 1) to that of the true global
minimum.

A schematic diagram of the above procedure is shown in
Figure 3. Actual numerical values used for the parameters are
given in Section VI.

VI. Results and Analysis
In a previous study17 of classical density annealing optimiza-

tion algorithms (Gaussian phase packet kinetic annealing and
adiabatic Gaussian density annealing) using the BLN model,
good results were obtained with 22-mers. However, these
methods apparently do not do very well with the longer 46-
mer. In this paper, in addition to the 22-mer (LB)5N2(LB)5 we
shall also test our method on the more difficult 46-mer B9N3-
(LB)4N3B9N3(LB)5L. From now on whenever we mention the
22-mer and 46-mer we will be referring to the aforementioned
sequences.

A. The Global Minimum of the 22-mer and 46-mer. In
Table 1, we list the (twofold degenerate) global minimum and
the next three lowest energy structures of the 22-mer and 46-
mer, respectively. As mentioned before, since the BLN model
is invariant underr i f -r i, there are two configurations
corresponding to the same energy value, hence the twofold
degeneracy. These are the lowest energy structures that we have
obtained out of all of our simulation runs. They were first found
by conducting 10 long simulation runs of QTA-PIMC and SA.
No lower energy structures were found in subsequent runs using
either methods.

The global minimum energy found here for the 22-mer is in
fact lower than that found by Amara et al.17 A comparison of
the structure in their Figure 1 with our structures indicates that
their global minimum is in fact our second lowest minimum.
We cannot tell if we have found a lower energy for the global
minimum of the 46-mer since they did not quote a numerical
value for the global minimum energy found.

From Table 1, it is clear that the energy differences between
the local minima of the 22-mer are more pronounced than that

of the 46-mer. It is known17,25that the 46-mer has a huge number
of local minima at low energy as one approaches the global
energy minimum. In fact, a recent study26 shows that the 46-
mer is a highly frustrated system. In our investigation, we found
that the energies of the 4 lowest energy configurations differ
essentially in the first decimal place. In addition, while these
local minimum structures do take on the form of barrel-like
structures and look very similar, there is no hard evidence that
they are actually in the same big funnel on the potential energy
surface. This supports the notion that the 46-mer has a much
more glassy (or rougher) potential energy surface than the 22-
mer. Consequently, this makes consistent location of the global
minimum of the 46-mer more challenging.

B. Results from a Simulation Run of QTA-PIMC. In this
section, we present results of using QTA-PIMC in the global
minimization of the 46-mer in a typical simulation run. It is
useful at this point to refer back to the simulation scheme given
in Section VC. In this run, we started with 20 Trotter beads
(i.e., P0 ) 20 ) and reducedP by 1 (i.e.,∆P ) 1 ) at the end
of each quantum annealing stage until we were back to the
classical regime (P ) 1). The numerical values of the other
parameters used wereTi ) 0.1, Tf ) 0.01, dT ) 0.005,pi )
2.0,pf ) 0.0001,ndp ) 200,nglobal ) nlocal ) 200. We monitored

Figure 3. QTA-PIMC scheme used in this paper, illustrated with a
single classical particle. The classical particle is quantized intoP Trotter
beads (shaded circles). The quantized particle is annealed back to the
classical regime in two ways: by decreasingp, and by decreasingP.
For a fixedP, the quantized particle is annealed by decreasing the value
of p. Whenp reaches 0, all the Trotter beads would converge back to
a single point which corresponds to an intermediate classical config-
uration (solid circle). At this juncture, we remove one or more of the
overlapping Trotter beads. We reset the value ofp to pi, reduceT by
dT (if thermal annealing is desired), and repeat the whole process again.
The final classical configuration is obtained when bothP and p are
annealed to the classical values of 1 and 0, respectively. This
configuration would be the global minimum of the system, although
often the global minimum would already have been found in one of
the intermediate stages.
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the progress of the protein configuration corresponding to Trotter
time-slice 0 (cf Figure 1), unless otherwise stated.

In Figure 4, we show the energy of the 46-mer as the
simulation proceeded. At the end of each quantum annealing
stage, when the 46-mer was back in the classical regime, it was
also in a local minimum on the potential energy surface. The
repeated returns to the classical regime at the end of each
quantum annealing stage allowed for multiple attacks on the
PES in locating the global minimum. In a way, this is
reminiscent of the “basin-hopping” method of Wales and Doye.5

We will look at this in more detail in Section VII.
In Figure 5, we show the RMSD (root-mean-square deviation

from structure 46.1A) of the 46-mer configuration as the
simulation progressed. In the same figure, we show the reduction
schedule for the number of Trotter time slicesP. We see that
the 46-mer reached the global minimum at the end of theP )
16 annealing stage, this is indicated by arrow (a) in Figure 5.
Thus, QTA-PIMC was able to locate the global minimum of
the 46-mer with justone-quarterof the target total MC sweeps.
It is interesting to note that in the next two quantum annealing
stages, whereP ) 15 andP ) 14, respectively, the 46-mer
actually tunneled out of its global minimum before going back

to intermediate classical regimes (wherep ≈ 0.0 ) again. This
is indicated by arrows (b) and (c) in Figure 5. However, in the
next annealing stage whereP ) 13 (indicated by arrow (d)),
and beyond, the 46-mer stayed in the global minimum basin.
We note that this “early detection” power of QTA-PIMC was
not unique to this particular run, but is a feature observed in
most of the runs that managed to find the global minimum.

In Figure 6, we show the root-mean-square “size” of the
classical ring polymers as the simulation progressed. This was
calculated with47,48

where

is the center of mass (or centroid) of the Trotter chain of the
i-th residue.rsize is a measure of the size of the quantum cloud
associated with each quantized residue. The simulation results
show that overall, asP was reduced, the size of the cloud also
decreased, as expected. During each quantum annealing stage,
whenP was fixed, butp was decreased frompi to pf, the size
of each cloud also decreased, all the way to≈0.0 at the end of
the stage. The above observations are as expected from eq 5.
Every time the quantum cloud collapsed back to a single point,
we were back in an intermediate classical regime. The above
clearly illustrates the ability of QTA-PIMC to explore the
potential energy surface non-locally.

Finally, in Figure 7, we show the radius of gyration of the
46-mer as the simulation proceeded. We observe that the 46-
mer was in compact configurations for a large part of the
simulation. This indicates that QTA-PIMC did not waste
unnecessary time in exploring noncompact configurations but
was actually sorting out the global minimum from the set of
nearly folded structures.

C. Comparison of Results: QTA-PIMC versus SA.In this
section, we compare QTA-PIMC with simulated annealing in
the global optimization of the 22-mer and 46-mer. The annealing
scheme for QTA-PIMC is given in Section VC and will not be
repeated here. For SA, we follow the annealing scheme of

Figure 4. Potential energy of the 46-mer versus MC sweeps. The solid
line corresponds to the energy of the configuration represented by time
slice 0 of the path integral. The dotted line corresponds to the lowest
energy configuration among all the time slices.

Figure 5. Root-mean-square deviation (rmsd) of the 46-mer versus
MC sweeps. The configuration being monitored is the one correspond-
ing to the 0’th time slice of the path integral. The rmsd is calculated
with respect to the global minimum structure 46.1A. The dotted line
shows the reduction in Trotter numberP as the simulation progresses.
See text for explanation of the labels in the figure.

Figure 6. Root-mean-square “size” of the classical ring polymers
representing the quantum cloud of the residues in the path integral
formulation versus MC sweeps.
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Thirumalai and co-workers.25,41 They used a linear annealing
schedule where the thermal temperature is decreased linearly

where T0 is the initial temperature,∆T is the change in
temperature for each annealing step, andndT is the total number
of annealing steps. (We adopted the same thermal annealing
scheme in QTA-PIMC.) We conductednT Monte Carlo sweeps
at each temperature, and 20% of these were used for equilibra-
tion after each temperature change. The total MC sweeps used
for each run was thusndT × nT. During the equilibration stage
at each temperature, the maximum displacement∆ for Monte
Carlo moves was adjusted so as to maintain a 50% acceptance
rate. The initial configurations were produced using Langevin
dynamics as described in Section VC, but here of course there
was only 1 particle per residue site (i.e.,P ) 1 ).

In Figure 8, we present results for 20 independent simulation
runs of QTA-PIMC with the 22-mer. The total number of MC
sweeps used in each simulation run was 1.6× 106. In each of
these runs,P0 ) 7, ∆P ) 2, i.e.,P was reduced from 7f 5 f
3 f 1. The temperatureT was fixed at 0.1,pi ) 3.0, pf )
0.0001,ndp ) 650, andnglobal ) nlocal ) 50. We also did another
set of 20 runs where all the parameters remained the same except
pi was changed to 4.0. QTA-PIMC was able to achieve 100%
success rate in locating the global minimum of the 22-mer with
either of these schedules, as shown in Figure 8a. Note that the
temperatureT was held fixed. We did this to show that the
effects of quantum annealing alone (without thermal annealing)
was sufficient to obtain perfect results in the global optimization
of the 22-mer. In Figure 8a, we also show results for the global
minimization of the 22-mer using simulated annealing. As in
QTA-PIMC, we conducted 20 independent runs for each
annealing schedule and used 1.6× 106 MC sweeps for each of
these runs. The initial and final temperaturesT0 and Tf were
set to 1.0 and 0.0001, respectively. We tried four different
annealing schedules where we variedndT andnT while keeping
the total number of MC sweeps fixed. The 4 schedules used
had ndT × nT )32 × 50 000,320× 5000, 3200× 500, and
32 000× 50. They are labeled as SA1, SA2, SA3, and SA4,
respectively in Figure 8a, SA(avg) is the average of SA1 to

SA4. We increasedndT by an order of magnitude from one
schedule to the next in order to see the dependence of the
optimization results on the annealing parameters. From Figure
8a, we see that all four annealing schedules gave comparable
results (i.e., there was no order-of-magnitude difference) in the
success rate. The average success rate was 68%. In Figure 8b,
we show the spectrum of minimum energies obtained by QTA-
PIMC and SA. QTA-PIMC was able to locate the global
minimum consistently. SA, on the other hand, was prone to
getting stuck at higher energy metastable states. Consequently,
there is a large spread of energy values for SA, as shown in
Figure 8b.

We also increased the number of Monte Carlo sweeps in order
to find out how many more sweeps are needed before we can
achieve 100% success rate with simulated annealing. As before,
we tried four different annealing schedules. In Table 2, we
summarize our findings. A graphical counterpart of the table is
given in Figure 9. We observe that the average success rate
increased, as expected, if we increased the number of MC
sweeps used. However, we note that there was no “best”
schedule which consistently gave the highest success rate,
therefore we averaged over the success rates for the four
schedules. From Table 2, we see that a 100% success rate was
first obtained by SA if 7× 106 MC sweeps were used. With
QTA-PIMC, a 100% success rate was achieved with just 1.6×

Figure 7. Radius of gyrationRg of the 46-mer versus MC sweeps.
The configuration being monitored is the one corresponding to the 0-th
time slice of the path integral.

Figure 8. (a) Success rates of locating the global minimum of the
22-mer with QTA-PIMC and SA. 20 independent trials are performed
to produce each set of results. The filled bar of SA(avg) is obtained by
averaging over the success rates from SA runs using four different
schedules (SA1 to SA4). (b) Minimum energies obtained from these
simulation trials. The dotted line indicates the global minimum energy
value of the 22-mer. Note that some of the trials produce results with
the same energy values; these overlap one another on the graph. QTA-
PIMC is able to locate the global minimum with a 100% success rate,
hence all the energy values fall on the same point (the filled circle).

Tk ) T0 - k∆T, k ) 0, 1, 2, ..., (ndT - 1) (18)

1. 22-mer (LB)5N2(LB)5
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106 MC sweeps. Since the number of MC sweeps used is
proportional to the CPU time utilized, we estimate that QTA-
PIMC is over 4 times more efficient than SA in the global
minimization of the 22-mer. In addition, we observe that with
SA, the average success rate reached a maximum of about 90%
with 5 × 106 MC sweeps. Beyond this, even though we
increased the number of MC sweeps, the average success rate
did not increase accordingly but actually plateaued out, staying
approximately constant at about 90%. This is illustrated in
Figure 9.

Next, we apply QTA-PIMC and SA to the global minimiza-
tion of the 46-mer. The total number of MC sweeps used in
each simulation run for either method was 32× 106. The
strategy used is similar to that used for the 22-mer.

In Figure 10, we present results obtained from 20 simulation
runs of QTA-PIMC. In each of these runs,P0 ) 20, ∆P ) 1,
pi ) 4.0,pf ) 0.0001,ndp ) 800, andnglobal ) nlocal ) 50. The
initial and final temperatures wereTi ) 0.2 andTf ) 0.02,
respectively. The temperature was reduced once after each
quantum annealing stage until it reachedTf. We see from Figure
10a that QTA-PIMC was able to achieve a 60% success rate in

locating the global minimum of the 46-mer using 32× 106 MC
sweeps. In this case, we utilized the power of both quantum
and thermal annealing. Notice that the temperature used ranged
from 0.2 to 0.02. These were lower than the unfolding-folding
transition temperatureTF of the 46-mer, which is approximately
0.65.25 The possibility of using low thermal temperatures for
QTA-PIMC simulations means that low-temperature structures
could be probed more effectively throughout the simulations.
In other words, the algorithm spent most of its time probing
near the local minima of the PES rather than wasting too much
time searching through the high-energy regions. This increased
the chances of locating the global minimum. In Figure 10a, we
also show results for the global minimization of the 46-mer using
simulated annealing. As before, we conducted 20 runs for each
annealing schedule. The initial and final temperaturesT0 and
Tf were set to 1.0 and 0.0001, respectively. We tried five
different annealing schedules where we variedndT andnT while
keeping the total number of MC sweeps fixed at 32× 106. The
five schedules used hadndT × nT ) 64 × 50 0000, 640×
50 000, 6400× 5000, 64 000× 500, and 640 000× 50. They
are labeled as SA1, SA2, SA3, SA4, and SA5, respectively, in
Figure 10a, SA(avg) is the average of SA1 to SA5. We increased
ndT by an order of magnitude from one schedule to the next in
order to see the dependence of the optimization results on the
annealing parameters. As in the case of the 22-mer, we see that
all of the annealing schedules gave comparable results in the
success rate. We take the average of these to find an average
success rate of 9%. Consequently, QTA-PIMC on average is
about 6.7 times more effective than simulated annealing in terms
of the success ratein locating the global minimum of the 46-
mer. In Figure 10b, we show the spectrum of minimum energies
obtained by QTA-PIMC and SA. As in the case of the 22-mer,
SA was prone to getting stuck at higher energy metastable states.
This results in the larger spread of energy values in Figure 10b.

Note that the success rate is a quite stringent test of the
effectiveness of a global minimization algorithm. For the 22-
mer, we fixed the total number of MC sweeps used at 1.6×
106 and found that the average success rates for QTA-PIMC
and SA were 100% and 68%, respectively. This means that
QTA-PIMC is about 1.5 times more effective than SA in terms

TABLE 2: Results of SA for the 22-mer Using Different
Number of Total MC Sweeps and Different Annealing
Schedulesa

total
MC sweeps ndT × nT

success
percentage

av success
rate (%)

1.0× 106 20000× 50 45 50
2000× 500 65
200× 5000 45
20× 50000 45

2.0× 106 40000× 50 80 70
4000× 500 65
400× 5000 65
40× 50000 70

3.0× 106 60000× 50 90 75
6000× 500 75
600× 5000 70
60× 50000 65

4.0× 106 80000× 50 90 85
8000× 500 95
800× 5000 80
80× 50000 75

5.0× 106 100000× 50 90 89
10000× 500 90
1000× 5000 80
100× 50000 95

6.0× 106 120000× 50 95 86
12000× 500 85
1200× 5000 95
120× 50000 70

7.0× 106 140000× 50 75 86
14000× 500 95
1400× 5000 75
140× 50000 100

8.0× 106 160000× 50 85 89
16000× 500 90
1600× 5000 90
160× 50000 90

9.0× 106 180000× 50 95 90
18000× 500 95
1800× 5000 90
180× 50000 80

10.0× 106 200000× 50 85 91
20000× 500 85
2000× 5000 100
200× 50000 95

a Each line of results is obtained from 20 independent SA runs.

2. 46-mer B9N3(LB)4N3B9N3(LB)5L

Figure 9. Success rates in locating the global minimum of the 22-
mer using QTA-PIMC and SA. The results are plotted with respect to
the number of MC sweeps used. The error bar on each SA data point
is obtained by averaging over the results of four SA annealing schedules.
The filled circle indicates that QTA-PIMC is able to locate the global
minimum with 100% certainty using just 1.6× 106 MC sweeps. SA,
on the other hand, is not able to achieve that, up to the usage of 10×
106 MC sweeps.
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of aVerage success ratesfor the global minimization of the 22-
mer. Doing the same type of investigation for the case of the
46-mer, we found that if the total MC sweeps were held fixed
at 32× 106, the average success rates for QTA-PIMC and SA
were 60% and 9%, respectively. This means that QTA-PIMC
is over 6 times more effective than SA in terms ofaVerage
success ratesfor the global minimization of the 46-mer. The
efficiency of QTA-PIMC over simulated annealing measured
in terms of the amount of MC sweeps (and henceCPU time)
required to achieve the same success rate is expected to be much
larger, since the success rate scales nonlinearly with the number
of MC sweeps used.

Thus, by comparing the relative success rates of QTA-PIMC
and SA in locating the global minimum of the 22-mer and 46-
mer, we see that QTA-PIMC does much better at a higher
residue numberN. This suggests that QTA-PIMC scales better
than SA with respect toN and is consequently more effective
in dealing with larger systems.

VII. Discussion

It is useful to compare and contrast QTA-PIMC with some
of the other established methods of global minimization.

Simulated annealing (SA) is one of the most popular and
powerful methods for performing global optimization. However,
it allows only thermal annealing while QTA-PIMC encompasses

both quantum and thermal annealing and is therefore a stronger
method. We have shown in this paper that QTA-PIMC
outperforms SA in the global minimization of two model protein
sequences. QTA-PIMC can be viewed as an extension of SA
into the quantum regime.

QTA-PIMC is relatively easy to implement in comparison
to certain other quantum annealing methods like those that
involve solving of the imaginary time Schro¨dinger equation. In
that approach, an approximate solution to the equation involves
the extra step of finding the effective potential of the system
with a set of Gaussian functions. In addition to being ap-
proximate, this may be tedious to do for a general complex
potential. A better way to conduct pure quantum annealing
which does not suffer from the aforementioned difficulties is
with diffusion Monte Carlo (DMC).21 With pure quantum
annealing, the quantum ground state wave function atT ) 0 is
first obtained. This is then annealed to the classical regime by
letting p f 0. However, there are certain problems associated
with such a scheme. We will describe two scenarios where pure
quantum annealing will likely have difficulties locating the
correct classical global energy minimum. As a first example,
we consider the quantum anisotropic rotor potential. ForB >
0.4, we know that the system goes from an orientationally
disordered state at high temperatures to an ordered state below
a certain temperature. However, as the system is cooled further
it undergoes another phase transition to a disordered state. This
is called reentrance.49 Thus the quantum ground state is
disordered. Presumably this is what a quantum algorithm like
DMC would find. The classical ground state is, however,
ordered. As a second example, we consider a one-dimensional
potential with a very broad well separated from a very narrow
well by an energy barrier. If the narrow well is slightly lower
in energy than the broad well the ground state will have a very
large density in the broad well. Pure quantum annealing will
then not easily locate the global minimum. A series of DMC
simulations with such a potential verified this difficulty: the
annealed distribution consistently ended up in the broad well
rather than the global minimum which is the narrow well. QTA-
PIMC does not suffer from such a problem and was able to
locate the narrow well consistently.

In Section VIB, we mentioned that QTA-PIMC is similar to
the “basin-hopping” method (BH) in that local minima are
probed at intermediate stages of the annealing run. However,
“basin-hopping” clearly entails large computational overhead
since the local minimization has to be done aftereachMonte
Carlo step.5 Since we are simulating at a relatively low
temperature with QTA-PIMC, we expect the sampled configu-
rations to be close to local minima. As a result, the classical
global minimum could be found more readily. This was
illustrated in Section VIB. In BH, the search is essentially a
series of random quenchings to local potential minima and one
hopes that one of these would correspond to the global
minimum. In the QTA-PIMC method, we can envision the
quantum clouds of the particles probing the PES in an amoeba-
like manner and tunneling through energy barriers if need be.
Consequently, QTA-PIMC is able to search the PES more
intelligently.

Multicanonical algorithms (MUCA) have become an useful
method for calculating thermodynamic properties and the
identification of the global minimum of physical and chemical
systems. MUCA’s advantage is that a random walk in energy
space means that energy barriers between local minima do not
present a problem, unlike simulated annealing in which one
relies solely on thermal processes to overcome potential barriers.

Figure 10. (a) Success rates of locating the global minimum of the
46-mer with QTA-PIMC and SA. 20 independent trials are performed
to produce each set of results. The filled bar of SA(avg) is obtained by
averaging over the success rates from SA runs using 5 different
schedules (SA1 to SA5). (b) Minimum energies obtained from these
simulation trials. The dotted line indicates the global minimum energy
value of the 46-mer. Note that some of the trials produce results with
the same energy values; these overlap one another on the graph. Since
SA tends to produce structures that get stuck at higher energy metastable
states, we see a larger spread in the SA minimum energy spectrum.
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QTA-PIMC is also able to go through energy barriers via
quantum tunneling.

In classical density annealing methods, instead of moving
what is essentially a point through phase space (MD methods)
or configuration space (MC methods), a density distribution is
used instead. This “blob” is able to sample phase or configu-
ration space nonlocally. For quantum annealing with QTA-
PIMC, where we have Trotter beads representing the quantum
clouds of the quantized system, it is clear that we have the
advantage of nonlocal sampling as well.

VIII. Conclusions
In this paper, we have presented a new technique (QTA-

PIMC) for performing global optimization on complex potential
energy surfaces. This approach makes use of path integral Monte
Carlo, a powerful quantum sampling algorithm, to conduct
quantum and thermal annealing. While traditional simulated
annealing uses only thermal effects in the search for the global
minimum, our method makes use of both quantum and thermal
processes. We have shown that SA is in fact a subset of this
new technique. Instead of having just one point wandering
through configuration space, our method allows for nonlocal
search on the potential energy surface. In addition, while SA
might allow a system to get trapped in metastable states, QTA-
PIMC enables the system to tunnel through these states, thus
ensuring a higher chance of locating the global minimum.

We compared the performance of our method with that of
SA by conducting global optimization of a 22- and a 46-mer of
the BLN protein model. We found that our method outperformed
SA in both cases. In addition, our results also suggest that QTA-
PIMC actually scales better with system size than SA in the
search for the global minimum. It is expected that even better
annealing schemes for QTA-PIMC could be devised that would
outperform the ones that have been used in this paper.

The efficiency of our new method may potentially be
improved further by combining it with classical methods such
as the fluctuating potential method,50 the Smart-Walking
method,51 multicanonical methods,10,11 the Jump-Walking
method,52 and the recently proposed multicanonical Jump-
Walking method.53

Finally, it would be useful to test QTA-PIMC on harder
optimization problems. In this paper, we have tested the
efficiencyof QTA-PIMC, but not itsrobustness. It would be
interesting to see how QTA-PIMC performs on potential energy
surfaces where most optimization methods have failed, for
example, Lennard-Jones clusters consisting ofN ) 38, 75-77,
102-104 atoms,5 or low-autocorrelation binary sequences
(where the PES has a “golf-course” character).54-57 With our
current QTA-PIMC annealing scheme, we have located the
global minimum of the 38-atom Lennard-Jones cluster; inves-
tigation of the other difficult cases of Lennard-Jones clusters
are currently being carried out. For these potentially complex
energy surfaces, a larger number of Trotter beads than was used
here might be needed. Consequently, more sophisticated sam-
pling techniques from the PIMC arsenal may be required.31,32,35
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