COMMENTS

Comment on "Reinterpretation of the Spectra of Hydrated Co⁺⁺: An ab Initio Study" (*J. Phys. Chem. A* 1998, *102*, 6525)

Chantall Fedorchuk and Thomas W. Swaddle*

Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Received: June 25, 1999; In Final Form: September 29, 1999

Gilson and Krauss¹ have recently revisited the problem of the interpretation of the visible/near-infrared spectrum of the hydrated Co²⁺ ion using ab initio calculations. As Lever² has noted, complete analysis of the visible band occurring around 20 000 cm⁻¹, customarily assigned to the ${}^{4}T_{1g}(P) \leftarrow {}^{4}T_{1g}(F)$ transition of the (H₂O)₆Co²⁺ species, is particularly difficult because of multiple structure attributable to the admixture of spin-forbidden transitions to the ${}^{2}G$ and ${}^{2}H$ states as well as vibrational and low-symmetry components. There has been little change in the standard ligand-field interpretation of the spectrum since the classic work of Holmes and McClure³ published in 1957; thus, reconsideration of the problem using modern computational methods is timely and welcome.

Gilson and Krauss¹ correctly point out that the selection rules for d-d transitions in (H₂O)₆Co²⁺ in strict T_h symmetry imply zero oscillator strength. In the standard model of this and other octahedral metal-ion complexes, the observed (weak) oscillator strength is gained mainly by vibronic coupling that destroys the center of symmetry. Gilson and Krauss¹ present an alternative interpretation, viz., that at near-ambient temperatures "the dominant optically allowed species is the five-coordinate complex", since their calculations indicate that the oscillator strength for $(H_2O)_5Co^{2+}$ is at least 10³-fold greater than for $(H_2O)_6Co^{2+}$. The predicted wavenumbers of the absorption maxima of the putative $(H_2O)_5Co^{2+}$ are also said¹ to provide a better fit of the observed spectrum.³ The hexaaqua ion, however, is the only cobalt(II) species detectable in EXAFS and X-ray diffraction studies of aqueous solutions with noncomplexing counterions and of solid hexahydrate salts,⁴ so that $(H_2O)_5Co^{2+}$ cannot constitute more than a very small fraction of the total Co in these environments. In addition, Gilson and Krauss¹ propose that the species $(H_2O)_5CoOH^+$ is a major contributor to the high-temperature aqueous spectrum of $Co^{2+}(aq)$ measured in our laboratories some 20 years ago.⁵ These proposals can be tested experimentally, as described below, and we find that both can be rejected.

It has been shown⁶ that the "absolute" molar volumes V_{abs}^0 of ions $M^{z+}(aq)$ in aqueous solution (based on $V_{abs}^0(H^+) = -5.4$ cm³ mol⁻¹) at 298 K are given to within the experimental uncertainty by eq 1, in which *r* is the Shannon ionic radius⁷ in picometers and *n* is the primary coordination number in $(H_2O)_nM^{z+}$. Equation 1 is a reliable empirical relation that confirms, for example, that there is a change in primary

$$V_{abs}^{0}$$
/cm³ mol⁻¹ = 2.523 × 10⁻⁶(r + 238.7)³ - 18.07n - 417.5z²/(r + 238.7) (1)

coordination number of $M^{3+}(aq)$ from 9 to 8 as one crosses the lanthanide series from La to Lu and that this is associated with an increase of 12-13 cm³ mol⁻¹ in the normalized V^{0}_{abs} .⁶ It has further been shown⁸ that eq 1 can be used to calculate the molar volume change ΔV^{0} for the processes

$$M^{z+}(aq, n\text{-coordinate}) \rightarrow M^{z+}(aq, (n-1)\text{-coordinate})$$
 (2)

and so, if ΔV^0 is sensibly constant over a range of hydrostatic pressure *P*, the dependence of the equilibrium constant *K* for process (2) on *P* can be calculated from eq 3. For Co²⁺(aq)

$$\ln(K_P/K_0) = -P\Delta V^0/RT \tag{3}$$

going from six- to five-coordination, $\Delta V = +12.5$ cm³ mol^{-1.8} If we assume for argument's sake that the molar absorbance ϵ of Co²⁺(aq) is due *entirely* to a species (H₂O)₅Co²⁺ comprising less than (say) 1% of the total Co²⁺ in solution, then the concentration of (H₂O)₅Co²⁺ will be directly proportional to the observed ϵ , and so

$$\ln(\epsilon_P/\epsilon_0) = -12.5P/RT \tag{4}$$

if *P* is in MPa and ϵ_P is independent of pressure. Values of ϵ_P/ϵ_0 calculated on this basis are listed in the second column of Table 1 and show that pressures of a few hundred megapascals will cause a dramatic reduction in ϵ if the 20 000 cm⁻¹ band is due, either in entirety or even in part, to the minor species (H₂O)₅Co²⁺.

We have therefore measured the effect of pressures up to 300 MPa on the 20 000 cm⁻¹ band of aqueous Co²⁺(aq) in acidic perchlorate and trifluorosulfonate media at 295.1 \pm 0.2 K, using a Cary 5E spectrophotometer with fiber optics accessory and the pressure apparatus described elsewhere.⁹ The pressurizing fluid was distilled water. Because the samples were enclosed in a le Noble-Schlott "pillbox" cell in which the optical path length *b* contracted freely under increasing pressure, only a small compressional correction to absorbance *A_P* at pressure *P* for the volume swept out by the inner cell wall (inner and outer radii *r*₁ and *r*₀, respectively; length *l*) was necessary:^{9,10}

$$\epsilon_P = A_P / [\text{Co}][(b_0 - l) + (r_i/r_0)^2 l + (V_0/V_P) \{1 - (r_i/r_0)^2\} l]$$
(5)

Here, V_0 and V_P are the specific volumes of water at ambient (effectively zero) pressure and pressure *P*, respectively.

Baseline corrections were established separately at the selected pressures with blank solutions in the pillbox cell, using the small molar absorbance at 400 nm (0.30 L mol⁻¹ cm⁻¹ at 295 K and 0.1 MPa) as a reference point. The maximum molar absorbances ϵ_{max} , together with the corresponding wavenumbers ν_{max} and bandwidths $\delta \nu_{1/2}$ at half-height, are listed as functions of pressure in Table 1.

^{*} Corresponding author. Tel.: (403) 220-5358. Fax: (403) 284-1372. E-mail: swaddle@ucalgary.ca.

TABLE 1: Effects of Pressure on the 20 000 cm^{-1} Band of $Co(ClO_4)_2$ in 0.1 mol L^{-1} Aqueous $HClO_4$ at 295 K

pressure/MPa	$\epsilon_P/\epsilon_0(\text{calc})$	$\nu_{\rm max}/10^3~{\rm cm}^{-1}$	$\delta v_{1/2}/\mathrm{cm}^{-1}$	$\epsilon_{\rm max}/{\rm L}~{\rm mol^{-1}~cm^{-1}}$
0	1	19.55	3750	4.74
100	0.60	19.59	3770	4.71
200	0.36	19.65	3750	4.64
300	0.22	19.63	3750	4.66

Table 1 shows that there is a barely discernible blue shift with increasing pressure (attributable to shortening Co-O bond lengths), that the bandwidth is independent of pressure, and that ϵ decreases by only about 2% over the range 0–300 MPa–an insignificant amount, given the uncertainty of about 1% in ϵ originating mainly in the baseline correction. A parallel study of the spectrum of Co(CF₃SO₃)₂ in 0.1 mol L⁻¹ aqueous CF₃-SO₃H gave precisely the same results, within experimental uncertainty. Comparison of the second and fifth columns of Table 1 shows that there can be no significant contribution to the band intensity from (H₂O)₅Co²⁺ at near-ambient temperatures. This conclusion is supported by the observation of Holmes and McClure³ that the oscillator strength of the 20 000 cm^{-1} band is roughly similar in solid salts and aqueous solutions of $(H_2O)_6Co^{2+}$; it is difficult to see how reproducible minor amounts of a pentacoordinate ion could be present in the solid hydrates, in which an equilibrium involving it and solvent water (process (2)) is not possible.

With regard to the high-temperature aqueous spectrum of $Co^{2+}(aq)$, Gilson and Krauss are justified in expecting the hydrolytic equilibrium (6) to become increasingly significant

$$(\mathrm{H}_{2}\mathrm{O})_{6}\mathrm{Co}^{2+} \rightleftharpoons (\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{Co}\mathrm{OH}^{+} + \mathrm{H}^{+}$$
(6)

as the temperature increases toward the critical point *in the absence of added acid*.¹¹ In addition, one can anticipate an increased tendency to complexation of $Co^{2+}(aq)$ by the counterion. Swaddle and Fabes⁵ therefore took pains to show that spectra of $Co^{2+}/H^+/HSO_4^-$ solutions up to 610 K remained *identical* when [H⁺] and [HSO₄⁻] were simultaneously increased from 0.1 to 0.5 mol L⁻¹.¹² At such high acidities, reaction 6 will be either suppressed completely (as is evidently the case) or will exhibit a dependence on [H⁺]. Thus, neither the hydrolyzed species (H₂O)₅CoOH⁺ nor any Co sulfato complexes contributed to the observed visible spectra of the solutions.

There remains, however, room for debate regarding the origin of the feature with a maximum near 18 000 cm⁻¹ that emerges in the high-temperature (>500 K) spectrum of $Co^{2+}/H^+/HSO_4^$ solutions.⁵ Difference spectra⁵ show that this is a new feature that appears *in addition to*, but overlapping, the familiar 20 000 cm⁻¹ band, which, as argued above, is truly attributable to (H₂O)₆Co²⁺. Swaddle and Fabes⁵ attributed the additional feature to the presence of minor amounts of (H₂O)₄Co²⁺, on

the grounds that its absorbance maximum appeared at the position relative to the $(H_2O)_6Co^{2+}$ peak that would be expected from naïve ligand-field concepts¹³ and by analogy with the tetranitratocobalt(II) ion in which Co2+ is known to be tetrahedrally coordinated with oxygen atoms.¹⁴ Furthermore, the absorbance due to the putative tetrahedral species was inversely related to the square of the solvent water concentration (density), rather than the first power as would be anticipated for $(H_2O)_5$ - Co^{2+} . The chemistry of cobalt(II) in general shows a striking tendency toward the formation of tetrahedral complexes, presumably reflecting symmetrical occupancy of the t₂ and e orbitals of the high-spin d^7 configuration under T_d ligand field splitting. Thus, while the high-temperature 18 000 cm⁻¹ band may indeed be due to minor amounts of $(H_2O)_5Co^{2+}$, the original proposal that it is caused by tetrahedral $(H_2O)_4Co^{2+}$ remains both tenable and attractive. The inferred transient involvement of five-coordinate Co2+ in the transition state of solvent exchange on aqueous (H₂O)₆Co²⁺ at near-ambient temperatures is not relevant to the present case, as the water exchange mechanism is believed to be of the dissociative *interchange* type in which the lifetime of five-coordinate Co²⁺ is extremely short and hence its concentration is undetectably small.^{4,15}

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

Supporting Information Available: Spectra of $Co^{2+}(aq)$ in acidic aqueous perchlorate and trifluoromethanesulfonate media, at ambient pressure and 300 MPa. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

 Gilson, H. S. R.; Krauss, M. J. Phys. Chem. A 1998, 102, 6525.
 Lever, A. B. P. Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier: Amsterdam, 1984; p 480.

(3) Holmes, O. G.; McClure, D. S. J. Chem. Phys. **1957**, *26*, 1686.

(4) Richens, D. T. *The Chemistry of Aqua Ions*; Wiley: Chichester, U.K., 1997.

(5) Swaddle, T. W.; Fabes, L. Can. J. Chem. 1980, 58, 1418.

(6) Swaddle, T. W.; Mak, M. K. S. Can. J. Chem. 1983, 61, 473.

(7) Shannon, R. D. Acta Crystallogr., Sect. A 1976, A32, 751.

(8) Swaddle, T. W. Inorg. Chem. 1983, 22, 2663.

(9) Beswick, C. L.; Shalders, R. D.; Swaddle, T. W. Inorg. Chem. 1996, 35, 991.

(10) Equation 2 of ref 9 contains typographical errors and is superseded by eq 5 of this Comment.

(11) Giasson, G.; Tewari, P. H. Can. J. Chem. 1978, 56, 435.

(12) At temperatures above 400 K and moderate molalities, $HSO_4^{-}(aq)$ is less than 1% ionized: Holmes, H. F.; Mesmer, R. E. J. Chem. Thermodyn. **1992**, 24, 317. In moderate concentrations, the HSO_4^{-} ion, which is isoelectronic with CIO_4^{-} , has little or no tendency to form complexes with divalent metal ions.

(13) Smith, D. W. J. Inorg. Nucl. Chem. 1972, 34, 3930.

(14) Cotton, F. A.; Dunne, T. G. J. Am. Chem. Soc. 1962, 84, 2013.

(15) Lincoln, S. F.; Merbach, A. E. Adv. Inorg. Chem. 1995, 42, 1.