Calculated Vibrational Spectra for CH_nOH_m Species

Paul Blowers and Richard I. Masel*

Department of Chemical Engineering, University of Illinois at Urbana–Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801-3792

Received: July 12, 1999; In Final Form: October 6, 1999

There is a lack of reference vibrational spectra in the literature for many species that have been postulated to form on metal surfaces. In this paper we calculate high-quality reference spectra for a series of molecules of the form CH_nOH_m . Specifically, we looked at the neutral, charged, and excited charged forms of CH_3OH , CH_3O , CH_2O , CH_2O , CH_2OH , CHO, and HCOH. These calculations were done using scaled MP2(full)/ 6-31g*, scaled B3LYP/6-31g*, scaled QCIST/6-31g*, and scaled MP2/6-311+G(2d,p) level. The result is a consistent set of reference spectra for a series of molecules of current interest.

Introduction

Surface scientists often must differentiate among many similar species as they look at what is forming on a particular surface.^{1–3} Despite the long history of surface experiments, good vibrational reference spectra are often lacking for common molecules and possible species. In these cases, gas-phase infrared spectra are used when reference spectra are not readily available for the species of interest. In many cases, too, available spectra are incomplete and several peaks may be lacking. Oxygenates on surfaces cause particular problems because many different species can form and there are no suitable reference spectra for many of these species.^{4–14}

In this work, we calculated the vibrational spectra for the neutral, charged, and excited charged states of CH₃OH, CH₃O, CH₃OH₂, CH₂O, CH₂OH, CHO, and HCOH. The species are candidates for possible intermediates during methanol adsorption on Pt(110). Although calculations have been done for some of these species,^{15–27} consistent reference spectra of the same level of calculation or from experiments are not available for many of these species. There is reason to suspect that some of the species can form on surfaces. The objective of this paper is to calculate reference spectra that we can then compare to data to identify surface species.

In the work here we used ab initio methods to compute frequencies for the CH_nOH_m species that have been postulated to form on metal surfaces. We also did triplet (i.e., radical) states of some of the species, since triplet states can be stabilized on transition metal surfaces (e.g., di- σ -ethylene is a triplet state).

Procedures

The calculations were done with the Gaussian 92 or Gaussian 98 program. $^{28-29}$ Generally, we followed the method of Pople et al., $^{30-31}$ Scott and Radom, 32 and Wong 33 to calculate the reference spectra.

Vibrational frequencies were calculated using three different computational procedures: scaled MP2, scaled B3LYP, and scaled QCISD calculations where the scaling factors come from the work of Pople et al.,^{30,31} Scott and Radom,³² and Wong.³³ Scaled MP2 is the most popular procedure used to estimate vibrational frequencies in the current literature. It is the default

for the ZPE correction in G-2 and G-3 calculations. Pople et al. and Radom et al. examined the accuracy of the method and found that for a variety of species the average error is 67 cm⁻¹, i.e., less than the typical shift in an HREELS peak with coverage.

B3LYP has also been used extensively in the literature. Wong found that it often gave better vibrational frequencies than MP2. However, oxygenates are an exception where MP2 is better. Wong did not test B3LYP for triplet states. However, M. Head-Gordon⁴⁵ showed that B3LYP and other density functional methods have a special problem for excited states.

QCISD frequencies are also being reported here. QCISD gives much better bond energies than MP2, but in the current literature, QCISD is rarely used to calculate vibrational frequencies. Recall that vibrational frequencies are calculated from the second derivative of the energy with respect to atomic displacements. In MP2 and B3LYP methods the second derivatives can be calculated analytically. However, with QCISD, the derivatives must be calculated by perturbing the system in all directions and numerically differentiating the forces. The numerical differentiation introduces error when the potential is asymmetric.

One of the reviewers had suggested that we also calculate vibrational frequencies via CCSD. However, CCSD frequencies are not supported in Gaussian 98 and it requires that one calculate a second derivative numerically, which often leads to significant error.

Finally, it should be noted that most of the calculations were done with a 6-31G* basis set. This would be considered a small basis for ab initio calculations. However, this is the basis set that is used most often in vibrational calculations. Some years ago, Pople et al.,^{30–31} Radom et al.,³² and Wong et al.³³ showed that scaled 6-31G* calculations give quite reasonable vibrational frequencies, and they published the scale factors. QCISD scale factors are not available for any other basis set. We have also calculated frequencies at the MP2/6-311+g(2d,p) level to check our results. However, MP2/6-311+g(2d,p) frequencies are not often reported in the literature, so their accuracy is unknown.

All the calculations were done for the gas phase. We did selective calculations with a single metal atom present and did not observe significant peak shifts. However, we do not know whether there would be shifts if more metal atoms were used.

^{*} To whom correspondence should be addressed.

TABLE 1: Comparison of the Properties Calculated for Methanol to Those from Experiment^a

	method						
	MP2(full)/6-31G*	B3LYP/6-31G*	QCISD/6-31G*	MP2/6-311+G(2d,p)	MP2/6-311+G(2d,p)	expt35,38	
trans, R _{H-C} , Å	1.097	1.101	1.100	1.0936	1.0936	1.094	
cis, $R_{\rm H=C}$, Å	1.089	1.094	1.094	1.0877	1.0877	1.094	
$R_{\rm O-C}$, Å	1.423	1.419	1.425	1.425	1.425	1.417	
$R_{\rm O-H}$, Å	0.970	0.968	0.970	0.963	0.963	0.981	
$A_{\rm HCO}$ (deg)	112.3	112.7	112.2	111.9	111.9	110	
$A_{\rm HCO}$ (deg)	106.3	106.6	106.4	106.5	106.5	110	
$A_{\rm COH}$ (deg)	107.4	107.6	107.5	108.0	108.0	108	
frequency scaling factor	0.9427	0.9614	0.9537	unscaled	0.96		
torsion, cm ⁻¹	298	331	319	293	281	272	
CO stretch, cm^{-1}	1022	1024	1034	1053	1011	1034	
CH ₃ s-rock, cm ⁻¹	1051	1054	1057	1093	1049	1077	
CH ₃ a-rock, cm ⁻¹	1136	1138	1141	1196	1148	1145	
OH bend, cm^{-1}	1337	1346	1357	1382	1327	1334	
CH_3 s-deform., cm^{-1}	1452	1453	1456	1512	1452	1452	
CH_3 a-deform., cm^{-1}	1476	1466	1475	1535	1473	1466	
CH ₃ a-deform., cm ⁻¹	1489	1482	1488	1547	1485	1473	
CH ₃ stretch, cm ⁻¹	2901	2880	2891	3054	2932	2848	
CH ₃ stretch, cm ⁻¹	2964	2921	2944	3122	2997	2962	
CH ₃ stretch, cm ⁻¹	3039	3010	3017	3184	3056	3006	
CH ₃ stretch, cm ⁻¹	3579	3611	3601	3868	3714	3667	
rms error, cm ⁻¹	19.9	21.2	21.1	72	26.9		

^a The vibrations are designated by their conventional designations (all are really combination modes).

TABLE 2: Comparison of the Properties Calculated for Methoxy to Those from Experiment^a

	inetiod							
	MP2(full)/6-31G*	B3LYP/6-31G*	QCISD/6-31G* (minimum energy structure)	QCISD/6-31G* $(C_s \text{ structure})$	MP2/6-311 +G(2d,p)	MP2/6-311 +G(2d,p)	expt ^{34,37}	
$\langle s^2 \rangle$ before spin projection	0.7577	0.7529	NA	NA	0.7593	0.7593	0.75	
$R_{\rm H-C}$, Å $R_{\rm H-C}$, Å $R_{\rm O-C}$, Å $A_{\rm OCH}$ (deg) $A_{\rm OCH}$ (deg)	1.096 1.101 1.387 104.8 112.4	1.103 1.110 1.366 105.3 113.5	1.106 1.100 1.389 105.1 112.5	1.106 1.100 1.389 105.1 112.5	1.100 1.094 1.381 104.9 112.3	1.100 1.094 1.381 104.9 112.3	1.100 1.100 1.370 109 109	
frequency scaling factor	0.9427	0.9496	0.9537	0.9537	1.00	0.96	NA	
$ \nu_1, cm^{-1} $ $ \nu_2, cm^{-1} $ $ \nu_3, cm^{-1} $ $ \nu_4, cm^{-1} $ $ \nu_5, cm^{-1} $ $ \nu_6, cm^{-1} $ $ \nu_7, cm^{-1} $ $ \nu_9, cm^{-1} $ $ ms error, cm^{-1} $	794 943 1077 1382 1399 1492 2871 2952 2982 66.6	898 942 1084 1346 1354 1489 2805 2871 2907 112.1	-7572 -4621 673 1144 1317 1875 2871 5438 8165 3660	482 972 978 1382 1082 1494 2849 2875 2921 83.1	802 975 1116 1433 1442 1551 3009 3091 3129 113.7	770 936 1071 1375 1385 1489 2889 2967 3004 58.0	653 NR 1047 1362 NR 1497 ? 2840 ?	

^{*a*} NR = not resolved. Note the lowest energy state has C_1 symmetry at the QCISD/6-31G* level and C_s symmetry in all the other calculations. The vibrational frequencies calculated for the C_1 state had numerical difficulties, so the reviewer insisted that we provide C_s frequencies as well. The C_s vibrational frequencies are not considered meaningful (see text).

TA]	BL	Е З	3: (Compariso	n of the	e Formaldeh	yde (H_2CO) Results to	Those from	Experiment ^a
-----	----	-----	------	-----------	----------	-------------	-------	---------	--------------	------------	-------------------------

	method						
	MP2(full)/6-31G*	B3LYP/6-31G*	QCISD/6-31G*	MP2/6-311+g(2d,p)	MP2/6-311+ g(2d,p)	expt ^{35,38}	
R _{CO}	1.220	1.206	1.217	1.213	1.213	1.203	
$R_{\rm CH}$ (deg)	1.104	1.110	1.107	1.103	1.103	1.099	
$A_{\rm HH}$ (deg)	122.2	122.3	122.14	121.7	121.7	121.8	
frequency scaling factor	0.9427	0.9614	0.9537	unscaled	0.96		
CH_2 wag, cm^{-1}	1144	1151	1145	1185	1138	1167	
CH_2 rock, cm^{-1}	1222	1230	1232	1280	1229	1249	
CH ₂ scissors, cm ⁻¹	1494	1502	1501	1550	1488	1500	
CO stretch, cm ⁻¹	1689	1778	1734	1747	1678	1746	
CH_2 s-stretch, cm^{-1}	2840	2806	2837	2963	2844	2932	
CH_2 a-stretch, cm^{-1}	2907	2856	2898	3039	2918	2953	
rms error, cm ⁻¹	50.2	67	46.5	45	50		

^a The vibrations are designated by their conventional designations (all are really combination modes).

Results of Calculations

Tables 1-20 give the results of the calculations. Table 1 compares the geometries and vibrational frequencies calculated

for methanol to those reported in the literature. Generally, the geometries agree at all levels of calculations and agree quite well with those determined from experiments. The average error

TABLE 4: Comparison of the Calculated Properties of Formyl Radicals, [HCO]

	method						
	MP2(full)/6-31G*	B3LYP/6-31G*	QCISD/6-31G*	MP2/6-311+G(2d,p)	MP2/6-311+G(2d,p)	expt41-43	
$\langle s^2 \rangle$ before spin projection $R_{\rm H-C}$, Å $R_{\rm O-C}$, Å $A_{\rm CH}$ (deg)	0.7653 1.123 1.191 123.4	0.7524 1.129 1.183 123.6	NA 1.125 1.192 124.3	0.7658 1.121 1.183 123.8	0.7658 1.121 1.183 123.8	0.75 1.119 1.175 124.4	
frequency scaling factor $\nu_1, \text{ cm}^{-1}$ $\nu_2, \text{ cm}^{-1}$ $\nu_3, \text{ cm}^{-1}$ rms error, cm^{-1}	0.9427 1071 1905 2591 92.75	0.9614 1088 1873 2557 70.61	0.9537 1106 1803 2589 97.58	unscaled 1131 1909 2739 179.44	0.96 1086 1832 2629 113.95	1087 1868 2435	

 TABLE 5: Calculated Properties of the Ground State of Formyl Ions, [HCO]⁺

	method							
	MP2(full)/	B3LYP/	QCISD/	MP2/6-311	MP2/6-311			
	6-31G*	6-31G*	6-31G*	+G(2d,p)	+G(2d,p)			
$R_{\rm H-C}$, Å	1.095	1.099	1.097	1.093	1.093			
$R_{\rm O-C}$, Å	1.131	1.113	1.122	1.181	1.181			
$A_{\rm CH}$ (deg)	180.	180.	180.	180.	180.			
frequency scaling factor $v_{t} cm^{-1}$	0.9427 806	0.9614 834	0.9537 811	unscaled	0.96 812			
$\nu_{2}, \text{ cm}^{-1}$	2015	2179	2112	2128	2043			
$\nu_{3}, \text{ cm}^{-1}$	3114	3134	3138	3238	3109			

TABLE 6: Calculated Properties of the Triplet $({}^{3}A_{1})$ State of Formyl Ions, $[HCO]^{+}$

		method						
	MP2/ 6-31G*	B3LYP/ 6-31G*	QCISD/ 6-31G*	MP2/6-311 +G(2d,p)	MP2/6-311 +G(2d,p)			
$\overline{\langle s^2 \rangle}$ before spin projection	2.0072	2.0024	NA	2.0090	2.0090			
$R_{\rm H-C}, {\rm \AA}$	1.102	1.1147	1.109	1.104	1.104			
$R_{\rm O-C}$, A $A_{\rm CH}$ (deg)	1.277 119.2	1.2741 117.6	1.282 117.6	1.269 118.9	1.269 118.9			
frequency scaling factor	0.9427	0.9614	0.9537	unscaled	0.96			
$\nu_1, \text{ cm}^{-1}$ $\nu_2, \text{ cm}^{-1}$ $\nu_3, \text{ cm}^{-1}$	984 1526 2940	937 1507 2828	957 1480 2893	1031 1597 3048	990 1553 2926			

TABLE 7: Calculated Properties of the Ground $(^{2}B_{2})$ State of Formaldehyde Cations, $[H_{2}CO]^{+}$

		method							
	MP2(full)/ 6-31G*	B3LYP/ 6-31G*	QCISD/ 6-31G*	MP2/6-311 +g(2d,p)	MP2/6-311 +g (2d,p)				
$\langle s^2 \rangle$ before spin projection	0.786	0.758	NA	0.786	0.786				
$R_{\rm H-C}$, Å	1.108	1.118	1.113	1.111	1.111				
<i>R</i> _{O-C} , Å	1.207	1.200	1.214	1.195	1.195				
A _{OCH} (deg)	118.4	119.8	119.1	118.4	118.4				
frequency scaling factor	0.9427	0.9614	0.9537	unscaled	0.96				
$\nu_1, \text{ cm}^{-1}$	853	836	862	875	840				
$\nu_2, {\rm cm}^{-1}$	1067	1030	1039	1106	1062				
ν_3, cm^{-1}	1264	1225	1247	1316	1263				
$\nu_4, {\rm cm}^{-1}$	1551	1638	1582	1627	1562				
ν_5, cm^{-1}	2778	2723	2769	2862	2747				
$\nu_{6}, \mathrm{cm}^{-1}$	2919	2811	2879	3009	2889				

in the bond length is only 0.02 Å, while the average error for angles is only 0.59°. The MP2/6-31G*, B3LYP/6-31G*, and QCISD/6-31G* frequencies are all very similar and show good agreement with experimental results. The rms error is slightly smaller with MP2/6-31G* than with the other methods. This is consistent with the previous results of Pople et al. and Radom et al. who also found that MP2/6-31G* is unexpectedly good for oxygenates.

We also include MP2/6-311+G(2d,p) frequencies in Table 1. Generally, the unscaled MP2/6-311+G(2d,p) frequencies only show poor agreement with those from experiment. We find that if we scale the MP2/6-311+G(2d,p) frequencies by an arbitrary

TABLE 8: Calculated Properties of the ${}^{4}A''$ (Excited) State of Formaldehyde Cations, $[H_2CO]^{+a}$

	method							
	MP2(full)/ 6-31G*	B3LYP/ 6-31G*	QCISD/ 6-31G*	MP2/6-311 +g(2d,p)	MP2/6-311 +g (2d,p)			
$\langle s^2 \rangle$ before spin projection	3.768	3.755	NA	3.770	3.770			
$R_{\rm H-C}$, Å $R_{\rm O-C}$, Å $A_{\rm OCH}$ (deg)	1.090 1.527 107.0	1.114 1.448 108.52	1.098 1.521 107.4	1.089 1.520 106.9	1.089 1.520 106.9			
frequency scaling factor $\nu_1, \text{ cm}^{-1}$ $\nu_2, \text{ cm}^{-1}$ $\nu_3, \text{ cm}^{-1}$ $\nu_4, \text{ cm}^{-1}$ $\nu_5, \text{ cm}^{-1}$ $\nu_6, \text{ cm}^{-1}$	0.9427 621 829 900 1292 2960 3127	0.9614 669 786 911 1164 2761 2834	0.9537 612 818 868 1252 2914 3069	unscaled 659 874 934 1355 3085 3259	0.96 632 839 897 1301 2962 3129			

^a Note this state is nonplanar.

 TABLE 9: Calculated Properties of the Ground State of cis-Hydroxymethylene Diradicals, [HCOH]

	method						
	MP2(full)/	B3LYP/	QCISD/	MP2/6-311	MP2/6-311		
	6-31G*	6-31G*	6-31G*	+G(2d,p)	+G(2d,p)		
$R_{\mathrm{H-C}}$, Å	1.121	1.129	1.129	1.116	1.116		
$R_{\mathrm{O-C}}$, Å	1.316	1.312	1.323	1.312	1.312		
$R_{\mathrm{O-H}}$, Å	0.983	0.986	0.983	0.975	0.975		
A_{HCO} (deg)	106.56	106.7	106.3	106.9	106.9		
A_{COH} (deg)	115.6	116.8	115.4	114.4	114.4		
frequency scaling factor	0.9427	0.9614	0.9537	unscaled	0.96		
v_1, cm^{-1}	999	979	968	1045	1003		
v_2, cm^{-1}	1198	1185	1208	1237	1188		
v_3, cm^{-1}	1298	1293	1276	1340	1286		
v_4, cm^{-1}	1425	1434	1432	1496	1436		
v_5, cm^{-1}	2687	2621	2627	2859	2745		
v_6, cm^{-1}	3350	3282	3375	3641	3495		

 TABLE 10: Calculated Properties of the Ground State of cis-Hydroxymethylene Radical Cations, [HCOH]⁺

	method							
	MP2(full)/ 6-31G*	B3LYP/ 6-31G*	QCISD/ 6-31G*	MP2/6-311 +G(2d,p)	MP2/6-311 +G(2d,p)			
$\langle s^2 \rangle$ before spin projection	0.7623	0.7531	NA	0.7620	0.7620			
R_{H-C} , Å R_{O-C} , Å R_{O-H} , Å A_{HCO} (deg) A_{COH} (deg)	1.099 1.224 1.004 131.8 120.6	1.105 1.218 1.002 131.8 122.2	1.102 1.227 1.002 131.5 120.8	1.100 1.216 0.995 131.4 119.7	1.100 1.216 0.995 131.4 119.7			
frequency scaling factor	0.9427	0.9614	0.9537	unscaled	0.96			
$\nu_1, \text{ cm}^{-1}$ $\nu_2, \text{ cm}^{-1}$ $\nu_3, \text{ cm}^{-1}$ $\nu_4, \text{ cm}^{-1}$ $\nu_5, \text{ cm}^{-1}$	894 933 1116 1661 2977 3174	869 933 1086 1682 2936 3176	889 953 1119 1647 2971 3219	937 991 1192 1738 3089 3442	900 952 1144 1668 2966 3304			
, cm	51/4	5170	5417	5442	5504			

factor of 0.96, chosen to minimize the rms error in the calculations, we get reasonable agreement with experimental results. Still, the agreement is not as good as with MP2/6-31G*.

In the tables that follow we will include both the scaled and

TABLE 11: Calculated Properties of the Ground State of trans-Hydroxymethylene Diradicals, [HCOH]

	method							
	MP2(full)/ 6-31G*	B3LYP/ 6-31G*	QCISD/ 6-31G*	MP2/6-311 +G(2d,p)	MP2/6-311 +G(2d,p)			
$\overline{R_{\mathrm{H-C}}, \mathrm{\AA}}$	1.113	1.122	1.121	1.108	1.108			
$R_{\rm O-C}, A$	1.322	1.321	1.328	1.313	1.313			
$R_{\rm O-H},$ Å	0.975	0.976	0.977	0.970	0.970			
$A_{\rm HCO}$ (deg)	101.5	101.2	101.3	102.3	102.3			
$A_{\rm COH}$ (deg)	107.3	108.0	107.5	107.8	107.8			
frequency scaling factor	0.9427	0.9614	0.9537	unscaled	0.96			
ν_1, cm^{-1}	1075	1056	1048	1124	1079			
$\nu_2, {\rm cm}^{-1}$	1164	1176	1178	1220	1171			
$\nu_3, {\rm cm}^{-1}$	1290	1278	1268	1336	1283			
$\nu_4, {\rm cm}^{-1}$	1461	1476	1471	1521	1461			
$\nu_{5}, {\rm cm}^{-1}$	2787	2717	2727	2952	2834			
$v_{\rm c}~{\rm cm}^{-1}$	3474	3495	3503	3729	3579			

 TABLE 12: Calculated Properties of the Ground State of trans-Hydroxymethylene Radical Cations, [HCOH]⁺

	method						
	MP2(full)/ 6-31G*	B3LYP/ 6-31G*	QCISD/ 6-31G*	MP2/6-311 +G(2d,p)	MP2/6-311 +G(2d,p)		
$\langle s^2 \rangle$ before spin projection	0.7596	0.7524	NA	0.7603	0.7603		
$R_{\rm H-C}$, Å	1.096	1.104	1.100	1.098	1.098		
<i>R</i> 0-с, Å	1.230	1.225	1.234	1.222	1.222		
$R_{\rm O-H}$, Å	1.002	0.998	0.999	0.993	0.993		
$A_{\rm CH}$ (deg)	123.9	123.9	123.7	124.4	124.4		
$A_{\rm OH}$ (deg)	117.7	119.0	117.8	117.1	117.1		
frequency scaling factor	0.9427	0.9614	0.9537	unscaled	0.96		
$\nu_1, {\rm cm}^{-1}$	928	900	921	968	930		
$\nu_2, {\rm cm}^{-1}$	950	944	962	1012	972		
$\nu_3, {\rm cm}^{-1}$	1196	1192	1215	1262	1211		
$\nu_4, {\rm cm}^{-1}$	1636	1654	1619	1171	1124		
$\nu_5, {\rm cm}^{-1}$	2999	2958	2995	3108	2984		
$\nu_{6}, \mathrm{cm}^{-1}$	3227	3279	3293	3487	3347		

TABLE 13: Calculated Properties of the Ground State of Hydroxymethyl Radicals, [H₂COH]

	method						
	MP2(full)/ 6-31G*	B3LYP/ 6-31G*	QCISD/ 6-31G*	MP2/6-311 +g(2d,p)	MP2/6-311 +g(2d,p)		
$\langle s^2 \rangle$ before spin projection	0.759	0.753	NA	0.7613	0.7613		
$R_{\rm O-C}, {\rm \AA}$	1.373	1.370	1.377	1.369	1.369		
$R_{\rm H-C}$, Å	1.082	1.089	1.090	1.082	1.082		
$R_{\rm O-H},$ Å	0.971	0.969	0.971	0.963	0.963		
A _{OCH} (deg)	118.2	118.5	118.15	118.3	118.3		
A _{OCH} (deg)	112.2	112.6	112.3	113.0	113.0		
frequency scaling factor	0.9427	0.9614	0.9537	unscaled	0.96		
v_1, cm^{-1}	435	434	427	441	423		
$\nu_2, {\rm cm}^{-1}$	736	655	715	682	655		
ν_3, cm^{-1}	1035	1031	1038	1079	1036		
$\nu_4, {\rm cm}^{-1}$	1161	1172	1159	1199	1151		
ν_5, cm^{-1}	1323	1328	1340	1380	1325		
$\nu_{6}, \mathrm{cm}^{-1}$	1459	1444	1454	1525	1464		
$\nu_7, {\rm cm}^{-1}$	3019	3005	3004	3179	3052		
$\nu_{8}, {\rm cm}^{-1}$	3164	3144	3139	3330	3197		
$\nu_{9}, \mathrm{cm}^{-1}$	3581	3613	3603	3861	3706		

unscaled MP2/6-311+G(2d,p) frequencies, since the 0.96 scaling factor is not justified except by the fact that we get better agreement with experimental results when we include it.

Table 2 compares our calculated frequencies to the experimentally determined ones for methoxy (CH₃O). In this case all the methods predict geometries that agree well with those from experiment but only MP2 predicts frequencies that show reasonable agreement with experimental results.

TABLE 14: Calculated Properties of the Ground State of Hydroxymethyl Cations, [H₂COH]⁺

	method						
	MP2(full)/	B3LYP/	QCISD/	MP2/6-311	MP2/6-311		
	6-31G*	6-31G*	6-31G*	+g(2d,p)	+g(2d,p)		
$R_{\rm O-C}$, Å	1.256	1.252	1.259	1.369	1.369		
$R_{\rm H-C}$, Å	1.088	1.092	1.090	1.082	1.082		
$R_{\rm H-C}$, Å	1.088	1.094	1.090	1.078	1.078		
$R_{\rm O-H}$, Å	0.994	0.989	0.992	0.963	0.963		
$A_{\rm OCH}$	115.3	122.02	115.4	118.3	118.3		
$A_{\rm OCH}$ (deg)	115.3	115.55	115.3	113.0	113.0		
frequency scaling factor $\nu_1, \text{ cm}^{-1}$ $\nu_2, \text{ cm}^{-1}$ $\nu_3, \text{ cm}^{-1}$ $\nu_5, \text{ cm}^{-1}$ $\nu_5, \text{ cm}^{-1}$ $\nu_6, \text{ cm}^{-1}$ $\nu_7, \text{ cm}^{-1}$ $\nu_8, \text{ cm}^{-1}$ $\nu_9, \text{ cm}^{-1}$	0.9427 1006 1067 1193 1321 1433 1605 3014 3161 3327	0.9614 987 1072 1190 1328 1430 1616 3004 3142 3398	0.9537 994 1079 1188 1341 1424 1596 3014 3155 3386	unscaled 1052 1129 1250 1402 1507 1681 3133 3286 3594	0.96 1010 1084 1200 1346 1447 1614 3007 3155 3450		

TABLE 15: Calculated Properties of the Triplet (³A) State of Hydroxymethyl Cations, [H₂COH]⁺

	method						
	MP2(full)/ 6-31G*	B3LYP/ 6-31G*	QCISD/ 6-31G*	MP2/6-311 +g(2d,p)	MP2/6-311 +g(2d,p)		
$\langle s^2 \rangle$ before spin projection	2.011	2.004	NA	2.024	2.024		
R_{O-C} , Å R_{H-C} , Å R_{O-H} , Å A_{OCH} (deg)	1.354 1.106 1.005 110.3	1.327 1.126 1.000 112.7	1.364 1.112 1.006 111.0	1.265 1.172 0.984 117.1	1.265 1.172 0.984 117.1		
$A_{\rm OCH}$ (deg) $A_{\rm OCH}$ (deg)	114.5	112.7	114.2	115.7	115.7		
frequency scaling factor	0.9427	0.9614	0.9537	unscaled	0.96		
v_1, cm^{-1} v_2, cm^{-1} v_3, cm^{-1}	574 605 913	623 733 962	629 717 965	564 876 901	542 841 865		
ν_4, cm^{-1} ν_5, cm^{-1}	992 1064	1033 1083	971 1070	1128 1221	1083 1172		
$\nu_{6}, \text{ cm}^{-1}$ $\nu_{7}, \text{ cm}^{-1}$ $\nu_{8}, \text{ cm}^{-1}$	1234 2767 2891	1217 2660 2665	1215 2771 2853	1880 2114 2899	2030 2783		
ν_{9}, cm^{-1}	3211	3264	3238	3615	3470		

TABLE 16: Calculated Properties of the Triplet (³A) State of Methoxy Cations, $[H_3CO]^{+a}$

	method						
	MP2(full)/ 6-31G*	B3LYP/ 6-31G*	QCISD/ 6-31G*	MP2/6-311 +G(2d,p)	MP2/6-311 +G(2d,p)		
$\langle s^2 \rangle$ before spin projection	2.027	2.028	NA	2.0032	2.0032		
$R_{\Omega-C}$, Å	1.310	1.306	1.335	1.299	1.299		
$R_{\rm H-C}$ Å	1.119	1.129	1.120	1.120	1.120		
A _{OCH} (deg)	108.2	109.5	108.3	108.5	108.5		
frequency scaling factor	0.9427	0.9614	0.9537	unscaled	0.96		
v_1 , cm ⁻¹	818	846	865	837	803		
ν_2 , cm ⁻¹	818	846	865	837	803		
ν_{3} , cm ⁻¹	1056	1126	1059	1113	1068		
v_4 , cm ⁻¹	1158	1126	1195	1184	1137		
$\nu_{5}, \text{ cm}^{-1}$	1159	1187	1195	1184	1137		
$v_{6}, \text{ cm}^{-1}$	1247	1227	1255	1287	1236		
$\nu_7. {\rm cm}^{-1}$	2653	2632	2695	2761	2651		
$\nu_{8}, \mathrm{cm}^{-1}$	2723	2652	2761	2862	2748		
ν_{9}, cm^{-1}	2725	2653	2761	2827	2714		

^{*a*} Note that we have not found a stable singlet. Instead the singlet structure isomerizes to a hydroxymethyl cation. The triplet state is stable. The triplet state almost has C_{3v} symmetry, but the electronic structure is not well defined in C_{3v} .

We believe that the poor agreement of $B3LYP/6-31G^*$ is associated with the instability of the methoxy radicals. Recall that methoxy radicals are barely stable. One can observe them spectroscopically, but they readily isomerize to hydroxymethyl (CH₂OH) radicals. In our work we found that B3LYP did not

Figure 1. Neutral species reference spectra calculated at the MP2(full)/6-31g* level. Plots are log(calculated intensity in arbitrary units) vs wavenumber (cm⁻¹).

give good vibrational frequencies for methoxy presumably because the methoxy is, in a sense, an excited state of the system.

QCISD had some numerical instabilities for methoxy. The lowest energy structure of methoxy had C_s symmetry in the MP2 and B3LYP calculations. However, a structure with C_1 symmetry has slightly lower energy than the C_s structure at the QCISD/6-31G* level. Unfortunately, Gaussian had numerical difficulties calculating the vibrational frequencies of the C_1 structure. (The numerical differentiation caused instabilities.) One does get reasonable frequencies if one forces the molecule into a C_s structure. The C_s results are meaningful. However, we include them as well.

Table 3 shows results for formaldehyde. The vibrational frequencies agree with the experimental results to within the accuracy of a typical EELS experiment, and the bond lengths are accurate with an average error of 0.02 Å.

Tables 4-6 show the geometries and vibrational frequencies of several formyl (HCO) species. Generally, the geometries were

consistent at all levels of calculation. The vibrational frequencies are also similar at all levels of calculation except that the triplet state of formyl radicals has some numerical difficulties at the QCISD/6-31G* level. None of the calculations show wonderful agreement with vibrational data from fluorescence experiments.^{41–42} This is associated with a special problem with calculating vibrational frequencies of formyl radicals discussed by Serrano-Andres et al.⁴⁴ Serrano-Andres et al. show that one can obtain more accurate vibrational frequencies for HCO by including the asymmetric correction in the vibrational calculation. The asymmetric correction would change near a surface, so we decided to not consider them in the work here.

Tables 7–12 show the calculated geometries and vibrational frequencies for a number of H_2CO and HCOH species. In all cases the molecules are stable. There are some small differences among the vibrational frequencies at the various levels of calculation. However, all the frequencies are the same within the uncertainty of a typical EELS experiment.

Tables 13-16 show the calculated geometries and vibrational frequencies for a number of H₃CO and H₂COH species. In all

TABLE 17: Calculated Properties of Methanol Cations, [CH₃OH]^{+ a}

	method					
	MP2(full)/6-31G*	B3LYP/6-31G*	QCISD/6-31G*	MP2/6-311+G(2d,p)	MP2/6-311+G(2d,p)	
$\langle s^2 \rangle$ before spin projection	0.7624	0.7539	NA	0.7668	0.7668	
trans, $R_{\rm H-C}$, Å	1.127	1.127	1.114	1.147	1.147	
cis, \vec{R}_{H-C} , Å	1.088	1.089	1.089	1.088	1.088	
$R_{\rm O-C}$, Å	1.382	1.369	1.404	1.352	1.352	
R _{O-H} , Å	0.988	0.993	1.000	0.987	0.987	
$A_{\rm HCO}$ (deg)	107.2	105.9	104.6	101.0	101.0	
$A_{\rm HCO}$ (deg)	114.3	116.2	114.9	115.7	115.7	
A _{COH} (deg)	114.2	114.3	114.0	113.8	113.8	
frequency scaling factor	0.9427	0.9614	0.9537	unscaled	0.96	
ν_1, cm^{-1}	217	257	15	226	217	
$\nu_2, {\rm cm}^{-1}$	639	944	829	526	505	
$\nu_{3}, \mathrm{cm}^{-1}$	961	953	972	958	919	
$\nu_4, {\rm cm}^{-1}$	1005	1019	1007	1062	1019	
$\nu_{5}, \mathrm{cm}^{-1}$	1214	1207	1222	1240	1190	
$\nu_{6}, {\rm cm}^{-1}$	1276	1211	1276	1302	1250	
$\nu_{7}, {\rm cm}^{-1}$	1315	1254	1286	1364	1309	
$\nu_{8}, { m cm}^{-1}$	1444	1439	1436	1522	1461	
$\nu_{9}, \mathrm{cm}^{-1}$	2601	2623	2777	2506	2405	
$\nu_{10}, {\rm cm}^{-1}$	2933	2694	2788	3041	2919	
$\nu_{11}, \mathrm{cm}^{-1}$	3083	3091	3096	3211	3083	
$\nu_{12}, {\rm cm}^{-1}$	3300	3368	3313	3587	3444	
electronic energy, hartree	-114.686419	-115.330886	-114.990091	-115.063892		

^a We found two "stable" structures. This is data for the staggered structure (see text).

 TABLE 18: Calculated Properties of Methanol Cations,

 [CH₃OH]^{+ a}

	method				
	MP2/6-311+G(2d,p)	MP2/6-311+G(2d,p)			
trans, $R_{\rm H-C}$, Å	1.165	1.165			
cis, $R_{\rm H=C}$, Å	1.086	1.086			
R _{O-C} , Å	1.296	1.296			
R _{O-H} , Å	0.978	0.978			
A _{HCO} (deg)	109.8	109.8			
$A_{\rm HCO}$ (deg)	122.1	122.1			
A _{COH} (deg)	113.7	113.7			
frequency scaling factor	unscaled	0.96			
v_1, cm^{-1}	531	510			
$\nu_2, {\rm cm}^{-1}$	919	882			
$\nu_{3}, \mathrm{cm}^{-1}$	999	959			
$\nu_4, {\rm cm}^{-1}$	1027	986			
$\nu_{5}, \mathrm{cm}^{-1}$	1114	1069			
$\nu_{6}, \mathrm{cm}^{-1}$	1327	1274			
$\nu_7, {\rm cm}^{-1}$	1495	1435			
$\nu_{8}, \mathrm{cm}^{-1}$	1742	1672			
$\nu_{9}, \mathrm{cm}^{-1}$	2274	2183			
$\nu_{10}, {\rm cm}^{-1}$	2672	2566			
$\nu_{11}, \mathrm{cm}^{-1}$	3229	3100			
$\nu_{12}, \mathrm{cm}^{-1}$	3695	3547			
electronic energy, hartree	-115.066553	-115.066553			

^{*a*} We found two "stable" structures with MP2/6-311+G(2d,p). This is data for the eclipsed structure.

cases the molecules are stable. There are some small differences among the vibrational frequencies at the various levels of calculation. However, all of the frequencies are the same within the uncertainty of a typical EELS experiment.

Tables 17 and 18 show vibrational frequencies for the triplet state of methanol cations. This case was different from all the rest in that the basis set had a significant effect on the results. According to the calculations, methoxy cations have two stable isomers: one with OH eclipsed with the methyl hydrogen, the second with the OH staggered. Only the staggered structure is stable at the MP2/6-31G*, B3LYP/6-31G*, and QCISD/6-31G* levels. However, both the eclipsed and staggered structures are stable at the MP2/6-311+G(2d,p) level. We have searched for a stable eclipsed structure at the B3LYP/6-311+G(2d,p) level but have not found one.

Table 19 shows the calculated geometries and vibrational frequencies for methoxonium ions. The geometries are almost all the same. There are some small differences among the

ГАВLЕ 19:	Calculated	Properties	of M	ethoxonium	Cations,
$[CH_3OH_2]^+$		_			

			metho	d	
	MP2(full)/ 6-31G*	B3LYP/ 6-31G*	QCISD/ 6-31G*	MP2/6-311 +G(2d,p)	MP2/6-311 +G(2d,p)
R _{H–C} , Å R _{O–C} , Å R _{O–H} , Å	1.085 1.516 0.986	1.089 1.522 0.983	1.088 1.522 0.985	1.084 1.513 0.978	1.084 1.513 0.978
frequency scaling factor	0.9427	0.9614	0.9537	unscaled	0.96
v_1, cm^{-1} v_2, cm^{-1}	246 730	243 700 782	242 746 797	245 749 844	235 719 810
$\nu_{4}, \text{ cm}^{-1}$	907	905	914	952	914
$\nu_{5}, \text{ cm}^{-1}$ $\nu_{6}, \text{ cm}^{-1}$	1131 1244 1427	1124 1240 1418	1134 1250 1426	1192 1306 1408	1145 1254 1428
$\nu_{8}, \text{ cm}^{-1}$	1427 1446	1418	1445	1516	1455
$\nu_{9}, \text{ cm}^{-1}$	1633	1648	1663	1683	1616
$\nu_{11}, \text{ cm}^{-1}$ $\nu_{12}, \text{ cm}^{-1}$	2990 3126	3002 3122	2993 3118	3132 3267	3006
$\nu_{13}, \text{ cm}^{-1}$ $\nu_{14}, \text{ cm}^{-1}$	3135 3378	3131 3446	3127 3435	3272 3644	3141 3499
v_{15}, cm^{-1}	3403	3323	2212	3/33	3383

vibrational frequencies at the various levels of calculation. The differences in frequency are within the uncertainty of a typical EELS experiment.

Finally, Table 20 shows the calculated geometries and vibrational frequencies for a hydrogen-hydroxymethyl cation complex. Here, there are some differences in the predicted geometries with changing method. However, all the frequencies are the same within the uncertainty of a typical EELS experiment.

Finally, Table 21 lists a few other species that we have considered. All are reasonable candidates, but all of these species decomposed or isomerized during the calculations.

Discussion

The results in Tables 1–20 show data for many species. We find that the calculated vibrational frequencies usually do not depend strongly on the method of calculation or the basis set used. There are few anomalous cases where B3LYP or QCISD fails. However, in the majority of examples we have considered, the results are largely independent of the calculational method or the basis set used.

Figure 2. Charged (+1) species reference spectra calculated at the MP2(full)/6-31g* level. Plots are log(calculated intensity in arbitrary units) vs wavenumber (cm⁻¹).

Figure 3. Excited-state charged (+1) species reference spectra calculated at the MP2(full)/6-31g* level. Plots are log(calculated intensity in arbitrary units) vs wavenumber (cm⁻¹).

Next, it is useful to compare all of our calculated reference spectra. Figure 1 shows the calculated spectra of all stable neutral species. Likewise, Figure 2 shows the spectra for the stable charged ground-state species and Figure 3 shows the

We see that there are some trends in peak locations for the neutral species shown in Figure 1. The C-H stretches in the 3000 range shift to slightly lower frequencies for CHO and HCOH species. The OH stretches, though, shift only slightly down from about 3500 cm⁻¹ as we move to the smaller molecules.

The C–O peak of CHO is very close to the 2000 cm^{-1} peak observed for carbon monoxide but is much lower in the other species. For the HCOH moieties, the C-O stretch is less than 1500 cm⁻¹ and is only slightly lower for the larger species such as CH₂OH and CH₃OH. The CH₃ rock and umbrella motions are around 1000 cm^{-1} for both methanol and methoxy radical. Other COH bending frequencies in this same range appear in the smaller molecules, including the formyl radical.

Overall, we see that only formaldehyde and formyl radical have peaks between 1500 and 2500 cm⁻¹. However, only

11 11 11 11 1 1 1.1 2000 2500 3500 4000 0 500 1000 1500 3000 ŧ ı. 1 1 1.1 1 1 1 1 trans-HCOH 1 i 11 1.1 11 1 1 11 11 1.1 11 1 1.1 1.1 1 Т 0 3000 4000

Figure 5. Neutral species reference spectra calculated at the MP2(full)/6-31g* level compared to experimental HREELS spectra of hydrogen and methanol coadsorbed on Pt(110). Plots are arbitrary intensity vs wavenumber (cm⁻¹) to allow comparison of peak locations.

Figure 4. High-resolution HREELS of methanol and hydrogen coadsorbed on Pt(110). Scanning was done after dosing hydrogen at

273 K, cooling to 100 K, and dosing methanol.

Figure 6. Charged (+1) species reference spectra calculated at the MP2(full)/6-31g* level compared to experimental HREELS spectra of hydrogen and methanol coadsorbed on Pt(110). Plots are arbitrary intensity vs wavenumber (cm⁻¹) to allow comparison of peak locations.

Figure 7. Excited-state charged (+1) species reference spectra calculated at the MP2(full)/6-31g* level compared to experimental HREELS spectra of hydrogen and methanol coadsorbed on Pt(110). Plots are arbitrary intensity vs wavenumber (cm⁻¹) to allow comparison of peak locations.

methanol and CH₂OH have peaks less than 500 cm⁻¹. Every species has peaks between 500 and 1500 cm⁻¹. Finally,

methoxy, formaldehyde, and formyl radical all lack the higher O-H frequencies above 3000 cm⁻¹.

 TABLE 20: Calculated Properties of a Stable [CH₂O···H]⁺

 Planar Complex

	method						
	MP2(full)/	B3LYP/	QCISD/	MP2/6-311	MP2/6-311		
	6-31G*	6-31G*	6-31G*	+G(2d,p)	+G(2d,p)		
trans, R_{H-C} , Å cis, $R_{H_{\overline{c}C}}$, Å R_{O-C} , Å R_{O-H} , Å R_{H-H} , Å A_{HCO} (deg) A_{COH} (deg) A_{OHH} (deg)	1.087 1.089 1.256 0.997 2.017 121.8 122.8 115.3 180	1.091 1.094 1.250 1.007 1.701 122.0 122.2 115.8 180	1.090 1.093 1.259 0.995 3.038 121.8 122.7 115.5 180	1.079 1.090 1.248 0.994 1.789 121.4 122.7 115.8 180	1.079 1.090 1.248 0.994 1.789 121.4 122.7 115.8 180		
frequency	0.9427	0.9614	0.9537	unscaled	0.96		
scaling factor	99	173	95	161	154		
ν_1, cm^{-1}	161	249	156	248	238		
ν_2, cm^{-1}	274	416	268	355	340		
ν_3, cm^{-1}	1028	1030	1016	1107	1063		
ν_4, cm^{-1}	1079	1094	1088	1152	1106		
ν_5, cm^{-1}	1193	1187	1188	1249	1199		
ν_6, cm^{-1}	1327	1336	1347	1413	1357		
ν_7, cm^{-1}	1434	1430	1425	1509	1448		
ν_9, cm^{-1}	1608	1621	1599	1686	1618		
ν_{10}, cm^{-1}	3013	3002	3014	3131	3006		
ν_{11}, cm^{-1}	3160	3043	3154	3283	3152		
ν_{12}, cm^{-1}	3252	3141	3322	3403	3267		

TABLE 21: Other Species That Were Examined^a

species	charge	multiplicity	species	charge	multiplicity
cis-HCOH	1	4	CH ₃ OH ₂	0	2
trans-HCOH	1	4	CH ₃ OH	1	4
CH ₃ O	1	1			

^a All were unstable to isomerization.

The same kind of comparison can be done using the charged ground-state species. In Figure 2, we see that only methoxonium and methanol have peaks less than 500 cm⁻¹. Every stable species has peaks in the 2500-3500 cm⁻¹ range. Only [CHO]¹⁺ does not have a peak between 1000 and 1500 cm⁻¹. Formyl is the only species, though, that has a peak near 2000 cm⁻¹.

In Figure 3 every charged excited species has at least one peak around 3000 and 1000 cm⁻¹. However, only $[CH_2O]^{1+}$ and $[CH_2OH]^{1+}$ have peaks around 600 cm⁻¹. On the basis of this figure, it would be difficult to distinguish among the charged excited-state species using IR spectroscopy.

To understand why these types of comparison are important, in previous work we saw a new species when hydrogen and methanol were coadsorbed on Pt(110).⁴⁰ The high-resolution EELS spectrum taken after dosing 0.5 L of hydrogen at 273 K and 3.0 L of methanol at 100 K is shown in Figure 4. There are peaks at 450, 810, 970, 1130, 1430, 1550, 1740, 1950, 2060, 2850, 2930, 3110, 3190, 3320, and 3420 cm⁻¹.

We established that the new species had one carbon atom, one oxygen atom, and an unknown number of hydrogen atoms. We strongly suspected the new species to be methoxonium $[CH_3OH_2]^+$, but a complete spectrum for methoxonium was not available in the literature. Reference spectra for other possible species were also lacking, particularly for the excited and charged states.

Figures 5–7 compare the calculated spectra to the spectrum of the new species that forms on Pt(110). These figures repeat Figures 2–4 with the calculated spectra represented with solid lines and the measured spectra represented with dashed lines. The differences in peak heights were ignored to make these figures.

Figure 5 compares the HREELS spectrum of the new species to the calculated spectra of all the neutral species considered in this paper. Note that the spectra of the neutral species do not

match the new spectra well at all. In fact, combinations of various species do not even do that well. Methanol is missing most of the peaks in the $3000-3500 \text{ cm}^{-1}$ region, as are all but the cis and trans forms of HCOH, which shows peaks around $3300-3450 \text{ cm}^{-1}$. Likewise, methanol is missing the 1740 cm^{-1} peak that appears only for formaldehyde. The only peak that does not appear in any of the calculated reference spectra is the 2060 cm⁻¹ peak, which is a carbon monoxide peak.

Figure 6 shows a comparison of the experimental spectrum with the calculated reference spectra for the stable charged species. We see here that methoxonium agrees quite well with the observed spectrum. The peaks between 3000 and 3500 that were missing for methanol appear here. While there is no peak at 1740 cm⁻¹, the calculated spectrum is normally within ± 60 cm⁻¹, which could place the 1631 peak much closer to the observed peak.

Figure 7 compares the HREELS spectrum to the calculated spectra for the excited charged states. We see that most of the 3000-3500 peaks are missing in these spectra for the excited charged states, as are most of the 1500-200 peaks.

So, using calculated reference spectra can allow surface scientists to rule out many possible species that do not have readily available complete experimental spectra. The formation of many neutral and charged species could be ruled out in this case because they do not show peaks in the right ranges compared to the measured EELS spectrum.

We also found that our calculations agreed very well with available spectroscopic and geometric information for the ground-state neutral species. The average absolute error in bond lengths was 0.06 Å, while angles were only incorrect by an average 0.3° . Also, our vibrational spectra peaks were within about 50 cm⁻¹ of the experimental results.

Conclusions

In summary, we calculated the geometries and frequencies for the neutral, charged, and excited charged states of CH₃OH, CH₃O, CH₃OH₂, CH₂O, CH₂OH, CHO, and HCOH at several levels of calculation. We find good agreement with experimental geometries where they are available, with errors averaging 0.06 Å for bond lengths and 0.29° for angles. The average error in frequency calculations for the ground-state vibrational spectra was 48 cm⁻¹ at the MP2/6-31g* level of calculation. Other results are presented that are largely in agreement with the MP2/ $6-31g^*$ results. With these calculations, a consistent set of reference spectra is now available for a series of currently interesting molecules. This allows people in the surface science literature to use vibrational spectroscopy to examine a large class of molecules.

Acknowledgment. This work was funded by NSF Grant CTS 96-10115.

References and Notes

(1) R. I. Masel, *Principles of Adsorption and Reaction on Solid Surfaces*; Wiley and Sons: New York, 1996.

(2) Anderson, J. R. Advances in Catalysis; Academic Press: New York, 1973.

- (3) Somorjai, G. Introduction to Surface Chemistry and Catalysis; Wiley: New York, 1981.
- (4) Foster, J. J.; Masel, R. I. Ind. Eng. Chem. Prod. Res. Dev. 1986, 25, 563.
 - (5) Wang, J.; Masel, R. I. J. Am. Chem. Soc. 1991, 113, 5850.

(6) Seebauer, E. G.; Vohs, J. M.; Masel, R. I. Ind. Eng. Chem. Fundam. 1984, 23, 19.

- (7) Wang, J.; Masel, R. I. J. Vac. Sci. Technol. A 1991, 9, 1879.
- (8) Wang, J.; Masel, R. I. Surf. Sci. 1991, 243, 199.
- (9) Olsen, C. W.; Masel, R. I. Surf. Sci. 1988, 201, 444.

- (10) Olsen, C. W.; Masel, R. I. J. Vac. Sci. Technol. A 1988, 6, 792. (11) Kyser, D. A.; Masel, R. I. Rev. Sci. Instrum. 1987, 58, 2141.
- (12) Nigg, H. L.; Masel, R. I. J. Vac. Sci. Technol. A 1998, 16, 2581.
- (13) Yagasaki, E.; Kishi, K. J. Electron Spectrosc. Relat. Phenom. 1994, 69, 133.
- (14) Ohno, Y.; Matsushima, T.; Tanaka, S.; Yagasaki, E.; Kamada, M. Surf. Sci. 1992, 281.
- (15) Ma, N. L.; Smith, B. J.; Pople, J. A.; Radim, L. J. Am. Chem. Soc. 1991, 113, 7903.
- (16) Bowman, J. M.; Bittman, J. S.; Harding, L. B. J. Chem. Phys. 1986, 85, 911.
- (17) Bitterova, M.; Lischka, H.; Bishupic, S. Int. J. Quantum Chem. 1995, 55, 261.
- (18) Iijima, T. J. Mol. Struct. 1989, 212, 137.
- (19) Yanada, K.; Nakagawa, T.; Kuchitsu, K.; Morino, Y. J. Mol. Spectrosc. 1971, 38, 70.
- (20) Nakagawa, T.; Morino, Y. J. Mol. Spectrosc. 1971, 38, 84.
- (21) Bauschlicher, C. W.; Partridge, H. Chem. Phys. Lett. 1993, 215, 451.
- (22) Gould, J. W.; Glukhovstsev, M. N.; Radom, L. Chem. Phys. Lett. 1996, 262, 187
- (23) Ma, N. L.; Smith, B. J.; Radom, L. J. Phys. Chem. 1992, 96, 5804. (24) Glauser, W. A.; Koszykowski, M. L. J. Phys. Chem. 1991, 95, 10705.
- (25) Martin, M. L.; Taylor, P. R.; Lee, T. J. J. Chem. Phys. 1993, 99, 286.
- (26) Yates, B. F.; Yamaguchi, Y.; Schaeffer, H. F., III. J. Chem. Phys. 1990, 93, 8798.
- (27) Gitino, E. L.; Pereira, A.; Ventura, O. N. J. Chem. Phys. 1995, 102, 2833.
- (28) Frisch, M. J.; Trucks, G. W.; Head-Gorden, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M.
- A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Rahavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.;
- Stewart, J. J. P.; Pople, J. A. Gaussian 92, revision C; Gaussian, Inc.: Pittsburgh, PA, 1992.
- (29) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;

- Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.6; Gaussian, Inc.: Pittsburgh, PA, 1998.
- (30) Pople, J. A.; Schlegel, H. B.; Krishnan, R.; DeFrees, D. J.; Binkley, J. S.; Frisch, M. J.; Whiteside, R. A.; Hout, R. F.; Hehre, W. J. Int. J. Quantum. Chem. Symp. 1981, 15, 269.
- (31) Pople, J. A.; Anthony, P. S.; Wong, M. W.; Radom, L. Isr. J. Chem.
- 1981, 33, 345. (32) Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.
 - (33) Wong, M. W. Chem. Phys. Lett. 1996, 256, 391.
- (34) Harmony, M. D.; Laurie, V. W.; Kuczkowski, R. L.; Schwendeman, R. H.; Ramsay, D. A.; Lovas, F. J.; Lafferty, W. J.; Maki, A. G. J. Phys. Chem. Ref. Data 1979, 8, 619.
- (35) Osborn, D. L.; Leahy, D. J.; Newmark, D. M. J. Phys. Chem. A 1997, 101, 6583.
- (36) Yamada, K.; Nakagama, T.; Kuchitsu, K.; Morino, Y. J. Mol. Spectrosc. 1971, 38, 70.
- (37) Serrallach, A.; Meyer, R.; Gunthard, H. H. J. Mol. Spectrosc. 1979, 52, 94.
 - (38) Cui, Q.; Morkuma, K. Chem. Phys. Lett. 1996, 263, 54.
- (39) Bouwens, R. J.; Hammerschmidt, J. A.; Grzeshowiak, M. M.; Stegnik, T. A.; Yorba, P. M.; Polk, W. F. J. Chem. Phys. 1996, 104, 460.
 - (40) Chen, N.; Blowers, P.; Masel, R. I. Surf. Sci. 1998, 418, 329.
- (41) Sappey, A. D.; Crosley, D. R. J. Chem. Phys. 1990, 3, 7601.
- (42) Tobiason, J. D.; Dunlop, J. R.; Rohlfing, E. A. J. Chem. Phys. 1995, 103. 1448.
- (43) Hirota, E. J. Mol. Struct. 1986, 146, 237.
- (44) Serrano-Andres, L. N.; Farsberg, P.; Malmqvist, P. A. J. Chem. Phys. 1998, 108, 7202
 - (45) Maurue, D.; Head-Gordon, M. Mol. Phys. 1999, 96, 1533.