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The master equation of a chemical model for the Lorenz equations was examined by ensemble simulations
in this paper. It was found that, due to the fast separation of nearby simulation runs, the representative points
in the ensemble which initially assembled densely in the concentration phase space fell apart and extended
to distribute on the overall chaotic attractor. Results revealed that intrinsic fluctuations in systems of
deterministic chemical chaos are very large and the ensemble-averaged values of concentration are therefore
meaningless. Nevertheless, the structure and dynamics of individual simulation runs, which are numerical
realizations of the underlying jump Markov process, are in good coincidence with the deterministic chaotic
attractor.

I. Introduction

Noise can play an important role in the development of
nonequilibrium phenomena such as chemical oscillations and
chaos, chemical waves, and patterns. For instance, in nonequi-
librium transition processes the effect of noise is often crucial.1

Positive and constructive effects of noise have also been found
in the recent year’s studies of stochastic resonance.2 For intrinsic
noise in systems of deterministic chemical chaos, the situation
is somewhat intriguing. Chaotic dynamics is characterized by
its sensitivity to initial conditions and is susceptible to external
disturbances. One expects that intrinsic noise arising from the
molecular nature of the system could similarly also have
pronounced effects on chaotic dynamics. Questions such as
would chaotic dynamics amplify internal noises and destroy the
macroscopic description, and what the deterministic chemical
chaos would become in the picture of a microscopic description
beyond the phenomenological kinetics, are of much interest.
The situation is somewhat similar to that of quantum chaos
where people ask what classical chaos in Hamilton systems
would become or manifest itself in the picture of quantum
mechanics where one has to give up the concept of classical
trajectories and to use probabilistic wave functions. As is well-
known, chaos is originally defined for deterministic dynamical
systems and is often termed as “deterministic” chaos. Strictly,
chaos may have no meaning in a stochastic system. In a
microscopic or mesoscopic description, the counterpart or
analogue of a deterministic chaotic trajectory would also be
interesting.

In previous studies concerning the problem,3-8 approaches
used include Fokker-Plank equations,3 reactive lattice-gas
automaton,4 and particle simulation method.5 In addition, several
authors have applied the master equation approach,6-8 most of
which have been mainly concerned with comparison between
single simulation runs and phenomenological chaotic attractors.
Conclusions arrived at in these studies were sometime incon-
sistent.9 In this paper, we study the master equation for the

chemical Lorenz system, which is a chemical model for the
Lorenz equations, by means of ensemble stochastic simulations.
Our calculations provide rather direct information on the
underlying microscopic dynamics and therefore can be used to
discuss the questions raised above. There have been previous
master equation studies of the chemical Lorenz system also by
means of ensemble simulations.8 The size of the system used
in these studies was comparatively small and because of this
would have introduced intensive extra intrinsic fluctuations. In
this paper, particular attention has been paid to diminish the
internal fluctuations due to finite system size. We reexamined
the master equation with large system size for the model. Results
presented here reveal a clear mesoscopic picture of deterministic
chemical chaos. In the rest of the paper, the model and the
approach employed are introduced in section II; section III
reports the main results of our calculations. A brief discussion
is included in section IV.

II. Master Equation and Method

The famous Lorenz system can be interpreted chemically.10,11

By applying a nonlinear transformation, the original Lorenz
equations,12 the right side of which consists of polynomials,
can be translated into a new form that allows only nonnegative
state variables but preserves the phase space qualitative features
of the original system.10 The new set of equations is stills of
polynomial form and therefore can be readily interpreted
chemically on the base of mass action law as follows:
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In the above reaction network, parameterski (i ) 1, 2, ..., 13)
over the arrows are rate constants. Concentrations of speciesAi

(i ) 1, 2, 5) andPi (i ) 1, 2, ..., 6) are assumed to be constant
in order to constrain the system far out of equilibrium. Given a
well-stirred reactor and ideal mixture, the phenomenological rate
equations of mass action law for the above reaction system read

wherex, y, andz are concentrations of species X, Y, and Z,
respectively, and concentrations ofAi (i ) 1, 2, 5) have been
incorporated into the rate constantsk2, k3, k9, k12, and k13.
Equation 2 can exhibit various nonlinear behaviors qualitatively
similar to the original Lorenz system.

Under the same conditions for kinetics (2), and provided that
elastic processes are much more probable than reactive events
so that memory loss of history is guaranteed, the above system
can be well considered as discrete Markov jumps in the
population space of the X, Y, and Z species. The time evolution
of the reaction systems is thus governed by the chemical master
equation.Ω in the above equation is a parameter denoting the

size of the system, and the thermodynamic limit is fulfilled when
Ω goes to infinity. Parameterski (i ) 1, 2, ..., 13) are reaction
rate constants as in eq 2. The chemical master equation, whose
rigorous microphysical basis and validity have been proved for
well-stirred gas-phase chemical systems in thermal equilibri-
um,13 describes the reaction system (1) at a more realistic
mesoscopic level and therefore provides a good foundation for
studying the corresponding microscopic dynamics of the
phenomenological kinetics in regimes of chaos.

The master equation (eq 3) is rather complex and is not
amenable to analytic resolution. We here refer to the Monte
Carlo simulation algorithm due to Gillespie.14 This approach is
a scheme of carrying out numerical realizations on a computer
of the underlying jump Markov process on which the master

equation is based. (Refer to ref 14 for the details of Gillespie’s
algorithm.) Starting from an initial condition of populations for
X, Y, and Z species, the implementation of the algorithm
produces a stochastic trajectory, i.e., a single realization of the
Markov process. A big collection of such simulation runs is
expected to be representative of the time evolution of the
chemical master equation, and the statistics on it should be
equivalent to the properties from the probabilityP(X,Y,Z,t) in
the master equation. We prepared a population of initial
conditions when carrying out stochastic simulations of eq 3.
Statistical properties were calculated when the ensemble evolved
forward in time. Special attention was paid to the scale factor
Ω measuring the system size. For small values ofΩ, the internal
fluctuations are doomed to be large. To diminish the contribution
to the intrinsic noise due to limited system size, we used the
value 30 000 forΩ. Using this value, we find that the system
size effect becomes trivial, at the expense of tremendously more
computer time. In our calculations, the population of species
X, Y, and Z species typically amount to over 6 000 000.

III. Results

The phenomenological kinetics (eq 2) supports nonlinear
behavior such as steady states, limit cycles, and chaos under
appropriate parameter values. In the chaotic regime, we
inspected the time evolution behavior of a population of 400
representative points of the system that initially assembled
densely in a very small volume of the population phase space.
All representative points in the ensemble were simulated
simultaneously and thus each point evolved into a stochastic
orbit representing an individual realization of the jump Markov
process in the phase space. Figure 1 shows the distribution of
the representative points in the concentration phase space at
four successive points of time. In the demonstration, the
populations of X, Y, and Z species have been converted into
concentrations by dividing the particle numbers by the system
size factor Ω. From Figure 1, it is readily seen that the
representative points that were initially dense in the phase space
fell apart when the time proceeded and were wildly scattered
in the phase space after a certain period of time. This dispersion
behavior implied a greatly expanded probability distribution of
P(X,Y,Z,t) in the master equation. The background trajectory

Figure 1. Phase space distributions (projected ontox-y plane) of a
population of 400 representative points at four different time showing
dispersion. The background trajectory (dashed line) in the panels is a
fraction of a deterministic chaotic trajectory under the same reaction
rates. Parameters:k1 ) 1, k2 ) 10, k3 ) 29, k4 ) 100,k5 ) 100,k6 )
5, k7 ) 0.5, k8 ) 1.3333,k9 ) 1000.0,k10 ) 1000,k11 ) 2900,k12 )
100,k13 ) 10 002.6667,Ω ) 30 000.
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in the panels of Figure 1 is a fraction of a chaotic trajectory
produced by the deterministic rate equations. One sees that,
although the representative points were finally distributed great
diffusely, they were mostly restricted on the deterministic
chaotic orbit.

The dispersion behavior of the representative points in the
ensemble is obviously the direct consequence of fast separation
of nearby stochastic simulation runs. Figure 2a shows this
separation behavior of two randomly selected stochastic trajec-
tories from the ensemble. In addition, this separation of nearby
simulation orbits indicates very large intrinsic fluctuations. Since
the representative points in the ensemble have been wildly
dispersed and distributed on the overall deterministic chaotic
attractor, the standard deviations of concentrations become rather
large, and the averaged values of concentrations are therefore
meaningless. Panel c in Figure 2 is the time evolution of the
ensemble mean concentration for the X species. One sees that
it cannot be a chaotic orbit. Rather, it resorted to a definite level
after a certain period of time when a full dispersion is reached
and deviated with small amplitude. Figure 2d shows the most
probable value for the X species. For comparison, a fraction of
a deterministic chaotic orbit is depicted in Figure 2b.

Although the averaged values of concentrations are meaning-
less, each simulation run in the ensemble is very similar to the
deterministic chaotic attractor. As previously observed by other
authors,4-6 the phase space density of a simulation run closely
resembles that of the chaotic attractor. Figure 3 depicts such an
orbit from the simulated ensemble. Its phase space structure is
in close accordance with its deterministic counterpart. Figure
4a shows the Poincare´ surface sections of the simulated orbit
in Figure 3 (open circles) and the deterministic chaotic attractor
produced by eq 2 (dark dots). The two maps coincide and both
show one-dimensional curves that are characteristic for dissipa-
tive chaotic systems. The good agreement of the 1D maps shown
in Figure 4b constructed from the Poincare´ surface sections
prove even further the resemblance between the dynamics of
the simulated orbit and deterministic chaotic attractor.

IV. Discussion

We have analyzed the master equation for the chemical
Lorenz model by means of ensemble stochastic simulations. It
was found that due to the separation of nearby stochastic
trajectories, the representative points in the ensemble expanded

to distribute on the overall deterministic chaotic attractor. The
result revealed very large intrinsic fluctuations in systems of
deterministic chemical chaos that made the averaged values of
concentration meaningless. While the evolution path formed by
the ensemble-averaged values is no longer chaos, individual
simulation orbits preserved mostly the structure and dynamics
of the deterministic chaotic attractor, as have also been found
previously in the Williamowski-Rössler model.4,5

This microscopic picture of deterministic chemical chaos is
much similar to its macroscopic counterpart when one prepares
a large set of initial conditions that densely assemble in the
phase space for the deterministic rate equations and examines
their time evolution. Because of the sensitivity to initial
conditions of chaos, one finds that the points also extend in the
particle phase space. After a sufficiently long time when a full
dispersion is reached, the representative points also tend to
distribute on the overall strange and chaotic attractor. The
position of a deterministic chaotic trajectory in the macroscopic
description is quite analogous to that of an individual stochastic
simulation run which is a single run realization of the underlying
Markov process. In some sense, a deterministic chaotic orbit
might be also “stochastic” because its numerical production from
the macroscopic equations mostly depend on the mean by which
it is generated, such as the specific numerical integration
algorithm and the roundoff errors of the computer. At this point,
a probabilistic description of deterministic chaos is more
desirable. In a word, the ensemble pictures of macroscopic and
microscopic dynamics are roughly comparable.

The validity of phenomenological equations in the chaotic
regime was at one time a disputed topic.9 Conclusions arrived
at in previous studies were sometimes inconsistent. Specifically,
approximate Fokker-Plank equation analyses3 showed that
when the macroscopic equations exhibit chaos, intrinsic fluctua-
tions grew up very fast to macroscopic size and therefore
destroyed the macroscopic description. They concluded that the
macrovariable equations were unstable and cannot be justified
from an underlying microscopic description. The group in
Brussels5,6 carried out stochastic simulations of the chemical
master equation for models of chemical chaos and showed that
“strange attractors” formed by individual simulation runs
preserved the principal features of deterministic chaotic attractor.
It was concluded that the macroscopic equations continued to
describe the behavior of the most probable values, rather than

Figure 2. Time evolution of the concentration of the X species: two
typical simulation runs with very close initial conditions (a) showing
rapid separation, a fractional deterministic trajectory (b), ensemble-
averagedx concentration from simulation (c), and the most probable
value (d). Parameters are the same as in Figure 1.

Figure 3. Typical “chaotic attractor” of simulation, i.e., a single
stochastic simulation run, taken from the ensemble. One can hardly
discern any difference from the deterministic chaotic attractor produced
by the rate equations.
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the mean value, of the variables and generate the system’s
chaotic attractor; therefore, the validity of the macroscopic
equations was fully kept. Compared to previous simulation
studies,4-7 our ensemble simulations of the master equation
presented a more complete picture of microscopic dynamics for
deterministic chaos. We observed equally that individual
simulation runs share consistent phase space structures with
deterministic chaos, but it was also found that nearby simulation
paths separate as time proceeds. The time evolution picture of
the representative points of the ensemble in the phase space
revealed that neither the ensemble mean nor the most probable
value is representative of the system because of the greatly
expanded distribution of the points of the ensemble which have
explored the whole chaotic attractor. At this point, the system
denies any macroscopic description. In this sense, the macro-
scopic equations lose theirsignificance and are invalid. While a
microscopic description or at least a mesoscopic description is
desirable in the chaotic regime of deterministic dynamics, the
macroscopic equations might still keep some sense. Anyway,
the properties of the deterministic chaotic attractor are consistent
with their microscopic analogues of individual simulation runs.
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