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This article reviews recent research on acetylene which is intended as a contribution to the understanding of
intramolecular vibrational energy flow when it is poorly described by either statistical (i.e., RRKM) or purely
separable (i.e., harmonic oscillator/normal mode) models. The experimental spectra that inform this investigation
are∼7 cm-1 resolution dispersed fluorescence spectra of the acetylene S1fS0 system. Above 10 000 cm-1

of vibrational energy, these spectra are extremely congested and cannot be analyzed using conventional spec-
troscopic assignment procedures. Instead, a numerical pattern recognition procedure is utilized to disentangle
spectroscopic patterns that are associated with approximately conserved polyad quantum numbers. This pattern
recognition analysis makes possible detailed modeling of the short-time (∼1 ps) but large-amplitude vibrational
dynamics of acetylene at high energy (15 000 cm-1), which is demonstrated here to be dominated by regularity
even for the low-frequency bending motions (22 quanta of bend excitation). That is, a few stable motions
dominate the large-amplitude bending dynamics, includinglocal bend(one hydrogen bending), which is closely
related to the acetylene-vinylidene isomerization coordinate, and a new type of vibrational motion that we
call counter-rotation, in which the two hydrogens undergo circular motions on opposite ends of the CC core.

I. Introduction

The work reported in this article is intended as a contribution
toward the understanding of the vibrational dynamics of small
polyatomic molecules when they have sufficient vibrational
energy to sample regions of the potential energy surface that
are far from equilibrium. At the simplest level, the motivation
for such research is the fact that bond-breaking chemical
reactions do not occur near equilibrium and necessarily involve
highly vibrationally excited reactants and/or products. Many
issues related to large-amplitude vibrational dynamics remain
unresolved, but a particularly central one is the extent to which
such dynamics can be described as chaotic, in which case
statistical models are appropriate, or regular, in which case there
exist approximately conserved (i.e., not guaranteed by any
rigorous symmetry) constants of motion.

For many years acetylene has served as a prototype molecule
for studies of large-amplitude vibrational motion because it is
one of the simplest possible bond-breaking isomerizing systems.
The isomerization in question is from the stable, linear (D∞h)
isomer of acetylene to the quasi-stable vinylidene (C2V) structure,
and requires over 15 000 cm-1 (nearly 2 eV, or 43 kCal/mol)
of internal excitation, as predicted by ab initio calculations1-6

(see Figure 1 for a schematic representation). In this article, we
describe recent experimental and theoretical investigations of
the vibrational dynamics of acetylene up to excitation energies
just below the threshold of isomerization (i.e., up to 15 000
cm-1). At such an energy, the molecule is capable of undergoing
very large amplitude vibrational motions, and we demonstrate
that there exists substantial experimental evidence for a par-
ticular type of vibrational motion called “local bend”, in which
the molecule samples the isomerization coordinate and (in a* To whom correspondence should be addressed.
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classical sense) spends much more time near the isomerization
transition state than it does near the equilibrium configuration.
Although in this article we focus on our recent work at MIT, it
should be emphasized that other research groups have contrib-
uted substantially to the emerging understanding of large-
amplitude vibrations in acetylene; we are particularly indebted
to Profs. K. Yamanouchi (University of Tokyo)7,8 and M.
Herman (University Libre de Bruxelles)9-11 for their contribu-
tions, which have strongly and directly impacted our own.

This article will be organized around the experimental and
theoretical challenges that arise when attempting to study a
molecule when it has nearly enough energy to isomerize. With
respect to experiment, the frequency domain spectra of even
relatively small polyatomics such as acetylene tend to be quite
congested at high vibrational energy, due to the necessarily high
density of vibrational states, and complex, due to the energetic
accessibility of far-from-equilibrium regions of the potential
surface. However, we have found that for acetylene, anumerical
pattern recognitionanalysis permits an essentially complete
assignment of the∼5 cm-1 resolution experimental spectra up
to at least the energy of the isomerization transition state.
Although our extensive use of numerical, automated algorithms
for spectrum analysis is novel, the essence of our pattern
recognition approach is not. On the contrary, (visual) pattern
recognition lies at the heart of all traditional methods of spectrum
interpretation. Simple examples of spectroscopic patterns include
P, Q, andR rotational branches or Franck-Condon vibrational
progressions; in each case, the existence of patterns is associated
with rigorously or approximately conserved quantum numbers
(rotational in the former case and vibrational in the latter). When
these quantum numbers become locally nonconserved, for
instance due to anharmonic or Coriolis resonances, then the
usual spectroscopic patterns are corrupted (perturbed) in some
way. In the most extreme case, the destruction of all nonrig-
orously conserved quantum numbers is associated with classical
chaos (and its quantum manifestations);12 if a molecule could
be studied that approaches this “bag of atoms” limit13 at
sufficiently high internal energy, one would expect to be unable
to identify any spectroscopic patterns (except perhaps those
based upon rigorous symmetries, such as parity and total angular
momentum), and the only insights to be gained would be
statistical in nature.

Acetylene, however, does not even remotely approach this
bag-of-atoms limit at 15 000 cm-1 of vibrational excitation, and

our numerical pattern recognition analysis proceeds by identi-
fication of patterns associated with approximately conserved
quantities called polyad quantum numbers (see section II), which
are generalizations of the traditional normal mode quantum
numbers. The partitioning of the acetylene spectra into these
polyad patterns is the crucial first step in the analysis, but the
patterns themselves encode the ball-and-spring dynamics of the
molecule in complicated ways, and a model is needed to extract
from the patterns a simple physical picture of the large-amplitude
molecular vibrations. The model that we employ is a standard
quantum mechanicaleffectiVe Hamiltonian. Such models are
typically associated with the analysis of the spectra of molecules
near equilibrium, and with long lists of spectroscopic constants
which may not have any obvious physical interpretation.
However, effective Hamiltonian models are not only capable
of accurately reproducing experimental spectra at high vibra-
tional energy, but can also provide tremendous physical insights
into the vibrational motions, particularly through a combination
of quantum mechanical and (semi)classical analysis. In the case
of acetylene, this analysis reveals that the unimolecular vibra-
tional dynamics of acetylene with up to 15 000 cm-1 of vibra-
tional energy is dominated by regularity even for the low fre-
quency bending modes (15 000 cm-1 corresponds to 22 quanta
of bend excitation!). That is, a few stable vibrational motions
dominate the dynamics, although these stable motions are gen-
erally unrelated to the normal mode motions that dominate the
low energy dynamics. These stable large-amplitude motions in-
clude local bend (one hydrogen bending) and a new type of vi-
brational motion that we call counter-rotation (the two hydrogens
undergoing circular motions on opposite ends of the CC core).

II. DF Spectra

The acetylene ground electronic state has previously been,
and continues to be, extensively characterized by absorption
spectroscopy, which is sensitive primarily to CH stretch
excitation (see refs 9 and 11 for a review of available acetylene
absorption data). However, as Figure 1 makes clear, the
acetylene-vinylidene isomerization is more closely related to
the bending and CC stretch motions of acetylene than to the
CH stretch motions, since during the course of the isomerization
one hydrogen must move to the other end of the CC core, and
the CC bond must be converted from a triple to a double bond.
To obtain spectroscopic data more directly relevant to acetylene-
vinylidene isomerization, the MIT group has for many years14-18

recorded double resonance spectra of acetylene using rovibra-
tional levels of the S1 state as intermediates. The majority of
these experiments have utilized the stimulated emission pumping
(SEP) technique,19 in which a PUMP laser populates single
systematically selected rovibrational levels of the acetylene S1

state, and a DUMP laser stimulates emission back down to
excited rovibrational levels of the S0 state. The large geometry
change between the S0 and S1 states allows the DUMP
transitions to probe the S0 surface at rather high internal energies
(up to at least 28 000 cm-1). In particular, the Franck-Condon
principle implies that, since the S1 state has a trans bent
geometry with a nominal CC double bond, S0 vibrational levels
with excitation in the CC stretch and trans bend modes will be
particularly prominent in the double resonance spectra.

More recently, the SEP studies of acetylene have been
complemented by dispersed fluorescence (DF) spectra. The DF
experiments differ from SEP in that a DUMP laser is not used.
Instead, the intensity of the spontaneous emission is recorded
as a function of wavelength using a monochromator and an
appropriate detector. See Refs 14 and 20-22 for details of the

Figure 1. Schematic representation of the ground and first excited
singlet states of acetylene. The most stable configuration of acetylene
in its ground electronic state is linear, but vinylidene exists as a quasi-
stable species whose zero-point level lies∼15 200 cm-1 above the linear
zero point.6 The transition state for the acetylene-vinylidene isomer-
ization has a half-linear structure. The zero-point level of the trans bent
first excited singlet state lies at∼42 200 cm-1. The spectrum on the
right is the origin band DF spectrum.20
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methodology employed to record and calibrate (both frequency
and intensity) our DF spectra. It should be noted that the original
origin band DF spectrum was recorded at Hope College in
collaboration with Prof. William Polik.20 The groups of Profs.
Tsuchiya7,23,24and Yamanouchi8 have also recorded dispersed
fluorescence spectra of acetylene, and their original study in
fact motivated the subsequent DF studies in our group. The DF
spectra that have been recorded from the S1 state of acetylene
have much lower resolution (poorer than 4 cm-1) than the SEP
spectra, in which the resolution is limited by the DUMP laser
bandwidth, which is∼0.05 cm-1 for typical commercial dye
laser systems. The decreased resolution of the DF spectra makes
it possible to map out large regions of the S0 potential surface
much more rapidly than is possible with SEP, although it of
course also limits the level of spectroscopic detail. However,
from the standpoint of understanding unimolecular dynamics,
low resolution corresponds to short-time dynamics, which must
be fully characterized before any attempt is made to describe
the longer time dynamics encoded by higher resolution spectra.
In addition, for polyatomic molecules at high internal energy,
the short time (a few picoseconds) dynamics are rarely simple
and can provide a wealth of information about the molecular
potential energy surface.

Extracting the short-time but large-amplitude dynamics of
acetylene from the complex DF spectra (see Figure 1) represents
a substantial challenge for spectrum interpretation. In the case
of the acetylene DF spectra, regular vibrational progressions
can only be observed at rather low internal energy (j7000
cm-1). At higher energies, the anharmonicities in the potential
surface lead to strong anharmonic couplings among the normal
mode states (note that Coriolis resonances play a very minor
role in our spectra, which sample low rotational quantum
numbers,J e 2). The resultant rapid and extensive intramo-
lecular vibrational redistribution (IVR) implies that the normal
mode quantum numbers are no longer even approximately
conserved and that traditional spectroscopic assignment will be
unsuccessful. However, the existence of strong anharmonic
resonances does not imply that all vibrational quantum numbers
become nonconserved. In particular, Fried and Ezra,25 and
Kellman,26-28 have demonstrated that, given a set of dynamically
important anharmonic resonances, certain generalized vibrational
quantum numbers, called polyad numbers, may remain con-
served (the term “polyad” is also used to refer collectively to
all states with the same set of polyad numbers). In the case of
acetylene, the 11 anharmonic resonances9,10,20 that have been
identified, primarily through S0 state absorption spectroscopy,
imply the existence of three conserved polyad numbers:26-28

where the normal node notation for acetylene is shown in
Table 1.

The physical meanings of theNs andl quantum numbers are
simple; they represent the total number of quanta of stretching
excitation and the total vibrational angular momentum, respec-
tively. The Nres quantum number has a slightly more subtle
meaning; it reflects the approximate ratios among the normal-
mode frequencies and thus represents a restriction under which
only states with approximately the same zero-order energy may
interact. That is, near-degeneracies among the zero-order states
can be predicted by the frequency ratios among the normal
modes, and the anharmonic resonances that couple these nearly
degenerate groups of states are those that play a dominant role
in the short-time dynamics. It should be emphasized that polyad-
nonconserving anharmonic resonances are guaranteed to exist.
However, as discussed in section IV, our results, as well as the
many absorption studies,11 provide strong evidence that these
resonances play at most a minor role in the short-time (several
picoseconds) dynamics, and thus that the polyad numbers remain
approximately conserved, up to at least 15 000 cm-1.

Our analysis of the acetylene DF spectra is based upon
identifying spectroscopic patterns associated with the polyad
numbers. That is, each polyad is associated with a spectroscopic
pattern, and the various polyad patterns are related to each other
by simple (harmonic oscillator) scaling rules for the diagonal
and off-diagonal matrix elements (see section IV). As a practical
matter, however, identification of the polyad patterns in any
single DF spectrum is made difficult by overlap between
adjacent patterns, as well as by finite resolution and signal-to-
noise ratio. Our pattern recognition analysis proceeds by
comparingmultipleDF spectra that are recorded using different
vibrational levels of the S1 state. This unconventional approach
is made possible by the fact that the zero-order states that are
bright in our DF spectra, (0,ν2, 0, ν4, 0), (i.e., those involving
excitation in only the CC stretch and trans bend modes) are
distributed such that there exists at most one bright state in each
polyad.20 This fact implies that no interference effects will be
observed between different bright states. That is, each bright
state fractionates into a unique set of dark states; conversely,
each eigenstate gains intensity from only one zero-order bright
state. The absence of interference effects between the bright
states implies that each bright state must display the same
fractionation pattern in each of the DF spectra, regardless of
which vibrational level of S1 was utilized as an intermediate.
Within any spectrum, the absolute intensity of a fractionation
pattern, born from a single bright state, arises from a unique
Franck-Condon factor (namely that connecting the selected
upper level to the single bright state). That is, each DF spectrum
contains the same fractionated bright state patterns but with
different absolute intensities, and the fractionated bright state
patterns can be identified through cross-comparisons of the
relative intensities in multiple DF spectra.

Figure 2 depicts three dispersed fluorescence spectra, which
were recorded using the S1 origin band (dashed line), 2ν3′ band
(solid line), andν2′+2ν3′ (dotted line) band, in the 14 000-
15 000 cm-1 region, i.e., just below the threshold of isomer-
ization [note that in the S1 state,ν2′ is the CC stretch mode,
andν3′ is the trans bend]. It should be noted that in each case
the DF spectra were recorded using arQ0(1) absorption line,
which leads to a two-line rotational pattern in emission,
consisting of transitions terminating on (J ) 1, l ) 0) and (J )
2, l ) 2) levels of the S0 state. Thus, each fractionation pattern
that can be identified in the spectra arises from a pair of bright
states, (0,ν2, 0, ν4

0, 0°) and (0, ν2, 0, ν4
2, 0°). This extra

rotational structure in the fractionation patterns poses few
problems for the analysis presented below.

TABLE 1.

mode motion

ν1 symmetric CH stretch
ν2 CC stretch
ν3 antisymmetric CH stretch
ν4 trans bend
ν5 cis bend
l4/l5 vibrational angular momentum

Nres) 5ν1 + 3ν2 + 5ν3 + ν4 + ν5 (1)

Ns ) ν1 + ν2 + ν3 (2)

l ) l4 + l5 (3)
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Five fractionated bright state patterns can be identified in the
14 000-15 000 cm-1 region, and these are displayed below the
raw spectra. The two patterns in the region below 14 400 cm-1

are particularly easy to identify. The first zero-order bright state,
(0, 2, 0, 16, 0), has significant Franck-Condon factors in the
2ν3′ (solid line) and origin (dashed line) band DF spectra and
is fractionated over an energy region at least 300 cm-1 wide.
That is, this fractionated bright state can be identified because
the emission patterns from the 2ν3′ and origin bands are nearly
identical (other than a constant multiplicative factor) from
14 000 cm-1 to 14 300 cm-1. The sharp peak near 14,350 cm-1

clearly belongs to a different fractionated bright state because
its ratio of intensities among the three spectra is strikingly
different from that of the peaks in the 14 000-14 300 region.
The zero-order bright state that illuminates this peak has a
relatively large Franck-Condon factor in theν2′ + 2ν3′
spectrum (dotted line), and can be assigned to be (0, 5, 0, 8, 0).

III. XCC

The ability to identify fractionated bright states by eye is the
exception rather than the rule at high internal energy; the region
14 000-14 500 cm-1 is anomalous, in the sense that systematic
and often severe overlap between bright states is observed in
most other energy regions. The energy range 14 500-15 000
cm-1 is more typical. In this region, it is difficult to ascertain
Visually even how many fractionated bright states are present.
Due to the ubiquity of such difficult regions, we have developed
and employed anumerical pattern recognition technique to
identify fractionated bright states.

The numerical spectroscopic pattern recognition technique
that we employ is called the eXtended Cross Correlation
(XCC),29-31 which we developed in collaboration with Dr.
Stephen Coy (MIT). To introduce the XCC and illustrate its
properties, we define in Figure 3 a simple synthetic data set.
Specifically, the top panels of Figure 3 depict two patterns
(which could represent, for instance, two fractionated bright
states) and two synthetic spectra that are generated by taking
distinct linear superpositions of the patterns. That is,

Note that numbers are used to label spectra, and letters to
label patterns. The parameter “x” in a real experimental spectrum

would represent (for example) frequency, wavelength, or internal
energy. For the synthetic example, thex-axis will be referred
to as frequency, without loss of generality. The coefficientsa1,
a2, b1, andb2 describe the amplitudes of the patterns in each
spectrum, and in this particular example have the values of 1.00,
1.11, 1.00, and 0.33, respectively. In addition, to make the
spectra resemble real, experimental data sets, Gaussian random
noise is superimposed upon each of the synthetic spectra.

Understanding the point of view used in the XCC requires
some mental gymnastics to invert the way in which the
experimental data is organized. A spectroscopic data set is
conventionally regarded as a group of spectra, each of which
consists of a set of (usually discrete) measurements. The XCC
regards a spectroscopic data set as groups of measurements,
each of which is made in all spectra at a single frequency. To
make this idea concrete, arecursion map92 is defined the middle
panel of Figure 3 for the two synthetic spectra. The recursion
map in this case is two-dimensional, with the coordinates
representing the intensity values in the two spectra. That is, the
coordinates of each point represent the intensities in the two

Figure 2. Top: Three dispersed fluorescence spectra, which were
recorded using the origin band (dashed line), 2ν3′ band (solid line),
and ν2′ + 2ν3′ (dotted line) band. Bottom: Five fractionated bright
states can be identified in this region, using our pattern recognition
scheme. The (0, 2, 0, 16, 0) bright state can be easily identified by eye
because it happens not to overlap substantially with any other
fractionated bright states. However, the ability to identify bright states
visually is the exception rather than the rule at high energy, and
numerical pattern recognition (XCC) permits the disentanglement of
overlapped bright states, such as (0, 3, 0, 14, 0) and (0, 0, 0, 22, 0).

I1(x) ) a1IA(x) + b1IB(x) (4)

I2(x) ) a2IA(x) + b2IB(x) (5)

Figure 3. The XCC technique is illustrated using synthetic spectra.
The spectra in the second panel are constructed as linear combinations
of the patterns in the top panel, with superimposed Gaussian random
noise. Each point on the recursion map (middle part) represents the
intensities in the two spectra at the same frequency. The inset shows
the (R,d) coordinates that are used to define the XCC merit function,
and ratio directions optimized from the merit function are shown as
dotted lines. The XCC merit function (eq 10) is depicted in the fourth
panel, with the ratio direction represented by the angle between the fit
line and thex-axis in the recursion map. The ratio directions optimized
using the merit function can be used to reconstruct the patterns from
the spectra (bottom part), using eqs 11 and 12.
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spectra at a given frequency. Thus, no information about
frequency appears on the recursion map.

The points on the recursion map can be categorized as
follows.

1. Points near the Origin. These points correspond to
frequencies at which both spectra have low intensities. The
scatter of these points about the origin is due to the noise in the
spectra.

2. Points That Cluster about “Rays” That Pass through
the Origin. The points that scatter about these rays have signal
content that can be associated with one of the two patterns. That
is, these points correspond to frequencies at which nonover-
lapped spectral features are found in the spectra. The scatter of
the points about the rays is due to noise. The most distant points
from the origin represent the most intense spectral features in
a pattern.

3. Points That Cross between, and Possibly through, Rays.
These points correspond to frequencies at which peaks from
two or more patterns overlap.

The points in category 2 are of the greatest interest from the
standpoint of identifying patterns in the spectra. The presence
of two rays of points in the recursion map clearly indicates that
two patterns are present in the data set. The upper of these rays
comprises points that are well-described by

while the lower ray comprises points well-described by

Thus, each pattern can be considered to be defined by sets
of points on the recursion map for which the ratio of intensities
in the two spectra is nearly constant. This ratio of intensities is
referred to as theratio direction, and each pattern contained in
the spectra can be uniquely labeled by a ratio direction. In
experimental data, however, the ratio directions are not known
and it is the task of the XCC to determine an unbiased estimate
of the ratio direction for each pattern.

Linear least-squares fitting is not ideal for this task because
it is a global optimization technique, meaning that it determines
oneset of model parameters which best describes all of the data.
By contrast, for the synthetic data, unbiased estimates are desired
for two ratio directions. To accomplish this task, we defined
our own figure-of-merit function,G, which in the case of two
data records takes the form

Since the “fit line” is constrained to pass through the origin,
the merit function is taken to be a function of just one parameter,
R, which represents the ratio direction. The sum overk
represents a sum over all points on the recursion map. Thegk

are referred to as weight functions; thus, the merit function takes
the form of a sum of weight functions, which are computed for
each point on the recursion map.

The precise form of the XCC merit function is justified in
refs 29 and 30. Here we note simply that it is defined as a
product of two functions. The first termR is the distance of a
point on the recursion map from the origin; it weights more
intense points in the spectra more strongly, because these points

are less likely to be corrupted by noise or overlap with other
peaks. The second term is a Gaussian function ofdk, the distance
of a point from the fit line, and thus this term weights points
that are close to the fit line more strongly than those far from
the fit line (σ is the experimental noise). In a technical sense,
this term makes the XCC a “redescending robust estimator”.
“Robust estimators”32-35 in general are those that are influenced
by outliers to a lesser degree than theø2 function used in least-
squares fitting.Redescendingrobust estimators32-34 are a special
class of robust estimators which, in contrast to least-squares
fitting, weight outlierslessstrongly than those points that are
well-described by the model. A redescending robust estimator
is desirable for the task of identifying the two model ratio
directions in the recursion map precisely because extraction of
more than one model estimate is desired.

The fourth panel in Figure 3 depicts the XCC merit function
as a function of ratio direction (here, the ratio direction is
represented by the angle between the fit line and thex-axis) for
the simulated spectra. Two maxima are observed in the merit
function at 20.1° and 47.5°. These values differ only slightly
from the values of 18.4° and 48.0° used to construct the synthetic
spectra.

With the number of patterns and the ratio directions identified,
it is now possible to assign spectral features to patterns. The
most straightforward method for doing so is to note that eq 4 is
invertible, i.e.,

Therefore the pattern intensities at any given frequency can be
determined from the spectral intensities if the coefficientsa1,
a2, b1, andb2 are known. The coefficientsa andb are equivalent
to the pattern ratio directions determined by XCC. Although it
may appear that we are attempting to use two pattern ratio
directions to determine four coefficients, any two of the
coefficients (such asa1 andb1) can be assigned arbitrary values;
this is equivalent to introducing arbitrary scaling factors for the
patterns, Ia and Ib. The results of this “linear inversion”
procedure for the synthetic data set are depicted in the bottom
panel of Figure 3. The patterns recovered from the spectra are
essentially identical to those used to construct the spectra,
although the recovered patterns of course have finite signal-to-
noise. Note in particular that the linear inversion succeeds in
recovering the line shapes of the two lines that were overlapped
in the synthetic spectra.

IV. Pure Bending Dynamics

Although we have only illustrated the application of the XCC
to a pair of spectra, it can be readily generalized to treat an
arbitrary number of spectra.30,31 In the case of the acetylene
DF spectra, the XCC was utilized to identify fractionated bright
state patterns that are repeated in 5 spectra recorded using
different intermediate vibrational states. The results of this
procedure for the 14 000-15 000 cm-1 region are shown at the
bottom of Figure 2. Note in particular that the XCC succeeds
in disentangling two heavily overlapped patterns in the 14 500-
14 900 cm-1 region. The ability to identify these fractionated
bright states up to 15 000 cm-1 provides substantial evidence
that the acetylene polyad numbers remain conserved on a time
scale of at least 1 ps up to the threshold of isomerization. In

I1 ≈ a1IA (6)

I2 ≈ a2IA (7)

I1 ≈ b1IB (8)

I2 ≈ b2IB (9)

G(R) ) ∑
k

gk(R) ) ∑
k

Rkexp(-dk
2/2σ2) (10)

Ia(x) ) 1
a1b2 - a2b1

[b2I1(x) - b1I2(x)] (11)

Ib(x) ) 1
a1b2 - a2b1

[-a2I1(x) + a1I2(x)] (12)
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fact, fractionated bright states can continue to be identified even
above the isomerization barrier, a result that will be discussed
in a forthcoming publication.36

In addition to the fractionation patterns, the numerical pattern
recognition approach also permits the determination of bright
state Franck-Condon factors for acetylene at high internal
energy. Experimental Franck-Condon factors for highly excited
states in polyatomic molecules are generally difficult to obtain
due to the interference of IVR, but the pattern recognition
analysis identifies all of the vibrational levels that gain their
intensity from a single bright state, and thus the fractionation
patterns in any given spectrum can simply be integrated to obtain
the relative Franck-Condon factor for each of the bright states.
A small subset of these Franck-Condon factors is presented in
Figure 4, and it is clear that these are consistent with qualitative
Franck-Condon arguments. That is, two dips are observed in
the trans bend Franck-Condon factors observed in emission
from the 2ν3′ vibrational level of the S1 state, while no dips are
observed from the vibrationless level (origin band). In terms of
quantitative prediction, however, our deperturbed Franck-
Condon factors up to 15 000 cm-1 provide a substantial
challenge for theory. J. K. G. Watson has performed harmonic
and anharmonic Franck-Condon calculations for the acetylene
S1fS0 system,37 with good agreement with experiment for the
anharmonic calculations.93 Two groups of theoreticians38,39also
plan to perform anharmonic Franck-Condon calculations for
acetylene using vibron models, which are algebraic models that
can explicitly incorporate mode anharmonicity.

Our interest here, however, is with the insights that can be
gained into acetylene vibrational dynamics at high vibrational
energy, and the apportioning of the DF spectra into bright
state progressions constitutes the crucial first step. The frac-
tionation pattern for each bright state encodes its IVRsthe
redistribution of the vibrational excitation from the Franck-
Condon active modes (CC stretch and trans bend) into the re-
maining degrees of freedom. Even without any detailed analysis,
the bright state fractionation patterns at the bottom of Figure 2
clearly indicate that the rate of IVR at high internal energy is
highly sensitive to the way in which vibrational excitation is
divided among the two Franck-Condon active modes. Specif-
ically, the two bright states with the greatest excitation in the
CC stretch mode, (0, 5, 0, 8, 0) and (0, 6, 0, 6, 0),display

no detectable fractionation, indicating minimal IVR. That is,
there exist vibrational levels near the isomerization barrier (and
even above it; see ref 40) that can continue to be labeled
with normal mode quantum numbers, despite the fact that
the majority of bright states at this energy display quite exten-
sive fractionation (fast IVR). This anomalously slow IVR,
which is examined in detail in ref 40, is due largely to the
isolation of the bright states in question from other states in
the same polyad. That is, these bright states are by far the
lowest energy states in their respective polyads, and the nearest
states with which they can interact are>100 cm-1 higher in
energy.

From a dynamical viewpoint, the most interesting fraction-
ation pattern in Figure 2 is that of (0, 0, 0, 22, 0). The trans
bend mode is the lowest frequency normal mode in acetylene,
and thus this fractionation pattern encodes the largest amplitude
motions that can be studied below the isomerization barrier in
our DF spectra. This bright state is one member of a long
progression of “pure bending” bright states, (0, 0, 0,ν4, 0), which
involve no excitation in the stretching modes and thus belong
to polyads withNs ) 0. For this set of polyads, theNresquantum
number simplifies to

in which Nb, the number of quanta of bend excitation, is
introduced as a shorthand notation for theNres andNs polyad
numbers for the pure bending polyads. Note that, becauseall
states in the pure bending polyads have no stretch excitation,
the only IVR pathways that are available for the pure trans-
bend bright states are those that exchange vibrational energy
and angular momentum between the trans and cis bend modes.
This does not imply, however, that the IVR is simple. On the
contrary, the trans bend bright state fractionation patterns
become quite complex as early as∼9000 cm-1, as can be seen
in Figure 5.

The complexity of the (0, 0, 0,ν4, 0) bright state fractionation
patterns necessitates the use of a numerical model to gain insight
into the mechanism of the IVR. As will be seen below, the
complex fractionation patterns encode a simple but profound
change in the vibrational dynamics as a function of bend
excitation, which is not at all obvious by simply inspecting the
patterns. In principle, one could determine from the data a
potential energy surface for the ground electronic state. That
is, one could define an appropriate analytical expression to
represent the potential energy surface, and adjust the parameters
to achieve maximal agreement between the observed eigenen-
ergies and those calculated using the surface. However, six
vibrational degree of freedom systems at high vibrational energy
currently represent the state of the art in fully quantum
mechanical, variational calculations (such calculations have only
recently become routine for triatomic molecules at high
vibrational excitation; see for example refs 41 and 42), Thus,
our results present a challenge for both electronic and vibrational
structure calculations (i.e., can a potential energy surface be
constructed that reproduces our results, at least qualitatively,
to 15 000 cm-1, and can fully 6D variational43,44or wave packet
propagation45 methods be used efficiently to investigate the
spectra and dynamics of acetylene at high internal energy?). It
should be noted that some work has been done to develop
potential energy surfaces46,47and force fields43,48for S0 acetylene
and vinylidene, and in some cases these potentials have been
refined against (certain) experimental data. However, no rep-
resentation of the S0 potential energy surface has yet been

Figure 4. Experimentally determined relative Franck-Condon factors
for the (0, 1, 0,ν4, 0) bright states in the 2ν3′ (top) and origin band
(bottom) DF spectra.

Nres) ν4 + ν5 ) Nb
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demonstrated to reproduce the highly excited bending states near
15 000 cm-1 that are the central concern in the remainder of
this article.

In the absence of a potential surface with sufficient accuracy,
which becomes increasingly problematic for larger molecules,
effective Hamiltonian models can provide substantial insights
into quantum vibrational dynamics. In fact, even when accurate
potential energy surfaces are available, effective Hamiltonian
models (which can be derived from the potential by perturbation
theory47,49) are still frequently found to provide insights that
are complementary to calculations performed directly from a
potential surface; see, for example, recent work on acetylene
by Sibert and McCoy47,50 and a series of recent papers on
HCP,42,49,51-53 which together represent an experimental and
theoreticaltour de forceand provide excellent examples of the
complementarity of effective Hamiltonians and potential sur-
faces for spectrum interpretation. For the purposes of this article,
an effective Hamiltonian will be defined as a Hamiltonian that
can be written entirely in terms of the (harmonic) raising and
lowering operators for the various vibrational degrees of free-
dom of the molecule, which are often chosen to be the normal
modes of vibration, although other choices are possible (see
refs 54 and 55 for examples of local mode models applied to
the acetylene bend degrees of freedom). Each of the bend nor-
mal modes for acetylene, trans and cis, are doubly degenerate,

and thus the bending effective Hamiltonian is expressed in terms
of raising and lowering operators for the two-dimensional (2D)
harmonic oscillator. These operators are labeled d (right) and g
(left), using the notation of Cohen-Tannoudji et al.56 and are
defined as

wherex/y represent the two equivalent rectilinear coordinates
for the 2D oscillator. Thed/g operators have the convenient
property that the number operators corresponding to the
conventional quantum number labels for the 2D oscillator can
be expressed as

Using the conventional “4” and “5” labels for trans and cis,
respectively, the bending effective Hamiltonian is defined as

Figure 5. First column: Comparison of experimental results and the effective Hamiltonian model. The solid lines represent the fractionation
patterns for the (0, 0, 0, 6, 0), (0, 0, 0, 14, 0), (0, 0, 0, 22, 0) bright states that were extracted from the DF data set using XCC. The inset in the
upper left part provides a close-up view of the (0, 0, 0, 6, 0) fractionation pattern above 3850 cm-1. The vertical sticks (thick forl ) 0, thin for
l ) 2) represent the eigenstate energies and relative intensities predicted by theHeff. Second column: Hypothetical time domain evolution of the
l ) 0 bright state wave packets as predicted by the and as represented by theHeff average number of quanta in the trans (solid line) and cis (dotted
line) bend modes. Third and fourth columns: The lowest and highest energy eigenstates in eachl ) 0 polyad, projected onto the (F4,F5) plane.

âd ) 1

x2
(âx - iây) (13)

âg ) 1

x2
(âx + iây) (14)

ν̂ ) ν̂d + ν̂g ) âd
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† âd - âg
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Although this expression for theHeff may look complicated, it
simply encodes harmonic oscillator scaling rules for the
anharmonic couplings between the normal mode states. Specif-
ically, theω terms are the harmonic contributions, thex, y, and
g terms represent diagonal anharmonicities, and the remaining
terms, parametrized byr45 ands45, are the off-diagonal anhar-
monic resonances (Darling-Dennison and vibrationall-reso-
nance). It should be noted that this Hamiltonian is quite similar
in form to older models of Plı´va57 and Herman;10 the major
contribution of our model is that our fitted parameters reproduce
the experimental data to much higher energy.

The parameters in this model were fitted to a set of 83
vibrational energy levels, 51 of which were derived from our
DF data set and the remainder of which were derived from
previously published absorption data (the absorption data include
vibrational levels with at most four quanta of bend excitation).
The inclusion of the high energy DF data presented a number
of challenges for the fit, the most serious of which was
establishing correspondences between the calculated and ob-
served vibrational energy levels. That is, at high energy, only a
small fraction of the eigenstates within a given polyad are
observable within the signal-to-noise of the experiment, and the
fitting routine must decide in an automated fashion which
calculated eigenstate corresponds to which observed transition
in order to calculate the (ø2) merit function. Our solution to
this challenge and others are detailed in ref 58. The final set of
16 fitted parameters, which is listed in Table 2 of ref 58,
reproduces the 83 vibrational energy levels up to 15 000 cm-1

with an RMS accuracy of 1.4 cm-1. The agreement between
the model and the experimental data is depicted in the left
column of Figure 5 for 3 specific bright states. Here it can be
seen that the relative intensities predicted by theHeff (from the
character of the bright state in each eigenstate) also agree well
with experiment, although intensities were not included in the
fit. Note also that the final fitted model makes it possible to
partition the bright state fractionation patterns into theirl ) 0
and 2 components.

It is worth reiterating that the development of anHeff with
predictive power for the very large amplitude bends is possible
only because single fractionated bright states can be extracted
from the DF data set using numerical pattern recognition, despite
severe, systematic overlap between many fractionated bright
state patterns. Having developed a numerical model with
excellent predictive power, we now turn to the insights that this
model permits into vibrational energy flow. We have already
stated that the bright state fractionation patterns encode the IVR;
for instance, the width of a fractionation pattern provides a direct

measure of the rate of vibrational energy transfer out of the
bright state. However, the effective Hamiltonian model permits
us to ask much more detailed questions about the vibrational
energy flow, such as to where does the energy flow, and by
what mechanism? Please note that although bothl ) 0 andl )
2 states are observed experimentally, the discussion below will
focus exclusively on thel ) 0 states.

The starting point for studying the vibrational energy flow is
the time evolution of the zero-order bright state, which is
nonstationary since it is not an eigenstate:

in which ψj are the eigenstates,ωj are the corresponding
frequencies (Ej/h), Ψ(0) is the bright state,cj ) 〈Ψ(0)|ψj〉, and
N is the number of states within the relevant polyad. The
coefficientscj are known from the unitary transformation that
diagonalizes theHeff, and thusthe time-eVolution of the initially
prepared bright state is completely determined from information
obtainable from the frequency domain spectrum.

The survival probability of the initially prepared state
|〈Ψ(0)|Ψ(t)〉|2 is frequently used to represent this dynamics. The
survival probability does not, however, provide a complete
picture of the dynamics, in the sense that when the survival
probability is low, the overlap of the wave packet with other
zero-order states must be relatively largesbut which zero-order
states? One could, of course, calculate the overlap of the time-
evolving wave packet with any of the zero-order states in the
relevant polyad, but for the (Nb ) 22, l ) 0) polyad, for
example, the total number of zero-order states is 42, and it is
not practical to plot the overlap of the wave packet witheach
of these states. A useful overview of the time-domain dynamics
is provided by the time evolution of the expectation values of
the number operatorsν̂4 and ν̂4:

In colloquial terms, 〈ν4(t)〉 and 〈ν5(t)〉 represent the time-
dependent average number of quanta in the trans and cis bend
modes, respectively, and these measures are plotted in the second
column of Figure 5 for the wave packets corresponding to the
initially prepared (0, 0, 0, 6°, 0°), (0, 0, 0, 14°, 0°), and (0, 0,
0, 22°, 0°) bright states. Note that〈ν4(0)〉 ) Nb, 〈ν5(0)〉 ) 0,
and that〈ν4(t)〉 + 〈ν5(t)〉 ) Nb at all times.

These expectation values make it clear that the IVR associated
with the (0, 0, 0, 6°, 0°) bright state is quite minimal, in the
sense that very little energy is exchanged between trans and
cis bend. The minimal IVR reflects the fact that the bright state
is nearly an eigenstate of the (effective) Hamiltonian; that is,
the anharmonicities in the potential surface couple this bright
state only minimally to other normal mode states. This fact is
clearly observed in the fractionation pattern for the bright state,
which consists of one main peak (the nominal bright state),
which carries 97.2% of the bright state character, and a much
less intense series of peaks located on the high energy side of
the main peak, which can be considered “perturbers” of the
bright state.

The (0, 0, 0, 14°, 0°) bright state, on the other hand, is not
even approximately an eigenstate of theHeff. In the frequency
domain, the bright state character is distributed in a compli-
cated manner over many vibrational levels, and the most intense
peak in this case accounts for only 38.4% of the bright state
character. In the time domain, a substantial fraction of the initial

Ĥeff ) ω4ν̂4 + ω5ν̂5

+ x44ν̂4ν̂4 + x45ν̂4ν̂5 + x55ν̂5ν̂5

+ y444ν̂4ν̂4ν̂4 + y445ν̂4ν̂4ν̂5 + y455ν̂4ν̂5ν̂5 + y555ν̂5ν̂5ν̂5

+ g44l̂4l̂4 + g45l̂4l̂5 + g55l̂5l̂5

+ s45(â4d
† â4g

† â5dâ5g + â4dâ4gâ5d
† â5g

† )

+ [r°45 + r445(ν̂4 - 1) + r545(ν̂5 - 1)](â4dâ4g
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† â4gâ5dâ5g
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+ 1
4
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N

cjψje
-iωjt (18)

〈νb(t)〉 ) 〈Ψ(t)|ν̂b|Ψ(t)〉 (19)

3080 J. Phys. Chem. A, Vol. 104, No. 14, 2000 Jacobson and Field



excitation in the trans bend mode is rapidly (<200 fs)
redistributed to the cis bend mode, and at longer times the
vibrational energy is apportioned in a roughly 70%/30% ratio
between the trans and cis bend modes, although the energy
continues to flow between the two modes in a seemingly random
fashion.

For the (0, 0, 0, 22°, 0°) bright state, the extent of the energy
flow between the two bend modes is even more extreme, which
is expected given that the strength of the anharmonic couplings
should continue to grow with increasing energy. However, the
energy flow between trans and cis is also unexpectedly regular.
In only 170 fs, nearly 80% of the vibrational excitation has
flowed from trans bend into cis bend, but then just as quickly,
nearly all of it flows right back to trans bend. These regular os-
cillations continue for several picoseconds. A close look at the
fractionation pattern for (0, 0, 0, 22°, 0°) reveals a surprising
regularity as well (as it must, since the frequency and time do-
main representations of IVR are equivalent). Thel ) 0 pattern
consists primarily of just 3 lines, which are spaced at intervals
of ∼95 cm-1; these three eigenstates account for 72.0% of the
bright state character, and the most intense peak accounts for
43.3%.

Taken together, the plots in the two left columns of Figure 5
indicate that the complexity of IVR for the trans bending bright
states is not a simple function of internal energy. In particular,
the dynamics in theNb ) 22 polyad seems mysterious, being
both extensive (strong exchange of energy between trans and
cis) and simple (regular recurrences). The physical basis for
this behavior is considered in the next section.

V. Local Mode Behavior

In the preceding section, we considered vibrational energy
flow in the acetylene bend system from abasis set dependent
point of view. Specifically, we monitored the wave packet
evolution of three trans bend bright states in terms of vibrational
energy flow among the normal modes. The particular bright
states were chosen because they were experimentally observed
and because they are representative of the major changes in
dynamics as a function of vibrational energy. However, the trans
bend bright states are only one class of an infinite number of
wave packets that one could imagine propagating using the
effective Hamiltonian. One could, for instance, investigate pure
cis bend bright states, (0, 0, 0, 0,ν5). Although these “hypotheti-
cal” bright states have not been observed experimentally, the
Heff could be used to predict their IVR. One could even choose
classes of bright states that do not involve the normal mode
motions at all, such as a hypothetical “local bend” bright state,
which would involve bend excitation in a single bond. The IVR
associated with each different hypothetical bright state provides
a different viewpoint on the vibrational energy flow at a given
energy, but no single one by itself provides a complete picture.

To gain a more complete understanding of the vibrational
energy flow as a function of energy, one can ask basis set
independentquestions about the vibrational structure, such as
“what are the stable vibrational modes at any given energy?”
More precisely, do there exist any vibrational modes (which
can be unrelated to the normal modes) of the molecule into
which energy can be placed with minimal subsequent vibrational
energy redistribution? As can be seen in the top row of Figure
5, the normal mode bending motions are stable at sufficiently
low internal energy because little energy is exchanged between
trans and cis bend. AtNb ) 22, the normal mode motions are
highly unstable by the same definition, but the regular oscilla-
tions associated with the vibrational energy flow suggest that

the large-amplitude bending dynamics are unlikely to be highly
“chaotic” and that there might therefore exist stable (nonnormal
mode) vibrational motions at high energy.

In this section, two approaches to the question of regularity
vs chaos at high energy will be employed: visual examination
of the eigenfunctions of theHeff, and nonlinear classical
mechanics, the former of which will be considered first. The
Heff is evaluated, of course, in a product basis set of two 2D
harmonic oscillators, which represent the trans and cis bend
degrees of freedom. The eigenvector matrix that results from
diagonalization of theHeff permits any eigenfunction to be
expressed as a linear superposition of the zero-order basis states.
Thus, the most natural coordinates for graphical representation
of the eigenvectors are (F4, φ4, F5, φ5), whereF andφ are the
radial and angular coordinates for the 2D isotropic harmonic
oscillator, the wave functions of which take the form

L represents the associated Laguerre polynomials, andN is a
normalization constant. All eigenfunction plots considered below
represent projections of the probability density onto the (F4,F5)
plane; for discussion of the angular dependence of the wave
functions, see ref 54.

The third and fourth columns of Figure 5 represent the lowest
and highest energy eigenstates within theNb ) 6, 14, and 22
polyads. In theNb ) 6 polyad, both eigenfunctions can clearly
be assigned normal mode quantum numbers. In the case of the
lowest energy eigenfunction, there is a single nodal coordinate
that runs nearly parallel to the trans bend axis. This state is the
nominal bright state for the polyad, (0, 0, 0, 6°, 0°); as discussed
in the preceding section, this eigenstate carries 97.2% of the
bright state character. Note that, in terms of counting nodes in
these plots, it should be kept in mind that the radial coordinates
only take positive values. Thus, the number of nodes (except
those at the domain boundaries) should be doubled. The highest
energy eigenstate in the polyad is equally easy to assign as (0,
0, 0, 0°, 6°).

The eigenfunctions at high energy,Nb ) 22, are profoundly
different. Although both of the eigenfunctions shown in Figure
5 have well-defined nodal coordinates, in neither case do they
run parallel to the axes, which implies that there exist stable
vibrational motions at high internal energy that are unrelated
to the normal mode motions. The lowest energy eigenstate in
the polyad (third column) is easier to interpret. For this
eigenstate, there is a single nodal coordinate which runs along
F4 ) F5. Classically, the simultaneous excitation of the trans
and cis bending motions with the same amplitude leads to the
bending of just one hydrogen, and thus this eigenstate is
associated with alocal bendingmotion, which has also been
reported in other classical, semiclassical, and quantum studies
of acetylene.50,59-61

The highest energy eigenstate in the polyad is more difficult
to interpret in this set of coordinates. The nodes of this
eigenfunction align along a coordinate defined byF4

2 + F5
2 ≈

C, whereC is a constant. The absence of substantial probability
near (F4 ) 0, F5 ) 0) implies that the vibrational motion never
passes through the linear configuration. On the other hand, the
motion must pass through the trans and cis planar configurations,
due to the lobes of probability located nearF4 ) 0 (with nonzero
displacement inF5) andF5 ) 0 (with nonzero displacement in
F4). A careful consideration of this eigenstate (see ref 54) reveals

Ψν,l(F,φ) ) øν
|l|(F)eilφ (20)

øν
|l|(F) ) Nν,|l|e

-F2/2F|l|L(ν+l)/2
|l| (F2) (21)
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that it corresponds to a molecular motion in which the two
hydrogens maintain a given angle with respect to the CC axis,
but execute an internal rotation that changes the torsional angle
between them. Since total vibrational angular momentum must
be conserved, the two hydrogens execute rotations in the
opposite sense, and this eigenstate is identified with a “counter-
rotating” motion. To our knowledge, the counter-rotation motion
has not been reported in previous studies.

Obviously, the two eigenstates displayed in Figure 5 represent
a small fraction of the eigenstates in theNb ) 22 polyad. Among
the eigenfunctions that are not depicted, there are a few that
are quite complicated and are not easily assignable to any simple
bending motion, but the majority of bending eigenstates at high
energy can be classified as either local bend or counter-rotation
(none are clearly assignable as normal mode states). Two other
Nb ) 22 eigenstates are shown in the left column of Figure 6.
The upper of the two is representative of many eigenstates near
the bottom of the polyad that appear to be quite similar to the
pure local bend state in Figure 5 but have a more complicated
nodal structure (here, there is a second nodal coordinate
orthogonal toF4 ) F5). The lower eigenstate in Figure 6 is
representative of many eigenstates near the top of the polyad
that are closely related to the pure counter-rotation state in Figure
5. As discussed in some detail in ref 54, the precise assignments
of these “imperfect” local bend and counter-rotation states can
be resolved by transforming the eigenfunctions, and the effective
Hamiltonian, to a new set oflocal modecoordinates that are
defined as positive and negative superpositions of the normal
mode coordinates. In the local mode basis set, it becomes clear
that states such as those in Figure 6 represent motions inter-
mediate between local bend and counter-rotation.

In the preceding discussion, we have associated classical
motions with quantum eigenstates, based largely upon the strong
localization of probability around clearly defined nodal coor-
dinates in the wave functions that we considered. However, the
issue of quantum-classical correspondence can also be studied
explicitly for this system, by transforming the quantum effective
Hamiltonian to a classical one, using standard semiclassical rules
(i.e., by using the substitution62 âj f Ij exp(-iφj) in eq 17).
We have done so, and in collaboration with Profs. Howard S.
Taylor (USC) and Christof Jung (UNAM), have performed
(nonlinear) classical mechanical calculations on the system to
investigate the structure of the classical phase space.63 [It should
be noted that several other classical and semiclassical studies
of acetylene have been performed, including the early work of
Holme and Levine,64-66 the Farantos et al.67 study using the
Halonen, Child, and Carter surface,46 and studies by Kell-
man,59,68McCoy and Sibert,50 and van der Pals and Gaspard.61

Our study is the first, however, that is based upon a model that
reproduces the bending vibrational levels to very high internal
energy (15 000 cm-1).]

At low internal energy, the classical mechanical calculations
confirm, as expected, the dominance of the normal mode
motions. At higher internal energy, however, qualitatively
different stable vibrational motions are born, as well as large-
scale classical chaos, which can be identified as low in energy
as 5200 cm-1. Figure 7 provides an overview of the classical
dynamics in the (Nb ) 22, l ) 0) polyad, using four surfaces of
section (SOS), which represent the intersection of classical
trajectories with a particular plane that cuts through phase space.
Periodic orbits are fixed points on the surface of section, and
when stable are surrounded by concentric circles that represent
quasi-periodic trajectories. Chaos, on the other hand, tends to
look like a randomly pattern of unrelated points.

The SOSs at 13 861 and 15 461 cm-1 are both dominated by
regularity and are representative of the classical dynamics near
the bottom and top of theNb ) 22 polyad, respectively. In the
case of the 13 861 cm-1 SOS, the periodic orbit at the center
of the concentric circles represents a local bend periodic orbit,
whereas the organizing periodic orbit motion in the 15 461 cm-1

SOS represents the counter-rotation motion. The dominance of
regularity at the bottom and top of the polyad explains why the
majority of the states at the extremes of the polyad can be
assigned in terms of the local bend and counter-rotation motions.
Figure 6 presents two specific examples of quantum-classical
correspondence. The quasi-periodic trajectories on the right are
isoenergetic with the eigenstates on the left and plotted in the
same set of coordinates. The correspondence is striking in both
cases. Notice especially how the probability in theE ) 15 307
cm-1 quantum eigenfunction accumulates near regions in
configuration space where the periodic orbit passes many times.

At intermediate energies, as represented by the 14 161 and

Figure 6. Quantum-classical correspondence. The periodic orbits
(right) are isoenergetic with the eigenfunctions (left) and plotted in the
same coordinates.

Figure 7. Overview of the classical dynamics associated with the (Nb

) 22, l ) 0) polyad. Top two rows: Surfaces of section at four different
energies within the polyad. Bottom two rows: Two stable periodic
orbit motions that coexist with chaos in the middle of the polyad. Both
of these motions can be considered compromises between the local
bend and counter-rotation motions that dominate at the bottom and
top of the polyad, respectively.
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14 661 cm-1 surfaces of section, classical chaos plays a role,
and at some energies even dominates the phase space. The
surface of section atE ) 14 661 cm-1 demonstrates an
intriguing coexistence of stable vibrational motions and chaos.
The two most stable periodic orbit motions that can be identified
in this SOS are depicted at the bottom of Figure 7. In the
periodic motion on the left, one of the two hydrogens undergoes
a primarily circular motion, reminiscent of the counter-rotation
motion, while the motion of the other is reminiscent of a local
bend, although the approximate plane of the bend switches its
orientation periodically byπ/2. Due to the conservation of
vibrational angular momentum, however, both the “rectilinear”
and “circular” motions of the hydrogens are distorted in such a
way as to conserve zero total internal angular momentum at all
times. The periodic orbit on the right in Figure 7 can also be
considered a compromise between the local bend and counter-
rotation motions, in the sense that each hydrogen vibrates largely
along a plane, but with some superimposed rotation. Several
quantum eigenstates can be assigned in terms of these “com-
promise” motions between local bend and counter-rotation. More
surprisingly, however, our detailed study of quantum-classical
correspondence in this polyad63 reveals that, even at energies
(such as 14 161 cm-1) where classical chaos envelopes nearly
the entirety of phase space, the majority of the quantum
eigenstates can continue to be assigned in terms of periodic orbit
motions that are closely related to the local bend and counter-
rotation motions.

At this point, we have established that the large-amplitude
bending vibrational dynamics of acetylene is dominated by
stable local bend and counter-rotation motions, in contrast to
the low energy dynamics, where the normal modes dominate.
We now turn briefly to the transition between the low and high
energy bending dynamics, the effects of which can be observed
quite clearly in theNb ) 14 eigenstates in Figure 5. In particular,
the lowest energy eigenstate in this polyad (third column) pro-
vides a bridge between the trans bend and local bend motions,
and the highest energy eigenstate is intermediate between the
cis bend and counter-rotation motions. However, the transition
between normal and local mode behavior is not as smooth as
Figure 5 seems to imply. Figure 8 plots the effective frequencies
of the bending motions as a function of polyad number. We
define the effective frequencies as

whereE represents the energies of either the lowest or highest
energy eigenstates in the pure bending polyads. It is clear on
the left-hand side of this plot that the effective frequency for
the cis bend motion decreases with increasing vibrational
excitation, while that for the trans bend motion increases, which
reflects the fact that the trans and cis bend modes have opposite
anharmonicities; i.e.,x44 > 0 andx55 < 0. The rate of change

of the effective frequencies with increasing bend excitation
remains roughly constant untilNb ≈ 10, at which point the
effective frequencies abruptly reverse course, signaling a sudden
change in the vibrational dynamics. The transition trans from
bend to local bend appears to occur at slightly lower bend
excitation than the transition from cis bend to counter-rotation,
but the simple physical picture that emerges is that when the
effective frequencies of the two normal mode motions become
nearly commensurate, they become unstable (due to the anhar-
monic resonances) and give birth to qualitatively new motions.
This transition has been considered in detail using classical
mechanics; see ref 63.

To conclude this section, we wish to point out that the stable
large-amplitude local bend and counter-rotation vibrational
motions in acetylene are in many ways analogous to the stable
local stretch vibrations that have been reported for many
molecules in the limit of high stretch excitation.69-74 A large
body of literature has appeared related to local stretch phenom-
ena, and one of the major achievements of this work was the
demonstration that effective Hamiltonian models could be
defined for these systems usingeither normal mode or local
mode coordinates, and that in fact these alternative representa-
tions are formally equivalent.75-82 In this article, we have
considered only the normal mode representation of the acetylene
bending dynamics, but this dynamics can be described equally
well using a local mode effective Hamiltonian, which can be
derived analytically from the normal mode model.54,83However,
despite these similarities, the local mode behavior in the
acetylene bend degrees of freedom, because it involves twotwo-
dimensional rather than twoone-dimensional vibrational modes,
encompasses a richer range of motions (such as counter-rotation)
for which the conventional language of local stretching systems
is not entirely appropriate.

VI. Conclusion

One recurring theme in our recent work on acetylene has been
the contrast between the exceptionally complicated appearance
of the experimental spectra and the surprisingly simple vibra-
tional dynamics (either quantum or classical) that can be inferred
from these spectra, when properly analyzed. As discussed in
section II, much of theperceiVed complexityof acetylene S1fS0

dispersed fluorescence spectra can be accounted for by the
energetic interleaving of polyad fractionation patterns; once these
patterns are disentangled from each other, many of the polyad
fractionation patterns, which encode the vibrational dynamics
of the molecule, are surprisingly simple. A particular surprise
was the regularity of the large-amplitude (22 quanta) bending
dynamics of acetylene. Although classical chaos does appear
to play some role in the high vibrational energy dynamics, the
dynamics is nonetheless dominated by a handful of highly stable
motions, and thus statistical models of vibrational energy flow
are totally inappropriate, at least on a time scale of a few
picoseconds.

This conclusion may motivate new strategies for mode
selective chemistry. It is possible, for example, to identify pairs
of nearly isoenergetic eigenstates that are associated with
qualitatively different vibrational motions; such pairs of eigen-
states might then be expected to have exploitably distinct
chemical properties, such as rates of reaction in certain
bimolecular reactions. Our work also presents opportunities for
studying vibrational dynamics on the first excited singlet state.
The complementary DF and absorption11 experiments have
permitted the acetylene ground vibrational state structure to be
sufficiently well characterized that the pattern of emission

Figure 8. Effective frequencies of the normal and local mode motions
as a function of energy.Nb ≈ 10 marks the transition between normal
and local mode behavior, with the trans bending motion becoming local
bend, and cis bend becoming counter-rotation.

ωeff(Nb) ) (ENb+1 - ENb-1)/2 (22)
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(Franck-Condon profile and distribution of intensity within a
polyad) from an unassigned S1 vibrational level may help to
determine its assignment. Such work is currently underway in
the group of Prof. Soji Tsuchiya (Japan Women’s University).23

In a more general sense, we hope that this system will continue
to be of interest to experimentalists and theoreticians interested
in unimolecular dynamics, because very large amplitude motions
of a tetratomic molecule, at chemically significant internal
energy, are accurately represented by the model we present.

Having largely succeeded in understanding the short-time,
large-amplitude vibrational dynamics of acetylene up to 15 000
cm-1, our efforts are now focused on investigating the dynamics
at longer time scalesand at higher energies. With respect to
longer time scales, SEP spectra with (typically)>0.05 cm-1

resolution are capable of probing the dynamics of the molecule
on a time scale of<100 ps. An SEP survey spectrum spanning
the energy range 4 000-7500 cm-1 has been recorded by Prof.
David Moss in our laboratory84 and revealed nearly one-to-one
correspondence between the transitions observed in the DF and
SEP spectra; in other words, below 7500 cm-1, the SEP spectra
reveal almost no new dynamics that was not evident from the
DF spectra (one weak polyad-breaking Coriolis resonance was
observed, but only atJ > 5). However, as can be seen in Figure
9, at much higher energy (∼ 21 000 cm-1), each DF feature
corresponds to dozens of SEP transitions. Thus the SEP spectra
probe complex dynamical processes on the time scale of tens
of picoseconds that are not evident in the DF spectra (this figure
presents recent results85 on 13C2 H2, but the situation in12C2 H2

will be quite similar). Chaos may play a greater role in this
longer time scale dynamics, which is likely to be dominated by
higher order resonances, than it does in the lower energy, shorter
time scale dynamics considered in this article. However, the
ability to assign such complicated SEP spectra recorded at
energies well above the isomerization barrier is unlikely to be
possible soon. A more productive research direction may be to
search systematically for the onsets of longer time scale
dynamical processes at energies intermediate between 7500 and
15 000 cm-1, by using SEP to probe at higher resolution the
features in the DF spectra which have already been assigned to
polyads, and can be associated semiclassically with particular
types of vibrational motion. Having characterized the first
relatively weak and isolated spectroscopic manifestation of a
particular resonance (which may or may not conserve the polyad
numbers) responsible for a longer time scale dynamical process,
then the scaling associated with the resonance will provide
testable predictions for the dynamical consequences of the
resonance at higher energies.

With respect to the short-time dynamics of acetyleneaboVe
the threshold of isomerization, polyad patterns have been
identified as high in energy as 20 000 cm-1.86,87 This does not
imply, however, that localized polyad breakdown, and other
significant changes in the vibrational structure, do not occur
when isomerization first becomes energetically feasible, which
is believed to occur at∼15 200 cm-1.6 The detailed analysis
of such changes in the vibrational structure is ongoing, but some
qualitative predictions are possible. Specifically, the local bend
motions would be expected to play an important role in the
near-threshold isomerization dynamics. As illustrated schemati-
cally in Figure 1, the transition state for acetylene-vinylidene
isomerization is predicted to have a half-linear structure (as
predicted by high-level ab initio calculations3), in which one
CCH angle is∼60°, while the other is∼180°. Thus, the
minimum energy isomerization coordinate, from linear acetylene

to the transition state, can be described to a good approximation
as a local bend motion.

This observation may help to provide an explanation for some
intriguing recent experimental results by the group of Prof. Z.
Vager (Weizmann Institute), who performed Coulomb explosion
imaging experiments (CEI) on S0 vinylidene, which was
prepared by electron photodetachment of the vinylidene negative
ion (H2CC-).88 The vinylidene rovibrational states that are
populated in such an experiment are not eigenstates of the full
S0 state Hamiltonian; the vinylidene local minimum is shallow,
and tunneling interactions between acetylene and vinylidene are
expected to be substantial even for the vibrationless level of
vinylidene.2,5 Thus, the preparation of nominally vinylidene
vibrational levels will lead to wave packet dynamics that sample
both the vinylidene and linear acetylene wells. Based upon the
much larger density of linear acetylene than vinylidene vibra-
tional levels at the same energy, one might expect the vinylidene
character to be highly fractionated among many linear acetylene
states (i.e., to fall within the “strong coupling” limit89); in the
time domain, this would correspond to rapid and irreversible
isomerization from vinylidene to acetylene.

In the Vager et al. experiments, the molecular structure
associated with the evolving wave packet was probed by CEI

Figure 9. Complementary use of DF and SEP spectroscopy to study
acetylene dynamics. The spectra in each case are recorded using the
Q(1) line of the 2ν3′ band of13C2H2. Top and middle: DF spectrum
(∼16 cm-1 resolution). Bottom: SEP spectrum (∼0.15 cm-1 resolution).
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3.5 µs after the photodissociation of the vinylidene anion. If
the isomerization from vinylidene to acetylene were in fact rapid
and irreversible, a negligible fraction of the probed molecules
would be found in a configuration similar to vinylidene.
However, the CEI experiments indicated that∼50% of the
molecules could be classified as having structures more similar
to vinylidene than to linear acetylene. From this observation,
Vager et al. concluded that the vinylidene character of the zero-
order states populated in the electron photodetachment experi-
ment are distributed, on average, over 2-3 eigenstates of the
S0 surface.

The Vager et al. results are quite surprising, but if their
interpretation is proven to be correct, then they may be at least
partially explained by the conclusion of our work that the
vibrational structure of acetylene near 15 000 cm-1 does not
even remotely approach the statistical/chaotic limit, even for
the low frequency bending modes, and that a handful of stable
large-amplitude vibrational motions dominate the dynamics.
Specifically, the 2-3 states of linear acetylene into which the
vinylidene states are strongly and selectively coupled would
almost certainly have a large degree of highly excited local
bending character. Because the energy of the vinylidene zero-
point level (with respect to the acetylene zero-point level) is
not precisely established, it is not possible at this time to identify
precisely which acetylene local bending states might be coupled
to vinylidene, but it is clear that at any energy near the
isomerization transition state, the density of such states is quite
small compared with the total density of vibrational states.
Theoretical studies of acetylene-vinylidene isomerization2,90,91

will be critical in establishing more rigorously the connections
between the work reported here and the Vager et al. experiments.
We wish to point out that previous semiclassical calculations
on vinylidene-acetylene isomerization,2 which predict the decay
of vinylidene on a time scale of, at most, several picoseconds,
are not necessarily antithetical to the Vager et al. results. The
semiclassical calculations investigate the early-time decay of
the vinylidene wave packet, which may be quite fast, even if
the vinylidene character is distributed over only 2-3 eigenstates.
The fast early-time decay, however, would have to be followed
by a series of strong and regular partial recurrences (similar to
those depicted in the bottom row, second column of Figure 5,
although the recurrences would necessarily continue over a much
longer time scale than that which is displayed in the figure).
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