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A technique entitled Hybrid Linear Pattern Analysis (HLPA), which represents a combination of model-
based and pattern recognition-based approaches to the analysis of spectroscopic data, is introduced and applied
to the analysis of time-resolved infrared emission spectra of ground electronic state (X1Σ+) CO obtained in
atmospheric simulation experiments. The spectra are highly congested and consist of incompletely resolved,
overlappingV′ - V′′ ) 1 emission bands fromV′ ) 1 up to at leastV′ ) 12. The analysis of the time dependence
of the emission intensity in the various vibrational bands had been stymied by a severe optical opacity effect
in the V ) 1 f 0 emission, which is difficult to simulate; thus, conventional least-squares fitting could not
be used confidently to determine the time-dependent emission intensity of this band, or that of at least three
other emission bands that overlap strongly with it. The HLPA technique permits an alternate approach in
which theV ) 1 f 0 emission band is considered to be an unknown pattern that is identified by the Extended
Cross Correlation (XCC) pattern recognition technique (J. Chem. Phys.1997, 107, 8349). The intensity profiles
of the other bands, however, can be predicted accurately based on the experimental parameters, and this
knowledge is used in conjunction with the results of the XCC to determine the time dependence ofall of the
vibrational bands, and the intensity profile of theV ) 1 f 0 emission band.

I. Introduction

We introduce in this article a technique entitled Hybrid Linear
Pattern Analysis (HLPA), which represents a combination of
model-based and pattern recognition-based approaches to the
analysis of spectroscopic data.

Consider a spectroscopic data set in which each spectrum is
a linear superposition of a finite number of patterns. (These
patterns might be associated with, for instance, different
chemical species,1,2 polyad quantum numbers,3 or as in this
work, different vibrational bands of a single species.) A “model-
based” analysis of such a data set is possible if the patterns
(relative intensity vs frequency) that are contained in the spectra
can be predicted. The relative amplitude of each pattern in each
spectrum can then be determined by conventional optimization
procedures. Least-squares fitting algorithms4 are by far the most
commonly used for such optimizations, although robust methods
of estimation5-8 can reduce the sensitivity of the fit to outliers
(which could be due to either experimental artifacts or deficien-
cies in the model).

If, on the other hand, it is not possible to predict the number
or appearance of the patterns, then pattern-recognition techniques
may provide a successful approach to the analysis of the data
set. A wide variety of pattern-recognition techniques by now
have been applied to spectroscopic data. Among the most

common are techniques based on principal component analysis
(PCA) (see, for instance, refs 9-12); other approaches include
applications of neural networks,13 genetic algorithms,14 cova-
riance mapping,15 and the recently introduced Extended Cross
Correlation (XCC) technique.1,2 These various pattern-recogni-
tion approaches differ greatly in terms of their assumptions about
the data to be analyzed, their realms of applicability, and the
numerical algorithms used. However, most of these share the
goal of identifying unknown patterns that are repeated either
within one spectrum or among multiple spectra.

The case in which some of the patterns contained in a data
set can be predicted a priori, but others cannot, has received
less attention in the literature. One possible approach to this
type of problem is to apply one of the pattern-recognition
techniques discussed above in an attempt to identify all the
patterns in the data set, including those that are previously
known. However, it is of course advantageous to incorporate
any knowledge of the patterns into the spectral analysis. The
HLPA technique makes this possible. It uses techniques of
pattern recognition to identify the unknown patterns but
explicitly incorporates a priori knowledge of the remaining
patterns.

In Section II, we illustrate the use of this technique with
synthetic data, and in Section III with time-resolved emission
spectra of CO that were recorded in atmospheric emission
simulation experiments conducted at the LABCEDE facility at* To whom correspondence should be addressed. E-mail: rwfield@mit.edu.
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the Air Force Research Laboratory, Hanscom AFB. Details of
the experimental setup have been reported previously.16,17 In
brief, an electron beam is pulsed through a 10-mTorr sample
of CO in a cryogenic chamber. Time-resolved infrared emission
spectra of CO are recorded both during the 10-ms electron pulse
and for 86 ms afterward. The time-resolved spectra provide
information about the nascent populations and collisional
deactivation rates of the excited vibrational levels of the ground
state of CO. At least 12 excited vibrational levels of the
electronic ground state of CO can be observed to be populated
by processes initiated by the electron beam, and at the resolution
of the experiment (∼ 2.5 cm-1), the overlapping emission bands
are only partially resolved.

This data set has been partially analyzed previously with
standard least-squares procedures. As discussed in Section III,
the rotational distribution of the sample can be modeled to a
good approximation by a Boltzmann distribution that is inde-
pendent of time. Thus, vibrational emission band “basis func-
tions” can be constructed (the emission frequencies are well-
known from spectroscopic studies of CO), and least-squares
algorithms in principle can be used to fit the relative contribution
of each basis function to each spectrum and thereby to recover
the intensity of emission from the various vibrational bands as
a function of time.

However, this analysis has been stymied by an optical opacity
effect in theV ) 1 f 0 emission band. That is, although the
rotational distribution of theV ) 1 vibrational level can be
assumed to be described by the same Boltzmann distribution
as the higher vibrational levels, the frequency dependence of
the emission from this bandas seen at the detectorcannot be
predicted easily because of strong self-absorption of the emission
by ground vibrational state molecules, which are present at much
higher concentration than all excited vibrational levels. The
inability to construct a basis function for thisV ) 1 f 0 emission
band prohibits the use of least-squares fitting to determine the
time dependence of the emission intensityand that of eVery
Vibrational band that oVerlaps substantially with it. Thus, before
this work, only a limited analysis of this data set has been
possible.

Here we report a complete analysis of the CO atmospheric
simulation data using the HLPA technique. The optically thick
V ) 1 f 0 emission band is considered to be a pattern that is
repeated in more than 100 time-resolved spectra. As a first step
in the HLPA technique, the XCC pattern-recognition technique
is used to determine the time-dependent intensity of theV )
1 f 0 emission with no knowledge of its band profile. The
HLPA technique also permits a statistically rigorous determi-
nation of the time dependences of the remaining (known)
emission bands, and the band profile of the optically thick
emission.

II. Description of the HLPA Technique

In the CO atmospheric simulation experiments that are
analyzed later in this article, the information that we wish to
extract from the data is kinetic in nature: how do the emission
intensities of various vibrational emission bands change with
time? To illustrate how pattern recognition (in particular, XCC)
and the HLPA technique can assist in this analysis, we define
in Figure 1 a simulated data set that mimics several key
properties of the real experimental data. Each synthetic spectrum
is a linear superposition of the two “emission bands” in the top
panel of Figure 1. That is, if we designate the spectra by
numbers and the individual emission bands by letters, then

in which ω represents frequency (spectral element) and the
coefficients{a} and {b} represent the relative amplitudes of
the emission bands in each spectrum. Gaussian random noise
has been superimposed on each of the spectra so that the signal-
to-noise is approximately 100. In addition, in spectrum 1, we
have increased the intensity of one of the spectral elements
(number 75) by 50%. The purpose of this deliberate corruption
of the data is to illustrate the way in which the XCC and HLPA
methods deal with deviations from eq 1 that are neither small
nor random; the ability of these techniques to identify patterns
even in the presence of such “corruptions” of the data will be
critical to the analysis of the CO data set in Section III.

The simulated spectra can thus be considered to represent
three time-resolved emission spectra, and the goal of the analysis
is to determine the time dependence of the two emission bands,
as represented by the coefficients{a} and {b}. Note that we
are assuming here that the intensity vs frequency profiles of
the bands do not change as a function of time; a similar
assumption will be made in the analysis of the CO data set in
Section III. If the intensity profiles of the emission bands were
known a priori, then the task of obtaining the coefficients would
be straightforward using standard linear least-squares fitting
routines. However, in this article we are concerned with the
case in which at least one of the two emission bands A and B
is unknown. We consider first the case in which both patterns

Figure 1. Simulated patterns (top panel) and spectra (bottom panel)
for purposes of illustrating the HLPA technique. Each of the three
spectra in the bottom panel are linear superpositions of the two patterns,
plus noise.

I1(ω) ) a1Ia(ω) + b1Ib(ω)

I2(ω) ) a2Ia(ω) + b2Ib(ω) (1)

I3(ω) ) a3Ia(ω) + b3Ib(ω)
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are unknown, and demonstrate the way in which XCC can be
used to determine the coefficients{a} and{b}, as well as the
frequency dependence of the emission bands [Ia(ω),Ib(ω)], if
so desired.

From the standpoint of the XCC, the emission bands
constitute patterns that are repeated in three different spectra.
The XCC is a model-free pattern-recognition technique, and in
principle no prior knowledge of either the form or the number
of patterns that are present in the data is necessary. However,
there is one important condition for the success of the XCC:
some portion of the features in each pattern must not be
overlapped with any other pattern. There is no limit to the
number of patterns that can be identified in a set of spectra, as
long as each of the patterns conforms to this condition.

In the synthetic data in Figure 1, note that although the two
patterns overlap heavily in the central portions of each spectrum,
the intensity in the “wings” of the spectrum arises almost entirely
from one of the two patterns. For example, consider spectral
elements 0 through 30. To a good approximation, the intensity
in each of the spectra over this range arises solely from
vibrational band A:

Conversely, for spectral elements 70-100,

Thus, one could imagine determining the{a} and {b} coef-
ficients by, for instance, simply integrating the intensities of
the spectra over these spectral ranges. However, we are
assuming that the patterns are unknown, which makes it difficult
to judge, in the absence of some numerical tool, precisely which
regions of the spectra contain contributions from just one pattern
(the real experimental data analyzed in the next section are even
more challenging).

The XCC incorporates principles of robust estimation6 to
identify, in a numerically rigorous and automated way, those
regions of spectra that can be accounted for by just one pattern.
The methods of robust estimation used by the XCC have been
described in detail previously.1,2 Here, we describe only the
general strategy of the XCC, which is to repeat iteratively the
following two steps: (1) Postulate that a pattern exists in the
spectra with a given set of (relative) amplitudes in each of the
spectra (the set of relative amplitudes is called a “ratio
direction”). (2) Evaluate this postulate using a figure-of-merit
function, which we will callG.

If the set of “guessed” ratio directions is close to that for a
pattern that is actually present in the data, thenG is large;
otherwise, it is small. In practice, optimization routines are used
to search the space of all possible ratio directions and identify
all patterns present in a data set; strategies for performing this
search in high dimensionality spaces (many spectra) are
described in Ref 2. Note that the dimensionality of this search
is N - 1, whereN is the number of spectra. That is, only the
relative amplitude of a pattern among several spectra is
meaningful; the absolute amplitude of a pattern is arbitrary.

In the top panel of Figure 2 we illustrate the use of the XCC
merit function G to identify the patterns that are present in
spectra 1 and 3 of the synthetic data set. Because only two
spectra are used for this illustration, the search for patterns
occurs in a 1D space that represents the relative amplitude of
each pattern in the two spectra (we choose, arbitrarily,I3/I1 to
represent the ratio direction). Two pronounced maxima can be
observed in the merit function, which occur atI3/I1 ) 1.604

and 0.604; these correspond to vibrational bands A and B,
respectively, and compare quite favorably with the values of
1.6 and 0.6, respectively, which were used to construct the
synthetic spectra. The XCC can also be used to identify the
patterns in all three of the spectra simultaneously (this is
somewhat more difficult to illustrate in a single figure); the
results are similarly excellent, with the relative pattern ampli-
tudes (ratio directions) again determined by XCC to within 1%
of the correct values.

The definition of the XCC merit functionG also makes it
easy to identify those portions of the spectra which represent
fragments of the patterns that are uncorrupted by overlap with
other patterns. Specifically,G is defined as a sum of weight
functions (g) which are computed for each spectral elementk:

whereRb represents the ratio direction. If the relative intensities
corresponding to the pointk are close to the postulated ratio
direction, thengk is large. (The definition ofgk includes a
Gaussian function of the deviation between the observed and
postulated ratio directions.1) Thus, a maximum inG appears if
there are many points with roughly the same relative intensities
(i.e., regions of the spectra that can be accounted for by one
pattern).

In the bottom panel of Figure 2 we plot the weight functions
gk at the ratio directions corresponding to the two largest maxima
in the merit functionG that is displayed in the upper panel.
Note that neither set of weight functions includes any substantial
amplitude over the central spectral elements (40-60) in which
the two patterns overlap substantially. Note also that spectral
element 75, which was deliberately corrupted in spectrum 1,

Ik(ω) ≈ akIa(ω); (k ) 1, 2, 3)

Ik(ω) ≈ bkIb(ω); (k ) 1, 2, 3)
Figure 2. Application of the XCC technique to spectra 1 and 3 of
Figure 1. Top panel: the XCC merit functionG, as a function ofI3/I1,
which represents the relative amplitudes of a pattern in the two spectra.
Bottom panel: weight functions,gk, computed at the two largest maxima
in the XCC and plotted as a function of spectral element. The weight
functions indicate those portions of the spectra identified by the XCC
as containing contributions from only one pattern.

G(Rb) ) ∑
k

gk(Rb)
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has a weight of nearly zero in both traces; the XCC has
automatically excluded this point from its determination of the
time dependence of the pattern amplitudes. This insensitivity
of the XCC to nonidealities in the data and its ability to identify
multiple patterns simultaneously are consequences of its defini-
tion as a redescendingrobustestimator.6

At this point we have succeeded in using the XCC to
determine the time dependence of the emission from the two
different vibrational bands with no knowledge of what the
vibrational bands look like. We now demonstrate a straightfor-
ward extension of the XCC that permits the determination of
the band profiles of the two vibrational bands from the time-
dependent emission intensity. Specifically, because the coef-
ficients {a} and {b} are now known from the application of
the XCC, the set of equations labeled as eq 1 above is
overdetermined. That is, at any given value ofω, there exist
three equations with only two unknowns (Ia(ω) andIb(ω)), and
the spectra can be inverted (in a least-squares sense) to determine
the patterns, one spectral element at a time (note that this
technique of inversion from spectra to patterns is applicable
whenever the number of spectra is greater than or equal to the
number of patterns).

Figure 3 depicts the result of this inversion process. The
emission band patterns (top panel) that are inverted from the
spectra are nearly identical with the patterns in Figure 1 that
were used to construct the synthetic spectra originally. One
notable discrepancy is observable at spectral element 75; the
intensity of this spectral element in the reconstructed emission
band B differs significantly from its true value observed in
Figure 1. This discrepancy, of course, is caused by the deliberate
corruption of spectrum 1 that we performed at spectral element
75. We have noted previously that the XCC wasinsensitiVe to
this corruption of the data in its determination of the ratio

directions (time dependence of the emission bands). It may seem
paradoxical that the inversion from spectra to patterns is
sensitive to the corruption of the data, but it should be kept in
mind that the inversion is mathematically equivalent to a linear
least-squares fit, which implicitly assumes that any deviations
from the model conform to a Gaussian distribution; clearly this
is not true for spectral element 75. However, we can determine
from the inversion itself that spectral element 75 should be
treated with suspicion. In the bottom panel of Figure 3 are
plotted the residuals of the fit for spectrum 1 as a function of
spectral element. The residuals are mostly comparable to the
noise level in the spectra, except at spectral element 75,
indicating that the model (eq 1) cannot accurately represent the
data at this spectral element.

Thus, the pattern-recognition approach to the synthetic “time-
resolved emission spectra” proceeds by first identifying the
number of patterns (vibrational bands) present in the data set
along with their time-dependent amplitudes, and then using this
time dependence to extract, if desired, the frequency dependence
of the bands (i.e., their shape). This pattern-recognition approach
is conceptually distinct from the least-squares fitting techniques
that are commonly applied to this type of data set. In the
standard least-squares approach, the intensity profiles of the
emission bands A and B are calculable from a model, and these
“basis functions” are fit to each individual spectrum to determine
the time-dependent emission intensities of the vibrational bands.

A hybrid between the least-squares and pattern-recognition
approaches is possible if a situation arises in whichsome,but
not all, of the patterns that are represented in a data set are
known a priori. We already suggested in the Introduction that
such is the case with the CO atmospheric simulation data. To
illustrate the hybrid approach, we now assume that the frequency
dependence of vibrational band A in our synthetic example can
be predicted, but that of vibrational band B cannot. We begin
by writing the emission intensity in the spectra as a function of
both frequency (spectral element) and time (t):

in which a and b refer to the two emission bands as before.
Experimentally, the frequency and time dependences of the
emission are sampled only at discrete intervals. In the synthetic
data, there are three time intervals, and 101 spectral elements
(frequency intervals). Thus, 303 equations of the form

are necessary and sufficient to describe the data set. Of the
parameters in this set of equations,b(t1), b(t2), andb(t3) can be
determined from the application of the XCC, and the full set of
{Ia(ωj)} are assumed to be known. The parameters to be
determined area(t1), a(t2), anda(t3), and the set of{Ib(ωj)}: a
total of 104 parameters. Thus, the system of equations repre-
sented by eq 3 is overdetermined, and standard least-squares
algorithms can be used to determine the 104 parameters of
interest from the set of 303 equations. This somewhat uncon-
ventional application of linear least-squares is what we refer to
as Hybrid Linear Pattern Analysis.

The time-dependent amplitude of vibrational band A is
determined by the HLPA approach to bea(t1) ) 0.992,a(t2) )
1.303, anda(t3) ) 1.593, in close agreement with the values of
1.0, 1.3, and 1.6, respectively, which were used to construct
the synthetic spectra. The remaining 101 parameters determined
from the fit represent the frequency dependence of vibrational
band B, and are not depicted because they are nearly identical

Figure 3. Top panel: results of the inversion of the patterns (vibrational
emission bands) from the spectra using the coefficients determined by
XCC. Bottom panel: weighted residuals of the inversion procedure
for spectrum 1. The residuals are small and random (i.e., comparable
with the noise amplitude) over all the spectrum except at spectral
element 75, which was corrupted deliberately.

I(ω,t) ) a(t)Ia(ω) + b(t)Ib(ω) (2)

I(ωj,tk) ) a(tk)Ia(ωj) + b(tk)Ib(ωj) (3)
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with the parameters determined from the purely pattern-
recognition approach (Figure 3).

III. HLPA Analysis of CO Atmospheric Simulation
Experiments

Before presenting the HLPA analysis of the CO atmospheric
emission simulation experiments, we review briefly the motiva-
tion and experimental conditions for these experiments. Evi-
dence for very high rotational excitation, with more than 2 eV
of energy in rotation alone, has been observed in infrared spectra
of the diatomic molecules NO18 and OH19 in the atmosphere.
To model the rotationally excited populations of such species
in the atmosphere, it is necessary to measure the formation and
loss rates for the relevant molecular states, and thus it is
necessary to produce measurable populations of excited mol-
ecules in the laboratory. The present experiment on CO
represents one approach to the study of these rotationally excited
species. CO itself is an important infrared-active species in the
upper atmosphere, and significant effects on the infrared spectra
of atmospheric CO caused by optical opacity, isotopic concen-
trations, and the temperature structure of the atmosphere have
been observed.20,21

The experimental apparatus for the CO atmospheric emission
simulation experiments (the LABCEDE facility at the Air Force
Research Laboratory at Hanscom AFB) has been described
previously.16,17 In the data to be analyzed here, a 4.0-kV, 10.0-
ms electron beam is pulsed through a sample of CO at 10.0
mTorr in the cryogenic chamber. A Michelson interferometer
is used to obtain time-resolved, infrared emission spectra at 0.25-
ms intervals, both during the electron beam excitation pulse,
and for∼86.0 ms after the electron beam pulse is terminated.
Two of these spectra are depicted in Figure 4. The time-resolved
emission spectra consist of overlapping∆V ) 1 emission bands
from at least 12 excited vibrational states (V′ ) 1-12) of the
ground electronic state (X1Σ+) of CO. At the ∼2.5 cm-1

resolution of the spectra, the individual emission bands are not
well resolved in the data.

Above 2200 cm-1, several prominent band heads are evident
in the emission spectra. The band heads in CO are known to
occur at J ≈ 90 in the R branch, and thus the rotational
distribution of the CO resulting from processes initiated by the
electron beam includes very highJ states. On the other hand,
the majority of the emission below 2200 cm-1 can be accounted
for by low J (J < 15) emission. Thus, the rotational distribution
of the CO is believed to be bimodal. This behavior is consistent
with the expectation that the rates of rotational relaxation of
the high and lowJ levels are quite different. For the lowJ levels,
rotational equilibration occurs quickly (µs) with respect to the
time scale of the experiment (ms), and thus the lowJ rotational
distribution is expected to conform to a Boltzmann distribution.
Further, this distribution is, to a good approximation, invariant
throughout the experiment, because only a small fraction of the
CO molecules are excited by the electron beam, whereas the
“bath” of molecules that are not excited are rotationally
equilibrated to the temperature of the walls of the cryogenic
chamber. An effective rotational temperature of 90 K can be
determined empirically to reproduce optimally the observed low
J emission (other than theV ) 1 f 0 emission; see below).
The highJ molecules experience rotational relaxation at a slower
rate than lowerJ molecules because the level spacings at high
J are comparable with vibrational spacings. Thus, a small
fraction of the excited-state population can become “trapped”
in the highJ states, although the exact rotational distribution
(and its time dependence) are difficult to predict.

The relative populations in the highJ and lowJ levels are a
function of V and excitation time. For example, consider the
V ) 5 f 4 emission bands. At the time corresponding to
termination of electron-beam excitation, the population in the
high J levels responsible for theV ) 5 f 4 band head feature
is approximately 8% of the population that radiates in theV )
5 f 4 low J emission band (see Figure 4). If the populations
for V ) 2-5 are added together, the highJ to low J ratio
increases to about 0.16.

The five “band heads” observed in the data above 2200 cm-1

do not overlap each other substantially, and can be integrated
easily to determine their time-dependent amplitudes. The band
heads are not explicitly analyzed in the analysis presented here,
except insofar as they overlap with the lowJ bands. A more
serious obstacle to the analysis is an optical opacity effect that
is associated with theV ) 1 f 0 low J emission band. Although
the V ) 1 molecules are expected to have an effective lowJ
rotational temperature that is identical with that of theV g 2
molecules, the large relative concentration ofV ) 0 molecules
leads to an optical opacity in theV ) 1 f 0 emission bandas
seen at the detector. This optical opacity is extremely difficult
to model under the measurement conditions because, although
the density of molecules in the ground vibrational state is
essentially uniform throughout the chamber, the spatial distribu-
tion of excited-state molecules is highly nonuniform and forms
an irregular cloud of varying density along the one-meter path
of the electron beam. This path in turn obliquely intercepts the
conical viewing region.

The optical opacity in theV ) 1 f 0 emission is clearly
evident in Figure 4. Most of the emission observed in the time-
resolved spectra between 2130 and 2190 cm-1 is caused by the

Figure 4. Top: Two examples of time-resolved emission spectra
shown over a limited frequency range. Three additional band heads
can be observed in the complete spectra at higher frequencies than are
depicted here (V ) 3 f 2, V) 2 f 1, V ) 1 f 0). Bottom: Three
predicted lowJ vibrational emission bands, assuming an effective
rotational temperature of 90 K. The predicted emission bands from
V ) 2 and higher are expected to represent the data accurately, but the
predictedV ) 1 f 0 emission band does not take into account the
effects of optical opacity.
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V ) 1 f 0 emission, but the observed band shape does not
even approximately match the band shape predicted by a
Boltzmann-distribution assumption, neglecting self-absorption.
The inability to predict the frequency dependence of theV )
1 f 0 emission band implies that the time dependence of this
emission cannot be determined in a simple fashion by least-
squares fitting. In addition, theV ) 1 f 0 emission overlaps
substantially with several other emission bands, particularly the
V ) 2 f 1, V ) 3 f 2, andV ) 4 f 3 emission bands. For this
reason, the time dependence of the emission from these bands
is not easily determined using standard least-squares techniques,
despite the fact that their band profiles are known.

The HLPA technique that was outlined in Section II provides
an alternative data analysis approach, in which theV ) 1 f 0
emission band can be treated as a pattern to be identified by
XCC. The remaining lowJ vibrational emission bands, however,
need not be treated by pattern recognition, because their shapes
have been accurately determined by synthetic spectral fitting.
Thus, the HLPA technique permits the utilization of the known
band shapes, together with the time dependence of theV )
1 f 0 band determined by pattern recognition, to determine
simultaneously the remaining parameters of interest: the
frequency dependence of theV ) 1 f 0 band and the time
dependences of the remaining lowJ bands.

The pattern-recognition approach to the CO data set implicitly
assumes that the band shape of the optically thickV ) 1 f 0
emission does not change as a function of time. The exact band
shape is governed by the relative populations of theV ) 1 and
V ) 0 states, the oscillator strengths of the variousV ) 1 f 0
rotational transitions, collisional deactivation rates, transport of
molecules out of the field of view, the rotational distribution of
theV ) 1 molecules, and geometrical considerations. Of these
parameters, only the population of theV ) 1 excited state is
expected to change with time. (As with the other excited
vibrational states, the lowJ rotational distribution of theV ) 1
molecules is expected to conform to a time-independent
Boltzmann distribution.) However, the population of theV ) 1
excited state remains a small fraction of that of the ground
vibrational state, and thus all changes in the band shape are
expected to be minor. The results of the HLPA analysis
presented below support this argument.

The first step in the HLPA analysis of the CO data set is the
pattern-recognition determination of the time-dependent ampli-
tude of the optically thickV ) 1 f 0 band. As explained in
Section II, the XCC identifies patterns within a data set by
searching for fragments of the patterns that are repeated
uncorrupted (by overlap with other patterns) in each of the
spectra. As is clear in Figure 4, the optically thickV ) 1 f 0
emission band overlaps heavily with other emission bands. At
frequencies above∼2165 cm-1, theV ) 1 f 0 emission band
should berelatiVely free from overlap, although it almost
certainly overlaps with theV ) 5 f 4 band head above 2190
cm-1. In addition, the existence of aV ) 6 f 5 band head
around 2180 cm-1, obscured by the much strongerV ) 1 f 0
band, cannot be ruled out. Finally, it is difficult to determine
the exact frequency at which the optically thick band can be
assumed to be free from overlap with theV ) 2 f 1 emission
band.

We have used the XCC to determine the amplitude of the
V ) 1 f 0 emission band in more than 100 spectra, a result
that will be discussed below. First, however, we illustrate this
application of the XCC with just two spectra, in particular, the
two spectra depicted in the top panel of Figure 4, across the
frequency range 2165-2215 cm-1. Two maxima are observed

in the XCC merit function (Figure 5, top panel), indicating the
presence of two “patterns”, and in the middle panel of Figure
5, the weight functions corresponding to each of these maxima
are plotted as a function of frequency. As explained in Section
II, the weight functions indicate those portions of patterns that
are repeated, uncorrupted by overlap with other patterns, in each
of the spectra. Thus, on the basis of these weight functions, the
two maxima observed in the merit function are clearly assignable
as theV ) 1 f 0 optically thick emission and theV ) 5 f 4
band head emission. TheV ) 2 f 1 emission band is not
identified as a distinct pattern, because no regions of the spectra
exist within which this emission band is uncorrupted by overlap
with other vibrational bands. Notice, however, that the weight
functions for theV ) 1 f 0 optically thick pattern are very
nearly zero at two resolution elements below 2170 cm-1. This
observation is consistent with the optically thick pattern
overlapping with the “tail” of theV ) 2 f 1 emission band
below this frequency.

In addition, the XCC weights provide evidence for the
existence of aV ) 6 f 5 band head near 2180 cm-1. Although
the XCC weights for the optically thick pattern are not zero
near 2180 cm-1, they are substantially lower than the weights

Figure 5. Top: XCC merit functionG as a function of ratio direction
for the two spectra shown in Figure 4 over the frequency interval 2165-
2215 cm-1. The two maxima correspond to theV ) 5 f 4 band head
emission, and the optically thickV ) 1 f 0 low J emission. Middle:
XCC weight functions plotted as a function of frequency at ratio
directions corresponding to the two maxima in the top panel. Bottom:
Results of the linear inversion method.

254 J. Phys. Chem. A, Vol. 104, No. 2, 2000 Jacobson et al.



at higher and lower frequencies; this observation is consistent
with a slight “corruption” of the pattern by overlap with a weak
band head. This evidence is augmented by the application of
the linear inversion technique for pattern reconstruction (Section
II) to this frequency region. In this case, the two identified
patterns are not expected to account for 100% of the intensity
observed within the frequency interval chosen, but the linear
inversion method can be applied naively to this region anyway,
and the results are depicted in the bottom panel of Figure 5. As
expected, the “tail” of theV ) 5 f 4 band head is observed to
extend to below 2190 cm-1. A small bump is also observed in
this “reconstructed pattern” around 2180 cm-1. Although it is
possible that this bump might represent an unexpected feature
in theV ) 5 f 4 band head, the bump occurs at the frequency
at which the maximum of theV ) 6 f 5 band head is predicted
to be located. Thus, a reasonable inference is that theV ) 6 f
5 band head is present, although the emission is weak, and that
it has a time dependence that is approximately the same as that
of the V ) 5 f 4 band head. As far as either the XCC or the
linear inversion methods are concerned, patterns with identical
time-dependent amplitudes (ratio directions) are indistinguish-
able, and thus theV ) 6 f 5 andV ) 5 f 4 band heads may
be lumped together into one pattern.

Having investigated the insights that the XCC provides for
the 2165-2215 cm-1 region, we now return to the determination
of the time-dependent amplitude of the optically thickV )
1 f 0 pattern. The top panel of Figure 6 depicts the time
dependence of theV ) 1 f 0 emission intensity that is
determined by applying the XCC to 100 spectra simultaneously.
Thus, by adopting a pattern-recognition analysis of the data set,
the time dependence of theV ) 1 f 0 emission intensity has
been determined without any knowledge of the band profile.
At this point, it remains to determine the time-dependent
amplitudes of theV ) 2 f 1, V ) 3 f 2, andV ) 4 f 3

emission bands, which also could not be determined by standard
least-squares techniques because of their overlap with the
optically thick band.

The HLPA approach outlined in Section II provides a
conceptually straightforward way to determine these time
dependences. Numerically, the HLPA technique relies on the
fact that the data set can be described by a set of equations of
the form in eq 3, except that there are many more than two
patterns in the present application. If all 100 of the spectra were
included in the HLPA analysis, the total number of equations
would be∼20,000, with∼1400 unknown parameters. Obvi-
ously, the problem is highly overdetermined, but in practice
such a large fit is computationally tedious and unnecessary. The
time-resolved spectra change slowly from one time interval to
the next, and it is sufficient to choose a small subset of the
data that evenly spans the time interval in which the kinetics of
interest is played out. The calculations reported here use 10 of
the time-resolved spectra, which were chosen at 2.0-ms intervals,
from 2.0 to 20.0 ms (after the electron beam is turned on).

The bottom panel of Figure 6 depicts the frequency depen-
dence of the optically thickV ) 1 f 0 band that is determined
by the HLPA method, as well as the shape of the band that is
predicted by neglecting the effects of optical opacity. This
comparison underscores the enormity of the optical opacity and
may aid in the modeling of the self-absorption, transport, and
deactivation effects that lead to the optical opacity. Figure 7
depicts the time-dependent emission intensity from selected low
J vibrational bands, as determined by the HLPA technique. As
mentioned previously, only 10 time intervals were included in
the HLPA calculations, but the intensities of the various
vibrational bands at all other times can be determined in a
straightforward manner by least-squares fitting (because we have
now determined the frequency dependence of the optically thick
V ) 1 f 0 band). The smoothness of the curves in Figure 7
constitutes evidence that the HLPA technique provided a
physically reasonable solution. The kinetics of the system will
be analyzed in a future publication.

Finally, in Figure 8 are depicted the residuals of the HLPA
calculation for three of the 10 time-resolved spectra that were

Figure 6. Time and frequency dependences of the optically thickV )
1 f 0 emission band. Top: time dependence of the optically thick
band as determined by XCC. Bottom: frequency dependence of the
optically thick band as determined by the HLPA method, with the
frequency dependence of the band predicted by neglecting the effects
of optical opacity, for comparison.

Figure 7. Time dependence of the emission intensity from selected
low J vibrational bands as determined by the HLPA technique.
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included in the analysis, along with a spectrum takenbefore
the electron beam was turned on, for comparison. The residuals
of the fit are similar in amplitude to the “background” spectrum
at most time intervals. However, at early and late times, the
residuals above 2075 cm-1 are significantly larger than the
background noise. The structure in the residuals appears to invert
from 4.0 to 20.0 ms, and the two prominent “lobes” in this
structure line up in frequency with theP andR branches of the
V ) 1 low J emission band. We believe this implies that the
optically thick V ) 1 f 0 band profile changes slightly with
time. The structures observed in the residuals are small relative
to the integrated intensity of theV ) 1 f 0 band, and the
corresponding changes in the shape of the optically thick band
are subtle. In Figure 9 we depict the change in band shape of
theV ) 1 f 0 emission between 4.0 ms and 20.0 ms, assuming
that the structure in the residuals is due entirely to the breakdown
of the assumption of constant band shape. That is, the band
shapes that are depicted in Figure 9 were generated by adding
the residuals in Figure 8 (above 2075 cm-1) to theV ) 1 f 0
band shape that was determined by the HLPA technique (in
Figure 6). The difference in band shape between 4.0 ms and
20.0 ms is subtle but noticeable; the band shapes at intermediate
times vary smoothly between these extremes.

IV. Conclusion

Numerical pattern recognition algorithms (in particular, the
HLPA technique that is introduced here) have played a critical
role in the successful analysis of CO atmospheric emission
simulation experiments. Similar techniques may also be useful
for analyzing “field data”, such as the infrared emission spectra
of the Earth’s atmosphere that were obtained recently from the
CIRRIS 1A instrument aboard the Space Shuttle.20 Analysis of
such data is complex, because of the numerous emitting species,
each of which may have substantial populations in highly excited
rovibrational states. Spectroscopic pattern-recognition techniques
such as the XCC and HLPA may be valuable in extracting from
such data sets the relative contributions from individual chemical
species, as in Refs 1 and 2, and the various vibrational bands
belonging to a single species, as we have done here. Other
potential applications of these techniques include spectra that
are obtained for purposes of surveillance or in atmospheric
remote sensing experiments. The spectra that are obtained in
both cases frequently contain features which result from
unknown species, as well as optical opacity effects. As a result,
such spectra often cannot be analyzed with standard least-
squares techniques, and the ability of the XCC and HLPA to
identify and extract unknown patterns may prove useful in these
cases.22
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