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The reactio”®™NO~ + HA — HNO + A~ requires a spin conversion for transformation of ground-state
reactants to ground-state products. The proton-transfer efficienci#éQf with several acids (GFEO.H,

HCI, CH;CO,H, H,S, (CHs)sCSH, CHNO,, CHs;SH, CR(CH3)CHOH, CFHCH,OH, and CHOH) in the

gas phase have been measured using Fourier transform ion cyclotron resonance (FT-ICR) spectrometry. Proton-
transfer efficiency was found to vary dramatically with both the structure and acidity of HA. This variation

is attributed to different lifetimes of the collision complex.

Exothermic proton-transfer reactions between anions and 3NO™ + HA — HNO + A~ (1)
neutral acids generally occur at close to the encounter!rate,
both in solution and in the gas phase, due in part to the presence In the work reported here, isolatéNO~ ion was allowed to
of a low-energy transition state stabilized by considerable react directly with a series of acids, and the efficiency for proton
hydrogen bonding character. When a significant barrier to transfer was measured for each acid. The proton transfer rates
reaction does exist, as, for example, in proton transfers involving vary dramatically even for similarly acidic species, in strong
resonance stabilized anions, reaction rates are consequentlgontrast to those of most spin-allowed proton-transfer reactions.
reducect3 Specifically, the strong acid 4#$ (hydrogen sulfide) does not
We report a set of reactions in the gas phase in which the transfer a proton, while the slightly weaker atéd-BuSH (ert-

proton-transfer rate is measurable but slow because they requird?ty! mercaptan) transfers a proton with measurable efficiency.

a spin change in order to convert to produc&These reactions Ex?enm_ents w<|are carried outin aETIoInSFE)ec OMEGA Fourier
have very different kinetic constraints than reactions with transform ion cyclotron resonance (FT-ICR) mass spectrometer

conventional energy barriers. The results reported here dem-Ys'"9 impulse excitatiof? NO~ was generated from 40 via

— i 18
onstrate the importance of structure-dependent dynamics as Welp as shown in eq 2
as energetics in determining the overall consequences of spin

conversion. NO+e —O

Proton-transfer reactions of nitric oxide anigihO~, with O +N,0— 3NO™ )
most simple acids, eq 1, require a spin converfol® We
previously reportetf the isolation and characterization of kH 3NO- is bound by only 0.026 eV (0.60 kcal/mol) relative to

SN?i an intermediate in the gas-phase proton-transfer reactiong|eciron detachmert,and both collisional and radiative excita-
of SNO~ with HF. The reactivity of this intermediate strongly tjon leads to nonreactivNO- ion loss. A rapid decrease in

suggested that spin conversion within the-onolecule com-  3NO- signal was indeed observed in our experiments, similar
plex occurs with high efficiency. to that described by previous investigatéts*! Rate constants
for collisional 3SNO~ loss were measured against several
* Corresponding author. colliders, NO, CH;, CH,=C(CHz),, and found to be identical
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TABLE 1: Thermochemistry and Reaction Efficiency for 3SNO~ + HA — X + A~ ab
AH° PNO™ + HA — X + A")

AHa\cid
HA (kcal/moly X =1HNO X =3HNO proton-transfer efficiency

CFRCOOH 323.8 —38.7 —20.6 >90%

HCI 333.4 —-29.1 —-11.0 >90%
CH;COOH 348.1 —14.4 +3.7 40-50%

H.S 350.7 —-11.8 +6.3 not observed
(CH3)sCSH 352.0 —-10.5 +7.6 30-40%
CH3NO, 356.4 —6.1 +12.0 not observed
CH3SH 357.6 -4.9 +13.2 not observed
CF;(CH3)CHOH 360.3 —2.2 +15.9 not observed
CH,FCH,OH 371.2 +8.7 +26.8 not observed
CH;OH 380.6 +18.1 +36.2 not observed

a All energies in kcal/mol? AHacq (HNO) = 362.5 kcal/mol ¢ Ref 27.

within experimental error. Our value of#4 1 x 10711 cmé st HzS + 'NO”
is quantitatively consistent with the work of Viggiafcand
Fergusor?? who found that polyatomics are generally more
efficient for electron detachment than are rare-gas atoms.
Noncollisional ion loss, independent of background pressure, g9
varied from 7.3 to 8.6 5.2 The combined rapidNO~ loss
rate allowed us to observe only relatively fast proton-transfer
reactions, and made precise efficiency measurements difficult.

SNO~ was isolated and allowed to react individually with a
series of neutral acids, Table?®2® Enthalpies of reaction are
calculated from known thermochemis#yThe reactants are
structurally varied and span a wide range of acidity. For purposes
of this discussion, théNO~ proton-transfer results in Table 1
can be divided into four groups.

HA = CF3COH, HCI. Reaction ofNO~ with these acids

51 ¢

HS™ + 3HNO

H,S + 3NO™

can produce eithetHNO or 3HNO in an overall exothermic
reaction. Since both product spin states are energetically
accessible, observation of product ions does not require a spin HS"« THNO
conversion. In our experiments, §FOO" and CI were Figure 1. Potential energy surface for the spiforbidden proton-

; transfer reaction k8 + 3NO~ (energies in kcal/mol). The experimental
produced very near the calculated femolecule capture rag®, - . =
: . : , exothermicity for this reaction is11.8 kcal/mol. Well depths are taken
in quantitative agreement with Ferguson’s reported rate constanty. .- initio calculations.
for proton transfer with HC#82°These results demonstrate that
proton-transfer reactivity is observable on the time scale allowed
by 3NO~ autodetachment, and that proton transfer can compete
with other ion loss channef We do not have any information
regarding the spin state of the products.

HA = CH,FCH,OH, CH3OH. Production of botitHNO
and ®HNO is endothermic; only collisional detachment was
observed. These control experiments confirm that product ions
are derived from reactive collisions withlO~ and not through
another ionization mechanism, such as reaction of residoal O
ion with the neutral alcohol.

HA = CH3NO,, CH3SH, CF3(CH3)CHOH. Proton transfer
with 3NO~ is exothermic only to forriHNO. No product ion
was observed wheiNO~ was allowed to react with these acids, o o
in agreement with Grabowski's observation that collisional _ 1h€ acidities of HS andtert:BuSH are similar, and the
detachment is the only reaction betwédlO~ and CHNO, 3 diabatic proton-transfer potentials for2$1_ andtert—BuS_H are
These reactions are moderately exothermic and would be&most the same. Consequently, the singlet and triplet curve
expected to be efficient if spin conversion were not required rossings should also be very similar for these two reactions.
for proton transfer. This suggests that the more efficient proton-tra_nsfer reaction

HA = CH3COH, H>S, (CHs)sCSH. Proton transfer with of tert-BuSH is a consequence of thermal reaction dynamics,
3NO~ is exothermic only to formHNO. In marked contrastto ~ rather than some electronic factor.
the less exothermic reactions discussed above, proton transfer Consider the curve crossing region of the potential surface
occurred with acetic acid anért-BuSH, comprising the first ~ shown in Figure 2, in which HA= H,S or tert-BuSH. The
unequivocal observations of simple spin-forbidden proton- collision complex formed betweeiNO~ and HA has twé

experimentally?’ and complexation energies are taken from our
ab initio calculation$2-34 The curve crossing point represents
the highest energy species separating the reactant and product
complexes, and this curve crossing is calculated to occur only
2 kcal/mol above the reactant well. The lowest energy geometry
on the triplet potential surface has the proton significantly
transferred from KBS toward3NO~, suggesting that this curve

is best described as having a single minimum. The energetic
barrier to proton transfer within the triplet complex is therefore
expected to be very small. The singlet curve is very exothermic
(30 kcal/mol), and the lowest energy singlet complex shows
the hydrogen atom completely transferredttiNO.

transfer reactions involvingNO~. The reaction betweenJ3 energetically accessible exit channels: dissociation to separated
and 3NO~, however, does not give any observable proton reactantskgiss and spin-forbidden proton transfég:.36 The
transfer. proton-transfer efficiency is the ratio & to the sum of the

The proton-transfer potential surface fopSH+ 3NO~ is rate constants for both exit channels from the reactant well, eq

shown in Figure 1. Reactant and product energies are known3.
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