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We present two relativistic correction schemes to account for the relativistic effects on one-bond metal-
ligand couplings. On the basis of the Pauli Hamiltonian, the first method is a direct analogue to the
nonrelativistic spin-spin coupling approach. In the second method, however, only the s-orbital contraction
of the coupling metal atom is taken into account in computing the Fermi-contact contribution. These schemes
are applied to the calculation of metal-ligand reduced coupling constants1K(M-L) in some group 4 and 12
hyrides, alkyl complexes, and cyano complexes, as well as some platinum ammine and platinum phosphine
complexes. It is shown that the second approximate method, a refined version of the “hydrogen-like” relativistic
correction suggested by Pyykko¨, gives greater improvement over the nonrelativistic values and agrees better
with experiments. Finally, the connection between the trans influence and coupling constants is discussed in
the context of some square-planar platinum complexes.

I. Introduction

The rapid development of high-speed computing resources
and the recent advances in ab initio and density functional theory
(DFT) have enabled the theoretical prediction and interpretations
of NMR chemical shifts and indirect spin-spin coupling
constants. Since NMR parameters are used extensively by
experimental chemists to identify and probe the structure of
inorganic and organic compounds, the importance of their
theoretical study cannot be overestimated. Over the past few
years, a large number of papers have been published on
calculations of NMR chemical shifts or shieldings. The inter-
ested reader may refer to the recent review articles by Helgaker1

and Jameson.2 In contrast, the theoretical aspects of nuclear
spin-spin couplings have not yet attracted as much attention.
So far, approaches based on the traditional ab initio methods
such as CCSD,3,4 MCSCF,5 and MP26 have been developed.
Because of the high computational demand of these methods,
the applications are, however, restricted to selected diatomic
molecules, second-row hydrides and a few small organic
molecules.1 More recently, the implementations in the DFT
framework were reported by Malkin et al.7 as well as by Dickson
and Ziegler.8 The latter implementation was later applied by
us9 to the study of nuclear spin-spin couplings in a series of
transition-metal complexes. This work has demonstrated the
ability of the currently used nonrelativistic DFT-based tech-
niques to provide quantitative predictions of the coupling
constants between 3d transition metals and directly bonded
ligand atoms such as carbon, oxygen, fluorine, and phosphorus.
The fact that the nuclear spin-spin interactions involving
oxygen and fluorine are less well described by the present
methodology can be attributed to the deficiency of the existing
exchange-correlation functionals in dealing with large electron
correlations10 and to the lack of the current dependency.11

Further, the comparison of the nonrelativistic predictions with
experimental coupling values for 5d-transition-metal systems
in this work9 suggested that relativistic treatment is required
for a quantitative description.

The study of relativistic effects on the indirect nuclear spin-
spin coupling has rarely been attempted in the literature. In the

seventies, Pyykko¨ et al. introduced a multiplicative “hydrogen-
like” relativistic correction factor, originating from Breit, to
account for the relativistic effects in Fermi-contact contribution
to the nuclear couplings.12-14 Later, Pyykkö developed a
relativistic analogue15 of Ramsey’s spin-spin coupling expres-
sion,16 which in the early eighties was incorporated into the
semiempirical relativistic extended Hu¨ckel (REX) method.17

With this approach, Pyykko¨ and Wiesenfeld calculated one-
bond couplings in some small main-group compounds.17,18The
relativistic increase in1J(M-H) and1J(X-C) was found to be
approximately 30% for SnH4 and Sn(CH3)4, as well as more
than 125% for the analogous lead compounds. They also found
that the relativistic isotropic coupling constant is dominated
invariably by the term, which has the nonrelativistic Fermi-
contact (FC) origin. Recently, Kirpekar et al.19 has applied the
MCSCF method to investigate spin-orbit effects on the
coupling constants in XH4. The spin-orbit contribution to
1J(M-H) was shown to be very small, amounting to about 1%
for SnH4. The findings by Pyykko¨ and Kirpekar et al. imply
that the relativistic alteration of the coupling constant may be
recovered by a scalar relativistic correction to the FC term
without resorting to the two- or four-component relativistic
coupling formalism. In the present work, we shall follow this
idea and develop some simple relativistic correction schemes
to account for the relativistic effects on the metal-ligand
coupling constant.

In Ramsey’s nonrelativistic nuclear spin-spin coupling
theory,16 there are four terms contributing to the indirect nuclear
spin-spin coupling constant: the Fermi-contact and spin dipolar
(SD) terms arising from the spin of the electron and the para-
and diamagnetic spin-orbit terms originating from the orbital
motion of the electron. The FC operator takes effect whenever
there is a finite electron density (s orbitals) at one nucleus and
creates a net spin density (in a closed-shell molecule), which
then interacts with the magnetic dipole of the second nucleus.
The FC term gives in most cases the dominant contribution and
is particularly sensitive to relativistic effects as a result of the
orbital and bond length contractions. Bond length shortening
can be taken into account by making use of experimental
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geometries in the calculation. In the present paper, the remaining
relativistic effects on the FC term can be accounted for to a
first approximation by the following two approaches based on
the nonrelativistic coupling formalism. The first approach
involves the quasi-relativistic Pauli Hamiltonian20-23 and is a
straightforward analogue to the nonrelativistic method. The
second scheme treats the effect of (s) orbital contraction on the
FC term explicitly by replacing s-orbitals in the self-consistent
nonrelativistic Kohn-Sham orbitals by the relativistic ones
without changing the orbital expansion coefficients. We will
describe in detail these two relativistic correction schemes in
section II. In section III, we will test these schemes by
calculating the metal-ligand coupling constants1J(M-L) in a
series of group 12 and group 14 alkyl, cyano, and hydrido
complexes. In section IV, we will further validate the relativistic
correction schemes on couplings involving a platinum atom and
examine the connection between trans influence and spin-spin
couplings.

II. Computational Methods and Details

A. Quasi-Relativistic Kohn-Sham Method. Perhaps one
of the most successful approaches to include relativity due to
the first-order (1/c2) relativistic operators is the frozen-core-
based quasi-relativistic (QR) method. In the QR method, unlike
in other perturbation approaches, the relativistic corrections to
the valence density due to the first-order relativistic operators
are calculated variationally up to all orders. Consequently, the
total Kohn-Sham electronic energy can be written as a
functional of the quasi-relativistically modified density:24

where the sum in the second term runs over occupied valence
electrons and the constant core terms are omitted from both of
the terms here. Given in atomic units, the first-order relativistic
operator

contains the mass-velocity operator

the Darwin operator

and the spin-orbit (SO) operator

whereVN and Vel refer to the nuclear and electron potential,
respectively.σb is the electron spin operator.hQR is the one-
electron form of the Pauli Hamiltonian. However, combined
with the frozen-core approximation, the QR method elegantly
bypasses the unboundness problem inherent in the Pauli
Hamiltonian. In eq 1,ENR[FQR] is the nonrelativistic energy
expressed in terms of the quasi-relativistic Kohn-Sham orbitals

that are obtained as the solution to the quasi-relativistic Kohn-
Sham equation

by requiring thatEQR[FQR] is minimized with respect to the
quasi-relativistic valence densityFV

QR given as

The QR Kohn-Sham operator can be written as

with hNR(rb1) representing the nonrelativistic Kohn-Sham opera-
tor.25 For closed-shell systems, spin-orbit effects can often be
neglected andhQR(rb1) is replaced by the scalar relativistic (SR)
operatorhSR(rb1) that includes only the MV and Darwin terms.
The related SR Kohn-Sham operator serves as a basis of our
relativistic modification schemes.

B. Formulation of the Scalar Relativistic Correction
Schemes.In nonrelativistic theory, the four operators (FC, PSO,
DSO, and SD) that give rise to the nuclear spin-spin coupling
can be derived from the nonrelativistic Hamiltonian by applying
the minimal coupling (pb f pb + eAB) to the momentum operator
and including an extra term that accounts for the interaction
between the electron spin and the magnetic field due to nuclei
(σb‚BB). These operators are widely known as hyperfine terms,
since they describe the interaction between electrons and nuclei.
These interactions then give rise to the indirect nuclear spin-
spin coupling via the so-called double perturbation. Rigorously,
the relativistic spin-spin coupling constant should be calculated
from the relativistic hyperfine terms, which can be derived from
the Dirac Hamiltonian or some approximate two-component
Hamiltonian such as ZORA.26 Because relativistic hyperfine
terms require at least a two-component wave function, calcula-
tion of the spin-spin coupling is often very time-consuming.
The goal of this work is, however, to devise some approximate
schemes that can account for most of the relativistic effects on
the nuclear coupling while still maintaining the computational
ease of the nonrelativisitc approach. As stated in the previous
section, the mass-velocity correction and Darwin term introduce
the major scalar relativistic modifications to the electronic
structure. This would in turn influence the nuclear spin-spin
couplings even if the hyperfine interactions stay formally
unaltered. On the basis of these considerations, our first approach
(we shall call it SRI) to estimate relativistic effects on the
coupling constant involves the scalar QR Hamiltonian and
utilizes the nonrelativistic hyperfine operators. Here, the scalar
relativistic reduced spin-spin coupling tensor is expressed as
the second derivative of the scalar QR energy:

In eq 9,ESR is the total scalar relativistic electronic energy,i
and j run over the three Cartesian components, andµA

i andµB
j

represent the magnetic moments due to nuclei A and B,
respectively. The evaluation ofK(A,B)ij

SRI follows the same
procedures9 as for the nonrelativistic coupling tensor, except
that now the unperturbed orbitals are derived from the QR
Hamiltonian. Also, the FC perturbation is now added to the QR

EQR[FQR] ) ENR[FQR] + ∑
i

nval∫drb1 Ψi
QR/hQRΨi

QR (1)

hQR ) nMV + hDar + hSO (2)

hMV ) - 1

8c2
pb4 (3)

hDar ) 1

8c2
∆(VN + Vel) (4)

hSO ) 1

4c2
σb‚[∇B(VN + Vel) × pb] (5)

fQRΨi
QR( rb1) ) εi

QRΨi
QR( rb1) (6)

FV
QR( rb1) ) ∑

i

nVal

Ψi
QR*( rb1)Ψi

QR( rb1) (7)

fQR( rb1) ) hNR( rb1) + hQR( rb1) (8)

K(A,B)ij
SRI ) ∂

2ESR

∂µA
i
∂µB

j |
µiA)µjB)0

with i, j ∈ {x, y, z}

(9)
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KS operator to yield the perturbed spin density matrix. Thus,
the isotropic DSO and PSO contributions can be written in SI
units as

and

where

In the equations above,Ψk
QR denotes the unperturbed QR KS

orbitals obtained via eq 6 andâ and µ0 represent the Bohr
magneton and vacuum permeability, respectively. The final
formula for the FC contribution is given by

with Prs
QR,(µi

A,FC) being the first-order spin-density matrix on the
basis of QR atomic orbitalsφr

QR(rb) and is determined via

wherePrs
R(λ) andPrs

â (λ) are the perturbed density matrix forR
andâ spins, respectively. These density matrices are constructed
from the perturbed KS orbitals obtained by solving the KS
equations with a finite Fermi-contact perturbation self-consis-
tently:

Here,λ is the finite perturbation parameter,fQR[FQR] is the scalar
KS operator as a functional of the unperturbed QR density, and
δ(rA) is the Dirac delta function. The subscript FC is used for
KS orbital functions and energies to emphasize that they are
perturbed by the Fermi-contact term.

Relativity has impact on each of the three contributions to
the nuclear coupling. However, the relativistic correction to the
FC contribution is presumably the largest for two reasons. First,
the FC term is the predominant contributor to the total coupling.
Second, since the FC operator describes the electron-nuclear
interaction at the nuclear site, the FC contribution is most
sensitive to relativistic effects. According to eq 13, the FC
contribution suffers the relativistic orbital contraction, which
affects both the first-order spin-density matrixPrs

(µi
A,FC) and the

atomic orbital values:φr(rb) rbB) andφs(rb) rbB). However, since
we are dealing with couplings involving only one heavy atom,

we can deliberately choose the light atom as the perturbing
center A and neglect the relativistic effects on the first-order
density matrix due to the perturbation of the light atom. In other
words, we need to take into account only the relativistic effects
onφr(rb) rbB) andφs(rb) rbB). Our previous experience has shown
that choosing the lighter atom as the perturbing center gave rise
to results that are numerically stable with respect to computa-
tional parameters.9 On the basis of these considerations, we can
write down an approximate form for the relativistically corrected
FC contribution as

where φr
QR(rb ) rB) is obtained from the QR calculation for

atomic B, andPrs
NR,(µi

A,FC) corresponds to the nonrelativistic
form of eq 14. In contrast to the SRI approach, the SRII scheme
is computationally less expensive, because only QR atomic
calculation is required in addition to computing the nonrelativ-
istic spin-spin coupling.

C. Computational Details.All calculations were performed
using the NMR spin-spin coupling code,8,27 which was
implemented within the Amsterdam density functional (ADF)
package.28,29 The SRII correction was carried out with an
auxiliary program. We chose the all-electron triple-ú plus double
polarization (ADF set V) basis for the coupling ligand atoms,
while for the metal and other ligand atoms the frozen-core
triple-ú plus single polarization (ADF set IV) basis sets were
employed. The valence space for the coupling transition and
main-group metals contains subvalence in addition to the true
valence electrons. In the self-consistent finite perturbation
procedure of calculating FC contribution, the ligand atoms were
always used as the perturbing center9 and the perturbation
parameter was set to 10-3.

In the calculation of coupling constants involving main-group
elements, the experimental structure parameters from the
following references are used: ref 30 for CH4; ref 31 for SiH4,
GeH4, and SnH4; ref 32 for Zn(CH3)2 and Cd(CH3)2; ref 33 for
Hg(CH3)2; ref 34 for [Zn(CN)4]2-; ref 35 for [Cd(CN)4]2-; ref
36 for [Hg(CN)4]2-. For PbH4 the theoretically optimized bond
length from ref 37 is adopted.

In the calculation of couplings involving the platinum atom,
the structural data for [Pt(NH3)4]2+ and Pt(PF3)4 are taken from
refs 38 and 39, respectively. The metal-ligand bond distances
as well as angles between them forcis-, trans-PtCl2(PMe3)2,
and cis-,trans-PtCl4(PEt3)2 are taken from ref 40, while the
metric data for the ligands are taken from compilations of crystal
structure data.41 For cis- and trans-PtCl2(NH3)2, we assume
R(Pt-N) ) 2.05 Å, R(Pt-Cl) ) Å, θ(NPtN) ) 90°, R(N-H)
) 1.01 Å, andθ(NPtN) ) 109.5° based on the crystal structure
data41,42 and theoretical calculation.43 The structural data for
cis- andtrans-PtH2(PMe3)2 are taken from ref 44, where the
Pt-H bond distance for the cis isomer is computationally
optimized.

III. Results and Discussions

A. Couplings to Main-Group Metals. To test the scalar
relativistic correction schemes described in the last section, we
calculated the one-bond coupling constants for a series of group
4 and 12 compounds. Table 1 presents the total coupling
constants obtained with the nonrelativistic method (KNR) and
the quasi-relativistic scalar corrections SRI (KSRI) and SRII

K(A,B)ii
SRI,DSO)

µ0
2e2

16π2me

∑
k

occ∫Ψk
QR*( rb1)

( rbA‚ rbB) - rA
i rB

i

rA
3rB

3
Ψk

QR( rb1) drb1 (10)

K(A,B)ii
SRI,PSO)

-2(µ0â

2π )2

∑
k

occ

∑
l

vir ∫Ψk
QR*( rb1)h

(µi
A,PSO)Ψ1

QR( rb1) drb1

εk
QR - εl

QR
×

∫Ψl
QR*( rb1)h

(µi
B,PSO)Ψk

QR( rb1) drb1 (11)

h(µi
A,PSO) ) 1

rA
3
( rbA × ∇B) and h(µi

B,PSO) ) 1

rB
3
( rbB × ∇B)

(12)

K(A,B)ii
SRI,FC)
2µ0â

3
∑

r

AO’s

∑
s

AO’s

Prs
QR,(µi

A,FC)
φr

QR( rb ) rbB)φs
QR( rb ) rbB) (13)

Prs
QR,(µi

A,FC) )
Prs

QR,R(λ) - Prs
QR,â(λ)

λ
(14)

{fQR[FQR] + λδ(rA)σz}Ψk
FC ) εk

FC Ψk
FC (15)

K(A,B)ii
SRII,FC )

2µ0â

3
∑

r

AO’s

∑
s

AO’s

Prs
NR,(µi

A,FC)
φr

QR( rb ) rbB)φs
QR( rb ) rbB) (16)
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(KSRII) in comparison with experimental values (Kexp). Overall,
the SRII scheme gives better results than the SRI method. It
can also be seen that relativity already starts to take effect on
couplings involving the fourth-row elements such as Zn and
Ge. An increase of 15% seems to be an average for couplings
to H or C. For the sixth-row elements Pb and Hg, the SRII
scheme enhances the total coupling constants by 70%, 96%,
and 70% for PbH4, Hg(CH3)4, and [Hg(CN)4]2-, respectively.
With the experimental values as reference, a factor of 2 seems
to be appropriate as a rough estimate of the relativistic increase.
If this were true, then we could ascribe the large discrepancy
between the predicted and measured coupling constant in Pb-
(CH3)4 to the underestimation before relativistic effects are taken
into account. According to the nonrelativistic calculation, a
relativistic increase factor of 550% would be anticipated to
recover the experimental value, which seems to be unreasonable.

Because of their simplicity, group 4 tetrahydrides are perhaps
the best model compounds for investigation of relativistic effects
due to a heavy metal on the spin-spin coupling. For the purpose
of assessing the quality of the DFT-based calculations and
studying the effects of electron correlation, we carried out
calculations with several different XC functionals. These include
LDA45 and GGA-type functionals due to Becke and Perdew
(BP86),46,47Perdew and Wang (PW91),48 and Becke, Lee, Yang,
and Parr (BLYP).46,49It is found that LDA gives results roughly
10% smaller than BP86, while other GGA functionals yield
values very close to BP86. Therefore, we shall focus on
comparison of the BP86 and LDA results. In Table 2, all
contributions obtained with BP86 and LDA without relativistic
corrections are presented. We also show the few available
numbers from the MCSCF calculations.19 Comparing LDA with
BP86, we note that all FC and PSO contributions from the BP86
calculations are larger in magnitude. The DSO contributions
are numerically very small and will therefore not be discussed.
The change in the FC contribution induced by the gradient
correction (also called nonlocal correction) to the density
functional can be attributed to the change in electron density
due to the gradient correction. Fan and Ziegler50 have shown
that nonlocal corrections generally increase the density at the
core region and the valence tail. Since the FC contribution is

extremely sensitive to the change in the core region of the
valence orbitals, the increase due to nonlocal corrections is
readily understandable. The fact that the BP86 results compare
better with experimental values is another proof that nonlocal
corrections are important for describing sensitive molecular
properties such as nuclear couplings. Comparing DFT results
with Hartree-Fock (HF) and post-HF results, we find that for
the PSO and DSO contributions, which are singlet properties,
DFT agrees extremely well with the HF-based methods. For
FC contributions, a triplet property, DFT generally gives lower
values than RPA- and MCSCF-based approaches. The only
exception is SiH4, where BP86 yields a higher coupling constant
than CAS B does. It is interesting to note that the nonrelativistic
MCSCF calculations agree perfectly with experiments for GeH4

and SnH4 and as a consequence leave no room for any
relativistic corrections in contrast to DFT calculations. However,
as mentioned before, it seems peculiar that our scalar relativistic
scheme does not give any correction to the coupling1K(Sn-
H). Also, even with relativistic correction, DFT-based1K(Ge-
H) is smaller than the measured value. All these facts indicate
that there is an underestimation on the nonrelativistic level for
the DFT approach. However, since, as seen from Table 2, the
spin-orbit effects are of no importance for all couplings, and
there are no scalar relativistic ab initio results available, it
remains unclear to which extent the DFT results are underes-
timated.

Finally, we shall give some comments on the relativistic
effects on the spin-spin coupling and try to understand why
the SRII correction scheme works better. As already known,51

effects of relativity manifest themselves in both the molecular
geometry and electronic structure. The former can be observed
in the contraction of the bond length when one (or both) of the
bonding atoms belongs to the fifth-row or higher elements in
the periodic table. The latter gives rise to the orbital contraction
and stabilization (s and p) as well as the orbital expansion and
destabilization (d and f). It seems surprising that although the
relativistic effects on KS orbitals are fully taken into account
in our SRI scheme, it gives less improvement than the SRII
scheme where only the s-contraction is accounted for. This may
be attributed to the deficiency in the current implementation of
the quasi-relativistic approach, where the valence orbitals are
subjected to the relativistic core potential but orthogonalized

TABLE 1: Calculated One-Bond Reduced Coupling
Constants (in 1019 J-1 T2) for Some Main-Group 2 and 16
Compounds Using the Nonrelativistic Method and SRI and
SRII Schemes

molecule coupling Kexp KNR KSRI KSRII

SiH4 K(Si-H) 84.79na 88e 87f 89g

GeH4 K(Ge-H) 232b 188 207 217
SnH4 K(Sn-H) 431a 294 304 293
PbH4 K(Pb-H) 923c 501 629 851
Ge(CH3)4 K(Ge-C) 86 89 108
Sn(CH3)4 K(Sn-C) 302d 195 187 201
Pb(CH3)4 K(Pb-C) 396d 72 -147 207
Zn(CH3)2 K(Zn-C) 299 309 349
Cd(CH3)2 K(Cd-C) 797e 485 488 634
Hg(CH3)2 K(Hg-C) 126e 666 460 1309
[Zn(CN)4]2- K(Zn, C) 465e 405 449 458
[Cd(CN)4]2- K(Cd, C) 855e 648 794 821
[Hg(CN)4]2- K(Hg, C) 2832e 1039 1471 1857

a From ref 59.b Form ref 60.c Taken from the measured coupling
constant1J(Pb-H) in PbH(CH3)3.61 d From ref 62.e From ref 63.f KNR

) KPSO
NR + KDSO

NR + KFC
NR

, where KPSO
NR , KDSO

NR , and KFC
NR are evaluated

according to eqs 10, 11, and 13, respectively, over nonrelativistic
orbitals.g KSRI ) KPSO

SRI + KDSO
SRI + KFC

SRI
, whereKPSO

SRI , KDSO
SRI , andKFC

SRI are
evaluated according to eqs 10, 11, and 13, respectively, over scalar
relativistic orbitals.f KSRII ) KPSO

NR + KDSO
NR + KFC

SRII, where KFC
SRII is

evaluated according to eq 16.

TABLE 2: Comparison of DFT, HF, and Post-HF
Calculationsa for One-Bond Coupling Constants in Group 4
Tetrahydrides

complex method KFC
NRKPSO

NR KDSO
NR Ktot

NR Kcorr
rel b Kexp

SiH4 BP86 88.3 -0.170 0.013 88.1 0.5 84.79
LDA 75.9 -0.144 0.014 75.7 1.2
RPA 96.64 -0.138 0.0084 96.51 0.025
CAS B 78.21 -0.084 0.0126 78.14

GeH4 BP86 189.0 -0.482 0.019 188.5 28.2 232
LDA 170.0 -0.362 0.016 169.65 25.6
RPA 300.74 -0.547 0.0238 300.22 0.169
CAS B 232.66 -0.499 0.0238 232.18

SnH4 BP86 295.5 -1.221 0.013 294.3 -1.3 431
LDA 266.7 -1.074 0.013 265.6 0.6
RPA 485.48 -1.394 0.0067 484.09 4.71
RAS B 421.75 -1.227 0.0067 420.53

PbH4 BP86 504.3 -2.81 0.010 501.5 349.2 923
LDA 442.1 -2.54 0.010 439.6 312.3

a Results taken from ref 19; RPA refers to the lower level random-
phase approximation (RPA) while CAS B and RAS B refer to the
correlated results with CAS B and RAS B as reference MCSCF wave
functions.b Scalar relativistic corrections with the SRII scheme are listed
for BP86 and LDA calculations. The spin-orbit corrections are shown
for RPA results.
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onto the nonrelativistic core orbitals. Also, it is difficult to justify
whether the simple incorporation of the nonrelativistic hyperfine
terms to the Pauli Hamiltonian is an appropriate approach to
satisfactorily treat the relativistic effects on the spin-spin
coupling. On the other hand, the consequences of the ap-
proximate SRII approach are more apparent, since it only
accounts for the s-orbital contraction, which is the predominant
relativistic effect on the contact-type nuclear spin-spin interac-
tions.

B. Couplings to Platinum. To examine the validity of the
proposed relativistic correction scheme SRII for couplings
involving transition metals, we have performed calculations on
some platinum complexes. Table 3 presents both predicted and
experimental1K(Pt-N) and1K(Pt-P) for some platinum amine
and platinum phosphine complexes. Again, it can be seen that
the SRII correction is able to recover most of the anticipated
relativistic increase with an average deviation of around 25%
from experiment, whereas the SRI method fails completely.

By comparingKSRII/KNR with Kexp/KNR, Figure 1 shows how
the calculated relativistic correction is related to the experi-
mentally predicted relativistic increase. From the shape of the
curve KEXP/KNR it is obvious that the extent of relativistic
modification depends on the chemical environment of the
coupling nucleus. This can certainly not be described by the
“hydrogen-like” relativistic correction of Pyykko¨,12-14 where a
multiplicative factor is assigned for each heavy metal and
applied on top of the nonrelativistically calculated total coupling
constants. In contrast, our SRII correction can mimic the trend
of relativistic influence in different ligand environments to a

certain degree. Evidently, our correction is more flexible than
the “hydrogen-like” correction.

The thermodynamic trans influence, defined as the extent to
which a ligand labilizes the bond opposite to itself in the ground
state, is a well-established concept in transition-metal chemis-
try.52,53The trans influence is experimentally measurable through
the use of X-ray cyrstallography, vibrational spectroscopy,
nuclear magnetic resonance, nuclear quadrupole resonance, and
photoelectron spectroscopy. The order of trans influence
obtained by these techniques for common ligands is similar but
not unique since it reflects one or more aspects of the electronic
structure of the complex. Maybe the most widely known trans
influence series is provided by the determination of the bond
length M-A that is trans to the influencing ligand L. Conse-
quently, ligands such as amine, chloride, phosphine, and hydride
in square-planar Pt(II) complexes can be placed in the order of
their structural trans influence as52 NH3 ≈ Cl- < PR3 < H-.
In our discussion, we will refer to the influencing ligand L as
the ligand that excerts a stronger trans influence according to
this series.

The connection between the trans influence and the magnitude
of NMR coupling constants for stereoisomers of platinum
square-planar and octahedral systems was discussed in refs 52,
54, and 55. Thus, for the complexes PtCl2(PR3)2, a greater value
of 1K(Pt-P) is always observed for the cis isomers than for the
trans isomers. It was proposed that the trans influence of a ligand
is to reduce the s-character of the platinum hybrid orbital and
consequently to decrease the coupling between platinum and
phosphorus.56,57However, until now, no first-principles calcula-
tion has addressed this issue. Therefore, it seems worthwhile
to investigate this relation through DFT-based calculations. The
first important question in this conjunction is whether the
difference in the coupling constant for cis and trans isomers
can be ascribed to the difference in the bond distance due to
the structural trans influence as addressed in ref 54. For this
purpose, we shall examine how the calculated1K(Pt-P) changes
at various bond lengths, angles, and geometrical arrangements.

It can be seen that, ifR(Pt-P) is increased from 2.25 Å in
the equilibrium geometry ofcis-Cl2(PMe3)2 (1), to 2.31 Å in2,
1K(Pt-P) decreases from 1609 to 1471 (1019 J-1 T2). At this
new bond distanceR(Pt-P), if R(Pt-Cl) is shortened to 2.31
Å, and the anglesθ(P-Pt-P) andθ(Cl-Pt-Cl) are arranged
to be 90° in 3, 1K(Pt-P) reduces further to 1203 (1019 J-1 T2),
which is about 25% lower than the value at the equilibrium
geometry1. Finally, keeping the bond lengths and angles fixed,
if the position of one chlorine ligand is exchanged with that of
one phosphine ligand (4, the equilibrium geometry oftrans-
PtCl2(PMe3)2), 1K(Pt-P) reduces further by about 20% to 892
(1019 J-1 T2). Similar calculations have also been conducted
for PtH2(PMe3)2 isomers. They reveal a variation of1K(Pt-P)
from 654 at the cis geometry,5, over 430, at the bond distance
and angles from the trans configuration,6, to 839 (1019 J-1 T2),
at the trans geometry,7. Thus, apart from the outcome of the
structural trans influence, there is a more important electronic
factor that determines the spin-spin coupling in these square-
planar systems. This factor explains the change in the coupling
in going from the cis isomer3 to the trans isomer4, or from 6
to 7. We shall in the following borrow the idea from Burdett
and Albright58 to rationalize this electronic influence.

For an ideal trans complex with symmetryD2h, the σ
interactions between metal and ligands give rise to three ligand-
based occupied MO’s: 1ag, 2ag, and b3u, and the corresponding
metal-based antibonding virtual orbitals (see Figure 3). Here,
it is assumed that the trans influencing ligand is L2, identical to

TABLE 3: Calculated One-Bond Reduced Coupling
Constants (in 1019 J-1 T2) for Some Platinum Complexes
Using the Nonrelativistic Method and Scalar Relativistic
Correction SRI and SRII Schemes

molecule coupling Kexp KNR KSRI KSRII

[Pt(NH3)4]2+ K(Pt-N) 1089a 605 599 999
c-PtCl2(NH3)2 K(Pt-N) 1154b 411 150 730
t-PtCl2(NH3)2 K(Pt-N) 1059b 496 368 891
Pt(PF3)4 K(Pt-P) 6215c 2981 3770 5433
c-PtCl2(PMe3)2 K(Pt-P) 3316d 1487 1609 2286
t-PtCl2(PMe3)2 K(Pt-P) 2267d 867 892 1433
c-PtH2(PMe3)2 K(Pt-P) 1786d 893 654 1474
t-PtH2(PMe3)2 K(Pt-P) 2472d 1200 839 1832
c-PtCl4(PEt3)2 K(Pt-P) 1976e 946 978 1602
t-PtCl4(PEt3)2 K(Pt-P) 1386e 695 626 1131

a From ref 64.b From ref 65.c From ref 66.d From ref 55.e From
ref 54.

Figure 1. Correlation between the calculated and experimentally
predicted relativistic increase in coupling constants for some platinum
complexes.
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L4, and the influenced ligand is L1, identical to L3. Obviously,
2ag is the orbital that contributes to the spin-spin coupling.9

Now if the ligand L2 is replaced with L2′, which has a higher
electronegativity or a lowerσ-donor ability, the symmetry of
the system is reduced toC2V, with L2′-M-L4 as theC2 axis.
Consequently, the initial b3u orbital becomes a total symmetrical
orbital 3a1 and can be perturbed by the virtual orbital 2a1* to
form a new orbital, which represents the bonding interaction
of the metal hybrid spx orbital with theσ ligand orbitals trans
to each other (L2′ and L4), as shown in Figure 4.

This perturbation is favored because of the small energy gap
between the high-lying occupied orbital 3a1 and the low-lying
virtual orbital 2a1*. Since L2 has a higher electronegativity, the
phase of the mixing is determined such that the resultant orbital

has a larger electron density at L2. It is clear from the shape of
this orbital that there is a large overlap population between the
metal s-orbital and theσ-orbital at L4, and hence it can add to
the FC term of the M-L4 spin-spin coupling. In other words,
1K(M-L4) becomes larger if the trans ligand L2 is replaced by
a weakerσ-donor ligand L2′. This predicts that1K(M-L4) in
trans-PtCl2(PMe3)Cl should be larger relative to that intrans-
Pt Cl2(PMe3)2, as Cl- is a weakerσ-donor.

Let us examine now the situation when the position of L2 is
switched with that of L1. In this case, the molecule still
transforms asC2V, but with theC2 axis cutting through the two
identical ligands. Consequently, the initial 2ag* orbital will mix
with an occupied orbital that is a linear combination of the initial
orbitals b2u and b3u and gives rise to a new bonding orbital that
contains a large overlap population between the metal s-orbital
and both of theσ-orbitals from L4 and L2 (see Figure 5).
Therefore, the coupling1K(M-L4) is anticipated to increase with
respect to the original trans configuration. This explains why
1K(M-P) is larger than incis-PtCl2(PMe3)2 in its trans isomer.

After establishing the link between electronic trans influence,
σ-donor ability, and the magnitude of spin-spin coupling
constants, we can understand the results for other stereoisomers
of Pt(II) and Pt(IV) complexes. Our calculations show a slightly
larger coupling fortrans- than forcis-PtCl2(NH3)2 (see Table
3). However, experimental values give a reversed trend. This

Figure 2. Dependence of the coupling constants (calculated with SRI
correction scheme) on the structure parameters.

Figure 3. Important σ interactions in a trans planar complex with
symmetryD2h.

Figure 4. Polarization of the virtual orbital on the transσ bond L′-
M-L′′ in a trans-ML2L′L′′ complex with symmetryC2V.

Figure 5. Polarization of the virtual orbital on the transσ bond L-M-
L′ in a cis-ML2L′2 complex with symmetryC2V.
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can be explained, as theσ-donor abilities of Cl- and NH3 are
very close and our approximate method may not be able to pick
up the fine difference. For hydridophosphine complexes, both
theoretically and experimentally the trans isomer exhibits larger
1K(Pt-P) since the hydrido ligand is a strongerσ-donor than
phosphine. Moving to the octahedral Pt(IV) complexes PtCl4-
(PEt3)2, it is noted that Pt-P coupling is much smaller than the
analogous square-planar complexes. The correlation of the
oxidation state with the magnitude of the coupling constant is,
however, accidental. As pointed out in ref 9 complexes with a
larger coordination number generally should have smaller
coupling constants, owing to the smaller normalization factor
1/xn, wheren represents the coordination number.

IV. Concluding Remarks

On the basis of the nonrelativistic hyperfine operators, two
approximate frozen-core scalar relativistic corrections are
devised to account for the major relativistic effects on one-bond
metal-ligand nuclear spin-spin coupling constants. In the first
scheme, SRI, the quasirelativistic approach is incorporated into
the nonrelativistic coupling calculation. In the second scheme,
SRII, a refined version of Pyykko¨’s “hydrogen-like” hyperfine
correction is used, which only involves the correction of the
s-orbital value at the heavy nucleus in the evaluation of the
Fermi-contact contribution.

The calculations have revealed that SRII gives significant
improvement over SRI for couplings to sixth-row main-group
elements. It is also able to satisfactorily recover the bulk of the
relativistic increase for couplings to platinum and reproduce the
experimental trends in different ligand environment due to the
relativistic effects, whereas the SRI scheme fails almost
completely. We rationalize this as the SRII method accounts
for the s-orbital contraction, which is the predominant relativistic
effect on the contact-type nuclear spin-spin interactions.
However, one of the limitations of this scheme is that it can
treat couplings involving only one heavy nucleus. Also, owing
to its highly qualitative nature, an approach to the systematic
improvement of the correction is not obvious. Therefore, a
rigorous approach departing from a relativistic hyperfine opera-
tor would be desirable.

Finally, as an interesting application, the connection between
the structural trans influence and the magnitude of coupling
constants has been explored on the basis of the calculations. It
has been found that, although the metal-ligand bond distance
and angles influence the magnitude of the coupling, the major
factor that gives rise to the difference between cis and trans
configuration is of electronic nature. This can be attributed to
the change in the overlap population between the metal s- and
ligandσ-orbitals under the influence of a trans ligand, which is
caused by the polarization of the antibonding virtual orbital
(between metal s- and ligandσ-orbitals) on the occupied trans
σ bonds.

Acknowledgment. This work has been supported by the
National Science and Engineering Research Council of Canada
(NSERC), as well as by the donors of the Petroleum Research
Fund, administered by the American Chemical Society (ACS-
PRF No. 31205-AC3). The NOVA Graduate Scholarship (to
J.K.) is greatly acknowledged.

References and Notes

(1) Helgaker, T.; Jaszunski, M.; Ruud, K.Chem. ReV. 1999, 99, 293.
(2) Jameson, C. J.; Dios, A. C. InA Specialist Periodical Report,

Nuclear Magnetic Resonance; Webb, G. A., Ed.; Royal Society of
Chemistry: London, 1999; Vol. 28, Chapter 2.

(3) Oddershede, J.; Geertsen, J.; Scuseria, G. E.J. Phys. Chem.1988,
92, 3056.

(4) Perera, S. A.; Sekino, H.; Bartlett, R. J.J. Chem. Phys.1994, 101,
2186.

(5) Vahtras, O.; Agren, H.; Jorgensen, P.; Jensen, H. J. A.; Padkjaer,
S. B.; Helgaker, T.J. Chem. Phys.1992, 96, 6120.

(6) Fukui, H.; Miura, K.; Matsuda, H.; Baba, T.J. Chem. Phys.1992,
97, 2299.

(7) Malkin, V. G.; Malkina, O. L.; Salahub, D. R.Chem. Phys. Lett.
1994, 221, 91.

(8) Dickson, R. M.; Ziegler, T.J. Phys. Chem.1996, 100, 5286.
(9) Khandogin, J.; Ziegler, T.Spectrochim. Acta1999, 55, 607.

(10) Malkina, O. L.; Salahub, D. R.; Malkin, V. G.J. Chem. Phys.1996,
105, 8793.

(11) Malkin, V. G.; Malkina, O. L.; Erikson, L. A.; Salahub, D. R. In
Modern Density Functional Theory: A Tool for Chemistry; Politzer, P.,
Seminario, J. M., Eds.; Elsevier: Amsterdam, 1995; pp 273-347.
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