# Additivity and Transferability of Atomic Contributions to Molecular Second Dipole Hyperpolarizabilities

# **Tie Zhou**

Department of Chemistry, Computational Research on Materials Institute, University of Memphis, Memphis, Tennessee 38152

# Clifford E. Dykstra\*

Department of Chemistry, Indiana University–Purdue University, Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202

Received: July 26, 1999; In Final Form: October 12, 1999

Large basis set ab initio calculations of the dipole polarizabilities and second hyperpolarizabilities of a large set of organic molecules have been carried out and the results have been used to assess additivity and transferability of atomic contributions to the overall molecular response tensors. Reasonable estimates of the mean second hyperpolarizability response can be obtained from summing atomic parameters obtained here, though the reliability of the estimates is worse than what is found for dipole polarizabilities. Individual tensor elements are not as well determined from transferable, additive contributions, which means that the orientational nature of the response is more subject to local bonding features.

### Introduction

Dipole hyperpolarizabilities are tensor properties that characterize the change in molecular energy with respect to the third and higher powers of an electric field. Nonlinear optical response develops from the frequency-dependent hyperpolarizabilities, and the zero-frequency values are a starting point for understanding the full nature of this type of molecular response. A chemical issue is how the response depends on which constituent atoms are in the molecule and then how bonding affects the response. And, do higher order response properties follow chemical similarities among different molecules? These are fundamental questions, but they can have a practical consequence in prediction of properties based on molecular structure and bonding. Ab initio calculations as reported here provide a means for a genuine assessment of how well such predictiveness develops.

There exist a number of models for dipole polarizabilities, the properties which represent the second-order response of the molecular state energy to an external field. Ideas have included bond contributions,<sup>1,2</sup> atomic contributions<sup>3-5</sup> and group contributions<sup>6</sup> in additive schemes,<sup>7</sup> sometimes for the isotropic response only and sometimes for the entire tensor. Ab initio calculations have revealed additivity, $^{8-11}$  and recently, we have investigated an additive atomic centers (AAC) model for the dipole polarizabilities based on ab initio values of the molecular tensors.<sup>10,11</sup> Nonadditivity in models<sup>12-14</sup> is a means for incorporating intramolecular polarization. In 1972, Applequist presented a nonadditive model<sup>12</sup> in which the polarization of one atom could be relayed to the next via its induced dipole moment, and so on. It is possible to use a nonadditive scheme of distributed dipole polarizabilities for implicit higher order response. Then, the mutual intramolecular polarization energy will necessarily depend on higher powers of the external field strength. This is an advantage in using such a model to describe phenomena that come about through higher order response, but there is an equivalent additive approach to modeling the higher order response. It is to represent the higher order properties, the hyperpolarizabilities, separately. In so doing, the number of model parameters grows with the number of separate properties, and the higher order response that is due to intrinsic higher order response at a center can be fully incorporated. That is the direction of this report. A further difference between additive and cerain nonadditive models of the dipole polarizability is that nonadditive models can achieve anisotropic molecular polarizabilities from isotropically polarizable atoms, but to do the same, additive models must have anisotropic polarizabilities for the constituent atoms. The same holds for higher order properties.

All odd-order dipole response proprties, such as the dipole moment and the first dipole hyperpolarizability, usually designated  $\beta$ , vanish for atoms and for centrosymmetric molecules. Even-order properties, such as the dipole polarizability  $\alpha$  and the second hyperpolarizability,  $\gamma$ , have nonzero components for all atoms and molecules. Essentially for this symmetry reason, we examine the atomic contributions to  $\gamma$ , not  $\beta$ , in this first effort at decomposing contributions to molecular hyperpolarizabilities. Also, it has been argued<sup>11</sup> that from an additive perspective, properties that are zero by symmetry for an isolated atom develop into nonvanishing properties in a molecule through electronic density changes within a bonding region. Hence, a different scheme of representation may be better (e.g., bond sites instead of atomic centers) for those, the odd-order properties. Pioneering the atomic contributions to  $\gamma$  is work of Sundberg<sup>15</sup> that included fitting experimental mean  $\gamma$  values of 16 haloalkanes to atomic  $\gamma$  values of H, C, F, Cl, Br, and I.

The practical result of fundamental insight about molecular properties can include modeling that produces property values on the basis of chemical structure, the pattern of bond types,

<sup>\*</sup> Author for correspondence.

 TABLE 1: Assumed Structural Parameters for the Molecules Studied

|       |           | Bond  | d Lengths             | (Å)   |         |     |
|-------|-----------|-------|-----------------------|-------|---------|-----|
| 0.960 | H-O       | 1.208 | C=O                   |       | 1.339   | C=C |
| 1.020 | H-N       | 1.209 | C=N                   |       | 1.343   | С-О |
| 1.087 | H-C       | 1.212 | N=O                   |       | 1.350   | C-F |
| 1.153 | C≡N       | 1.251 | N=N                   |       | 1.368   | C-N |
| 1.206 | C≡C       | 1.308 | C = C(=               | =)    | 1.459   | C-C |
|       |           | Bond  | Angles <sup>a</sup> ( | deg)  |         |     |
| 104.5 | Н-О-Х, С- | -O-C  | 119.0                 | X-C-N | , X-N-  | С   |
| 106.7 | H-N-X     |       | 120.0                 | H-N=C | , X-C=  | N,  |
| 108.6 | X-N=O     |       |                       | 0-C=  | =C, H−N | V=O |
| 109.5 | Н-С-Х, С  | -С-О, | 120.3                 | C-C=C |         |     |
|       | C-C-C     |       | 121.3                 | H-C=C |         |     |
| 110.0 | H-N=N, C  | '−N=N | 123.5                 | F-C=C |         |     |
| 110.2 | H-C-C     |       | 124.5                 | X-C=0 |         |     |
| 111.0 | F-C-C     |       | 128.0                 | X-N=C |         |     |
|       |           |       |                       |       |         |     |

<sup>a</sup> X is any other non-hydrogen atom.

and elements in a molecule. This requires a set of parameters associated with specific elements (atoms) and specific types of bonding. How well the modeling works is an assessment of the additivity (if invoked in the model) and the transferability of contributions to the overall molecular response.

### **Calculational Approach**

The ab initio calculations were done at the SCF level with analytical evaluation of the hyperpolarizabilities via the derivative Hartree–Fock method.<sup>17</sup> With a typical effect of electron correlation on multipole polarizabilities of covalent molecules amounting to 5-15%,<sup>18–24</sup> the neglect of correlation effects probably leaves an error source that could be 10% and even 50% for individual tensor elements, especially for the smaller valued elements; however, the objective of this study was to assess the extent to which the second hyperpolarizability response of small to intermediate sized organic molecules develops from additive atomic contributions, a feature which is not likely to be altered by correlation effects, as we have previously found for the dipole polarizabilities.<sup>11</sup>

For the ab initio calculations, the geometries of the molecules were set to chosen standard bond lengths and bond angles as shown in Table 1. This was also done in previous work,<sup>10,11</sup> and the idea is to remove variations in properties that are associated with the differences that might be found across a set of molecules due to small differences in the lengths of their carbon–carbon double bonds, for instance. The orientations of each molecule relative to the *x*, *y*, *z* axis system used to evaluate the tensor properties were such that the line between atoms with the highest bond order was coincident with the *x* axis. Except for a few linear molecules, all the molecules studied were planar or have a planar backbone, and we used the x−y plane for the molecular plane.

Very important in the evaluation of polarizabilities and hyperpolarizabilities, sometimes even more important than correlation effects, is the use of extended basis sets that include multiple diffuse polarization functions. We began by comparing the evaluation of the second hyperpolarizabilities of five small molecules with several basis sets. The results, as shown in Table 2, indicate that enlargement of the basis beyond that of the ELP basis sets of Liu and Dykstra<sup>25</sup> has a small effect (2–5%), but reducing that basis slightly produces more sizable changes in values (~10%). Hence, in the subsequent calculations we used the ELP basis, a triply polarized basis with augmenting diffuse functions built on a Dunning–Huzinaga triple- $\zeta$  core-valence basis.<sup>26</sup>

The properties calculated from the ab initio calculations were fitted to a set of parameters by linear least squares minimization of the deviations. Under the assumption of additivity, a given element of a molecule's  $\gamma$ -tensor is expressed as a function that is linear in the  $\gamma$ -tensor elements of the contributing atoms, these being the parameters. The parameter tensor elements are for atoms of different types, and we tested different sets of atom types, retaining those that made a noticeable improvement in the fitting, while combining those that were close in value. We also inforced local symmetry on the parameter set according to the symmetry of the bonding environment, and thus, for example, an atom that was bonded to the next atom by a triple bond (e.g.,  $-C \equiv$ ) would be taken to be axially symmetric. This leads to symmetry constraints on the parameters, and for the specific case of an axially symmetric center and x as the bond axis, only the elements  $\gamma_{xxxx}$ ,  $\gamma_{yyyy}$ ,  $\gamma_{zzzz}$ ,  $\gamma_{xxyy}$ ,  $\gamma_{xxzz}$ , and  $\gamma_{yyzz}$ are nonzero and there is an equivalence of  $\gamma_{yyyy}$  with  $\gamma_{zzzz}$  and of  $\gamma_{xxyy}$  with  $\gamma_{xxzz}$ . In one case, we tested additivity by removing all molecules which included a fluorine center and found that the parameters of the other centers were only slightly affected. The parameter determination steps were also done for the dipole polarizabilities, repeating and extending to a much larger set of molecules the work of Stout and Dykstra.<sup>10</sup>

## **Results and Discussion**

All the molecules in the data set were composed of H, C, N, O, and F atoms. We found that the best concise fits of the tensor properties were obtained with 14 atom types as shown in Table 3. Carbon required seven types, nitrogen four, oxygen two, and fluorine one. Hydrogen atoms will tend to have a smaller effect in view of how many more electrons the other atoms have. We have not found improvement<sup>10</sup> in the modeling of the response properties from assigning parameters to hydrogen centers; however, hydrogens do play a role in differentiating the response among certain species, and they are effectively included in our model parameter set by certain distinctions among the atom types, such as for nitrogen in an sp<sup>3</sup> bonding environment (Table 3).

The tensor elements obtained from fitting for the 14 atom types can be combined to obtain the isotropic contributions, which are themselves parameters for modeling the isotropic responses. These isotropic parameters, which are related to individual tensor elements (parameters) by

$$\alpha_{\rm iso} = (\alpha_{xx} + \alpha_{vv} + \alpha_{zz})/3 \tag{1}$$

$$\gamma_{\rm iso} = [\gamma_{xxxx} + \gamma_{yyyy} + \gamma_{zzzz} + 2(\gamma_{xxyy} + \gamma_{xxzz} + \gamma_{yyzz})]/5 \quad (2)$$

are given in Table 3. These are values which can be added together to estimate the isotropic  $\alpha$  or isotropic  $\gamma$  for an organic molecule composed of H, C, N, O, and F atoms with the bonding environments listed. There are certain interesting features seen in these two sets of parameters.

(1) Except for an allenic carbon center, the isotropic contribution of any carbon atom to the dipole polarizability is within the range of 10.6-13.4 au. There tends to be an intrinsic atomic contribution with only a share affected by the bonding.

(2) The isotropic contributions to the dipole polarizability roughly decrease across the row of the periodic table from carbon to fluorine, with fluorine having a negligible contribution.

(3) The atomic, isotropic second-order hyperpolarizability parameters tend to follow the trends of the isotropic dipole polarizabilities in that among a pair of center types, mostly the one with the bigger  $\gamma_{iso}$  is the one with the bigger  $\alpha_{iso}$ . However,

TABLE 2: Basis Set Effects on the Calculated Second Hyperpolarizability ( $\Gamma$ ) Tensor Elements (in au)

|                     |                                      |        | calcu | lated values with | h different basis | sets <sup>b</sup> |       |
|---------------------|--------------------------------------|--------|-------|-------------------|-------------------|-------------------|-------|
| molecule            | $\gamma$ element <sup><i>a</i></sup> | ELP/1f | ELP+  | ELP               | А                 | В                 | С     |
| НССН                | xxxx                                 | 3124   | 3196  | 3144              | 3026              | 3040              | 2099  |
|                     | yyyy = zzzz                          | 5239   | 5689  | 5310              | 4229              | 3675              | 2774  |
|                     | xxyy = xxzz                          | 1587   | 1629  | 1610              | 1487              | 1409              | 1154  |
|                     | yyzz                                 | 1746   | 1896  | 1770              | 1410              | 1225              | 925   |
|                     | isotropic $\gamma$                   | 4689   | 4977  | 4749              | 4050              | 3695              | 2822  |
| HCC-CH <sub>3</sub> | xxxx                                 | 7597   | 7627  | 7586              | 7613              | 7605              | 6812  |
|                     | yyyy = zzzz                          | 5624   | 5996  | 5569              | 4813              | 4520              | 3683  |
|                     | xxyy = xxzz                          | 2185   | 2215  | 2167              | 2038              | 1983              | 1631  |
|                     | yyzz                                 | 1875   | 1999  | 1856              | 1604              | 1507              | 1228  |
|                     | isotropic $\gamma$                   | 6267   | 6495  | 6221              | 5720              | 5518              | 4631  |
| HCC-CCH             | xxxx                                 | 19279  | 19105 | 19662             | 19694             | 19399             | 18561 |
|                     | yyyy = zzzz                          | 6321   | 6684  | 6341              | 5707              | 5505              | 5241  |
|                     | xxyy = xxzz                          | 3564   | 3651  | 3488              | 3303              | 3204              | 3002  |
|                     | yyzz                                 | 2107   | 2228  | 2114              | 1903              | 1835              | 1747  |
|                     | isotropic $\gamma$                   | 10078  | 10307 | 10105             | 9625              | 9379              | 8909  |
| FCC-CCH             | xxxx                                 |        | 14007 | 14073             | 14053             | 13890             | 13483 |
|                     | yyyy = zzzz                          |        | 5433  | 5193              | 4846              | 4680              | 4613  |
|                     | xxyy = xxzz                          |        | 2544  | 2493              | 2408              | 2354              | 2272  |
|                     | yyzz                                 |        | 1811  | 1731              | 1615              | 1560              | 1538  |
|                     | isotropic $\gamma$                   |        | 7734  | 7579              | 7321              | 7158              | 6975  |
| HCC-CC-CHO          | xxxx                                 |        |       | 39700             | 39739             | 39354             | 38647 |
|                     | уууу                                 |        |       | 6194              | 5997              | 5908              | 5454  |
|                     | ZZZZ                                 |        |       | 5546              | 5318              | 5115              | 4951  |
|                     | ххуу                                 |        |       | 2893              | 2821              | 2773              | 2612  |
|                     | XXZZ                                 |        |       | 3155              | 3064              | 2987              | 2879  |
|                     | yyzz                                 |        |       | 1887              | 1843              | 1787              | 1692  |
|                     | xxxy                                 |        |       | 1222              | 1202              | 1195              | 1239  |
|                     | хууу                                 |        |       | -356              | -359              | -343              | -283  |
|                     | isotropic $\gamma$                   |        |       | 13462             | 13302             | 13094             | 12684 |

<sup>*a*</sup> The indicated equivalence of tensor elements is by symmetry. <sup>*b*</sup> The ELP basis<sup>25</sup> used for the calculations on the full set of molecules consists of the Dunning–Huzinaga<sup>26</sup> triple- $\zeta$  core-valence set plus (i) a set of one diffuse s and two diffuse p functions on each non-hydrogen center, (ii) one diffuse s function on each hydrogen, (iii) two sets of p-polarization functions on hydrogens, and (iv) three sets of d-polarization functions on atoms other than hydrogen. The ELP+ basis was the ELP basis augmented with one extra set of polarization functions: For C, N, O and F, the ELP d-function exponents were reset from 0.9, 0.13, and 0.02 to 0.9, 0.15, and 0.025, and the exponent of the added d-function was 0.004. For H, the ELP p-function exponents were reset from 0.9 and 0.1 to 0.9 and 0.18 with the exponent of the added p-function being 0.0036. The ELP/1f basis was the ELP basis augmented with one set of f-polarization functions for the non-hydrogen centers, and the exponent was 0.3. As in previous work on dipole polarizabilities,<sup>10</sup> bases A, B, and C corresponded to reductions from the ELP basis in the augmentation of the core/valence TZ basis. Basis A relative to the ELP set had two d-polarization functions for every three in the ELP set and lacked the diffuse s-function on the non-hydrogen centers for every two in A. Relative to B, basis C lacked the diffuse s-function on hydrogen centers and had one p-polarization function for hydrogen centers.

 TABLE 3: Model Parameters for Isotropic Properties (au)

| center type <sup>a</sup> | $\alpha_{iso}$ | $\gamma_{ m iso}$ | center type <sup>a</sup> | $\alpha_{iso}$ | $\gamma_{ m iso}$ |
|--------------------------|----------------|-------------------|--------------------------|----------------|-------------------|
| (0)=C=                   | 10.581         | 459               | N (sp)                   | 3.434          | -1843             |
| (O)= $C(sp^2)$           | 11.274         | 998               | $N(sp^2)$                | 8.748          | 1149              |
| (H)C (sp)                | 11.476         | 2303              | $(H_2)N(sp^3)$           | 8.912          | 1784              |
| $C(sp^3)$                | 12.296         | 1688              | $(H)N(sp^3)$             | 10.058         | 2028              |
| C (sp)                   | 12.344         | 2899              | 0=                       | 3.131          | 206               |
| C (sp <sup>2</sup> )     | 13.383         | 2746              | -0-                      | 3.497          | -53               |
| (C) = C = (C)            | 16.837         | 2544              | F                        | 0.163          | -1033             |

<sup>*a*</sup> Atoms in parentheses are specific adjacent atoms for the given center type.

the second dipole hyperpolarizabilities show much greater variation and very much more dependence on the bonding environment than on the atomic number. This may reflect that the fourth-order response to a field (i.e.,  $\gamma$ ) develops more in the outer, fringe regions of the electron distribution and involves the inner part of the electron density, the part less subject to changes from bonding, less than the second-order response (i.e.,  $\alpha$ ).

(4) Both fluorine and a triply bonded nitrogen tend to diminish the fourth-order response.

Table 4 provides an assessment of the isotropic parameters by comparing the ab initio isotropic values and the model values. It is clear that the idea of additive, transferable contributions is more workable for  $\alpha$  than for  $\gamma$ . The mean of the absolute percentage error for the set of 58 molecules is about 4 times greater for the isotropic  $\gamma$  values than for the isotropic  $\alpha$  values. The range in percentage error is about 3-3.5 times greater for  $\gamma$  than  $\alpha$ . The additive atomic centers (AAC) model reproduces the ab initio isotropic  $\alpha$  values to within 12% and the isotropic  $\gamma$  values to within 42%, and to within 8% and 25%, respectively, if the four worst cases (HOCN, HCOOH, (CH<sub>3</sub>F)<sub>2</sub>, NH<sub>2</sub>CH<sub>3</sub>) are excluded. Therefore, AAC is moderately reliable for predicting the dipole polarizability but can give only a coarser level of prediction for the second dipole hyperpolarizability. The value of the model for  $\gamma$  values, though, is in identifying the chemical features that add to or diminish the overall  $\gamma$ response. Even to a 30% overall accuracy, the parameter values in Table 3 show, for instance, that fluorine substitution of a hydrogen will mostly reduce the size of the fourth-order ( $\gamma$ ) response.

The modeling scheme can generate specific tensor elements for each of the atom types, and these are given in Table 5. How well they work to yield the tensors for the 58-molecule set is shown by the data in Tables 6 and 7. For conciseness, these tables give values for a selection of half of the 58 molecules studied, but the selection includes the molecules with the worst percentage error and the most sizable difference between the model and the ab initio results. A comparison of the errors for fitting  $\alpha$ -tensor elements and  $\gamma$ -tensor elements for the entire

TABLE 4: Error in the Additive Atomic Centers Model for **Isotropic Response Properties** 

|                                     | isc            | tropic α       | 2           | isc           | otropic γ    |              |
|-------------------------------------|----------------|----------------|-------------|---------------|--------------|--------------|
|                                     |                |                | diff        |               |              | diff         |
| molecule                            | ab initio      | model          | (%)         | ab initio     | model        | (%)          |
| CH2NH                               | 21.34          | 22.13          | 37          | 3167          | 3895         | 23.0         |
| NH <sub>2</sub> CH <sub>3</sub>     | 24.13          | 21.21          | -12.1       | 4734          | 3473         | -26.6        |
| C <sub>2</sub> H <sub>2</sub>       | 23.59          | 22.95          | -2.7        | 4749          | 4607         | -3.0         |
| $C_2H_4$                            | 28.12          | 26.77          | -4.8        | 5778          | 5493         | -4.9         |
| C <sub>2</sub> H <sub>6</sub>       | 26.48          | 24.59          | -7.1        | 3120          | 3378         | 8.2          |
| cis-N <sub>2</sub> H <sub>2</sub>   | 18.14          | 17.50          | -3.5        | 2278          | 2298         | 0.9          |
| trans-N <sub>2</sub> H <sub>2</sub> | 18.22          | 17.50          | -4.0        | 2420          | 2298         | -5.0         |
| HNCO                                | 21.78          | 22.46          | 3.1         | 1792          | 1815         | 1.3          |
| HOCN                                | 20.87          | 19.28          | -7.6        | 1735          | 1004         | -42.1        |
| NH <sub>2</sub> CN                  | 25.24          | 24.69          | -2.2        | 2932          | 2841         | -3.1         |
| НСООН                               | 20.29          | 17.90          | -11.8       | 1970          | 1152         | -41.5        |
| NH <sub>2</sub> CHO                 | 24.90          | 23.32          | -6.3        | 3447          | 2988         | -13.3        |
| HN=CHOH                             | 25.71          | 25.63          | -0.3        | 3950          | 3843         | -2.7         |
| CH₃NO                               | 24.23          | 24.17          | -0.2        | 2871          | 3044         | 6.0          |
| trans-CH <sub>3</sub> NNH           | 29.36          | 29.79          | 1.5         | 4315          | 3987         | -7.6         |
| CH <sub>2</sub> CO                  | 28.21          | 27.09          | -4.0        | 4260          | 3412         | -19.9        |
| НССОН                               | 27.45          | 27.32          | -0.5        | 4787          | 5150         | 7.6          |
| CH <sub>3</sub> CN                  | 28.14          | 28.07          | -0.2        | 2685          | 2745         | 2.3          |
| NH <sub>2</sub> CCH                 | 32.79          | 32.73          | -0.2        | 7987          | 6987         | -12.5        |
| CH <sub>3</sub> -CHO                | 27.52          | 26.70          | -3.0        | 3277          | 2893         | -11.7        |
| CH <sub>3</sub> CH <sub>2</sub> F   | 25.89          | 24.75          | -4.4        | 2627          | 2344         | -10.8        |
| CH <sub>3</sub> CCH                 | 35.44          | 36.12          | 1.9         | 6221          | 6892         | 10.8         |
| $H_2CCCH_2$                         | 41.31          | 43.60          | 5.6         | 7694          | 8037         | 4.5          |
| $C_3H_6$                            | 39.10          | 39.06          | -0.1        | 7093          | 7182         | 1.2          |
| $CO_2$                              | 16.78          | 16.84          | 0.4         | 885           | 872          | -1.5         |
| cis-CHOCHO                          | 28.83          | 28.81          | -0.1        | 3035          | 2408         | -20.7        |
| trans-CHOCHO                        | 29.32          | 28.81          | -1.7        | 2941          | 2408         | -18.1        |
| $F_2C=CH_2$                         | 26.98          | 27.09          | 0.4         | 3079          | 3426         | 11.3         |
| cis-FHC–CHF                         | 26.73          | 27.09          | 1.4         | 3020          | 3426         | 13.5         |
| trans-FHC–CHF                       | 26.50          | 27.09          | 2.2         | 2748          | 3426         | 24.7         |
| $NC-CH_2OH$                         | 31.64          | 31.57          | -0.2        | 3168          | 2693         | -15.0        |
| CH <sub>3</sub> NCO                 | 34.21          | 34.76          | 1.6         | 3460          | 3503         | 1.2          |
| CH <sub>3</sub> COOH                | 30.54          | 30.20          | -1.1        | 2908          | 2840         | -2.3         |
| HCO-O-CH <sub>3</sub>               | 30.04          | 30.20          | 0.5         | 2774          | 2840         | 2.4          |
| $CH_2F-CH_2F$                       | 25.41          | 24.92          | -2.0        | 2108          | 1311         | -37.8        |
| HCONHCH <sub>3</sub>                | 36.76          | 36.76          | 0.0         | 4802          | 4920         | 2.5          |
| $CH_3CONH_2$                        | 35.01          | 35.61          | 1.7         | 4408          | 4677         | 6.I          |
| HCC-CHO                             | 37.30          | 38.23          | 2.3         | 5360          | 6407         | 19.5         |
| CH <sub>2</sub> CCO                 | 44.10          | 43.93          | -0.4        | 5100          | 5950         | 15.4         |
| CH2CHCN                             | 41.80          | 42.54          | 1.8         | 5098          | 6550         | 14.9         |
| trans CH CHCHO                      | 40.18          | 41.17          | 2.5         | 5007          | 6607         | 10.5         |
| HCC = O = CH                        | 41.74          | 41.17          | -1.4        | 5907<br>6752  | 6820         | 13.4         |
| $HCC-U-CH_3$                        | 28.09          | 39.01          | 2.4         | 6966          | 6839         | 1.5          |
| CH.CH.CN                            | 30.92<br>38.92 | 39.01<br>40.27 | 1.8         | 4050          | 1/2/         | -0.4         |
| CH <sub>2</sub> CNP                 | 20.03<br>11 15 | 40.37          | 4.0         | 4030<br>8425  | 4434         | 9.5          |
|                                     | 44.43<br>37.07 | 43.90          | 5.5<br>77   | 0423<br>1100  | 7212<br>1501 | 2.0          |
| спзессяз<br>НССССН                  | 51.91<br>17.66 | 39.00<br>17.61 | 2.7         | 4490<br>10104 | 4.381        | 2.0          |
| СН.СССР                             | 47.00<br>61.50 | +7.04<br>60.44 | _1 7        | 111150        | 10403        | 5.0<br>_5 1  |
|                                     | 50.19          | 50.50          | 1./         | 11150         | 10201        | _1 2         |
|                                     | 56.36          | 53 53          | -50         | 1/000         | 10090        | -22 1        |
|                                     | 30.30          | 33.33          | 0.1         | 14099<br>0720 | 2255         | -12.0        |
|                                     | 32.20          | 32.31          | 2.2         | 2132          | 2555<br>1625 | 15.0         |
| $CHO = O = CU = U = CH_3$           | 57.91<br>11 Q1 | 37.11<br>11 67 | 3.2<br>_0.4 | 5708<br>6772  | 4023<br>6644 | -10.0        |
| $CH_{-}CH_{-}COOH$                  | 44.04          | 44.07          | 1 2         | 5220          | 6644         | 24.7         |
|                                     | 42.00          | 44.07<br>50.09 | 4.2         | 7200          | Q/Q1         | 24.7<br>1/ 9 |
| HCC - CC - CH                       | 40.23          | 50.08<br>60.81 | 5.9<br>_07  | 12/22         | 12600        | 14.0         |
|                                     | 6/ 55          | 62 01          | _2 5        | 12422         | 12090        | _0.2         |
| mean absolute error                 | (%).           | 02.71          | 2.3<br>2.6  | 13402         | 12203        | 9.5<br>11 1  |
| mean absolute entor                 | (/0).          |                | 2.0         |               |              | 11.1         |

set of molecules is given in the Figure 1. For  $\alpha$  values, the 58 molecules provide 205 unique tensor elements, and these are reproduced with a mean absolute percentage error of 18.6% using 27 tensor parameters for the 14 atom types (Table 5). The mean absolute percentage error for the diagonal elements, though, is only 5.1%. For  $\gamma$  values, the 58 molecules provide 429 unique tensor elements, and these are reproduced with a mean absolute percentage error of 71.5% using 70 tensor parameters for the 14 atom types (Table 5); however, the mean

| ABLE 5: Model Parameters (in | $\alpha$ and $\gamma$ Tensors |
|------------------------------|-------------------------------|
|------------------------------|-------------------------------|

| TABLE 5:                                       | Model Param                           | eters (in a          | au) for $\alpha$ and $\gamma$ Ter | nsors |
|------------------------------------------------|---------------------------------------|----------------------|-----------------------------------|-------|
|                                                | α tensor par                          | ameters <sup>a</sup> | $\gamma$ tensor paramet           | ersa  |
| center type                                    | element(s)                            | value                | element(s)                        | value |
| C (sp <sup>3</sup> )                           | xx = yy = zz                          | 12.2956              | xxxx = yyyy = zzzz                | 1522  |
| G ( ))                                         |                                       | 10 0000              | xxyy = xxzz = yyzz                | 646   |
| C (sp <sup>2</sup> )                           | xx                                    | 19.2020              | xxxx                              | 2103  |
|                                                | УУ                                    | 11.5156              | уууу                              | 1722  |
|                                                | ZZ                                    | 9.4305               | ZZZZ                              | 3383  |
|                                                |                                       |                      | xxyy<br>xx77                      | 1025  |
|                                                |                                       |                      | NN77                              | 933   |
| $(0) = C (sp^2)$                               | $\mathbf{x}\mathbf{x} \equiv 77$      | 13 4126              | xxxx                              | 949   |
| (0) 0 (sp                                      | vv                                    | 6.9980               | VVVV                              | 1697  |
|                                                | 55                                    |                      | ZZZZ                              | 634   |
|                                                |                                       |                      | ххуу                              | 631   |
|                                                |                                       |                      | xxzz                              | 210   |
|                                                |                                       |                      | yyzz                              | 14    |
| (C) = C = (C)                                  | xx                                    | 35.5897              | xxxx                              | 2623  |
|                                                | yy = zz                               | 7.4611               | уууу                              | 1574  |
|                                                |                                       |                      | ZZZZ                              | 13/2  |
|                                                |                                       |                      | xxyy                              | 1235  |
|                                                |                                       |                      | XXZZ<br>VV77                      | 2001  |
| (0) = C =                                      | rr                                    | 17 7597              | yyzz<br>rrrr                      | 1190  |
| (0) C                                          | vv = 77                               | 6.9922               | VVVV                              | -482  |
|                                                | <u> </u>                              | 0.7722               | 7777.                             | 1601  |
|                                                |                                       |                      | xxvv                              | -438  |
|                                                |                                       |                      | xxzz                              | 221   |
|                                                |                                       |                      | yyzz                              | 211   |
| C (sp)                                         | xx                                    | 24.8616              | xxxx                              | 9560  |
|                                                | yy = zz                               | 6.0858               | yyyy = zzzz                       | 835   |
|                                                |                                       |                      | xxyy = xxzz                       | 676   |
| $(\mathbf{H})\mathbf{C}(\mathbf{u}\mathbf{v})$ |                                       | 15 2059              | yyzz                              | 281   |
| (H)C (sp)                                      | xx                                    | 15.3058              | <i>xxxx</i>                       | 2810  |
|                                                | yy = zz                               | 9.3018               | yyyy = zzzz<br>rrvv = rrzz = vvzz | 932   |
| $(H_2)N(sp^3)$                                 | xx = yy = 77                          | 8.9117               | xxxx                              | -114  |
| ( 2) ((1))                                     | , , , , , , , , , , , , , , , , , , , |                      | уууу                              | 1348  |
|                                                |                                       |                      | ZZZZ                              | 2442  |
|                                                |                                       |                      | ххуу                              | 697   |
|                                                |                                       |                      | XXZZ                              | 1416  |
| (11) 11 ( 3)                                   |                                       | 17 2026              | yyzz                              | 510   |
| (H)N(sp <sup>3</sup> )                         | xx                                    | 17.2036              | xxxx                              | 2921  |
|                                                | yy = zz                               | 0.4847               | <i>УУУУ</i>                       | 1002  |
|                                                |                                       |                      | 2222<br>XXXXX                     | 742   |
|                                                |                                       |                      | ххуу<br>xx77                      | 1872  |
|                                                |                                       |                      | VVZZ                              | -256  |
| $N(sp^2)$                                      | xx                                    | 11.9376              | xxxx                              | 1300  |
|                                                | уу                                    | 8.1553               | уууу                              | 1410  |
|                                                | ZZ                                    | 6.1498               | ZZZZ                              | 416   |
|                                                |                                       |                      | ххуу                              | 806   |
|                                                |                                       |                      | XXZZ                              | 286   |
| N (am)                                         |                                       | 1 2220               | yyzz                              | 218   |
| N (sp)                                         | xx = zz                               | 1.2229               | XXXX 7777                         | -0248 |
|                                                | yy = zz                               | 4.5402               | yyyy = 2222<br>rrvv = rr77        | -442  |
|                                                |                                       |                      | VV77                              | -220  |
| 0=                                             | xx                                    | 5.4717               | xxxx                              | -186  |
|                                                | yy = zz                               | 1.9600               | уууу                              | 615   |
|                                                |                                       |                      | ZZZZ                              | -327  |
|                                                |                                       |                      | ххуу                              | 440   |
|                                                |                                       |                      | XXZZ                              | -5    |
| 0                                              |                                       | 2 4070               | yyzz                              | 1024  |
| -0-                                            | xx - yy - zz                          | 5.4970               | <i>XXXX</i>                       | -1954 |
|                                                |                                       |                      | 5 5 5 5<br>7777                   | 660   |
|                                                |                                       |                      | xxyy = xxzz = yyzz                | 125   |
| F                                              | xx = zz                               | 0.6948               | xxxx                              | -870  |
|                                                | уу                                    | -0.9010              | уууу                              | -1019 |
|                                                |                                       |                      | ZZZZ                              | -666  |
|                                                |                                       |                      | xxyy = xxzz                       | -376  |
|                                                |                                       |                      | yyzz                              | -553  |

<sup>a</sup> The tensor parameters are defined with respect to a reference orientation for each center. That reference orientation is with the highest order bond of the given center type aligned with the x-axis. Hence, the x axis is along the double bond of a carbon with  $sp^2$  bonding environment. The y and z axes are equivalent for all but  $sp^2$  centers (i.e., axial symmetry). For  $sp^2$  centers, the y axis of the reference orientation is in the plane of the atoms to which the center is bound, whereas the z axis is perpendicular to this plane.

| TADLE 0: DIDUR FORTIZADILLY TENSOT ELEMENTS (III a | TABLE 6 | 5: Di | pole <b>F</b> | Polariz | ability | Tensor | Elements | (in | aı |
|----------------------------------------------------|---------|-------|---------------|---------|---------|--------|----------|-----|----|
|----------------------------------------------------|---------|-------|---------------|---------|---------|--------|----------|-----|----|

| molecule                            | $\alpha$ element | ab initio       | model          | % error       |
|-------------------------------------|------------------|-----------------|----------------|---------------|
| NH <sub>2</sub> CH <sub>3</sub>     | xx               | 26.60           | 21.21          | 20.3          |
|                                     | уу               | 22.97           | 21.21          | 7.7           |
| CaHa                                | ZZ<br>rr         | 22.83           | 21.21          | 7.1           |
| 02112                               | yy = zz          | 19.23           | 19.12          | 0.6           |
| $C_2H_4$                            | xx               | 36.87           | 38.40          | -4.2          |
|                                     | уу               | 24.75           | 23.03          | 6.9           |
| CoHe                                | ZZ<br>rr         | 22.76           | 18.86          | 17.1          |
| 02116                               | vv = zz          | 25.76           | 24.59          | 4.5           |
| cis-N <sub>2</sub> H <sub>2</sub>   | xx               | 24.35           | 23.88          | 1.9           |
|                                     | УУ               | 16.56           | 16.31          | 1.5           |
| HNCO                                | ZZ<br>YY         | 13.50           | 12.30          | 8.9<br>-6.0   |
| millio                              | yy               | 16.32           | 17.11          | -4.8          |
|                                     | ZZ               | 15.84           | 15.10          | 4.7           |
| НСООН                               | xx               | 26.77           | 22.38          | 16.4          |
|                                     | уу<br>77         | 19.20           | 12.46          | 16.5          |
| HN=CHOH                             | xx               | 35.13           | 34.64          | 1.4           |
|                                     | уу               | 23.46           | 23.17          | 1.2           |
| CH-CO                               | ZZ<br>rr         | 18.55           | 19.08          | -2.9          |
|                                     | XX<br>VV         | 21.06           | 20.47          | 2.8           |
|                                     | zz.              | 21.34           | 18.38          | 13.9          |
| CH <sub>3</sub> CN                  | xx               | 37.70           | 38.38          | -1.8          |
| СН₂ССН                              | yy = zz          | 23.37<br>49.27  | 22.92<br>52.46 | -6.5          |
| enjeen                              | yy = zz          | 28.52           | 27.94          | 2.0           |
| H <sub>2</sub> CCCH <sub>2</sub>    | xx               | 65.17           | 73.99          | -13.5         |
| C.H.                                | yy = zz          | 29.37           | 28.41          | 3.3           |
| C3H6                                | XX<br>VV         | 36.25           | 35.33          | 2.6           |
|                                     | ZZ.              | 31.53           | 31.16          | 1.2           |
| $CO_2$                              | xx               | 25.58           | 28.70          | -12.2         |
| $F_2C = CH_2$                       | yy = zz          | 12.39           | 37.57          | -6.0          |
| 120 0112                            | yy               | 25.01           | 23.45          | 6.2           |
|                                     | ZZ               | 20.48           | 20.25          | 1.1           |
| cis-FHC-CHF                         | xx               | 35.16           | 37.57          | -6.9          |
|                                     | yy<br>zz         | 20.34           | 20.25          | 0.5           |
| trans-FHC-CHF                       | xx               | 35.10           | 37.57          | -7.0          |
|                                     | <i>УУ</i>        | 24.45           | 23.45          | 4.1           |
| CH <sub>3</sub> COOH                | 22<br>XX         | 34.48           | 34.68          | -0.6          |
| 5                                   | уу               | 32.52           | 31.17          | 4.2           |
|                                     | ZZ               | 24.61           | 24.75          | -0.6          |
| нсс-сно                             | xx<br>vv         | 54.72<br>32.06  | 56.67<br>33.41 | -3.6<br>-4.2  |
|                                     | zz.              | 25.30           | 24.61          | 2.7           |
| CH <sub>2</sub> CCO                 | xx               | 78.39           | 78.02          | 0.5           |
|                                     | <i>УУ</i>        | 28.20           | 27.93          | 1.0           |
| CH <sub>2</sub> CHCN                | 22<br>XX         | 56.49           | 53.26          | -0.3          |
|                                     | уу               | 40.38           | 44.88          | -11.1         |
|                                     | ZZ               | 28.54           | 29.49          | -3.3          |
| HCC-O-CH <sub>3</sub>               | xx<br>vv         | 52.26<br>32.52  | 55.96<br>31.44 | -7.1          |
|                                     | zz.              | 31.30           | 31.44          | -0.5          |
| HCCCCH                              | xx               | 81.48           | 80.33          | 1.4           |
| СНаСССНа                            | yy = zz          | 30.74           | 31.30          | -1.8          |
| enzecenz                            | yy               | 36.46           | 37.95          | -4.1          |
|                                     | ZZ.              | 34.23           | 33.78          | 1.3           |
| HCC-CHCH <sub>2</sub>               | xx               | 71.10           | 67.11          | 5.6           |
|                                     | уУ<br>ZZ         | 43.05           | 34.51          | -9.8<br>-2.2  |
| CH <sub>2</sub> CHCHCH <sub>2</sub> | xx               | 85.44           | 76.81          | 10.1          |
|                                     | уу               | 46.58           | 46.06          | 1.1           |
| NH2-CO-O-CH-                        | ZZ<br>rr         | 37.06           | 37.72          | -1.8<br>-10.5 |
| 111 <u>2</u> -CO O-CH3              | лл<br>VV         | 43.95           | 40.08          | 8.8           |
|                                     | zz               | 30.30           | 33.66          | -11.1         |
| HCC-CC-CH <sub>3</sub>              | <i>xx</i>        | 103.96          | 102.19         | 1.7           |
| HCC-CC-CHO                          | yy = zz<br>xx    | 39.90<br>113.31 | 40.11 106.39   | -0.5          |
|                                     | уу               | 43.49           | 45.58          | -4.8          |
|                                     | ZZ.              | 36.84           | 36.78          | 0.2           |



**Figure 1.** A comparison of model tensor values against ab initio values for the diagonal  $\alpha$ -tensor elements (filled circles) and the  $\gamma$ -tensor elements  $\gamma_{xxxx}$ ,  $\gamma_{yyyy}$ ,  $\gamma_{zzzz}$ ,  $\gamma_{xxyy}$ ,  $\gamma_{xzzz}$ , and  $\gamma_{yyzz}$  (open circles) of the 58 molecules. To make for a comparison of the AAC scheme in application to  $\alpha$  versus  $\gamma$ ,  $\alpha$ -tensor elements were multiplied by  $10^{-2}$  and  $\gamma$ -tensor elements were multiplied by  $10^{-4}$  before graphing. In so doing, most of the properties evaluated fall in the range shown, from 0 to 1. The vertical axis corresponds to the model values, whereas the ab initio values are the horizontal axis. The solid line is the line of perfect correspondence between the model and the ab initio results. The plot shows less scatter from this line for the major  $\alpha$  elements than for the major  $\gamma$  elements.

absolute percentage error for the elements that contribute to the isotropic second hyperpolarizability (i.e., those in eq 2) is 21.1%. Thus, while certain of the elements have very substantial percentage errors, these are generally elements that are small with respect to others in the same tensor. In an application such as the evaluation of electrostatics interaction energetics,  $\gamma$  tensors predicted by this scheme will more reflect the errors in the diagonal elements, which are usually the most sizable elements, and this implies errors ~20-30%.

Bond conjugation effects in larger molecular systems than treated here present certain difficulties. Large dipole polarizabilities and large hyperpolarizabilities arise from delocalized  $\pi$  bonding.<sup>27–30</sup> From one standpoint, these effects introduce nonlinearity<sup>27–37</sup> through more facile intramolecular polarization, that polarization growing with chain length until an asymptotic limit. From another standpoint, that of an additive scheme, bond conjugation introduces significant end effects which will require more atom types (end, next to the end, next in from the end, and so on); additivity is still workable since at the asymptotic limit of a long chain, an additional segment added to the chain gives an additive contribution to the response properties. Our parameter values are not based on a data set with long chain molecules and will not successfully model the response properties if there are significant conjugation effects. Thus, predictions for  $H-(C=C)_n-H$  using only values in Table 5 will likely worsen with increasing n. With a data set large enough to include many end types, the additive scheme could be as workable for conjugated systems, and this has been done for certain parts of the  $\gamma$ -response in a special case.<sup>38</sup> Also, within the AAC scheme, the effects of conjugation may involve end atoms that might not be considered conjugated. For instance, we carried out ab initio calculations on FC = C - C = CH, and including it in the data set altered the fluorine center's  $\gamma$ parameters somewhat, while the errors of the fit for all fluorine molecules were worsened. This did not happen with fluorine

 TABLE 7: Second Dipole Hyperpolarizability Tensor Elements (in au)

|                                   | percenta 2-pore                                 |             | Zuomity | Lienson Elenin | (11 44)                             |                         |           |       |         |
|-----------------------------------|-------------------------------------------------|-------------|---------|----------------|-------------------------------------|-------------------------|-----------|-------|---------|
| molecule                          | $\gamma$ element                                | ab initio   | model   | % error        | molecule                            | $\gamma$ element        | ab initio | model | % error |
|                                   | ,                                               |             |         |                |                                     | ,                       |           |       |         |
| $NH_2-CH_3$                       | xxxx                                            | 4709        | 1408    | 70.1           | cis-FHC–CHF                         | xxxx                    | 1070      | 2103  | -96.5   |
|                                   | уууу                                            | 2257        | 2870    | -27.2          |                                     | уууу                    | 1974      | 1456  | 26.3    |
|                                   | Z.Z.Z.Z.                                        | 5216        | 3963    | 24.0           |                                     | Z.Z.Z.Z.                | 5368      | 5434  | -1.2    |
|                                   | XXVV                                            | 1250        | 1343    | -7.4           |                                     | XXVV                    | 883       | 1449  | -64.1   |
|                                   | XX77                                            | 3118        | 2062    | 33.9           |                                     | XX77                    | 1237      | 1615  | -30.5   |
|                                   | VV77                                            | 1376        | 1157    | 15.9           |                                     | VV77                    | 1223      | 1006  | 177     |
| CaHa                              | yyzz<br>rrrr                                    | 3144        | 607     | 80.7           | trans EUC-CUE                       | y y 22<br>xxxx          | 1153      | 2103  | _82.3   |
| $C_2\Pi_2$                        |                                                 | 5210        | 5621    | 5.0            | trans-PhC=Chr                       |                         | 1133      | 2105  | -02.3   |
|                                   | yyyy - zzzz                                     | 3510        | 3021    | -5.8           |                                     | уууу                    | 1/90      | 1430  | 19.0    |
|                                   | xxyy = xxzz                                     | 1610        | 1865    | -15.8          |                                     | ZZZZ                    | 5110      | 5434  | -6.4    |
|                                   | yyzz                                            | 1770        | 1865    | -5.3           |                                     | ххуу                    | 733       | 1449  | -97.5   |
| $C_2H_4$                          | xxxx                                            | 2796        | 4206    | -50.4          |                                     | XXZZ                    | 1169      | 1615  | -38.1   |
|                                   | уууу                                            | 2743        | 3444    | -25.5          |                                     | yyzz                    | 938       | 1006  | -7.2    |
|                                   | Z.Z.Z.Z.                                        | 9997        | 6766    | 32.3           | CH <sub>3</sub> COOH                | xxxx                    | 2684      | 2551  | 5.0     |
|                                   | xxvv                                            | 1789        | 2045    | -14.3          | -                                   | vvvv                    | 3852      | 3314  | 14.0    |
|                                   | rr77                                            | 2796        | 2613    | 6.6            |                                     | 7777                    | 1957      | 2488  | -27.2   |
|                                   | WN77                                            | 2091        | 1866    | 10.7           |                                     | rrwy                    | 1341      | 1132  | 15.6    |
| СЧ                                | y y 4.4.<br>y y y 4.4                           | 2071        | 2044    | 21.5           |                                     | ллуу<br>хх <del>г</del> | 802       | 077   | -0.6    |
| $C_{2116}$                        |                                                 | 2619        | 2044    | 16.2           |                                     | лл <u>г</u> ,           | 700       | 917   | 2.0     |
|                                   | yyyy = zzzz                                     | 2018        | 3044    | -16.5          |                                     | yyzz                    | /90       | 815   | -3.2    |
|                                   | xxyy = xxzz                                     | 1186        | 1293    | -9.1           | нсс-сно                             | XXXX                    | 8488      | 12409 | -46.2   |
|                                   | yyzz                                            | 873         | 1293    | -48.2          |                                     | уууу                    | 5024      | 5635  | -12.2   |
| cis-N <sub>2</sub> H <sub>2</sub> | xxxx                                            | 1952        | 2600    | -33.2          |                                     | ZZZZ                    | 4275      | 3951  | 7.6     |
|                                   | VVVV                                            | 2270        | 2820    | -24.2          |                                     | xxyy                    | 1435      | 1949  | -35.9   |
|                                   | 7777.                                           | 1431        | 833     | 41.8           |                                     | XXZZ.                   | 1597      | 1704  | -6.7    |
|                                   | rrvv                                            | 1688        | 1612    | 4 5            |                                     | VV77                    | 1476      | 1366  | 74      |
|                                   | xx77                                            | 668         | 571     | 14.4           | CHACCO                              | yyxx<br>yyyx            | 1369      | 5729  | -31.1   |
|                                   | лл <u>,</u> , , , , , , , , , , , , , , , , , , | 512         | 126     | 14.4           | 0112000                             |                         | 4509      | 2429  | 24.4    |
| INCO                              | yyzz                                            | 313         | 430     | 13.1           |                                     | уууу                    | 4337      | 5428  | 24.4    |
| HNCO                              | XXXX                                            | 1/84        | 2303    | -29.1          |                                     | ZZZZ                    | 5049      | 6029  | -19.4   |
|                                   | уууу                                            | 1385        | 1543    | -11.4          |                                     | ххуу                    | 2289      | 2260  | 1.3     |
|                                   | ZZZZ                                            | 1697        | 1690    | 0.4            |                                     | XXZZ                    | 2111      | 3523  | -66.9   |
|                                   | xxyy                                            | 752         | 808     | -7.5           |                                     | yyzz                    | 1522      | 1513  | 0.6     |
|                                   | XXZZ.                                           | 810         | 502     | 38.1           | CH <sub>2</sub> CHCN                | xxxx                    | 8924      | 7872  | 11.8    |
|                                   | VV77                                            | 485         | 458     | 5 5            | - 2                                 | VVVV                    | 3269      | 5366  | -64.1   |
| НСООН                             | rrrr                                            | 2203        | 847     | 61.6           |                                     | <i>уууу</i><br>7777     | 5888      | 7222  | -22.7   |
| neoon                             | AAAA                                            | 2153        | 1610    | 25.2           |                                     | 22200 C                 | 1151      | 1360  | -18.0   |
|                                   | уууу                                            | 1220        | 1010    | 23.2           |                                     | ллуу                    | 2225      | 1309  | 10.9    |
|                                   | ZZZZ                                            | 1559        | 907     | 27.0           |                                     | XXZZ                    | 2355      | 2302  | 1.4     |
|                                   | ххуу                                            | 959         | 668     | 30.4           |                                     | yyzz                    | 1/1/      | 2473  | -44.0   |
|                                   | XXZZ                                            | 593         | 331     | 44.3           | $HCC-O-CH_3$                        | xxxx                    | 7000      | 9535  | -36.2   |
|                                   | yyzz                                            | 524         | 169     | 67.8           |                                     | уууу                    | 6259      | 5509  | 12.0    |
| HN=CHOH                           | xxxx                                            | 4466        | 3403    | 23.8           |                                     | ZZZZ                    | 7164      | 5827  | 18.7    |
|                                   | vvvv                                            | 3825        | 2601    | 32.0           |                                     | xxvv                    | 1994      | 2298  | -15.2   |
|                                   | 7777                                            | 2890        | 4460    | -54.3          |                                     | rr77                    | 2188      | 2380  | -8.8    |
|                                   | xxxxx                                           | 2003        | 1382    | 31.0           |                                     | NN77                    | 2490      | 1985  | 20.3    |
|                                   | ллуу<br>хх77                                    | 1230        | 1717    | -38.6          | нссссн                              | y y 22<br>xxxx          | 10662     | 10728 | -0.3    |
|                                   | XXZZ                                            | 1239        | 1/1/    | -38.0          | пссссп                              | <i>ллл</i>              | (241      | 7200  | -0.3    |
| <i>a a</i> .a                     | yyzz                                            | 1044        | 1276    | -22.3          |                                     | yyyy = zzzz             | 6341      | 7290  | -15.0   |
| CH <sub>2</sub> CO                | XXXX                                            | 2700        | 3106    | -15.0          |                                     | xxyy = xxzz             | 3488      | 3217  | 7.8     |
|                                   | уууу                                            | 1947        | 1854    | 4.8            |                                     | yyzz                    | 2114      | 2427  | -14.8   |
|                                   | ZZZZ                                            | 7008        | 4657    | 33.5           | $CH_2CCCH_2$                        | xxxx                    | 10382     | 9452  | 9.0     |
|                                   | xxyy                                            | 1104        | 1025    | 7.2            |                                     | уууу                    | 5048      | 6591  | -30.6   |
|                                   | XXZZ.                                           | 2133        | 1522    | 28.6           |                                     | 7777                    | 10572     | 9511  | 10.0    |
|                                   | VV77                                            | 1586        | 1174    | 26.0           |                                     | rrvv                    | 4423      | 4516  | -21     |
| CH <sub>2</sub> CN                | rrrr                                            | 3892        | 4834    | -24.2          |                                     | xxyy<br>xx77            | 7908      | 6614  | 16.4    |
| engen                             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,          | 2133        | 1077    | 73             |                                     | 2227                    | 2544      | 2545  | 0.0     |
|                                   | yyyy - zzzz                                     | 21JJ<br>041 | 17//    | 1.3            | HCC CHCH                            | y y                     | 10022     | 14270 | 0.0     |
|                                   | xxyy - xxzz                                     | 901         | 001     | 0.5            | HCC-CHCH <sub>2</sub>               | хххх                    | 18255     | 14578 | 21.1    |
| au aau                            | yyzz                                            | /11         | 708     | 0.4            |                                     | уууу                    | 6462      | 8534  | -32.1   |
| CH <sub>3</sub> CCH               | xxxx                                            | /586        | 11386   | -50.1          |                                     | ZZZZ                    | 9757      | 10411 | -6.7    |
|                                   | yyyy = zzzz                                     | 5569        | 5167    | 7.2            |                                     | ххуу                    | 2629      | 2777  | -5.6    |
|                                   | xxyy = xxzz                                     | 2167        | 2255    | -4.0           |                                     | XXZZ                    | 5040      | 3665  | 27.3    |
|                                   | yyzz                                            | 1856        | 1860    | -0.2           |                                     | yyzz                    | 3016      | 3636  | -20.5   |
| H <sub>2</sub> CCCH <sub>2</sub>  | xxxx                                            | 6329        | 6829    | -7.9           | CH <sub>2</sub> CHCHCH <sub>2</sub> | xxxx                    | 13075     | 8413  | 35.7    |
| 2 2                               | vvvv = 7777                                     | 6996        | 6578    | 6.0            |                                     | vvvv                    | 6934      | 6887  | 0.7     |
|                                   | xxvv = xx77                                     | 3438        | 3947    | -14.8          |                                     | 7777                    | 14003     | 13533 | 34      |
|                                   | ллуу - лл <u>с</u> ,<br>11177                   | 2100        | 2277    | _0.2           |                                     | ****                    | 6/86      | 1000  | 26.0    |
| CII                               | <i>yy</i> 22                                    | 4920        | 2200    | 0.5            |                                     | ллуу                    | 7701      | 4090  | 20.9    |
| $C_3H_6$                          | xxxx                                            | 4830        | 588/    | -21.9          |                                     | XXZZ                    | //01      | 5225  | 32.1    |
|                                   | уууу                                            | 4860        | 5124    | -5.4           |                                     | yyzz                    | 4053      | 3732  | 7.9     |
|                                   | ZZZZ                                            | 9424        | 8288    | 12.1           | $NH_2$ -CO-O-CH <sub>3</sub>        | xxxx                    | 2996      | 4079  | -36.1   |
|                                   | xxyy                                            | 2677        | 2533    | 5.4            |                                     | уууу                    | 4817      | 4318  | 10.4    |
|                                   | XXZZ                                            | 3152        | 3259    | -3.4           |                                     | ZZZZ                    | 3713      | 4930  | -32.8   |
|                                   | VVZZ.                                           | 2347        | 2513    | -7.1           |                                     | xxyv                    | 1436      | 1180  | 17.9    |
| CO2                               | xxrr                                            | 836         | 817     | 2.3            |                                     | XX77                    | 1313      | 1778  | -35.4   |
| 2                                 | vvvv = 7777                                     | 765         | 847     | -10.7          |                                     | VV77                    | 1406      | 1941  | -38.0   |
|                                   | yyyy = 4444                                     | 287         | 277     | 15.5           | HCC-CC-CH-                          | y y 4.4.<br>v v v v     | 30204     | 30507 | _0.4    |
|                                   | xxyy - xxzz                                     | 201         | 321     | 13.3           | $\Pi C = C C = C \Pi_3$             | лллл<br>                | 20394     | 20207 | -0.4    |
|                                   | <i>yyzz</i>                                     | 200         | 2/0     | -5.9           |                                     | yyyy = zzzz             | 0393      | 0830  | -0.9    |
| $F_2C=CH_2$                       | xxxx                                            | 1447        | 2103    | -45.3          |                                     | xxyy = xxzz             | 3667      | 3607  | 1.6     |
|                                   | уууу                                            | 1694        | 1456    | 14.1           |                                     | yyzz                    | 2131      | 2422  | -13.6   |
|                                   | ZZZZ                                            | 5530        | 5434    | 1.7            | HCC-CC-CHO                          | xxxx                    | 39700     | 31530 | 20.6    |
|                                   | xxvv                                            | 873         | 1449    | -66.0          |                                     | vvvv                    | 6194      | 7304  | -17.9   |
|                                   | XXZZ.                                           | 1443        | 1615    | -11.9          |                                     | 7777.                   | 5546      | 5621  | -1.4    |
|                                   | VV77                                            | 1047        | 1006    | 3.9            |                                     | rrvv                    | 2893      | 3301  | -14 1   |
|                                   | y y 4.6<br>Y Y 7.7                              | 2155        | 2056    | 21             |                                     | ллуу                    | 2075      | 5501  | 17.1    |
|                                   | AAZZ                                            | 1007        | 1020    | 5.1            |                                     |                         |           |       |         |
|                                   | yyzz                                            | 199/        | 1928    | -2.2           |                                     |                         |           |       |         |

| <b>TABLE 8:</b> Parameter | Transferability | Analysis |
|---------------------------|-----------------|----------|
|---------------------------|-----------------|----------|

|                         | change (%) in p<br>from excludin | parameter value<br>g F molecules |
|-------------------------|----------------------------------|----------------------------------|
| center type             | $\alpha_{iso}$                   | $\gamma_{ m iso}$                |
| (0) = C =               | -1.2                             | -5.7                             |
| $(O) = C (sp^2)$        | 0.2                              | 1.3                              |
| (H)C (sp)               | -0.5                             | -3.7                             |
| $C(sp^3)$               | -0.2                             | -1.7                             |
| C (sp)                  | -0.6                             | -8.9                             |
| $C(sp^2)$               | 0.3                              | 0.7                              |
| (C) = C = (C)           | -0.1                             | -0.2                             |
| N (sp)                  | 0.4                              | 1.5                              |
| $N(sp^2)$               | 1.4                              | 4.4                              |
| $(H_2)N(sp^3)$          | 0.3                              | 1.3                              |
| (H)N (sp <sup>3</sup> ) | 1.2                              | -1.3                             |
| 0=                      | 2.0                              | 19.4                             |
| -0-                     | 0.9                              | -22.6                            |

included in a molecule with four other non-hydrogen atoms but all single bonds.

An assessment of transferability is given by the values in Table 8. The table shows the percentage change in the parameter values from excluding fluorine molecules from the data set, and thereby excluding the F-center parameters from the fit. The changes are small, except for the  $\gamma$  parameters for the oxygen centers. However, oxygen's parameters (Table 3) are relatively small, and so the larger percentage change corresponds to roughly the same size of change as for the carbon centers. This clearly supports the idea that one can identify contributions from different types of atoms—that the parameters are transferable in part.

Additivity and transferability in the atomic origin of the second dipole hyperpolarizability response of organic molecules make for suitable predictions of the isotropic  $\gamma$  and even the entire tensor; however, the nature of this response is different from that of the induction of a dipole moment directly by an external field (i.e., the dipole polarizability response). From the fact that greater diffuseness in polarization functions is needed to carry out accurate ab initio evaluations of hyperpolarizabilities than polarizabilities,  $\beta$ ,  $\gamma$  and so on, depend more on the outer regions of the electron distribution than does  $\alpha$ . It is not surprising, then, that  $\gamma$  depends more on the bonding characteristics than does  $\alpha$ , and hence, the AAC scheme does not work as well for  $\gamma$  as for  $\alpha$ . Even so, the scheme has utility for estimating the second dipole hyperpolarizability of molecules that may be too large for ab initio calculations or for making comparison predictions within a series of compounds that may be too lengthy for ab initio calculations or laboratory measurement. To use the AAC scheme to find the  $\gamma$ -tensor elements of a chosen molecule, one must arrange the "building blocks", the atoms according to the types in Table 3, with respect to a chosen axis system for the molecule. Then, the individual tensors for each building block (Table 5) need to be transformed (rotated) by standard methods for fourth-ranked tensors from their reference orientation to their orientation in the chosen molecule. One then has a distributed representation of the molecular second dipole hyperpolarizability, and the complete  $\gamma$  tensor is the element-by-element sum of the rotated, atomic contributions.

#### Conclusions

The extensive collection of large basis ab initio results for the  $\alpha$  and  $\gamma$  property tensors for 58 organic molecules shows that the major elements of these tensors are associated with atomic contributions. That is, they depend on additive and transferable contributions associated with the chemical composition and bonding types of the atoms. The predictive capability is judged to be around 10% for  $\alpha$  and 40% for  $\gamma$ ; however, the more important result from the AAC modeling of  $\gamma$  response is in showing the sizable influence of the bonding environment and distinguishing centers that tend to diminish the response. This may prove helpful in selecting substituents for the design of organic polymers for enhanced nonlinear response.

**Acknowledgment.** This work was supported, in part, by a grant from the National Science Foundation (CHE-9714016) to C.E.D. and by a grant to T. Cundari (CHE-9614346) which provided support for T.Z.

#### **References and Notes**

- (1) Denbigh, K. G. Trans. Faraday Soc. 1940, 36, 936.
- (2) Vogel, A.; Creswell, W.; Jefferey, G.; Leicester, I. Chem. Ind. 1950, 258.
- (3) Tessman, J. R.; Kahn, A. H.; Schockley, W. Phys. Rev. 1953, 92, 890.
  - (4) Miller, K. J., Savchik, J. A., J. Am. Chem. Soc. 1979, 101, 7206.
  - (5) Miller, K. J., J. Am. Chem. Soc. 1990, 112, 8533; 8543.
  - (6) Vogel, A. J. Chem. Soc. 1948, 1833.
- (7) Hirschfelder, J. O., Curtiss, C. F., Bird, R. B., *Molecular Theory of Gases and Liquids*; John Wiley & Sons: New York, 1964; Chapter 13.
  (8) Liu, S.-Y., Dykstra, C. E. J. Phys. Chem. **1987**, 91, 1749.

(9) Laidig, K. E., Bader, R. F. W., J. Chem. Phys. 1990, 93, 7213;
 Bader, R. F. W., Keith, T. A., Gough, K. M., Laidig, K. E., Mol. Phys.

- **1992**,75, 1167
  - (10) Stout, J. M., Dykstra, C. E., J. Am. Chem. Soc. 1995, 117, 5127.
  - (11) Stout, J. M., Dykstra, C. E., J. Phys. Chem. 1998, 102, 1576.
- (12) Applequist, J., Carl, J. R., Fung, K.-K., J. Am. Chem. Soc. 1972, 94, 2952.
- (13) Camail, M., Proutiere, A., Bodot, H., J. Phys. Chem. 1978, 82, 2617.
  - (14) Birge, R. R., J. Chem. Phys. 1980, 72, 5312.
  - (15) Sundberg, K. R., J. Chem. Phys. 1977, 66, 114; 1475.
  - (16) Bode, K. A., Applequist, J., J. Phys. Chem. 1996, 100, 17820.
  - (17) Dykstra, C. E., Jasien, P. G., Chem. Phys. Lett. 1984, 109, 388.
  - (18) Werner, H.-J., Meyer, W., Mol. Phys. 1976, 31, 855.
  - (19) Bartlett, R. J., Purvis, G. D., Phys. Rev. 1979, A20, 1313.
  - (20) Amos, R. D., Chem. Phys. Lett. 1980, 70, 613; 1982, 88, 89.
  - (21) Reinsch, E.-A., J. Chem. Phys. 1985, 83, 5784.
  - (22) Maroulis, G., Thakkar, A. J., J. Chem. Phys. 1990, 93, 652.
- (23) Fowler, P. W., Diercksen, G. H. F., Chem. Phys. Lett. 1990, 164, 105.
  - (24) Sekino, H., Bartlett, R. J., J. Chem. Phys. 1993, 98, 3022.
  - (25) Liu, S.-Y., Dykstra, C. E. J. Phys. Chem. 1987, 91, 1749.
- (26) Dunning, T. H., J. Chem. Phys. 1971, 55, 716; Huzinaga, S., J. Chem. Phys. 1965, 42, 1293.
- (27) Beck, D. R., Gay, D. H., J. Chem. Phys. 1990, 93, 7264.
- (28) Champagne, B., Fripiat, J. G., André, J.-M., J. Chem. Phys. 1992, 96, 8330.
  - (29) Champagne, B., Ohrn, Y., Chem. Phys. Lett. 1994, 217, 551.
  - (30) Chen, S. Y., Kurtz, H., J. Mol. Structure-Theochem 1996, 388, 79.
- (31) Kirtman, B., Nilsson, W. B., Palke, W. E., Solid State Commun. 1983, 46, 791.
- (32) Barbier, C., Chem. Phys. Lett. 1987, 142, 53.
- (33) Hurst, G. J. B., Dupuis, M., Clementi, E., J. Chem. Phys. 1988, 89, 385.
- (34) Kirtman, B., Hasan, M., J. Chem. Phys. 1992, 96, 470.
- (35) Kirtman, B., Toto, J. L., Robins, K. A., Hasan, M., J. Chem. Phys. 1995, 102, 5950.
- (36) Toto, T. T., Toto, J. L., de Melo, C. P., Hasan, M., Kirtman, B., Chem. Phys. Lett. 1995, 244, 59.
- (37) Hasan, M., Kim, S.-J., Toto, J. L., Kirtman, B., J. Chem. Phys. 1996, 105, 186.
- (38) Kirtman, B., Dykstra, C. E., Champagne, B., Chem. Phys. Lett. 1999, 305, 132.