Experimental Verification of Theoretically Calculated Transition Barriers of the Reactions in a Gaseous Selective Oxidation of CH₄–O₂–NO₂

Kenji Tabata,* Yonghong Teng, Yoichi Yamaguchi,[†] Hiroaki Sakurai, and Eiji Suzuki

Research Institute of Innovative Technology for the Earth (RITE), Kizugawadai, Kizu-cho, 9–2, Soraku-gun, Kyoto, 619–0292 Japan

Received: July 27, 1999; In Final Form: January 11, 2000

The selective oxidation of methane with oxygen to C₁ oxygenates (methanol and formaldehyde) is an important process. However, the precise reaction mechanism in a gaseous chain reaction has not been clarified. Methane activation and the selectivity of C₁ oxygenates (CH₃OH, CH₂O) in a gaseous selective oxidation of CH₄– O_2 –NO₂ have been examined under atmospheric pressure with both theoretical and experimental approaches. Theoretically calculated transition barrier of hydrogen abstraction from CH₄ of the reaction CH₄ + NO₂ \rightarrow CH₃ + HNO₂ was lower than that of the reaction with O₂, i.e., CH₄ + O₂ \rightarrow CH₃ + O₂H. This decrease of the transition barrier was experimentally verified by the linear enhancement of CH₄ conversion with NO₂ concentration in CH₄–O₂–NO₂. The experimental varied results of selectivity of C₁ oxygenates on various reaction conditions (NO₂ concentration, CH₄/O₂ ratio, space velocity) showed the appropriateness of the consideration on the selectivity with the calculated values of transition barriers and rate constants of the selected reaction routes from CH₃O to CH₃OH and CH₂O. After considering the transition barriers and rate constants of each elemental reaction route, we attained ca. 7% yield of C₁ oxygenates.

Introduction

The selective oxidation of methane with oxygen to C_1 oxygenates (methanol and formaldehyde) is an important process for the effective use of natural gas resources. In recent years, many researchers have studied the selective oxidation of natural gas with various types of catalysts. However, the products mostly comprise CO, CO₂, and H₂O with only trace formation of CH₃OH, CH₂O, and C₂H₆.¹⁻³ Accordingly, the metal-oxide catalysts that have been examined cause successive oxidation. The gas-phase reaction without catalysts seems to have the advantage of yielding C_1 oxygenates because the difficulty of the desorption stage from the surface of a catalyst could be liberated but the control of a chain reaction could be difficult. Formation of methanol and/or formaldehyde with methane and oxygen in a gaseous reaction has been reported.^{2,4-14} Kinetic and thermodynamic models of these gaseous reactions have been discussed. The rate-determining step of the selective oxidation of methane is the first hydrogen abstraction from methane. Therefore, initiators and sensitizers have been examined in order to reduce the activation energy of the first hydrogen abstraction from methane.^{14–16} The promotion effect of nitrogen oxides for methane selective oxidation in a gaseous reaction has been reported.^{13,14,17-20} Bromly et al. prepared the kinetic models in $CH_4-O_2-NO_x$, based on the heats of formation and entropies.¹⁴ The predictions of their kinetic models for the oxidation reactions in an atmospheric pressure were in good agreement with the experimental data over the entire range of conditions, though the main product of the reaction was CO, and the formation of C₁ oxygenates was not reported. Recently, Bañares et al.²¹ reported a high yield of methanol and formaldehyde over V₂O₅/SiO₂ catalysts in the presence of NO. The highest yield

of C_1 oxygenates (CH₃OH and CH₂O) reached 7% at atmospheric pressure. They suggested that the contribution of gasphase reactions for the formation of C_1 oxygenates and the presence of NO must alter the equilibria in the gas-phase reactions.

Very recently, we proposed a reaction model for the conversion of methane to methanol and formaldehyde with CH₄-NO_x (x = 1 or 2) in the gas phase by means of theoretical calculations at the MP2 (frozen core) and CCSD(T) levels.²² It was found that in both NO and NO₂, a nitrogen atom showed a higher activity for the cleavage of the C-H bond of methane than did an oxygen atom in NO_x . Furthermore, the activation energies were calculated as 62 kcal/mol for a nitrogen atom of NO and 37.6 kcal/mol for that of NO₂, indicating that NO₂ had higher activity for the hydrogen abstraction from methane than NO. Through the theoretical analysis of the CH₄-NO₂ reaction system in the previous paper, we suggested a possible reaction path leading to yield in both methanol and formaldehyde within all the barriers of less than 40 kcal/mol via CH₃O.²² However, we did not consider the contribution from the coexistent oxygen to the reactions for the formation of C₁ oxygenates in CH₄-O₂-NO₂.²²

In this study, we will examine exclusively the gaseous selective oxidation of methane with $CH_4-O_2-NO_2$ under atmospheric pressure. We will examine the effects of NO_2 on methane activation and the selectivities of methanol and formaldehyde with both experimental and theoretical approaches. Some of the experimental results were submitted as a letter.²³ We will study theoretically the role of coexistent oxygen on the reaction path leading to the selective formation of CH_3OH and CH_2O . We will examine on the applicability of our calculated transition barriers and rate constants of each elemental reaction route in order to consider the selectivities to CH_3OH and CH_2O under various reaction conditions, since the

^{*} To whom correspondence should be addressed.

[†] Kansai Research Institute, Kyoto Research Park 17, Chudoji Minamimachi, Shimogyo-ku, Kyoto, 600-8813 Japan.

detailed mechanisms of the selectivities to CH_3OH and CH_2O for the gaseous chain reactions in $CH_4-O_2-NO_2$ have not been made clear.

Experimental Section

The reaction test was carried out using a single-pass flow reactor made of a quartz tube with an inside diameter of 7.0 mm and a heated length of 200 mm. The total flow rate was 120 cm³ min⁻¹. The standard gas composition (CH₄: 55.6%, O₂: 27.7%, NO₂: 0.5%, He: 16.2%) was controlled with a mass flow controller. The concentration of NO₂ ranged from 0.125% to 1.0%; however, the ratio of CH₄ to O₂ was 2.0, unless otherwise indicated. The products were analyzed with two online gas chromatographs serially connected. A thermal conductivity detector (Molecular Sieve 5A) and a flame ion detector (Porapack Q), using helium as a carrier gas, were used. The carbon balance before and after the reaction exceeded 95%. Measurements were carried out after 30 min of reacting at each experimental condition, and all experimental data were taken at least three times to check the reproducibility.

Method of Calculation. All of the calculations were carried out with the *Gaussian 94* ab initio program package.²⁴ The geometrical optimization for all of the present molecules was performed with the MP2 (frozen core) level of theory and 6-311++G(2d, p) basis set. On the basis set of the optimized geometries, the single point calculations of the energies were calculated at the CCSD(T)/6-311++G(2d, p) level with the zero-point energy corrections of the MP2 level. Thermal rate constants for all of the present elementary reactions at 800 K and 1 atm were also estimated using the calculated results of MP2 and CCSD(T) levels of theory. A Silicon Graphics Origin 2000 R10000 workstation was used for calculations in this study.

Results

Methane Activation. The rate-determining step of the selective oxidation of methane is the first abstraction of hydrogen atom. The high barrier value as 55.2 kcal/mol has been calculated theoretically for the $O_2 + CH_4 \rightarrow CH_3 + O_2H$ reaction.²² We calculated the methane activation barriers of the optimized transition structures with NO₂ as follows:

$$NO_2 + CH_4 \rightarrow [TS1] \rightarrow HNO_2 + CH_3$$
 (1)

$$NO_2 + CH_4 \rightarrow [TS2] \rightarrow trans-HONO + CH_3$$
 (2)

where the total energy of $CH_4 + NO_2$ is taken as a standard. The transition barrier for eq 1 is calculated as 37.6 kcal/mol. Equation 2 has a barrier of 45.8 kcal/mol. These barriers for the reactions in eqs 1 and 2 are significantly lower by 9–18 kcal/mol than the above-mentioned $O_2 + CH_4 \rightarrow O_2H + CH_3$ reaction, which indicates a higher activity of CH_4 in the presence of NO₂ for the reaction of hydrogen abstraction from methane in comparison with O₂.

Figure 1 shows the emergent region of methane conversion as a function of reaction temperature. The conversion without NO₂, i.e., $CH_4 + O_2$ shows a quite low activity even at 966 K. The addition of a small quantity of NO₂ in the reaction gas enhances the conversion greatly. The reactivity increases with the concentration of NO₂ to 0.75% in $CH_4-O_2-NO_2$ mixed gas. The calculated transition barrier in the presence of NO₂ from this experiment is 45.7 kcal/mol at the level of 10% CH₄

Figure 1. CH₄ conversion variation at different NO₂ concentration as a function of reaction temperature. Reaction gas: CH₄ (55.6%) + O₂ (27.7%) + NO₂ in He (balance). Flow rate: 120 mL/min.

conversion. This value is close to the reported experimentally obtained value (49.7 kcal/mol).²⁰ This increase of reactivity seems to be led by the decrease of the transition barrier of hydrogen atom abstraction from methane for the reaction path of CH₄-NO₂ instead of CH₄-O₂ as we expected from the theoretical calculation. Therefore, the reaction of hydrogen atom abstraction from methane mainly progresses on the reaction route of CH₄-NO₂.

Methoxide Formation. We calculated the formation route of CH₃O, which is an important intermediate because only CH₃O can lead to yield CH₃OH and CH₂O.²² The coupling CH₃ with NO₂ directly produces CH₃NO₂ and *trans*-CH₃ONO. Each stabilization energy was 57.0 and 55.7 kcal/mol, respectively. The thermal decomposition of *trans*-CH₃ONO into CH₃O and NO via [TS3] was calculated.²²

$$trans-CH_3ONO \rightarrow [TS3] \rightarrow CH_3O + NO$$
 (3)

The transition barrier of this decomposition reaction was calculated as 38.4 kcal/mol.

We did not consider the contribution of oxygen to CH₃O formation in the previous paper.²² However, the methyl radical is assumed to react easily with oxygen. We calculated the transition barriers of the following four reaction routes of CH₃O formation. The calculation method is the same as with our previous paper.²²

$$O_2 + CH_3 \rightarrow [TS4] \rightarrow CH_3OO$$
 (4)

$$CH_3OO + CH_4 \rightarrow [TS5] \rightarrow CH_3OOH + CH_3$$
 (5)

$$CH_3OOH \rightarrow [TS6] \rightarrow CH_3O + OH$$
 (6)

$$CH_3OO + NO \rightarrow [TS7] \rightarrow CH_3O + NO_2$$
 (7)

Each calculated transition barrier is shown in Figure 2. Here the state of the separated reactants is taken as a standard. The optimized geometries of transition states [TS4] and [TS7] with the C_S structures and [TS5] and [TS6] with the C₁ structures are illustrated in Figure 3. The highest transition barrier in eqs 4-7 is 37.8 kcal/mol, and it is calculated as that of [TS6] in eq 6. Since the value of the transition barriers of [TS6] and those of [TS1] and [TS2] are almost the same, all of the reactions in eqs 4-6 are assumed to be possible to make progress. If the concentration of NO in the reactant gas is sufficient, CH₃OO will react with NO to form CH₃O through [TS7] in eq 7. This route is energetically favorable in comparison with the routes

Figure 2. Potential energy diagram for the formation of CH₃O through CH₃OO. The total energies for the separated reactants $O_2 + CH_4$ (I), CH₃OO + CH₄ (II), CH₃OO + (III), and CH₃OO + NO (IV) are -189.7868, -230.1974, 190.4562, and -319.4922 hartrees, respectively. Relative energies are given in kcal/mol.

Figure 3. Optimized geometries for TS4 of the $CH_3 + O_2$ reaction, TS5 of the $CH_3OO + CH_4$ reaction, TS6 of the decomposition of CH_3OOH , and TS7 of the $CH_3OO + NO$ reaction. All bond lengths and bond angles are given in Å and degrees, respectively. Imaginary frequency modes for the forward reactions are given in cm⁻¹.

TABLE 1. Calculated Kate Constants, N, and Activation Energies, EA, at 600 h	TABLE 1:	Calculated Rate	Constants, k, a	nd Activation	Energies, E_A	, at 800 K
--	----------	-----------------	-----------------	---------------	-----------------	------------

reaction	k	E _A (kcal/mol)
$CH_4 + NO_2 \rightarrow CH_3 + H - NO_2^b$	$5.4 imes 10^{-20}$	37.6
$CH_4 + NO_2 \rightarrow CH_3 + trans-HONO^b$	3.3×10^{-22}	45.8
<i>trans</i> -CH ₃ ONO \rightarrow CH ₃ O + NO ^b	2.5×10^{-5}	35.6
$CH_3 + O_2 \rightarrow CH_3OO$	$1.3 \times 10^{-15} (2.0 \times 10^{-12})$	14.8 (0.0)
$CH_3OO + CH_4 \rightarrow CH_3OOH + CH_3$	$3.3 \times 10^{-19} (1.3 \times 10^{-18})$	29.9 (21.5)
$CH_3OOH \rightarrow CH_3O + OH$	$1.5 \times 10^{6} (7.2 \times 10^{3})$	33.0 (43.0)
$CH_3OO + NO \rightarrow CH_3O + NO_2$	$1.5 \times 10^{-10} (5.3 \times 10^{-12})$	-9.7 (-0.4)
$CH_3O + CH_4 \rightarrow CH_3OH + CH_3^b$	$1.8 \times 10^{-15} (9.9 \times 10^{-16})$	16.9 (11.0)
$CH_3O \rightarrow CH_2O + H^b$	$2.2 \times 10^{6} (6.4 \times 10^{5})$	27.5 (30.0)
$CH_3O + O_2 \rightarrow CH_2O + HO_2$	$1.7 \times 10^{-17} (1.7 \times 10^{-14})$	21.7 (2.1)
$CH_3O + NO_2 \rightarrow CH_2O + H - NO_2^b$	1.1×10^{-15}	6.7
$CH_3O + NO \rightarrow CH_2O + HNO^b$	$3.1 \times 10^{-14} (2.6 \times 10^{-12})$	5.6 (-0.4)

^{*a*} Values in parentheses represent the experimental data taken from refs 4 and 14. Rate constants are in s^{-1} and cm^3 molecule⁻¹ s^{-1} for unimolecular and bimolecular reactions, respectively. Activation energies are in kcal/mol. ^{*b*}From ref 22.

through eqs 5 and 6. The calculated rate constants and activation energies at 800 K are listed in Table 1. The data were calculated using the conventional transition-state theory and using the calculated results of MP2 and CCSD(T) levels of theory. The reported values of activation energies and rate constants are listed in Table 1 also for comparison.

Reaction Routes to CH₃OH and CH₂O. The elementary reactions for yielding CH₃OH and CH₂O from CH₃O are shown

Experimental Verification of Transition Barriers

Figure 4. Potential energy diagram for the $CH_3O + O_2$ reaction with the optimized geometry for TS10. The total energy for the separated reactants is -264.8679 hartrees. Relative energies are given in kcal/mol.

Figure 5. Potential energy diagram for the formation of C_1 oxygenates. The total energies for the separated reactants $CH_3O + CH_4$ (I), CH_3O (II), CH_3O+O_2 (III), $CH_3O + NO_2$ (IV), and $CH_3O + NO$ (V) are -155.1623, -114.7925, -264.8679, -319.5106, and -244.4570 hartrees, respectively. Relative energies are given in kcal/mol.

as follows:

$$CH_3O + CH_4 \rightarrow [TS8] \rightarrow CH_3OH + CH_3$$
 (8)

$$CH_3O \rightarrow [TS9] \rightarrow CH_2O + H \tag{9}$$

$$CH_3O + O_2 \rightarrow [TS10] \rightarrow CH_2O + HO_2$$
(10)

$$CH_3O + NO_2 \rightarrow [TS11] \rightarrow CH_2O + H - NO_2 \quad (11)$$

$$CH_3O + NO \rightarrow [TS12] \rightarrow CH_2O + H - NO$$
 (12)

The transition barriers except for [TS10] were reported in the previous paper,²² and we calculated [TS10] in order to examine the contribution to CH₂O formation from coexistent O₂ with the same calculation procedures. The calculated transition barrier and the optimized geometries of transition states are shown in Figure 4. The complete potential energy diagram for eqs 8-12 is illustrated in Figure 5, where the total energy of each separated

reactant is taken as a standard. The highest transition barrier is 25.7 kcal/mol for the thermal decomposition of CH₃O in eq 9. All of the transition barriers in eqs 8-12 are lower than that of hydrogen atom abstraction in eq 1. Therefore, all of the reactions of eqs 8-12 are energetically possible to proceed. The calculated rate constants of these reactions are listed in Table 1 also.

Regarding the selectivities of CH₃OH and CH₂O, one of the important points is that CH₃OH is produced only from reaction 8. The second important point is that the transition barriers of CH₂O formation from CH₃O and NO₂ or NO (assumed to be produced during the reaction in the reactor) in eqs 11 and 12 are lower than [TS8] for the CH₃OH formation.

We show our suggested reaction routes up to the formation of CH_3OH and CH_2O (Figure 6). The largest value of the calculated transition barrier is 45.8 kcal/mol, which is given from the reaction for the first hydrogen abstraction from CH_4 .

Decomposition Route from CH₃OH and CH₂O. We addressed the reaction routes for the formation of CH₃OH and CH₂O, but the reaction routes for the decomposition of CH₃-OH and CH₂O are assumed to affect strongly the selectivities of those. The decomposition routes of CH₃OH and CH₂O have been suggested widely.^{4,5,14} In the suggested routes, we focused on the route with OH species:

$$CH_3OH + OH \rightarrow CH_2OH + H_2O$$
 (13)

$$CH_2OH + O_2 \rightarrow CH_2O + HO_2$$
(14)

$$CH_2O + OH \rightarrow CHO + H_2O$$
 (15)

$$CHO + O_2 \rightarrow CO + HO_2 \tag{16}$$

The transition barrier in eq 13 was reported as 1.4 kcal/mol,⁴ and the others in eqs 14-16 were less than this value. Therefore, if OH species are sufficient in the gaseous phase, the reaction for the decomposition of CH₃OH and CH₂O proceeds easily. The decomposition routes of CH₃OH and CH₂O with coexistent NO₂ also should be considered:

$$CH_3OH + NO_2 \rightarrow CH_2OH + HONO$$
 (17)

$$CH_2O + NO_2 \rightarrow CHO + HONO$$
 (18)

The transition barriers of these reactions are reported as 21.4 and 16.1 kcal/mol, respectively.¹⁴ We calculated also the transition barriers of the following reactions with coexistent NO_2 as 28.3 and 21.4 kcal/mol, respectively:

$$CH_3OH + NO_2 \rightarrow CH_2OH + HNO_2$$
 (19)

$$CH_2O + NO_2 \rightarrow CHO + HNO_2$$
 (20)

Experimental Results of the Selectivities of CH₃OH and CH₂O. NO_2 Concentration. The concentration of NO₂ in a reactant gas should affect not only the conversion of CH₄ but also the selectivities of CH₃OH and CH₂O. Figure 7 shows the selectivities of the products as a function of NO₂ concentration at the same 10% methane conversion. The selectivity of CH₃-OH is higher than that of CH₂O in the range of 0.25–1.0% NO₂ concentration. This is the first report that the selectivity

Figure 6. Suggested reaction pathways for the formation of CH₃OH and CH₂O in CH₄-O₂-NO₂.

Figure 7. Selectivity variation as a function of NO₂ concentration at 10% CH₄ conversion with CH₄ (55.6%) + O₂ (27.7%) + NO₂ in He (balance).

of CH₃OH exceeds that of CH₂O in the gaseous selective oxidation of CH₄ $-O_2-NO_2$ under atmospheric pressure. Both selectivities in Figure 7 increased from 0.25% to 0.5%, then decreased slightly to 1.0%. The selectivity of CO decreased until NO₂ reached 0.75%, then increased again. The ratio of CH₂O to CH₃OH increased gradually in the region of 0.25–1.0% NO₂ concentration.

 CH_4/O_2 Ratio. The ratio of coexistent methane to oxygen in the reactant gas is theoretically assured to affect the selective yields of CH₃OH and CH₂O (Figure 5). We experimentally studied the effects of the CH₄/O₂ ratio on each selectivity of CH₃OH and CH₂O. Figure 8 shows each selectivity of products at the 10% conversion of CH₄ as a function of the ratio of CH₄: O₂ in CH₄-O₂-NO₂ reactant gas. The conversion of CH₄ as a function of reaction temperature on each ratio from 1 to 10 is shown in Figure 9. The selectivity of CH₃OH is higher than that of CH₂O in the range of 1 to 10. One feature of the results in Figure 8 is the highest yield of both CH₃OH and CH₂O at CH₄/O₂ = 2.

Space Velocity (SV). We studied the effects of space velocity (SV) on the selectivities. The SV was calculated by dividing the gas flow volume per 1 h at 298 K and 1 bar by the volume of the vacant heated zone of the reactor. Figure 10 shows the variation of each selectivity with SV at 10% methane conversion. CH₂O increases with SV but CO decreases. These changes of both CH₂O and CO agree well with the obtained results by Irusta et al.¹⁸ This means that CO is a secondary product

Figure 8. Selectivity variation at the level of 10% CH₄ conversion as a function of CH₄/O₂ ratio. The percentages of CH₄ and O₂ in the feed gas were changed so as to change the ratio of CH₄/O₂ from 1 to 10. The percentages of NO₂ and He were fixed at 0.5% and 16.2%, respectively except for the case at CH₄/O₂ = 1. The percentages of NO₂ and He were 0.5% and 44.0%, respectively, at CH₄/O₂ = 1.

following the formation of CH_2O . The selectivities of CH_3OH and CO_2 are less affected by the SV variation in comparison with CH_2O and CO. All of these data were detected close to 800 K, in other words, the difference of each detected reaction temperature at the 10% methane conversion is less than 10 K (Figure 11).

Discussion

It has been known for more than 70 years that the oxidation of CH₄ with O₂ can be accelerated by the addition of NO.²⁵ Recently, Otsuka et al. examined the partial oxidations of CH₄, C_2H_6 , C_3H_8 , and *iso*- C_4H_{10} with O_2 by addition of NO in the gas phase.²⁰ Regarding the contribution of NO_x to the activation of methane, they suggested that NO2 would work as an initiator or oxidant in the oxidations because the reaction between NO and alkane did not take place in the absence of O_2 . Thus they speculated that some NO₂-containing hydrocarbons could be the reaction intermediate for the formation of oxygenates. They examined the decomposition reactions of 1-C3H7NO2, 2-C3H7-NO₂, and tert-C₄H₉ONO in the flow of O₂ or a mixture of NO and O₂ and detected the formation of HCHO, CO, CO₂, and CH₃NO₂ from only the decomposition of *tert*-C₄H₉ONO. They suggested that alkyl nitrite could be the intermediate for the formation of oxygenates. From these experimental results, they

Figure 9. CH₄ conversion under different CH₄/O₂ ratios as a function of reaction temperature. The percentages of CH₄ and O₂ in the feed gas were changed so as to change the ratio of CH₄/O₂ from 1 to 10. The percentages of NO₂ and He were fixed at 0.5% and 16.2%, respectively, except for the case at CH₄/O₂ = 1. The percentages of NO₂ and He were 0.5% and 44.0%, respectively, at CH₄/O₂ = 1.

suggested a reaction scheme. Their suggested scheme is listed as follows:

$$NO + 1/2 O_2 \rightarrow NO_2$$
 (21)

$$CH_4 + NO_2 \rightarrow CH_3 + HNO_2$$
 (22)

$$CH_3 + NO_2 \rightarrow CH_3ONO$$
 (23)

$$CH_3 + NO_2 \rightarrow CH_3NO_2$$
 (23')

$$CH_3ONO \rightarrow CH_3O + NO$$
 (24)

$$CH_3O \rightarrow CH_2O + H$$
 (25)

$$CH_3 \xrightarrow{O_2, NO_2} HCHO, CO, CO_2$$
(26)

The details in eq 26 were not clear. Furthermore, the reaction route to the formation of CH_3OH was not discussed. Especially, the details of the transition barriers and rate constants for addressing the selectivities of CH_3OH and CH_2O have not been made clear yet.

We have tried to connect the theoretically calculated transition barriers and rate constants of elemental reaction routes for the formation of CH₃OH and CH₂O and to the experimentally observed selectivities of those. The effects of NO₂ concentration, the ratio of CH_4/O_2 , and SV on the selective yields of CH_3OH and CH₂O were experimentally examined. We addressed the theoretically obtained transition barriers and rate constants and the variations of observed selectivities of CH₃OH and CH₂O under several reaction conditions at the same time. In Table 1, the calculated values of [TS4] and [TS8] are much different from the reported experimental values.^{4,14} We assumed that the main reason of for this difference came from the reactions between a doublet state (CH₃, CH₃O) and a triplet state (O₂) species, which caused a large spin contamination in the results at the level of our calculations. Regarding the effects of NO₂ concentration on the selectivities of CH₃OH and CH₂O (Figure 7), both selectivities increased in the range from 0.25% to 0.5%.

Space velocity / ii

Figure 10. Selectivity variation at the level of 10% CH₄ conversion as a function of space velocity (SV) with CH₄ (55.6%) + O_2 (27.7%) + NO_2 (0.5%) in He (balance).

Reaction temperature / K

Figure 11. CH₄ conversion at different space velocity (SV) as a function of reaction temperature with CH₄ (55.6%) + O_2 (27.7%) + NO_2 (0.5%) in He (balance).

The selectivity of CO decreased rapidly in the same range. Therefore, we considered that the increase of the selectivities of CH₃OH and CH₂O resulted from the decline of decomposition reactions of CH₃OH and CH₂O with OH in eqs 13-16. The reaction route for the formation of OH is known from eq 6. The transition barrier of [TS6] is 37.8 kcal/mol (Figure 2), and this value is much higher than that of [TS7] for the formation of CH₃O. Additionally, there is no transition barrier for the reverse reaction from CH₃O to CH₃OOH. Therefore, the reaction route for the decomposition of CH₃OO in eq 7 is favorable to form CH₃O. Furthermore, since the rate constant of eq 7 is larger than that of eq 5, CH₃OO is assumed to react with NO. Therefore, the concentration of OH in the gas phase of CH₄-O₂-NO₂ could be low in comparison with that in the gas phase of CH₄-O₂. This low concentration of OH could bring the decline of decomposition reaction, then the selectivities of CH3-OH and CH₂O increased in the range of 0.1-0.5% NO₂ concentration. Furthermore, we must point out the effect of reaction temperature. We compared the product selectivities at the level of 10% CH_4 conversion. We therefore compared the data at different temperatures in order to assess the effect of NO₂ concentration. The reaction temperature at the level of CH_4 conversion decreased by the addition of NO₂ (Figure 1). This decrease may suppress the subsequential oxidation to CO. Additionally, since higher NO₂ concentration over 0.5% brings a slight decrease of both selectivities of CH₃OH and CH₂O, the decomposition reaction of CH₃OH and CH₂O with NO₂ in eqs 17–20 could affect their selectivities.

Regarding the CH₄/O₂ ratio, we expected an increase of selectivity of CH₃OH and a decrease of selectivity of CH₂O from eqs 8 and 10 as the ratio increased. The variations on the selectivities of CH₃OH and CH₂O are small except for CH₄/O₂ = 2 during the region of our experiments (Figure 8). Furthermore, another feature of the experimental result is the parallel movement of the selectivities of CH₃OH and CO₂ decrease at CH₄/O₂ = 2 and that of CO increases slightly after the ratio exceeds 2. Therefore, we considered that CH₃OH produced through eq 8 could be decomposed subsequently to CO through eqs 13–16. The increase of the reaction temperatures at the 10% CH₄ conversion in Figure 9 is assumed to enhance the subsequential oxidation to CO. CH₄/O₂ = 2 is optimum for the formation of CH₃OH and CH₂O.

Regarding the variation with SV, the selectivities of CH₂O and CO seem to move in conjunction (Figure 10). The decrease of CO and the increase of CH₂O in the selectivities are assumed to be the result of the retardation of the subsequent oxidation from CH₂O to CO. The less variation of CH₃OH selectivity with SV shows that CH₃OH is more stable. The transition barriers of the decomposition route in eqs 13 and 15 are 1.4 and 0.2 kcal/mol, respectively.⁴ The small difference between the transition barriers is assumed to lead to the large difference of selectivities of CH₃OH and CH₂O under a higher SV region. We obtained ca. 7% yield of C₁ oxygenates at SV = 7500 h⁻¹ (Figure 10).

Conclusion

The anticipation of the selectivity of reaction products in a gaseous chain reaction is still difficult, and the precise reaction mechanisms have not been cleared. We examined several possible contributing reactions for the production of CH₃OH and CH₂O in gaseous selective oxidation with CH₄ $-O_2-NO_2$ with both theoretical and experimental approaches. We theoretically calculated several transition barriers and rate constants of our suggested reaction routes. We can appropriately explain the

experimentally detected selectivities of C_1 oxygenates by using the calculated transition barriers and rate constants of the reaction routes.

Acknowledgment. This study was financially supported by the New Energy and Industrial Technology Development Organization (NEDO, Japan). K.T. acknowledges Prof. J. L. G. Fierro and his colleagues for their kind discussions.

References and Notes

(1) Taylor, S. H.; Hargreaves, J. S.; Hutchings, G. J.; Joyner, W. J. *Methane and Alkane Conversion Chemistry*; Plenum: New York, 1995; p 339.

(2) Pitchai, R.; Klier, K. Catal. Rev. -Sci. Eng. 1986, 28, 13.

(3) Pak, S.; Rosynek, M. P.; Lunsford, J. H. J. Phys. Chem. 1994, 98, 11786.

(4) Arutyunov, V. S.; Basevich, V. Y.; Vedeneev, V. I. Russ. Chem. Rev. 1996, 65, 197.

(5) Mackie, J. C. Catal. Rev. -Sci. Eng. 1991, 33, 169.

(6) Foster, N. R. Appl. Catal. 1985, 19, 1.

(7) Gesser, H. D.; Hunter, N. R.; Prakash, C. B. Chem. Rev. 1985, 85, 235.

(8) Burch, R.; G. D. Squire, G. D.; Tsang, S. C. J. Chem. Soc., Faraday Trans. 1. 1989, 85, 3561.

(9) Baldwin, R. R.; Hopkins, D. E.; Norris, A. C.; Walker, R. W. Combust. Flame. 1970, 15, 33.

(10) Thomas, D. J.; Willi, R.; Baiker, A. Ind. Eng. Chem. Res. 1992, 31, 2272.

(11) Krylov, O. V. Catal. Today 1993, 18, 209.

(12) Feng, W.; Knopf, F. C.; Dooley, K. M. Energy Fuels 1994, 8, 815.
(13) Amano, T.; Dryer, F. L. Twenty-Seventh Symposium (International)

on Combustion; The Combustion Institute: Pittsburgh, 1998; p 397.

(14) Bromly, J. H.; Barnes, F. J.; Muris, X. Y.; Haynes, B. S. Combust. Sci. Technol. **1996**, 115, 259.

(15) Wharren, B. K. Catal. Today 1992, 13, 311.

(16) Burch, R.; Squire, G. D.; Tsang, S. C. Appl. Catal. 1989, 46, 69.

(17) Smith, D. F.; Milner, R. T. Ind. Eng. Chem. 1931, 23, 357.

(18) Irusta, S.; Lombardo, E. A.; Miro, E. E. Catal. Lett. 1994, 29, 339.

(19) Han, L. B.; Tsubota, S.; Haruta, M. Chem. Lett. 1995, 931.

(20) Otsuka, K.; Takahashi, R.; Amakawa, K.; Yamanaka, I. *Catal. Today* **1998**, *45*, 23. Otsuka, K.; Takahashi, R.; Amakawa, K.; Yamanaka,

I. Proceed. JECAT 1997, 41. (21) Bañares, M. A.; Cardoso, J. H.; Hutchings, G. J.; Bueno J. M. C.;

Fierro, V. L. G. Catal.Lett. 1998, 56, 149. (22) Yamaguchi, Y.; Teng, Y.; Shimomura, S.; Tabata, K.; Suzuki, E. J. Phys. Chem., in press.

(23) Teng, Y.; Ouyang F.; Dai, L.; Karasuda T.; Sakurai H.; Tabata K.; Suzuki E. *Chem. Lett.* **1999**, 991.

(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Patterson, G. A.; Montgomery, J. M.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian 94*, Gaussian Inc., Pittsburgh, PA, 1995.

(25) Layng, T. E.; Soukop, R. Ind. Eng. Chem. 1928, 20, 1052.