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The Electronic Adiabatic-Diabatic Transformation Matrix: A Theoretical and Numerical
Study of a Three-State System

I. Introduction

The need to consider effects due to higher electronic states
(with respect to the ground state) may become important when
one is interested in studying molecular processes in a given
environment. Obviously, such effects are of major importance
when these higher states interfere directly with the ground state
as, for instance, in the case of charge transfeRecently,
however, it has become evident that molecular processes takin
place on a given electronic state may be significantly affected
by states that are far above that séafé.In particular, two recent
studies in which results of single-surface and two-surface
scattering processes were compared showed undoubtedly sig-
nificant discrepancie¥:18These studies also showed that single-
state results can be improved by employing an extended version
of the ordinary Bora-Oppenheimer (BO) single-state equa-
tion,171%-20which contains the nonadiabatic coupling terms that
are responsible for the effects due to higher states. Such an
extension can be performed in a pure two-state case (and
eventually in some particular situations of multistate syst&ms
The immediate question to be asked is how to modify the |
extended single-state equation in case the two-state system is
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In this work, we consider a diabatic 3 3 potential matrix which is used to study the three adiabatic
diabatic transformation angles that form the corresponding3adiabatie-diabatic transformation matrix.

The three angles are known to be solutions of three coupled first-order differential equations (Top, Z. H.;
Baer, M.J. Chem. Physl977 66, 1363). These equations are solved here for the first time and are shown

to be stable and to yield meaningful solutions. Since many sets of equations can be formed for this purpose
efforts were made to classify the various sets of equations, with the aim of gaining more physical content for
the calculated angles. The numerical treatment was applied to a three-state diabatic potential matrix devised
for the Ng excited states (Cocchini, F.; Upton, T. H.; Andreoni, W.Chem. Phys1988 88, 6068). A
comparison between two-state and three-state angles reveals that, in certain cases, the two-state angles contain
information regarding the interaction of the lower state with the upper states. However in general the two-
state treatment may fail in yielding the correct topological features of the system. One of the main results of
this study is that the adiabatidiabatic transformation matrix, upon completion of a cycle, becomes diagonal
again with the numberg1 in its diagonal.

transformation (ADT) matri¥3 The ADT matrix is an orthogo-

nal matrix responsible for the transformation from the adiabatic
framework, characterized by dynamical nonadiabatic coupling
terms, to the diabatic framework, characterized by potential
coupling terms. This matrix, in fact, guarantees the inclusion
of the correct topological effects in the nuclear (Schroedinger)
equations as well as of the correct boundary conditi8fimp

and Baet* suggested to express this matrix in terms of three
gangles somewhat reminiscent of the Euler angles, and they
derived the differential equations for these angles. In a later
publication, these equatiot¥swere briefly analyzed. In what
follows, the study of these angles is extended significantly. We
shall consider various systems of differential equations and apply
them to different physical situations. To obtain deeper insight,
these equations will then be solved for a model potential to
obtain the appropriate ADT angles. A comparison between the
three-state angles and the corresponding two-state angles will
be found to yield information on the way a third coupled state
affects a two-state system.

I. The General Approach

disturbed by a third staf.This question deserves to be treated  II.1. Representation of the Adiabatic-Diabatic Transfor-
in separate studies and will not be considered here. mation Matrix for a Three-State System: Derivation of the

In the present article, we intend to get more familiar with Differential Equations. One of the present authors showed that
the three-state case, with an emphasis on the adiatsiitibatic the ADT matrix A fulfills the following first-order differential

equation?3
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wherer is a vector of matrices that contains the nonadiabatic
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coupling terms. In order for this system to have a unique and

well-defined solution, the components ohave to fulfill the
following condition??

curlt=[7 x 1]

)

This condition ensures the ability af to form diabatic
potential matrix. As will be seen, our starting point is a diabatic
matrix and therefore this condition is of formal importance only.

Presenting A as

Q; dp Qg3
A=13y 8y a3
Ay 83 A

®3)

and recalling that is given in the form

0 Tip  Ti3
T=|"T1 0 To3
~Ti3 T3 0

“4)

(wheret; are vectors), we obtain, following the substitution of
egs 3 and 4 in eq 1, the explicit first-order (vector) equations
for the various elements:2

Vay = —T18y — Ty58
Vay = 718y — Trgg

Vag = 1,38 T T8

k=1,2,3 (5)

As is noticed, the elements of each column form a set of

Alijah and Baer

In eq 9, we did not specify the order in which the multiplica-
tion is done, and since the product of two such matrices is not
commutative, it is expected that each order will yield a different
A matrix. However, thé matrix is a solution of eq 1 with given
boundary conditions, and therefore it is uniquely determined
and is in fact independent of the multiplication order in eq 9.
Each given order will produce a different set@yfangles. The
systems of equations are different in each group due to the way
the variougj matrix elements enter the equations. For instance,
in case the product order is (18)(23) x (13), egs 5 yield the
following equations for the three angtés

VO,,= —Ty, — tanf,4(—7,5C0S0,, + 7,55iN 0,,)
V6,;= —(t,3C050,,+ 7,53SIN6,,) (10a)
V0,5 = —(C0S0,9) (—T;3COSO;, + T3 SiN ;)
Changing the positions of the two right-hand side matrices,

namely, assuming the product order to be (¥2)13) x (23),
the equations have the form

VO,,= —T;, — tan0,5(7,3 C0SO,, + 715SiN ;)
V6,3= 1,535iN60;, — 7,3C086,, (10b)
V0,5 = —(c0S60,) (7,3 C080,, + T1535iN6,,)
It is easy to see that there are altogether six different ways

of forming theA matrix from the product of the three different
QW(6;) matrices. This group is made up of two subgroups, each

equations per se, independent of the rest. As it stands, ninecontaining three different products related to each other by cyclic

equations are encountered. However, siAde an orthogonal

matrix only three of them are independent. Equations 5 can,

therefore, be simplified significantly and this will be done next.
To see how to do it we shall first consider a simplified case
wheret is equal tor(*? defined as

0 715 0
1= —7,0 O (6)
0 0 O

Substituting eq 6 in eq 1 produces fArthe ADT matrix
Q12 characterized by one ADT angih,,

cosf,, sinf,, 0
Q*%(@,,) =|—sin6y, cosby, 0 7
0 0 1
where 01, fulfills the equatior?®
Vo,,+1,,=0 (8)

Similar matrices, namelyQ®@3(0,3), and Q13)(013) can be
obtained whenz in eq 1 is replaced byr®) and 7(13),
respectively. Thus, we find that eacl) matrix is characterized

permutations. One group contains the products: @ 223) x
(23), (23)x (13) x (12), and (13)x (12) x (23) and the other
the products (12x (13) x (23), (13) x (23) x (12), and (23)

x (12) x (13). The general set of equations for the first group
can be shown to be

VO, = —(zy sin6; + 7 cosby) (11a)
VO, = —(~1)(cos6,) Y(r) sin 6, — 7, coso;)

and the general set of equations for the second group can be
shown to be

V6, = —(—1)(cosb,) (r; cosb; + 1, sin6;)

wherep = 0 is for the first and the third products apd= 1 is
for the second product (in each subgroup). In these equations,

by one angle so we may assume that the general ADT matrix % IS the angle of the left-hand side matri is the angle of

will be defined as a product of three matrices of the kfnd

A(012,053,0,9) = I_IQ(ij)(Gij)

1<)

©)

the central matrix, anéi is the angle of the right-hand matrix.
Thus, the order of the matrices in the case of eqs 11g§)is (
(iK)(iK). In the case of egs 11b, it is alsp)(jk)(ik), but here
(jk) stands for k) in the previous case, etc.

So far we have discussed six different ways to form Ahe

We already mentioned that the nine elements of an arbitrary matrix. In fact there are more ways, for instance, preseriing
three-dimensional orthogonal matrix can be expressed in termsas the productQ®2(01)Q13X(013)Q12)(H,3) (this matrix is

of three independent angles. Therefore, this presentation isidentical to the Euler rotation matrix for a rigid body) is also
general and any solution based on eq 1 will be relevant to the perfectly legitimate but leads to a different set of equations.

problem under consideration.

However, the solution of such a system of equation can be
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obtained by solving one system of equations belonging to the whereeg is an E-type state and;, i = 1,2, are defined as
first group with appropriate boundary conditions.

I1.2. Analysis of the Equations and Some of Their
Solutions. Three features characterize the newly derived system
of equations.

(1) We found that irrespective of the order of the matrices it and
is always the equation fofj, namely, the angle of the left-
hand side matrix in the product, that contains (the corresponding)
7 element as a free term. This guarantees that when the two
other r elements become zero, the three-state case reduces
smoothly to a two-state case, with the relevant equation for the Here, p and ¢ are polar nuclear coordinates akdndg are
one left angle (see eq 8). This form is also convenient in case characteristic coupling parameters. Next, we extend this model
7j is the dominating nonadiabatic coupling term and the other potential to describe a three-state system by treating the
two 7’s are of second-order only. Another interesting situation following 3 x 3 potential matrixv®):
is encountered when one of the twanatrix elementsgj and

U, = ko cosg + %gp2 cos(2p) (13a)

U,=kpsing — %gp2 Sin(2p) (13b)

Tik, IS much smaller than the other as well as much smaller than eetU; U, W, — W,

7jj itself. So let us consider egs 11a with the boundary conditions Ve = U, ee— U W +W, (14)
0ij(¢ = 0) =0, bi(p = 0) =0, Oi( = 0) = 0, and assume W, — W, W, +W, e,

< 1j,T). Since, in the equation fd#; the largery is multiplied

by sin 8 (which is 0 at the beginning of the integration) and Here, e and theU, i = 1,2, potentials are as before, is the

the smalkri is multiplied by cosd; (which is 1 at the beginning -\ 516 of another electronic state, ang i = 1,2, are potentials

of the integrqtion) _the OV‘?ra" rate of changetigiis determined_ of the same form as thg’s but defined in terms of a different
mainly byz; |tse!f, Justas mthe MO-gtate case. In our numerical set of parametersandp, which replacek andg, respectively.
example, we discuss a situation like that and we.shall show This particular form was chosen for two reasons: (1) In case
that some three-state features are reproduced within the aPW = 0,i = 1,2, theV® matrix reduces to th¥® potential and
proximated two-state model. (2) in the case&J; = 0,i = 1,2 the model produces the pseudo-

(2) We also found that within each system of equations, out jahn-Teller (PJT) modéf-26 with the following eigenvalues:
of the three equations only two are coupled. These two equations

are related to the two angles of the left-hand side matrices,

A=c¢€
whereas the (third) angle belonging to the right-hand matrix toF

can be derived by a simple integration once the first two become = e+ \/(Ae)z + 2(W 2w 2) (15)
available. This feature may, in certain cases, help to identify 20 ! 2
the kind of interaction a strongly coupled two-state system has __ 2 2 2
with a loosely coupled third state. 3= € \/(Ae) 20T+ W)
(3) So far, we have assumed that the integration of any system ]
of the equations will be done with the boundary conditia#s ( whereco andAc are defined as
(p=0) = 0, Oi(¢p=0) = 0, Oi(p=0) = 0). In fact, this is not 1 1
necessary and we may choose any set of boundary conditions. €= E(EA +eg) and Ae= E(EA — €g) (16)

In this respect, it can be showanalytically that solving egs
10a with the initial conditions@i(@p=0) = 7/2, O23(¢p=0) =
0, 013(¢p=0) = 0) yields a solution identical to a solution of eq
10b with the initial conditionsfi2(¢p=0) = 0, 023(¢=0) = 0,
013(p=0) = 0). The only difference is that the values @f,
are shifted byr/2. As a result, the system of equations in eq
10b becomes, in fact, redundant. This finding can be generalized
to any set of angles, namelyg;j(¢=0) = n/2, 6y (¢=0) = O,
0i(¢=0) = 0) and therefore it implies that the whole group of
systems of equations in egs 11b is redundant as well.

From now on we shall refer to solutions of equations
belonging to (11a) (or 10a) only.

The eigenvalues presented in eq 15 are identical to those of
Cocchini et ak®in a similar situation (i.e., for the PJT model).

IV. Numerical Study

In the previous section, a potential was presented in terms of
two polar coordinatesp and ¢. Our numerical study will
concentrate on the coordinatethat is defined along the interval
(0,27), and therefore, in all what follows the continuous variable
will be ¢. The coordinate, defined as the radial distance with
respect to the point of (the main) degeneracy, will be considered
as a parameter, but results will be presented for seperalues.

A second parameter that we shall frequently use is the potential
energy shift,Ae, introduced in eq 16Ac is the shift between

The three-state model we propose to consider is a modelthe two original adiabatic states and the third adiabatic state at
potential suggested by Cocchini eP&to study the excited states  the origin, i.e., ato = 0 (in caseAe = 0 all three states are
of Nag. Since our way to present this potential matrix is different, degenerate at the origin) and results will be presented for several

Il. Three-State Model

we shall derive it next. We start with thex22 potential matrix,
V@), which we obtained some time &jé°and which is closely

of its values. In addition to these parameters, we also assign
numerical values té& andg to defineU; andU, (see egs 13),

related to a potential matrix devised by Longuet-Higgins to study andp andf to defineW; andW.. The actual values were taken

the e®E interactior?®201t is of the form

V@ = (EE U, U, )
e~ U;

0, 12)

from Cocchini et af® who used them to assign the excited state
spectrum for gas-phase N the energy regior<2.7 eV,

k=+2p=553au and g=+2f=0.152 au
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Figure 1. Adiabatic potential energy curves (obtained for the model
potential described in section 1) as a functieralculated for different

@ and Ae values. The values for negatiyeare those calculated for
positive p but with an opposite angle (i.ep, + 7): (&) Ae =0, ¢ =

0; (b) Ae = 0, ¢ = 7/2; (c) Ae = 0.25,¢p = 0; (d) Ae = 0.25,¢p =
7l2; (e) Ae = 0.5,¢ = 0; () Ae = 0.5, ¢ = @/2. The various lines
refer to different adiabatic states.

In the numerical treatment we concentrate mainly onghe
dependence of the various ADT angles as will be introduced in
the following subsections, but we shall first present ¢ghand
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Figure 2. Adiabatic potential energy curves (obtained for the model
potential described in section Ill) as a functigrtalculated for different
values ofp andAe: (a) p = 0.01,A¢ = 0O; (b) p = 0.01,Ae = 0.05;

(c) p = 0.01,Ae = 0.25; (d)p = 0.1,Ae = 0; () p = 0.1,Ae = 0.05;

(f) p=0.1,Ae = 0.25; (g)p = 0.5,Ae = 0; (h) p = 0.5, A¢ = 0.05;

(i) p = 0.5, Ac = 0.25. The various lines refer to different adiabatic
states.

the above-mentioned three fixed angles (see also ref 22).
Therefore, when a fixeg-circle surrounds the origin, it contains
either one point of degeneracy (at the origin) or four points of

o dependence of the adiabatic potential energy surfaces and ofdegeneracy. This situation is reminiscent of the “linear plus

the nonadiabatic coupling terms.
IV.1. Adiabatic Potential Energy Surfaces.In Figures 1

guadratic ®E two-state model” treated on several occa-
sions?0.28,29

and 2 are shown the three adiabatic potential energy surfaces Returning now to the case dfe = 0 it is obvious that at the

of this system; in Figure 1 are showndependent curves as
calculated for the two mirror angles once for= (0.7) and
once forp = (7/2,37/2), and in Figure 2 the-dependent curves
as calculated for different values. In both figures, the potential
curves were calculated for different values.

From Figure la (thé\e = O case), it is not clear what kind
of a degeneracy is to be expectecpat 0, namely, whether it
is a triple, a double, or a single degeneracy. Howeverhas
increases, the surfaces separate and the situation clears up.
the case ofp = (0,7), we encounter for all subsequext values
(parts ¢ and e of Figure 1) onlgne point of degeneracy
(between surfaces 1 and 2), but in the case of (7/2,31/2),
for the sameAe€’s two points of degeneracy are encountered,

origin we have two degeneracy points: one formed between
the first and the second states and one between the second and
the third states (the number of degenerate points at a given point
in configuration space cannot be more than 3 because we have
only a 3 x 3 matrix).

In Figure 2 are presented thge-dependent potentials as
calculated for fixedo values and for several values At. In
general, the potential has a wavy structure with three maxima
|and three minima. It is noticed that each surface is close to being
the mirror image of the surface adjacent to it. For a gipen
value, the amplitude of the wavy structure decreasedas
increases, but the rate of decrease is relatively slow. It is also
noted that the maxima points of second surface face the minima

one point as before (at the origin) and a second point betweenpoints of the third surface at the above-mentiogedngles,

surfaces 2 and 3 which occurs for eaghat a differento value
but for ¢ = &/2 only. Similar points of degeneracy were
obtained forgp = 77/6 andg = 117/6 at the same value.
Thus, for a givenAe (=0) we encounter, in addition to the

namely,¢ = /2, 77/6, and 1%/6.

IV.2. Nonadiabatic Coupling Terms. The diabatic potential
matrix given in eq 14 was used to calculate the three nonadia-
batic coupling termss;, i,j = 1,2,3 (j), wheresis a nuclear

degeneracy point at the origin, three points of degeneracy atcoordinate. This we do by employing the Hellmarffeynmann
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Figure 3. The three nonadiabatic coupling terms (obtained for the Figure 4. The three adiabatiediabatic transformation angles (obtained
model potential described in section I11) as a functionalculated for by solving egs 10a) as a functigncalculated for different values of
different values op andAe: (a) 7 = 715, Ae = 0.0; (b)T = 715, Ae = pandAe: (@) 0 = 012, Ae = 0.0; (b)0 = 612, Ac = 0.05; (C)0 = 01,
0.05; (C)7 = 712, Ae = 0.5; (d)7 = 123, Ae = 0.0; (€)T = 723, Ac = Ae = 0.25; (d)0 = 623, Ae = 0.0; (€)6 = 25, Ae = 0.05; ()6 = 623,
0.05; (f) T = 723, Ae = 0.5; ()T = 713, Ae = 0.0; (h)T = 713 Ae = Ae = 0.25; (9)0 = 013, Ae = 0.0; (h)0 = 013, Ae = 0.05; (i) 0 = 613,

0.05; ()7 =113, Ae =05, () p=0.01, c — =) p=0.1; (---)p Ae =0.25; () p=0.01, =) p=0.1;(---)p =05
=0.5; () p = 1.0.
from the origin. It is only whenAe is large enough ang
theorem, namely, relatively small thatr;, andt,3 attain their expected two-state
values. Thusg, — 1/, because a pure conical intersection

B”' Q/w_ situation is encountered in this case between the first and the
M as| ) 17 second statdsandr,z — 0 because no degeneracy is found in
Tsij = A=A a7 this situation between the second and the third states (see Figure

1). As for 113, it is seen to have only relatively small values
because no degeneracy exists between the first and the third
h State. An interesting point to emphasize here is thateveals
the fact that even foAe = 0 we do not have a degeneracy

where ;i (y;) is an eigenvector of the matri¥. In the
forthcoming discussion, the coordinate s will be identified wit
?érrlr:]sr':;?,uiijej f rze:gpgejej;teac; Lg?&?;?:;}g?%?&i?:ﬂf V(;?Sgg ng between the firgt and the third states, not at the origin and not
of p and Ae. The following features are to be noticed. at any other point. )
(1) It is seen that, andt,s, namely, the terms responsible ~ (3) The three-peaky dependence of the two leading
for the coupling between the two adjacent states, are muchfunctions |s_c|o_sely associated with the wave-type structure of
stronger thans, the (nonadiabatic) coupling term between the the electronic eigenvalues, as preser)ted in Figure 2. Itis notlcgd
two nonadjacent states. Therefore, the main interaction betweerthat the peaks appear at the same points where the two respective
the two-state system and the third state is due to its coupling States get closest to each other.
with the second state. This is in accordance with what was IV.3. Adiabatic —Diabatic Transformation Angles. Each
discussed earlier regarding thedependent potential curves. ~ system of equations yields three angles, one angle for each
(2) In generalz; androz are only weakly dependent on both matrix in eq 9. It is important to mention that this is the first
Ae and p. Usually, the shape is a tripeak function. This is so time that these equations are solved numerically. The relevance
for Ae = 0, where we have at the origin a three-state degeneracyof the solutions was tested by comparing the final ADT matrices,
(and no other points of degeneracy) and in the ¢ase: 0 but as obtained from solving the six different systems of equations.
p large enough. In this case, the fixgpath encircles (as was In all our tests the calculated ADT matrices were exactly
discussed earlier) one point of degeneracy, between the twoidentical immaterial which system of equations was used.
lowest states, located at the origin and three points of degeneracy In Figure 4 are presented tiedependent angles as calculated
between the second and the third states located at some distandeom eqs 10a for different values pfandAe. The main features



394 J. Phys. Chem. A, Vol. 104, No. 2, 2000

to be noticed are as follows. (a) In all studied cases three angles
attain, upon completion of a cycle, either the valte (in what
follows we shall not distinguish betweenand —x) or zero.

(b) It is always that one angle attains the valueroénd the

two others the value of zero. (c) The anglg always ends up
with the value of zero. (d) In the cases thst = 0 andp is
small enough the anglé:, decreases linearly te-r and the

two others are, essentially, flat zero functions. (e) In all other
casesfi, and 6,3 are oscillatory functions ofp, while 63
decreases uniformly te-.

Not all features seen here can be explained without perform-
ing more detailed studies. In what follows, we just refer to a
few of them. The feature mentioned first is most interesting
but above all the most important one. Like in the two-state case
where the ADT angle attains, upon completion of a cycle, either
the value ofr (the Jahn-Teller conical intersection (CI) case)
or zero (for the quadratic Rennefeller situation), here too,
the final values of the ADT angles are eitheor zero. However,
since we always have two angles that become zero and one
that becomes, the ADT matrix, upon completion of a cycle,
will contain two (—1)’s and one 1) in the diagonal. At this
stage, it is important to mention that we recently managed to
prove analytically that an ADT matrix can yield diabatic states
if and only if it becomes diagonal upon completion of a cycle,
where the diagonal elements atel3° This is, indeed, the
situation in our case. Since we started with a diabatic potential

Adiabatic-Diabatic Transformation Angle

|
A

a

[=)

I
a

a

0
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T
3,

matrix, the ADT matrices obtained from it must ha¥4’s in T (g) ~ (h) T @ N
the diagonal upon completion of a cycle. . PRI R

The second subject in this respect is the behaviék pivhen 0 2n I 2 T 2n
Ae = 0 andp are small enough. This is the situation wh#n )

stops to be oscillatory and attains its linear decreasing shapeFigure 5. The three principal adiabatidiabatic transformation angles

(parts b and c of Figure 4). It is seen that the tendency to become(as obtained by solving egs 11a each time with the corresponging
linear enhances aAe becomes larger. In fact, we find for a afs th:nf(;? Iegi)igg te;m) ZS afgrgct%gér;nglcu?teifor d(i)ﬁggerz(t:)vglues
. . - 0 €: = 012, Ae = 0.0; = 015, Ae = 0.05; =
given p the following refation: 01, Ac = 0.25. (d)0 = O, Ac = 0.0: (€)0 = 0z Ac = 0.05: (7)0
= 63, Ac = 0.25; (g)@ = 613, Ae = 0.0; (h)g = 613, Ae = 0.05; (I)

A'iﬁl,elz_’%q’ (18) 0=015Ae=025()p=001—--)p=0.1;(---)p=0.5.

Next are considered the three leading angles (henceforth
which is characteristic of the two-state conical intersection termed the “principal” angles), which are th@ angles
situation. This behavior is expected because, as described incalculated from their “own” system of equations. Thus, the
section IV.1 (see also Figure 1), whaie becomes large enough  principal angledp:2is obtained from system of equations where
a fixed p-circle surrounds a single isolated conical intersection i, is the (free) leading term (in the present césgand 61-
located at the origin. In all other cases, the fixgdcircle are identical), the principal angl@,»s is obtained from the
surrounds an even number of points of degeneracy A€o+ system of equations whetgs is the leading term, and the same
0, we have a double degeneracy at the origin (as discussedapplies forfp13 In Figure 5 are presented the-dependent
earlier) and therefore this angle is expected to be zero, and inprincipal angles as calculated from eqgs 11a for different values
the case where = 0 andp is large enough, the fixed circle of p andAe. The subfigures fof,1» (parts a-c of Figure 5 are
surrounds four points of degeneracy (also, as discussed earlier)dentical to the corresponding ones of Figure 4 and are presented
and so, again, it becomes zero. here, again, for the sake of completeness). The arglgsind

The anglef,3 does not contain any information regarding 6p1zare seen to behave differently from the corresponding angles
the points of degeneracy located within a fixectircle (see 623 and 613 shown in Figure 4. As foBps, it exhibits much
parts d-f of Figure 4). It is either a flat zero function or a  more “activity” thanf,z and seems to contain more information
function that is close to zero along most of thenterval. regarding the degeneracy points. But, lig in Figure 4, it

The anglefys exhibits a kind of “orthogonal” behavior to ~ always misses the effect of the degeneracy between the first
61,. It becomer when 6;, becomes zero and vice-verdis and the second states. A somewhat “strange” behavior is
implies that the information delivered ks is not complete ~ Presented b3 (see parts gi of Figure 5). which is seen to
because the effect Of one p0|nt of degeneracy |S m|ss|ng (|t |S Contain more information thaﬁlg. It USUa”y miSSGS the effeCt
the one between the first and the second states). Thus, in thedf one degeneracy except for cases when the fixeitcles
case wheme = 0, the anglé;3 “notices” only one degeneracy ~ Surround the one single isolated point of degeneracy.
although there are two, in the case that= 0 andp is small, IV.4. Comparison between the Two-State and the Three-
no degeneracy is detected although there is one point of State Adiabatic—Diabatic Transformation Angles. The last
degeneracy, and in the case®f = 0 and largep values, it subject to be discussed is the comparison between the present
detects three points of degeneracy instead of four. three-stat®;, angle and the parallel two-staig, angle obtained
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Figure 6. A comparison between a two-state and principal three-state
61, values as a functiogp calculated for different values @fandAe:

(@) p = 0.01,Ae = 0.0; (b)p = 0.01,Ae = 0.05; (c)p = 0.01,Ae =
0.25; (d)p = 0.1,Ae = 0.0; (e)p = 0.1,Ae = 0.05; (f)p = 0.1, Ae

= 0.25; (g)p = 0.5,Ae = 0.0; (h)p = 0.5,Ae = 0.05; (i) p = 0.5, Ae

= 0.25; () two-statebs,, (- - -) principal three-staté:».

by a straightforward integration over thex¢).2% Thus,

w I I
0o = j(; T1(¢") dop (19)

In Figure 6 are presented the two functions for various
parameters. It seems that overall the fit betwéerand6y, is,
indeed, very encouraging. This holds in particular wipeis
small enough and\e = 0. In this case, the two angles are
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zero. Here we would like to refer again to Yarkony’s calcula-
tions. He attributed the failure of eq 19 to deliver the correct
topological phase, (once becomes large) to the fact that the
theory behind the connection betweef, and 61, is not
complete. To a certain extent he is right because instead of using
eq 19 he had to calculaté;; employing the three-state
differential equations as presented in eqs 10a.

V. Summary and Conclusions

In this work, we studied the three ADT angles that form a 3
x 3 ADT matrix by employing nonadiabatic coupling terms
calculated from a diabatic potential energy matrix. To calculate
these angles as a function of a cyclic variable (in this case an
angleg which is defined in the range [073), we employed a
set of coupled first-order differential equatidhsvhich are
solved here for the first time. In fact, there are many ways to
form the relevant system of equations for the ADT angles and
each system may lead to a different set of angles. The solutions
of the different sets of equations were found to be stable and
did not cause any numerical difficulties. Their relevance was
checked by comparing the ADT matrices as obtained by the
different systems of equations. In all cases, the ADT matrices
were found to be identical to each other.

A certain effort, in this study, was devoted to clarifying the
relations between the various systems of equations. This effort
ended with identifying two groups of systems of equations,
where each system in a given group is identical to the other
systems (in the same group) but contains different angles as
the unknown functions. We also found that two systems of
equations, each belonging todifferentgroup (and therefore
of a different form), will yield a similar solution (i.e., the same
ADT angles) if solved for the appropriate boundary conditions.
In this way, one (basic) group of systems of equations was
identified which can be defined as the independent group and
which contains three systems of equations, each with particular
nonoverlapping features.

An interesting outcome is the fact that the ADT andle;,
calculated from eqgs 10a overlaps very nicely, along most of
the cycle expressed in terms of an anglewith the 011, the
angle which follows from a direct integration over, (see eq
19). This is in particular the case when the region surrounded
by varyinge contains only one isolated degeneracy. In this case,
eq 19 is even capable of yielding the correct topological phase.
If the region contains more than one point of degeneracy, the
overlap between the twg-dependent functions stops toward
the end of the cycle anil;, misses the correct topological phase.

characteristic for a pure Cl case as was discussed earlier. In all, oiher words. if one is interested in the correct topological

other cases, none of the twé, functions show a linear
dependence o which is an interesting result, in particular,

phases of a three-state system, he should consider solving the
three-state equations and not rely on two-state equations.

for 6i12. This situation is reminiscent of several cases discussed A very important result of this study is that, consistently, all

by Yarkony and co-worker&.32 They calculated from first

topological phases were either zerawIThis supports a recent

principles the nonadiabatic coupling terms between the two {haoretical study by the two present auti#8that says that an

lowest electronic states for a series of systems, i.g.HdS,
CH,,3! and AlH,32 and then used eq 19 to calculate the ADT
angles with the aim of deriving the topological (Berry) phase
(namely, the ADT angle ap = 2x). They found that as long
asp is not too large, the topological phase is, indeedike in

the present case, but wherincreases further the topological
phase starts to decrease and the lapgle larger the deviation
from 7.

The two functions behave very similarly also in the other
cases, along most of therange. However, in these cases, it is
always toward the end of the range that the two functions go
apart. In this senséj, fails to reach the correct topological
value. It usually ends up with a value closest? instead of

ADT matrix can yield diabatic states if and only if, upon a
completion of a cycle, they are diagonal and have the numbers
41 in their diagonal.
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