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4 Place Jussieu 75252-Paris ce´dex, France

Carlo Gatti
Centro per lo Studio delle Relazioni fra Struttura e ReattiVità, CNR-CSRSRC,Via Golgi 19,
20133-Milano, Italy

ReceiVed: August 5, 1999; In Final Form: NoVember 30, 1999

Periodic Hartree-Fock calculations have been performed on the bcc lattices of Li, Na, K, V, and on the fcc
ones of Al, Ca, Sc, Cu in order to investigate the topological properties of the electron charge density and of
the electron localization function, ELF. All systems are calculated to be conductors. It is found that the existence
of nonnuclear attractors of the electron charge density gradient field first evidenced in lithium clusters is not
a prerequisite for metallic behavior. They are missing the V and Cu cells. The topology of ELF is characterized
by di- or polysynaptic valence basins. The value of ELF at the valence basin attractorsη(r a) is rather low:
typically less than 0.6, which is consistent with an antiparallel pairing close to that of a homogeneous electron
gas. At the index 1 saddle points located on the separatrices between valence basins, the ELF valueη(r s) is
very close to that at the valence attractorsη(r a). The isosurfaceη(r ) ) η(r s) - ε defines a reducible valence
domain which is spread all over the crystal and which forms a tridimensional network of channels. Except
for Al, the valence basins have a synaptic order larger than 2. The different topologies of the ELF gradient
fields calculated for different metals can be explained by the relative sizes of their core basins. The metallic
bond appears to be a partial covalent bond which is often multicentric and is characterized by a low population
of the valence basins (less than 1.0e-) and by synaptic orders as large as 6.

1. Introduction

The standard description of the metallic bond relies on the
band structure theory and implies the closure of the energetical
gap between the valence and conduction bands.1,2 This combined
energetical-orbital picture is related to the reciprocal space
representation of the crystal. In the absence of a direct space
representation, the metallic bond is rather difficult to include
in any general chemical theory of the bonding. For example,
G. N. Lewis has not considered the metallic bond in his classical
textbook,3 while Pauling describes it as a partial covalent bond
between nearest neighbor atomic centers.4 This covalent de-
scription which has been more recently advocated by Anderson
et al.5 and by L. C. Allen and J. Capitani6 in order to remove
the metallic bond from the vocabulary of Chemistry raises,
however, the question of the bond (de)localization as well as
that of its directionality.

Using the theories expressed inAtoms in Moleculesof Bader,7

Gatti et al.8 demonstrated the presence of nonnuclear attractors
(NNAs) of the electron charge density gradient in lithium metal
clusters. They also showed how this theory can be easily
extended to molecular quantum subspaces which do not enclose
a nucleus, and they wonder whether the occurrence of such
subspaces might even be a signature of metallic behavior. In a
subsequent study Cao et al.9 found NNAs also in sodium metal
clusters and speculated that these attractors should form a
connected network in metallic Li and Na which might play some
role in the binding and conducting properties of alkali metals.
Yet Cao et al. concluded that, possibly, the physical feature
necessary for conduction is only a region over which the charge

density is relatively flat, with the positive curvature of the bond
critical point being very small, thereby ensuring a low kinetic
energy per electron. And, as a consequence, the presence of a
NNA in the charge density that results when this small positive
curvature along the bond path changes sign, might not be
essential. Indeed some years later Edgecombe et al.10 showed
that the unusual topological features (i.e., the NNAs) of sodium
clusters are removed under the improvement of the basis set
and of the correlation scheme whereas they are always present
in lithium clusters. The same group carried out an analysis of
the charge density gradient field of crystalline lithium and
sodium calculated at the periodic Hartree-Fock level.11 For both
metals NNAs are revealed by the topological analysis and they
form a connected network in the only case of lithium. The
occurrence of NNAs in hcp Be is also a highly debated problem.
Experimentally, their absence or their occurrence strongly
depends on the model one use to interpret Bragg’s diffraction
data. If a maximum entropy method (MEM) with a procrystal
density as a nonuniform prior is adopted, NNAs are not found,12

while they are recovered when a MEM analysis with uniform
prior or a more conventional multipole model refinement
approach is used.13 More recently, the same set of experimental
data has been used by Jayatilaka15 to invert the Kohn-Sham
equations in order to reconstruct Kohn-Sham crystalline orbitals
which in the present case do not yield NNAs. On the theoretical
side, it has been demonstrated,14 using either Hartree-Fock or
density functional approaches, that the occurrence of NNAs in
Be is strongly dependent on basis set choice and closely related
to the computed metal cohesive energy. A similar behavior was
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also observed for Li metal.16 In the case of Be, the higher is
the computed cohesive energy of the metal, the more pro-
nounced is the electron density maximum associated to the
NNA. A recent analysis carried out by Martı´n Penda´s et al.17

has shown that NNAs are not exceptional objects, but result of
the properties of the promolecular densities. They are “a normal
step in the chemical bonding of homonuclear groups, if analyzed
in the appropriate range of internuclear distances”. Overall, and
up to now, there are neither theoretical arguments nor enough
numerical data supporting that the presence of NNAs (connected
or not) in periodic solids is the direct space signature of the
metallic bond and conductivity.

Another topological approach18-20 is based on the analysis
of the gradient field of the electron localization function ELF
of Becke and Edgecombe.21 As shown by Savin et al.22 and
emphasized by Burdett,23 the ELF maps of metallic systems
present large areas within which the electron localization is
nearly constant and close to its jellium value 0.5. These regions
are connected one to the other by channels which form infinite
one-, two-, and three-dimensional networks according to the
conductivity directionality. In the seminal work on the topologi-
cal analysis of ELF,18 the metallic bond was characterized by
the presence of “unsaturated bonding attractors” and by “reduc-
ible localization domains” extending all over the crystal and
bounded by an isosurface defined by a value of the localization
function close to that of the bonding attractors. Similar extended
valence localization domains are also found in intermetallic
phases (see the review article on ELF by Savin et al.24 and
references herein particularly25,26).

In this paper we present topological analysis of the gradient
field of the charge density and of the ELF function carried out
on eight metallic cubic structures: on one hand, the bcc phases
of Li, Na, K, and V, on the other hand, the fcc phases of Al,
Ca, Sc, and Cu. The aim of our work is to show how the
topological analysis of ELF constitutes a valid tool for the study
of metallic bond in direct space and how this scalar field may
provide a signature of metallic behavior which is less elusive
and more physically sound than is the presence of nonnuclear
maxima or of whatsoever small density curvatures occur along
the metal-metal bond paths.

2. Theory.

2.1. Qualitative Topological Theories of Bonding.In the
topological theories of the chemical bond7,18,27 the chemical
concepts are defined in terms of the mathematical properties of
the gradient vector field of given local functionsf(r ), called
potential functions. The choice of the potential function
determines which of the chemical properties may be revealed
by the analysis.

The gradient field∇f(r ) forms a dynamical system (for a
comprehensive introduction to the theory of dynamical systems
see the textbook of Abraham and Shaw28). The analysis of this
vector field is based on the analogy with a velocity field:

The integration of eq 1 enables to build trajectories. Of particular
importance for the analysis are the critical pointsr c at which
∇f(r )r)rc ) 0. The critical points are characterized by their index
which is the number of positive eigenvalues of the Hessian
matrix of f(r ) in the actual case of gradient dynamical systems.
Alternatively, such as in Bader’s papers, they are denoted by a
couple on integers: the rank (number of non zero eigenvalues

of the Hessian matrix) and the signature (the sum of the signs
of the eigenvalues). If none of the eigenvalues is zero, the critical
point is hyperbolic. There are four kinds of critical points in
R3: (i) attractors of index 0, also denoted (3,-3) critical points,
which are the local maxima of the potential function, (ii) saddle
points of index 1 or (3,-1), (iii) saddle points of index 2 or
(3, 1), (iv) repellors of index 3 or (3, 3) which are the local
minima.

The number of critical points satisfies the Poincare´-Hopf
formula:

in which the sum is performed over the critical points,I(P) is
the index of the critical point labeled byP, and ø(M) is the
Euler characteristic of the manifold on which the gradient field
is bound, i.e., 1 for a molecule, 0 for a periodic system.

The set of points defining the trajectories ending in the
neighborhood of a given critical point is the stable manifold of
this critical point; that corresponding to out-coming trajectories
is its unstable manifold. The dimensions of the stable and
unstable manifolds of a critical point of indexI(P) are 3-I(P)
and I(P), respectively. The stable manifold of an attractor is
therefore of dimension 3: it is called the basin of the attractor.
The stable manifolds of the saddle points of index 1 and 2 are
the separatrices of the dynamical system.

The analysis of the gradient dynamical system of a molecular
or crystalline local property enables therefore the partition of
the space into well-defined adjacent regions, the basins, bounded
by the separatrices. The nature of the potential function and
the localization of the attractors bring a chemical signification
to the basins.

In the case of theTheory of Atoms in Moleculesthe potential
function is the electron charge density distributionF(r ). Except
for topical examples, such as the lithium clusters and the lithium
crystal, the attractors are located at the nuclei. Therefore a
nucleus and the associated basin form an atom in the molecule
or in the crystal. In Bader’s theory, the unstable manifolds of
the critical points of index 1 play an important role as these
lines link nuclei two by two. They determine between which
atom pairs the chemical bonds are and they are called accord-
ingly bond paths.

The electron localization function ELF21 is a local measure
of the Pauli repulsion.29 It is expressed in terms of the definite
positive kinetic energy densityTs(r ), of the von Weizsa¨cker
TvW,30 and of the Thomas-Fermi TTT(r ) kinetic energy func-
tionals of the actual system:

This function is close to 1.0 in the regions of space where the
Fermi hole is large (usually dominated by an antiparallel spin
electron pair), it is small where the Fermi hole is narrow, and
the value 0.5 corresponds to a situation analogous to that of
the homogeneous electron gas. The organization of the basins
of ELF provides a picture of the bonding which is consistent
with the familiar Lewis theory. There are basically two kinds
of basins: on one hand are the core basins encompassing the
nuclei with Z > 2, and on the other hand, the valence basins
the union of which constitute the valence shell of the molecule
or of the crystal. The valence basins are characterized by their
synaptic order which is the number of core basins with which
common boundary is shared.19 When a proton is located within

∂r
∂t

) ∇f(r ) (1)

∑
P

(-1)I(P) ) ø(M) (2)

η(r ) ) (1 + [Ts(r ) - TvW(r )

TTF(r ) ]2)-1

(3)
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a valence basin it is counted as formal core. Monosynaptic
basins are associated to lone pairs, disynaptic ones to two center
bonds whereas polysynaptic basins are the signature of multi-
centric bonds. Another important concept is that of domain
initially introduced by Mezey.31 A f-localization domain is a
volume bounded by the isosurfaceη(r ) ) f. It is said to be
irreducible if it contains one and only one attractor, reducible
otherwise.

2.2. Implications of the Jellium Model.The simplest model
of a metal is constituted by a periodic array of positively charged
ions embedded in a uniform homogeneous electron gas. For
this model the attractors of the density gradient field are located
on the nuclei of the ion whereas the jellium background gives
rise to an infinite number of nonhyperbolic critical points. It is
worth noting that such a system is structurally unstable and a
more realistic model should be structurally stable and therefore
all the critical points should be hyperbolic. However, the jellium
model tells us that the values of the potential function at the
off-core critical points are confined in a very narrow range
independently from their indexes. This expectation is supported
by the numerical results of Mei et al. on the lithium and sodium
crystals.11 The fulfillment of the Poincare´-Hopf relationship does
not require the existence of NNAs.

In the case of the analysis of the electron localization function,
the jellium also gives rise to a continuum of nonhyperbolic
critical points which is discretized by the improvement of the
model. However, the behavior of ELF is quite different from
that of the electron charge density because at the core boundaries
the function value is noticeably lower than its jellium values
0.5 whereas at the core attractors it is close to 1. There are
necessarily valence basin attractors and the value of ELF
defining the reducible localization domain is expected to be very
little less than the valence attractor valueη(ra). This reducible
localization domain forms a tridimensional network of channels
within which the electron localization function and the electron
charge density are almost constant and which is consistent with
the picture of highly delocalized partial covalent bonds. In this
case, partly covalent means that the number of electron per bond
is less than 2 because the number of available valence electrons
in the unit cell is usually much more less than twice the number
of valence basins.

3. Results and Discussion

3.1. Method of Calculation. The calculations of the wave
functions have been performed with the periodic Hartree-Fock
program CRYSTAL95.32 The basis functions are derived from
the standard 6-31G sets of Pople and co-workers33,34and have
been designed following the recommendation of the authors of
the CRYSTAL programs.35 In all cases the original sp external
shell which is too diffuse has been removed. The 3sp shell is
then split into a 21G pattern. The choice of these basis sets has
been done in order to have a homogeneous quality thru the series
of the investigated metals. At the present state of the art, of
all-electron periodic Hartree-Fock calculations performed with
localized basis functions, the adopted basis sets should be
considered as very good though it is not the case for molecular
or cluster calculations. The cutoffs which control the Coulombic
and exchange series have been set to 6, 6, 6, and 12 (i.e., the
default values), whereas the integration over the Brillouin zone
involves 29k-points for both bcc and fcc structures. The lattice
parameters are taken from Wyckoff36 and are given in Table 1.
TheAtoms in Moleculesand ELF topological analysis have been
made with the TOPOND program developed by one of us
(C.G.).37 In all the calculated systems there is no gap between
the valence and conduction bands.

3.2. Topology of the Electron Charge Density.The number
of NNAs and their location is given in Table 1. There is no
NNAs for the bcc structure of vanadium and for the fcc lattice
of Cu. In principle, the NNAs, when they exist, should be
located in the middle of the nearest-neighbor M-M internuclear
distances, i.e., the (8c) and (24d) special positions for theIm3hm
and Fm3hm groups, respectively. This expectation has been
verified by Mei et al.11 for the lithium and sodium crystals;
however, our calculations yield different results for these two
metals since the non nuclear attractors are found in (12d) and
(24h), respectively, for Li and Na. There could be two main
causes for this discrepancy. One and probably the most
important is the different techniques used to locate the critical
points of the electron charge density. The determination of
critical points is carried out analytically by TOPOND96, whereas
Mei et al. used a graphical technique which implies the
interpolation of the function values between grid points. Indeed,
the charge density values range in a very narrow interval (7×
10-4 e- bohr-3 for Li, 2 × 10-5 e- bohr-3 for Na) which
hampers the calculations of the derivatives and therefore round
off errors might play an important role in the numerical graphical
search. The other cause of discrepancy could be the sensitivity
of NNA occurrence and location to basis set choice and
optimization.14,16 Among the eight metals only aluminum
verifies the expectation; however, it has a second set of NNAs
located at the (96k) positions.

Though the critical points of the electron charge density
gradient field are hyperbolic, all except the nuclear attractors
have Hessian matrix eigenvalues close to zero. Typically, the
largest absolute values of such eigenvalues are of the order of
10-2 e- bohr-5. The fulfillment of the hyperbolicity requirement
ensures the structural stability of the gradient dynamic system.
However, it is conceivable that a rather small variation of the
control space parameters (i.e., the nuclear coordinates, the
quality of the basis set, ...) should be strong enough to make
some of them non hyperbolic and therefore to yield a change
of topology thru a bifurcation catastrophe.

3.3. Topology of the Electron Localization Function.
Though the closure of the gap between the valence and
conduction band is considered as the signature of the conducting
state, it has been shown that the insulating state does not require
an energy gap.38 According to Walter Kohn “the insulating
characteristics are a strict consequence of electronic localiza-
tion”. In the spirit of Kohn’s paper, delocalization means that
the wave function “breaks up into a sum of functions which
are localized in disconnected regions of the many-particle
configuration space”. The electron localization function is
another tool enabling to decide if the electrons are localized. In
fact, when the electrons are localized the free acceleration
vanishes and therefore one can expect localized electrons to be
“slow” which corresponds to ELF values close to 1. Figure 1

TABLE 1: Structure and Lattice Parameter of the
Investigated Metals, Number, and Position of Their Charge
Density NNAs

element structure a (Å)36 n attractor position

Li bcc 3.5093 1 (12d) 0, 1/4, 1/2
Na bcc 4.2906 1 (24h) u, u, 1/2 u ) 0.152
K bcc 5.225 1 (12d) 0, 1/4, 1/2
V bcc 3.0240 0
Al fcc 4.0862 2 (24d) 0, 1/4, 1/4

(96k) x, x, z x) 0.32,
z ) 0.175

Ca fcc 5.576 1 (8c) 1/4, 1/4, 1/4
Sc fcc 4.541 1 (8c) 1/4, 1/4, 1/4
Cu fcc 3.61496 0

Representation of the Metallic Bond J. Phys. Chem. A, Vol. 104, No. 5, 2000949



displays the localization domains of a typical covalent insulator,
the diamond, and of a metallic conductor (aluminum). In
diamond the valence attractors at the center of the pastilles
between carbon cores coincide with the bond critical points of
the charge density. The ELF value at these attractors is close to
1. (η(r )a) ) 0.97); therefore, the definite positive kinetic energy
density is very small and is only due to the Pauli repulsion since
the von Weizsa¨cker functional vanishes at these points. In order
to merge the irreducible valence domains into a single reducible
one it is necessary to lower the ELF value of the bounding
isosurface toη(r )s ) 0.66. The interval [η(ra), η(r s)] defines a
localization window. In Al, the bounds of the localization
window are 0.62 and 0.58. At the attractors the definite positive
kinetic energy is larger than for the insulating system. A metallic
system is characterized by a rather low value of the valence
attractor and by a narrow localization window. As a consequence
of the flatness of the ELF function in the interstitial valence
region, its critical points have small eigenvalues and therefore
a rather weak perturbation may change the nature and the
location of the critical points located in this region.

The locations of the valence attractors of the ELF gradient
field are reported in Table 2 which shows that there is not a
general simple rule relating these positions to the crystal-
lographic space group. In the case of the bcc lattices (Im3hm)
there are two different behaviors. Figure 2a-b displays the
localization domains of Li and Na. Two isosurfaces have been
plotted corresponding to bounding isosurface values close to
the valence attractor and to the valence saddle point values,
respectively. The valence attractors of lithium are located at
the center of the faces in position (6b). The valence basins are
truncated octahedra which share boundaries with six core basins,
thus their synaptic number is also six. Assuming a core
population of 2e-, the valence basin population is estimated
to be 2/3e- from symmetry considerations. The saddle points
of index 1 are in position (8c) at the center of the octahedron
faces. The value of ELF at these latter points is very close to

the attractor value which is the signature of a very large
delocalization between valence basins. The isosurface corre-
sponding to a very little inferior value marks the boundary of
an infinite tridimensional network of channels within which the
localization function is almost constant. The topology of the
ELF gradient fields of Na (Figure 2b) K and V derives from
that of Li. Each valence attractor of Li has been split into four
new attractors which are shifted toward the centers of the edges
in position (24g). The basins are truncated tetrahedra corre-
sponding to quarters of the lithium original octahedra. The
synaptic order of these basins is 4 and their population 1/6e-.

The valence attractors of Al are located between the nearest
neighbor nuclei, i.e., in position (24d) and the saddle connections
between basins in (48g) yielding channels parallel to the edges
of the cube as shown on Figure 1. The valence basins are
disynaptic with populations of the order of 1.0e-. In the calcium
crystal (Figure 1d), the attractors are in the center of the
tetrahedra defined by four nearest-neighbor atoms, i.e., in
position (8c). The valence basins of synaptic order 4 are
truncated hexahedra and their populations are 1e-. The
connections between basins are ensured by saddle points of
index one located in (96j). The topology of scandium shown in
Figure 2e is similar, except that there is a second set of attractors
in the center of the cube in (4b). The value of the localization
function at these latter points is lower than that calculated at
position (8c). Finally, in copper Figure 2f the hierarchy of the
valence attractors in (8c) and (4b) is reversed, the largest basins
corresponding to the (4b) attractors. The synaptic orders of the
largest basins of scandium and copper are respectively 4 and 6.
It is interesting to note that the populations of the main valence
basins in the fcc series are close to 1, which supports the
interstitial-electron model proposed by Mo Li and Goddard.39

The sizes of the core basins with respect to the lattice volumes
explain in part the different topologies calculated for these
metals. It must be recalled that the ELF analysis provides a
shell structure of the atoms, in particular the 3d subshell of the

Figure 1. Localization domains of diamond (left) and aluminum. The bounding isosurface areη(r ) ) 0.85 and 0.57 for diamond and aluminum,
respectively.

TABLE 2: Localization Function Attractors and Index 1 Critical Points: Positions, Value of ELF at the Attractor η(r a) and at
the Saddle Pointη(r s), Relative Core VolumeVc/VT, Average Valence DensityGjv (10-3 e- bohr-3)

attractor saddle point

element position η(r a) position η(r s) Vc/VT Fjv

Li (6b) 0, 1/2, 1/2 0.637 (24g) x, 0, 1/2 0.635 0.113 7.7
Na (24g) x, 0, 1/2 0.563 (24h) y, y, 0 0.56 0.165 4.5
K (24g) x, 0, 1/2 0.536 (24h) y, y, 0 0.520 0.278 2.8
V (24g) x, 0, 1/2 0.60 (24h) y, y, 0 0.575 0.485 41.6
Al (24d) 0, 1/4, 1/4 0.617 (48g) 1/8, 1/4, 1/4 0.583 0.102 29.8
Ca (8c) 1/4, 1/4, 1/4 0.71 (96j) 0,y, z 0.525 0.237 9.0
Sc (8c) 1/4, 1/4, 1/4 0.72 (4b) 1/2, 1.2, 1/2 0.637 0.362 19.8

(4b) 1/2, 1/2, 1/2 0.67
Cu (4b) 1/2, 1/2, 1/2 0.38 (192l) x, y, z 0.158 0.480 24.1

(8c) 1/4, 1/4, 1/4 0.2
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transition metals mostly belongs to the core basins. The atomic
valence shell populations calculated by Kohout and Savin40 for
Sc, V, and Cu are 2.1, 2.2, and 1.1, respectively. The core radii

calculated for the crystalline structures are always in agreement
with the values reported by Kohout and Savin.40 The last entries
of Table 2 provides the ratio of the core volume by the cell

Figure 2. Localization domains of Li (a), Na (b), V (c), Ca(d), Sc (e), and Cu (f). The two bounding isosurfaces have been chosen in order to show
the valence attractors and the channels. This figure has been made with the SciAn software.41 Color code: magenta) core. Green: valence
polysynaptic.
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volume and the average density of the valence electrons. These
latter values are in very good agreement with the local values
of the electron charge density calculated at the critical points
of this function, with the obvious exception of the (3,-3) critical
points associated to nuclei. This behavior confirms the flatness
of the charge density over the valence region and indicates that
the valence localization domains we defined through ELF just
enclose the region where the critical points ofF(r ) are located.
In the case of the transition metals, the number of valence
electrons on each atom is two for V and Sc, one for Cu. The
core shells of the main group elements and of copper are totally
filled and therefore exert a kind of “Pauli repulsion pressure”
on the valence basin which is stronger than that of Sc and V.
The highVc/VT ratio of Cu is due to the large volume of an
external d-filled core. The location of the valence attractors
results of the competition between the core net charge which
favors short nucleus-valence attractor distances and the Pauli
repulsion which acts in the opposite direction. In the bcc series,
the core net charge of alkali is only 1; therefore, the repulsive
effects are expected to be the driving force. Accordingly the
highest symmetrical position is (6b) as in Li. In this case the
valence attractor is surrounded by six nuclei-two at a distance
a/2, four atax2/2. The valence localization basins are square
basis rhombohedra with concave faces. The concavity is more
marked for the two faces in front of the nearest cores. As the
core size increases, the Pauli repulsion pressure on these faces
becomes large enough to make a hole in the domain which splits
the central attractor into four attractors each at distances larger
thana/2 from the nuclei. For V the increased net core charge is
compensated for by the largestVc/VT ratio in the bcc series. As
a consequence, V exhibits the same valence attractors as Na
and K. In the fcc series, Al has a net core charge of 3 and a
small core. This allows the valence attractor to be at the midpoint
of the nearest neighbor distance (i.e., aax2/4 from the nearest
nucleus). Ca has net core charges of 2 and a larger core and its
valence attractors are in (8c) with a nucleus-attractor distance
a ax3/4. For Sc, in order to lower the Pauli repulsion exerted
on each valence attractor, a secondary set appears in (4b) at
ax3/2 of the nuclei. For Cu which has the largest core and the
least core net charge, this latter set of attractors becomes the
main one.

4. Conclusion

The analysis of the gradient fields of the electron charge
density of metals is consistent with the expectations which can
be made from the homogeneous electron gas model. On one
hand, the properties of the electron density are almost constant
in the valence regions as indicated by the weak magnitude of
the eigenvalues of the Hessian matrices calculated at the critical
points. On the other hand, the location of the attractors is often
different from those found in covalent molecules and crystals.
The analysis of the electron charge density confirms10,11 that
NNAs are not a necessary feature of metallic behavior. In our
results we find conducting materials with and without such
attractors. It may be argued that they might become visible upon
improvement of the computational scheme. However, the
important point is that it is possible to calculate a model
conductor without NNAs.

The analysis of the electron localization function provides a
picture of the metallic bond which is a generalization of that of
Pauling.4 The metallic bond is basically a partial covalent bond.
Here partial does not refer to any possible ionic contribution
but rather to the fact that the basin populations are always very
low (typically less than 1e-). This is due to the high

coordination of the atoms in the crystal and to the strong Pauli
repulsion arising from the cores which tends to increase the
number or the synaptic order of the valence attractors. Moreover,
the reducible valence localization domains (i.e., which encom-
pass at least two valence attractors) form an infinite network
over the whole crystal. The channels built in this way can be
considered as the region of the space within which the
conduction takes place. An argument in favor of this interpreta-
tion is provided by calculations of anisotropic conductors, such
as gallium, for which the channels form parallel 2-dimensional
networks. Though, calculations of the variance of the basin
population have not be performed (up to now this is only
possible for molecules) the values of ELF at its valence attractors
and at its saddle points are a strong indication of the electron
delocalization.

Though the gradient dynamical systems of the charge density
and of ELF are structurally stable because their critical points
are hyperbolic, a rather weak variation of the control space
parameters should induce a significant topological change. This
can be achieved by small displacements of the nuclei. Work is
in progress in order to provide a direct space visual representa-
tion of the electron-phonon interaction by the technique
presented here.
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