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Periodic Hartree Fock calculations have been performed on the bcc lattices of Li, Na, K, V, and on the fcc
ones of Al, Ca, Sc, Cu in order to investigate the topological properties of the electron charge density and of
the electron localization function, ELF. All systems are calculated to be conductors. It is found that the existence
of nonnuclear attractors of the electron charge density gradient field first evidenced in lithium clusters is not
a prerequisite for metallic behavior. They are missing the V and Cu cells. The topology of ELF is characterized
by di- or polysynaptic valence basins. The value of ELF at the valence basin attragt)rs rather low:
typically less than 0.6, which is consistent with an antiparallel pairing close to that of a homogeneous electron
gas. At the index 1 saddle points located on the separatrices between valence basins, the Eqffsy#ue

very close to that at the valence attractg(s,). The isosurfacey(r) = 5(rs) — € defines a reducible valence
domain which is spread all over the crystal and which forms a tridimensional network of channels. Except
for Al, the valence basins have a synaptic order larger than 2. The different topologies of the ELF gradient
fields calculated for different metals can be explained by the relative sizes of their core basins. The metallic
bond appears to be a partial covalent bond which is often multicentric and is characterized by a low population

of the valence basins (less than £0 and by synaptic orders as large as 6.

1. Introduction density is relatively flat, with the positive curvature of the bond
o . . critical point being very small, thereby ensuring a low kinetic
The standard description of the metallic bond relies on the energy per electron. And, as a consequence, the presence of a

band structure theory and implies the_ closure of the en_ergeticaINNA in the charge density that results when this small positive
gap between the valence and conduction bafdis combined curvature along the bond path changes sign, might not be

?en erregsee“rftzlt-igrnblé?ltif)elcf:liritrl:\sl Tﬁl?;idag)s:r:gerﬁf Igrgﬁglctsg a;geessential. Indeed some years later Edgecombe étsabwed
P . ystal. : i Cl SPACE At the unusual topological features (i.e., the NNAs) of sodium
representation, the metallic bond is rather difficult to include

. . . clusters are removed under the improvement of the basis set
in any general chemical theory of the bonding. For example,

G. N. Lewis has not considered the metallic bond in his classical gnd of the correlation scheme whereas they are always present

textbook® while Pauling describes it as a partial covalent bond in lithium clusters_. The same group carried O.Ut an a_naly3|s of
between nearest neighbor atomic cenfeTdis covalent de- W€ charge density gradient field of crystalllnellllthlum and
scription which has been more recently advocated by AndersonSCdium calculated at the periodic Hartreeock level: For both
et al5 and by L. C. Allen and J. Capitghin order to remove metals NNAs are revealed by the topological analy5|_s and they
the metallic bond from the vocabulary of Chemistry raises, form @ connected network in the only case of lithium. The
however, the question of the bond (de)localization as well as occurrence of NNAs in hcp Be is also a highly debated problem.
that of its directionality. Experimentally, their absence or their occurrence strongly
Using the theories expresseddtoms in Moleculesf Bader? depends on the model one use to interpret Br.agg’s diffraction
Gatti et al® demonstrated the presence of nonnuclear attractorsdat@. If @ maximum entropy method (MEM) with a procrystal
(NNAs) of the electron charge density gradient in lithium metal density as a nonuniform prior is adopted, NNAs are not foind,
clusters. They also showed how this theory can be easily While they are recovered when a MEM analysis with uniform
extended to molecular quantum subspaces which do not enclosdfior or a more conventional multipole model refinement
a nucleus, and they wonder whether the occurrence of suchapproach is uset.More recently, the same set of experimental
subspaces might even be a signature of metallic behavior. In adata has been used by Jayatifék® invert the Kohr-Sham
subsequent study Cao et®dbund NNAs also in sodium metal ~ €quations in order to reconstruct KehBham crystalline orbitals
clusters and speculated that these attractors should form awhich in the present case do not yield NNAs. On the theoretical
connected network in metallic Li and Na which might play some  side, it has been demonstratédjsing either HartreeFock or
role in the binding and conducting properties of alkali metals. density functional approaches, that the occurrence of NNAs in
Yet Cao et al. concluded that, possibly, the physical feature Be is strongly dependent on basis set choice and closely related
necessary for conduction is only a region over which the charge to the computed metal cohesive energy. A similar behavior was
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also observed for Li metdf In the case of Be, the higher is  of the Hessian matrix) and the signature (the sum of the signs

the computed cohesive energy of the metal, the more pro- of the eigenvalues). If none of the eigenvalues is zero, the critical

nounced is the electron density maximum associated to thepoint is hyperbolic. There are four kinds of critical points in

NNA. A recent analysis carried out by MartPenda et al'’ R3: (i) attractors of index 0, also denoted (33) critical points,

has shown that NNAs are not exceptional objects, but result of which are the local maxima of the potential function, (ii) saddle

the properties of the promolecular densities. They are “a normal points of index 1 or (3;-1), (iii) saddle points of index 2 or

step in the chemical bonding of homonuclear groups, if analyzed (3, 1), (iv) repellors of index 3 or (3, 3) which are the local

in the appropriate range of internuclear distances”. Overall, and minima.

up to now, there are neither theoretical arguments nor enough The number of critical points satisfies the Poiricakopf

numerical data supporting that the presence of NNAs (connectedformula:

or not) in periodic solids is the direct space signature of the

metallic bond and conductivity. Z(—l)'(P) = (M) 2
Another topological approa¢tr?° is based on the analysis

of the gradient field of the electron localization function ELF

of Becke and Edgecomié.As shown by Savin et & and

emphasized by Burdet?,the ELF maps of metallic systems

present large areas within which the electron localization is . ) S

nearly constant and close to its jellium value 0.5. These regions'S 2ound. i.e., 1 for a molecule, 0 for a periodic system.

are connected one to the other by channels which form infinite 1€ Set of points defining the trajectories ending in the
one-, two-, and three-dimensional networks according to the neighborhood of a given critical point is the stable manifold of

conductivity directionality. In the seminal work on the topologi- Fhi?’ critical point; tha@ correspond_ing to _out-coming trajectories
cal analysis of ELF the metallic bond was characterized by S itS unstable manifold. The dimensions of the stable and
the presence of “unsaturated bonding attractors” and by “reduc- Unstable mamfolgis of a critical point of.|nd¢éP) are 3-1(P) .
ible localization domains” extending all over the crystal and 2nd !(P), respectively. The stable manifold of an attractor is
bounded by an isosurface defined by a value of the localization therefore of d|m_enS|on 3: itis called the baS|_n of the attractor.
function close to that of the bonding attractors. Similar extended 1€ Stable manifolds of the saddle points of index 1 and 2 are

valence localization domains are also found in intermetallic 1€ separatrices of the dypamlcal system.
phases (see the review article on ELF by Savin é¢ aind The analysis of the gradient dynamical system of a molecular
references herein particulaf?. or crystalline local property enables therefore the partition of

: . : ... the space into well-defined adjacent regions, the basins, bounded
In this paper we present topological analysis of the gradient . . .
pap b po'og y 9 by the separatrices. The nature of the potential function and

field of the charge density and of the ELF function carried out the localizati f the attractors bri hemical sianificati
on eight metallic cubic structures: on one hand, the bcc phases e localizalion ot the attractors bring a chemical signification

of Li, Na, K, and V, on the other hand, the fcc phases of Al, 1o the basins. . .

Ca, Sc, and Cu. The aim of our work is to show how the _ " t.he case of th&heory of Atoms N Mplepulqbe potential
topological analysis of ELF constitutes a valid tool for the study functlo_n is the electron charge de_ns!ty distributjn). Except .

of metallic bond in direct space and how this scalar field may for topical examples, such as the lithium clusters a_md the lithium
provide a signature of metallic behavior which is less elusive crystal, the aftractors are Iocat_ed at the nucle_l. Therefore a
and more physically sound than is the presence of nonnuClearnucleus and the associated basin form an atom in the molecule

maxima or of whatsoever small density curvatures occur along ?hr in t_r:_e clryst_alt. In fB_a(gjer slthelory, th_e uns';ablte Tan'fOLiS of
the metat-metal bond paths. e critical points of index 1 play an important role as these

lines link nuclei two by two. They determine between which
atom pairs the chemical bonds are and they are called accord-
ingly bond paths.

2.1. Qualitative Topological Theories of Bonding.In the The electron localization function ERBFis a local measure
topological theories of the chemical bdrié?2” the chemical of the Pauli repulsiof? It is expressed in terms of the definite
concepts are defined in terms of the mathematical properties ofpositive kinetic energy densityy(r), of the von Weizseker
the gradient vector field of given local functiori), called Tww,0 and of the ThomasFermi Tr(r) kinetic energy func-
potential functions. The choice of the potential function tionals of the actual system:

2\-1

The gradient fieldvf(r) forms a dynamical system (for a n(r) = ) ®)

comprehensive introduction to the theory of dynamical systems

determines which of the chemical properties may be revealed
Ts(r) - TvW(r)
see the textbook of Abraham and Si8wThe analysis of this  This function is close to 1.0 in the regions of space where the

in which the sum is performed over the critical point&) is
the index of the critical point labeled by, and y(M) is the
Euler characteristic of the manifold on which the gradient field

2. Theory.

by the analysis.
y y 1
ITF(r)

vector field is based on the analogy with a velocity field: Fermi hole is large (usually dominated by an antiparallel spin
electron pair), it is small where the Fermi hole is narrow, and

o _ the value 0.5 corresponds to a situation analogous to that of
= VI1(r) Q) O :

ot the homogeneous electron gas. The organization of the basins

of ELF provides a picture of the bonding which is consistent
The integration of eq 1 enables to build trajectories. Of particular with the familiar Lewis theory. There are basically two kinds
importance for the analysis are the critical poingsat which of basins: on one hand are the core basins encompassing the
Vi(r)r=r, = 0. The critical points are characterized by their index nuclei withZ > 2, and on the other hand, the valence basins
which is the number of positive eigenvalues of the Hessian the union of which constitute the valence shell of the molecule
matrix of f(r) in the actual case of gradient dynamical systems. or of the crystal. The valence basins are characterized by their
Alternatively, such as in Bader’s papers, they are denoted by asynaptic order which is the number of core basins with which
couple on integers: the rank (number of non zero eigenvaluescommon boundary is sharé¥iWwhen a proton is located within
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a valence basin it is counted as formal core. Monosynaptic TABLE 1: Structure and Lattice Parameter of the
basins are associated to lone pairs, disynaptic ones to two centeE‘VeS_t'gff”e\ldAMetaB: Number, and Position of Their Charge
bonds whereas polysynaptic basins are the signature of multi-2€nSty S

centric bonds. Another important concept is that of domain element structure a(A)%® n attractor position
initially introduced by Mezey! A f-localization domain is a Li bee 3.5093 1 (12d) 0,1/4,1/2
volume bounded by the isosurfagér) = f. It is said to be Na bcc 42906 1 (24h) u,u,1/2 u=0.152
irreducible if it contains one and only one attractor, reducible K bce 5.225 1 (12d) 0,1/4,1/2
otherwise. \% bcc 3.0240 0

2.2. Implications of the Jellium Model. The simplest model A fee 4.0862 2 (526%) Xo)’( 12/4’)(1;40 32
of a metal is constituted by a periodic array of positively charged " =0175
ions embedded in a uniform homogeneous electron gas. For Ca fce 5.576 1 (8c) 1/4,1/4, 1/4
this model the attractors of the density gradient field are located Sc fce 4.541 1 (8c) 1/4,1/4,1/4
on the nuclei of the ion whereas the jellium background gives €U fec 3.61496 0

rise to an infinite number of nonhyperbolic critical points. It is

worth noting that such a system is structurally unstable and a 3.2. Topology of the Electron Charge DensityThe number
more realistic model should be structurally stable and therefore Of NNAs and their location is given in Table 1. There is no
all the critical points should be hyperbolic. However, the jellium NNAs for the bcc structure of vanadium and for the fcc lattice

model tells us that the values of the potential function at the ©f Cu. In principle, the NNAs, when they exist, should be
off-core critical points are confined in a very narrow range located in the middle of the nearest-neighborM internuclear
independently from their indexes. This expectation is supported distances, i.e., the (8c) and (24d) special positions folti3en
by the numerical results of Mei et al. on the lithium and sodium and Fm3m groups, respectively. This expectation has been
crystalsi! The fulfillment of the Poincdrélopf relationship does  Verified by Mei et alt* for the lithium and sodium crystals;
not require the existence of NNAs. however, our calculations yield different results for these two
In the case of the analysis of the electron localization function, Metals since the non nuclear attractors are found in (12d) and
the jellium also gives rise to a continuum of nonhyperbolic (24h), respectively, for Li and Na. There could be two main
critical points which is discretized by the improvement of the causes for this discrepancy. One and probably the most
model. However, the behavior of ELF is quite different from important is the different techniques used to locate the critical
that of the electron charge density because at the core boundarieB0ints of the electron charge density. The determination of
the function value is noticeably lower than its jellium values Cctitical points is carried out analytically by TOPOND96, whereas
0.5 whereas at the core attractors it is close to 1. There areMei et al. used a graphical technique which implies the
necessarily valence basin attractors and the value of ELF interpolation of the function values between grid points. Indeed,
defining the reducible localization domain is expected to be very the charge density values range in a very narrow interval (7
little less than the valence attractor valges). This reducible ~ 107 € bohr= for Li, 2 x 107° e~ bohr for Na) which
localization domain forms a tridimensional network of channels hampers the calculations of the derivatives and therefore round
within which the electron localization function and the electron ©ff errors might play an important role in the numerical graphical
charge density are almost constant and which is consistent withsearch. The other cause of discrepancy could be the sensitivity
the picture of highly delocalized partial covalent bonds. In this 0f NNA occurrence and location to basis set choice and
case, partly covalent means that the number of electron per boncPptimization!#1® Among the eight metals only aluminum
is less than 2 because the number of available valence electron¥erifies the expectation; however, it has a second set of NNAs
in the unit cell is usually much more less than twice the number located at the (96k) positions.

of valence basins. Though the critical points of the electron charge density
) ) gradient field are hyperbolic, all except the nuclear attractors
3. Results and Discussion have Hessian matrix eigenvalues close to zero. Typically, the
3.1. Method of Calculation. The calculations of the wave largest absolute values of such eigenvalues are of the order of
functions have been performed with the periodic Hartiieéeck 1072 e bohr>. The fulfillment of the hyperbolicity requirement

program CRYSTAL952 The basis functions are derived from ensures the structural stability of the gradient dynamic system.
the standard 6-31G sets of Pople and-emrkers334and have However, it is conceivable that a rather small variation of the
been designed following the recommendation of the authors of control space parameters (i.e., the nuclear coordinates, the
the CRYSTAL program$? In all cases the original sp external quality of the basis set, ...) should be strong enough to make
shell which is too diffuse has been removed. The 3sp shell is some of them non hyperbolic and therefore to yield a change
then split into a 21G pattern. The choice of these basis sets haf topology thru a bifurcation catastrophe.

been done in order to have a homogeneous quality thru the series 3.3. Topology of the Electron Localization Function.

of the investigated metals. At the present state of the art, of Though the closure of the gap between the valence and
all-electron periodic HartreeFock calculations performed with  conduction band is considered as the signature of the conducting
localized basis functions, the adopted basis sets should bestate, it has been shown that the insulating state does not require
considered as very good though it is not the case for molecularan energy gap® According to Walter Kohn “the insulating

or cluster calculations. The cutoffs which control the Coulombic characteristics are a strict consequence of electronic localiza-
and exchange series have been set to 6, 6, 6, and 12 (i.e., théon”. In the spirit of Kohn’s paper, delocalization means that
default values), whereas the integration over the Brillouin zone the wave function “breaks up into a sum of functions which
involves 29-points for both bcc and fcc structures. The lattice are localized in disconnected regions of the many-particle
parameters are taken from Wyck®ftand are given in Table 1.  configuration space”. The electron localization function is
TheAtoms in Moleculeand ELF topological analysis have been another tool enabling to decide if the electrons are localized. In
made with the TOPOND program developed by one of us fact, when the electrons are localized the free acceleration
(C.G.)¥ In all the calculated systems there is no gap between vanishes and therefore one can expect localized electrons to be
the valence and conduction bands. “slow” which corresponds to ELF values close to 1. Figure 1
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Figure 1. Localization domains of diamond (left) and aluminum. The bounding isosurfacg(gre= 0.85 and 0.57 for diamond and aluminum,
respectively.

TABLE 2: Localization Function Attractors and Index 1 Critical Points: Positions, Value of ELF at the Attractor z(r,) and at
the Saddle Pointz(rs), Relative Core VolumeV/Vt, Average Valence Densityp, (1072 e bohr=3)

attractor saddle point
element position n(ra) position n(rs) Vo/Vr Pv
Li (6b) 0,1/2,1/2 0.637 (249) x, 0, 1/2 0.635 0.113 7.7
Na (249) X, 0, 1/2 0.563 (24h) AL 0.56 0.165 4.5
K (249) x, 0, 1/2 0.536 (24h) v, ¥, 0 0.520 0.278 2.8
\% (249) X, 0, 1/2 0.60 (24h) v, ¥, 0 0.575 0.485 41.6
Al (24d) 0, 1/4,1/4 0.617 (489) 1/8, 1/4, 1/4 0.583 0.102 29.8
Ca (8¢c) 1/4, 1/4, 1/14 0.71 (96)) 9,z 0.525 0.237 9.0
Sc (8¢c) 1/4, 1/4, 1/4 0.72 (4b) 1/2,1.2,1/2 0.637 0.362 19.8
(4b) 1/2,1/2,1/2 0.67
Cu (4b) 1/2,1/2,1/2 0.38 (1921) XY, Z 0.158 0.480 24.1
(8c) 1/4,1/4, 1/4 0.2

displays the localization domains of a typical covalent insulator, the attractor value which is the signature of a very large
the diamond, and of a metallic conductor (aluminum). In delocalization between valence basins. The isosurface corre-
diamond the valence attractors at the center of the pastillessponding to a very little inferior value marks the boundary of
between carbon cores coincide with the bond critical points of an infinite tridimensional network of channels within which the
the charge density. The ELF value at these attractors is close tdocalization function is almost constant. The topology of the
1. (5(r)s) = 0.97); therefore, the definite positive kinetic energy ELF gradient fields of Na (Figure 2b) K and V derives from
density is very small and is only due to the Pauli repulsion since that of Li. Each valence attractor of Li has been split into four
the von Weizseker functional vanishes at these points. In order new attractors which are shifted toward the centers of the edges
to merge the irreducible valence domains into a single reducible in position (24g). The basins are truncated tetrahedra corre-
one it is necessary to lower the ELF value of the bounding sponding to quarters of the lithium original octahedra. The
isosurface toy(r)s = 0.66. The intervali(ra), n(r¢] defines a synaptic order of these basins is 4 and their populatiorel/6
localization window. In Al, the bounds of the localization The valence attractors of Al are located between the nearest
window are 0.62 and 0.58. At the attractors the definite positive neighbor nuclei, i.e., in position (24d) and the saddle connections
kinetic energy is larger than for the insulating system. A metallic between basins in (489g) yielding channels parallel to the edges
system is characterized by a rather low value of the valence of the cube as shown on Figure 1. The valence basins are
attractor and by a narrow localization window. As a consequence disynaptic with populations of the order of 20. In the calcium
of the flatness of the ELF function in the interstitial valence crystal (Figure 1d), the attractors are in the center of the
region, its critical points have small eigenvalues and therefore tetrahedra defined by four nearest-neighbor atoms, i.e., in
a rather weak perturbation may change the nature and theposition (8c). The valence basins of synaptic order 4 are
location of the critical points located in this region. truncated hexahedra and their populations ares"1 The

The locations of the valence attractors of the ELF gradient connections between basins are ensured by saddle points of
field are reported in Table 2 which shows that there is not a index one located in (96j). The topology of scandium shown in
general simple rule relating these positions to the crystal- Figure 2e is similar, except that there is a second set of attractors
lographic space group. In the case of the bcc lattibeSr) in the center of the cube in (4b). The value of the localization
there are two different behaviors. Figure—2a displays the function at these latter points is lower than that calculated at
localization domains of Li and Na. Two isosurfaces have been position (8c). Finally, in copper Figure 2f the hierarchy of the
plotted corresponding to bounding isosurface values close tovalence attractors in (8c) and (4b) is reversed, the largest basins
the valence attractor and to the valence saddle point values,corresponding to the (4b) attractors. The synaptic orders of the
respectively. The valence attractors of lithium are located at largest basins of scandium and copper are respectively 4 and 6.
the center of the faces in position (6b). The valence basins arelt is interesting to note that the populations of the main valence
truncated octahedra which share boundaries with six core basinspasins in the fcc series are close to 1, which supports the
thus their synaptic number is also six. Assuming a core interstitial-electron model proposed by Mo Li and Godd#&rd.
population of 2e~, the valence basin population is estimated  The sizes of the core basins with respect to the lattice volumes
to be 2/3e” from symmetry considerations. The saddle points explain in part the different topologies calculated for these
of index 1 are in position (8c) at the center of the octahedron metals. It must be recalled that the ELF analysis provides a
faces. The value of ELF at these latter points is very close to shell structure of the atoms, in particular the 3d subshell of the
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(a) (b)

Figure 2. Localization domains of Li (a), Na (b), V (c), Ca(d), Sc (e), and Cu (f). The two bounding isosurfaces have been chosen in order to show
the valence attractors and the channels. This figure has been made with the SciAn sBfdaoe.code: magenta core. Green: valence

polysynaptic.
transition metals mostly belongs to the core basins. The atomiccalculated for the crystalline structures are always in agreement

valence shell populations calculated by Kohout and S&tam with the values reported by Kohout and SaffThe last entries
Sc, V,and Cu are 2.1, 2.2, and 1.1, respectively. The core radiiof Table 2 provides the ratio of the core volume by the cell
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volume and the average density of the valence electrons. Theseoordination of the atoms in the crystal and to the strong Pauli
latter values are in very good agreement with the local values repulsion arising from the cores which tends to increase the
of the electron charge density calculated at the critical points number or the synaptic order of the valence attractors. Moreover,
of this function, with the obvious exception of the (33) critical the reducible valence localization domains (i.e., which encom-
points associated to nuclei. This behavior confirms the flatness pass at least two valence attractors) form an infinite network
of the charge density over the valence region and indicates thatover the whole crystal. The channels built in this way can be
the valence localization domains we defined through ELF just considered as the region of the space within which the
enclose the region where the critical pointso€f) are located. conduction takes place. An argument in favor of this interpreta-
In the case of the transition metals, the number of valence tion is provided by calculations of anisotropic conductors, such
electrons on each atom is two for V and Sc, one for Cu. The as gallium, for which the channels form parallel 2-dimensional
core shells of the main group elements and of copper are totally networks. Though, calculations of the variance of the basin
filled and therefore exert a kind of “Pauli repulsion pressure” population have not be performed (up to now this is only
on the valence basin which is stronger than that of Sc and V. possible for molecules) the values of ELF at its valence attractors
The highV,/Vr ratio of Cu is due to the large volume of an and at its saddle points are a strong indication of the electron
external d-filled core. The location of the valence attractors delocalization.
results of the competition between the core net charge which  Though the gradient dynamical systems of the charge density
favors short nucleusvalence attractor distances and the Pauli and of ELF are structurally stable because their critical points
repulsion which acts in the opposite direction. In the bcc series, are hyperbolic, a rather weak variation of the control space
the core net charge of alkali is only 1; therefore, the repulsive parameters should induce a significant topological change. This
effects are expected to be the driving force. Accordingly the can be achieved by small displacements of the nuclei. Work is
highest symmetrical position is (6b) as in Li. In this case the in progress in order to provide a direct space visual representa-
valence attractor is surrounded by six nuclei-two at a distancetion of the electrorphonon interaction by the technique
a/2, four atav/'2/2. The valence localization basins are square presented here.
basis rhombohedra with concave faces. The concavity is more
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