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Charge transport in molecular and extended systems is discussed with special reference to the mixing of
covalent and ionic states and the evolution of this mixing with time. The formalism allows the electron to
acquire an extra phase when it moves from one site to the next so that a hopping limit can be reached where
the electron transfers with a random phase. The equations of motion are solved for both quantum mechanical
and classical dynamics. An appendix discusses a classical representation of orbital occupancies in a manner
consistent with the Pauli exclusion principle.

1. Introduction

The molecular orbital (MO) approach to the electronic
structure of molecules and of extended structures1,2 is a well
developed tool, equally useful for spectroscopy and for under-
standing the geometrical structure and other properties of the
ground state. But already 50 years ago Coulson and Fischer3

pointed out that the MO wave function gives equal weight to
covalent and ionic structures. As the bond distance is increased,
the weights are not allowed to change, and so, asymptotically,
H2, for example, dissociates equally to H+ H and H+ + H-.
In reality, the ionic channel has a much higher threshold, being
the difference between the ionization potential (IP) of the H
atom and its electron affinity. Coulson and Fischer3 introduced
a more flexible wave function which can be regarded as a linear
combination of the molecular orbital and the primitive valence
bond (VB) wave function of Heitler and London. The latter
assigns each electron to an atom and so dissociates uniquely to
H + H. More recently, Goddard4-6 showed how to achieve the
same aim by retaining the form of the valence bond wave
function without however restricting the “atomic” wave func-
tions to being necessarily strictly localized.

The same limitation on the MO wave function arises when
one wants to discuss charge transfer or charge migration in
molecules. In particular, the simple tight binding model of
electrical conductivity suffers from the defect that there is no
energy penalty when two electrons (of opposite spins) occupy
the same site. In solid-state physics, the required modification
of the tight binding Hamiltonian so as to incorporate this, so-
called, “Coulomb blocking” is usually attributed to Hubbard.7

Theoretical chemists, on their own, have seen the same need,
and the Hamiltonian that incorporates this effect is familiar as
that of Pariser-Parr-Pople (PPP).8-10 The PPP Hamiltonian

includes not only the electrostatic repulsion of two electrons
on the same site but also when the two electrons are on different
sites.

There is a methodological difference between the routes
discussed in the two paragraphs above. In the second paragraph,
one does not attempt to diagonalize the full Hamiltonian. Rather,
one tries to construct a model Hamiltonian, which has much of
the physics built in. Then one solves for this Hamiltonian. For
reasons that are obvious, what one often does is to force an
orbital description on the wave function. For either the Hubbard
or the PPP Hamiltonians, a single determinant wave function
cannot be exact because the Hamiltonian explicitly has terms
that impose correlations between different electrons. So one
usually solves the problem using a self-consistent field (SCF)
procedure.

In this paper, we use the PPP Hamiltonian, but diagonalize
it exactly by making a complete configuration interaction (CI).
That, of course, is not the same as a complete unrestricted
configuration interaction because the PPP Hamiltonian is only
an approximation. It fails to allow for three and four site terms.
But for the problems that we want to address, the full CI goes
well beyond an SCF solution. The technical foundations for
doing the complete configuration interaction have been provided
by Paldus,10 Matsen,11 Shavitt,12 Pauncz,13 and many others (see
ref 14). We will particularly use the basis set pioneered by
Paldus.10

We introduce a minor extension to the PPP Hamiltonian,
which will allow us to discuss electron transport in a more
realistic (but phenomenological) fashion. In its familiar form,
the PPP Hamiltonian contains one and two center electronic
integrals. In reality, there are additional (three and four center)
interactions and these are neglected. What is the physical effect
of the neglected terms? Take as an example the one-electron
“transfer” integral, denotedâ in simple MO theory. This
transports an electron from an atom to its near neighbor. This
transfer is coherent, and in an extended array it can lead to a
conduction band where the electron can move coherently
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throughout the lattice. The wave function is a Bloch wave in
solid-state physics15,16or a delocalized MO in molecular physics.
But physically the transferred electron interacts with other
electrons, particularly those on the same site. We will see (cf.
Figure 2 and ref 17) how including the two-electron Hubbard
term causes a dephasing of the migrating charge. In the present
work, the two-electron interaction is explicitly allowed, but there
are also three or four site terms which are not in the Hamiltonian
that we use. As a result of these extra terms, the transferred
electron is scattered, and due to the Pauli restrictions, the
scattering is primarily elastic. So the transferred electron acquires
an additional phase. We allow for this effect by makingâ
complex but Hermitian. Specifically, we write the transfer
integral between neighboring sitesi and j as

The magnitude of the additional phase shiftδij determines the
loss of coherence per an elementary transfer. The limit of
incoherent transport is when the phase shiftδ is so large that,
modulo 2π, it is random. Note, however, that even with this
modification we remain within a Hamiltonian formalism so that
energy relaxation effects18 are not included.

The other problem we address is that, for complete config-
uration interaction, the scaling of the computational effort with
the number of atoms is prohibitive. As an example, we are
interested in two-dimensional hexagonal arrays of “artificial”
or “designer” atoms.19,20 Each such atom is a cluster or a
“nanodot” which we approximate as an atom with one valence
electron. The physical point is that due to their large size; these
designer atoms have an unusually low value of the Coulombic
repulsion between two electrons on the same site. This brings
the energy of the excited ionic states lower than is the typical
case for molecules. It is therefore not possible to approximately
treat these states, and so a proper configuration mixing is called
for. There are 784 (doublet) basis states for a seven-electron,
seven-site problem. This sized Hamiltonian matrix can be readily
handled. For the next completed hexagonal lattice, with two
layers around the central atom, there are 19 sites. For 19
electrons on this 19-site lattice, eq 3.2 indicates that there will
be 2 821 056 160 doublet basis states. Yet our experimental
colleagues (correctly) feel that even 19 sites is a very small
hexagonal array. So we need some drastic reduction in
computational effort. We need a method that scales linearly with
the number of electrons. In classical mechanics, that is what
will be the case. Each particle in the problem increases the effort
by adding two first-order differential equations of motion
(position and momentum). We will, of course, work with action-
angle variables,21,22 but the need to impose the limitations of
the Pauli principle means that the transition from a quantal to
a classical Hamiltonian, implemented in section 4, is not quite
trivial. Essential background technical details for this limit are
provided in Appendix B.

In the interest of brevity, we do not elaborate the details of
the physical problems for which the formalism is useful.
Specifically, there are two, and quite distinct, systems which
we have considered. One is the already alluded to optical and
electrical response of arrays.19,20The other is charge migration
and dissociation of molecular cations.17,23-25 In brief, the chain
cation is modeled as a linear molecule, made of “atomic” sites.
The rightmost site is chromophoric and is the site where
ionization occurs. The bond-breaking energy is lower when the
charge is at either side of the bond. So reactivity follows the
migration of the charge. The experimental observation25,26 is

that dissociation often does not occur at the site of the initial
ionization but rather at the other end of the molecule. In other
words, charge migration can (but not necessarily) occur prior
to dissociation. We have discussed the competition between
(coherent) charge migration and dissociation. In this manuscript,
we focus on not completely coherent charge migration. Charge
transfer27,28 is of course of much theoretical interest in many
areas, not the least of which is in molecular electronics.29

The paper is organized as follows. Section 2 defines the
quantum mechanical Hamiltonian we use, with additional
technical details given in appendix A. Quantal computations
on charge migration, with a special emphasis on the role of
dephasing, are presented in section 3. The classical limit is taken
in section 4, and many of the more technical details are discussed
in appendix B. A comparison of classical and quantum
computations is the subject of section 5.

2. The Quantum Mechanical Problem

The system we discuss is a linear array ofn sites. In the
computations reported below, there is one orbital per site, which
can accommodate zero, one, or two (of opposite spin) electrons.
We will introduce some effect of the possible role of other
electrons on a given site in eq 2.3 below, but this is done in a
phenomenological manner.

The form of the many-electron Hamiltonian is

whereH0 is a one-electron Hamiltonian of the tight binding (or
Hückel) type,9,30,31

andH1 are the electrostatic, two-electron terms, cf. eq 2.4 below.
Thea† anda in eq 2.2 are the creation and annihilation operators
for an electron at a given site and with a given spin (µ ) up or
down). The sites need not have equal energiesR, and the actual
values that are used in the computation are listed in the legend
of Figure 1.â is the transfer integral. Any internal structure of
a site is a source of modulation ofâ. In the one electron picture,
the migrating electron moves into or out of the site orbital. In
reality, the electron is scattered. Even if the scattering is elastic,
the electron acquires an extra phase and this phase can be
different for different sites. In section 4, we shall argue what
scattering theorists will know, that we only really care about
the value of the phase modulo 2π. Hence, if the phase is large
compared to 2π, the part that matters is effectively random. It
follows that the simplest correction for the role of the internal
structure is to replace the otherwise realâ by a complex
scattering amplitude. This change is equivalent to the substitu-
tion

In order that the matrixâ remains Hermitian, we impose the
additional conditionâji ) âij

/ so that the Hamiltonian can be
diagonalized by a unitary transformation.

The explicit form of the PPP Hamiltonian is

H ) H0 + H1 (2.1)

H0 ) ∑
i,j

n

hi,j ∑
µ

2

ai,µ
† aj,µ

(2.2)

hi,j ) {ai if i ) j
âi,j * 0 for near neighbors only

âij f |â| 1
2
(1 + exp(2iδij)), âji ) â* ij (2.3)

âij f |â|1
2

(1 + exp(2iδij)), âji ) âij
/
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where the first term is the one-electron Hamiltonian,H0,
discussed above, eq 2.2. The new operators (indicated by a carat)
that enter are the number operators for the different sites

which sums over both directions of the spin. A binary product
of number operators is a two-electron operator.

To diagonalize this Hamiltonian exactly (which is equivalent
to a full configuration interaction (CI)), we rewrite it in terms
of the generators,Êi,j,

of the unitary groupU(n) (n is the number of sites).10,11,14

The prime on the second sum indicates thati and j are near
neighbors. Note that only diagonal operators appear in the two-
electron terms. As will be discussed, this makes the analytical
form of the Hamiltonian matrix quite simple. Specifically, we
represent the Hamiltonian in a spin-adapted many-electron basis
set that belongs to an irreducible representation of the group
U(n ) (Gelfand-Tsetlin states).14 These zero-order states we
label as the “site states” because they have sharp values for the
site occupation number operatorsÊi,i ) n̂i. We show the
occupation numbers for these basis states for then ) 4 site
problem (20 basis states) in Table 1, where each row is a
(doublet) state. The eigenstates of the Hamiltonian are linear
combination of these site basis states with coefficients deter-
mined by diagonalization of the Hamiltonian matrix. Note that
it is only due to the transfer integral that the Hamiltonian matrix
in the site basis is off-diagonal so that it is quite sparse. In other
words, the site states diagonalize all the terms in the Hamiltonian
which contain only site operators. Specifically, the part of the
Hamiltonian that is diagonal is

Equation 2.8 is, of course, the reason the site basis provides a
good zero-order basis for diagonalizing the PPP Hamiltonian,
eq 2.7. The two-electron operators, that are otherwise the
problem, are easily handled. It is only the migration of charge
from site to site that is a one-electron term that requires the
numerical diagonalization of the Hamiltonian.

It is important for us to reiterate that diagonalizing the
Hubbard or the PPP Hamiltonian brings about a mixing of
covalent and ionic states. We emphasize that the site basis states
that we used, states which are further discussed in section 3
and in Appendix A, are eigenstates of the site occupation

numbers. So each basis state has a given number of electrons
on a given site. The eigenstates of the Hamiltonian are linear
combination of such states. The weights of the zero-order states
in two different ground states are shown in Figure 1.

When the site energies (theRi’s of eqs 2.7 or 2.8) are not
equal, there is a qualitative difference in the eigenstates of the
Hamiltonian when the site couplingâ is weak or strong. Charge
migration is hindered whenâ < ∆R, where∆R is the energy
difference between two adjacent sites because the wave function
is localized (upper panel of Figure 1). The Hamiltonian used
includes a Coulomb repulsion term,I ) 0.4 eV, which is larger
than the differences in the site energies of sites 2, 3, and 4.
There are three electrons, and they settle in the ground state
into the two covalent states where there is one electron on each
one of these three sites, cf. Table 1. Whenâ is significantly
larger (bottom panel of Figure 1) the wave function is delocal-
ized on all possible doublet states. A time-dependent view of
the role ofâ/∆R is also shown in Figure 3 below.

3. The Quantum Mechanical Charge Migration

The zero-order site basis that we use has definite occupation
numbers of electrons at the different sites. An explicit example,
for a three-electron four-site problem is given in Table 1, where
each row is a possible state. Two particular states, rows 13 and

H ) ∑
i,j

n

hij∑
µ

2

ai,µ
† aj,µ

one-electron
part

+
1

2
I ∑

i

n̂i(n̂i - 1)

on site
Coulomb
repulsion

+
1

2
γ ∑

i,j

n̂in̂j

cross site
Coulomb
repulsion

(2.4)

n̂i t ∑
µ

ai,µ
† ai,µ (2.5)

Êi,j t ∑
µ

2

ai,µ
† aj,µ, i,j ) 1, ...,n

(2.6)
Êi,j ) n̂i

H ) ∑
i)1

n

RiÊi,i + â∑
i,j

n

′Ei,j +
I

2
∑
i)1

n

Êi,i(Êi,i - 1) +
γ

2
∑
i,j

n

Êj,jÊi,i

(2.7)

Hsite ) ∑
i)1

n

RiÊi,i +
I

2
∑
i)1

n

Êi,i(Êi,i - 1) +
γ

2
∑
i,j

n

Êj,jÊi,i (2.8)

TABLE 1: Site Many-Electron States for Three Electrons
on Four Sites
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14, each one with no charge on the leftmost site, are shown in
eq 3.1.

State 13 has every electron on a site of its own. State 14 has
two electrons (of opposite spins) on the same site. Its energy
can be higher because of the Coulombic repulsion,I, but note
that the site energies need not be all the same, so states 13 and
14 can differ in energy also due to the site energies, first term
in the site Hamiltonian (2.8). There are altogether eight zero-
order site states (5, 8, 11, 13, 14, 17, 19, 20, cf. Table 1) with
an empty leftmost site. Of these, two states (13 and 17) are
covalent while the other six are ionic. These two covalent states
are those occupied in the weakly coupled ground state (upper
panel of Figure 1).

An initial state for charge migration into an initially empty
rightmost site is a linear combination of the eight site states
above. The time evolution is determined by writing the time
evolution operatorU(t) t exp(-iHt/p) as a 20× 20 matrix in
the site basis,U(t) t exp(-iHt/p) which is readily computed
when the Hamiltonian matrixH is diagonalized. From the time-
evolved wave function, expectation values of, say, the site

occupancies〈n̂i〉, i ) 1,2, ...,n, are determined. The computa-
tional effort scales as handlingN × N matrices, whereN is the
size of the site basis.

For n sites andN electrons, the numberN of linearly
independent basis states of given total multiplicity (2S + 1)
is10,32

The two factors in round brackets are the binomial coefficients.
For the (n ) 4) four-site, (N ) 3) three-electron problem that
we use below as an illustration, there areN ) 20 many-electron
doublet (S ) 1/2) states. These 20 linearly independent states
are shown in Table 1.

There is no problem to diagonalize the Hamiltonian for the
N ) 20 state problem. It is the exponential increase ofN with
the numbern of sites that requires that we go to the classical
limit, section 4. (Assuming that the number of sites,n, is
comparable toN and much larger thanS, N is of the order of
2n).

Figure 1. The weight of the (doublet) ground state of a three-electron
four-site problem on the 20-site zero-order many-electron states. The
numbering of the 20 states is that of Table 1 and the text. Upper
panel: weak site-site couplingâ. The ground state is localized. Lower
panel: strong coupling. The sites are numbereda to d; see inset in
lower panel. The label “weak” or “strong” coupling refers toâ measured
with respect to the differences in the energies of the sites. Here and in
Figures 2 and 4, as shown in the inset in the lower panel,aa ) -8.1,
ab ) -8.5,ac ) -8.5,ad ) -8.4 all in electronvolts. The two Young
tableaux shown as an insert in the upper panel are explained in
Appendix A. Essentially, they mean that for weak coupling there is
one electron on each one of the three sites with lower energies.

Figure 2. The time evolution of the charges at the two end sites,a
andd, cf., Figure 1, computed quantum mechanically for an initial state
with no charge at the sitea, state 13 of the text and Table 1. Top
panel: a Hu¨ckel type Hamiltonian with site-site couplingâ ) -0.5
eV. This is sufficient to bridge the differences in site energies (see
bottom panel of Figure 1), and charge flow is quite facile. Middle
panel: same as upper panel but including a repulsion between two
electrons on the same site. This too is a unitary time evolution so that
there is no real dephasing. There is however a defacto dephasing
because with the inclusion of the Coulombic repulsion the degeneracy
of covalent and ionic states is split so that there are many states with
small energy spacings. Lower panel: same as middle panel but
including a dephasing of the electron upon its transfer from one site to
another, as in eq 2.3 with a random phase. Now, fairly quickly the
charge distribution tends to equilibrate.

N ) 2S+ 1
n + 1 ( n + 1

(N - 2S)/2)( n + 1
(n - (N + 2S)/2)) (3.2)
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Figure 2 shows typical results for a problem of a charge
migration in a four-site three-electron problem. The (negative)
charge is initially missing from site a, the site of the lowest
ionization potential (IP). In the absence of Coulomb repulsion
(top panel), the charge coherently propagates up and down the
chain staying mostly at the two end sites, a and d, which have
the lowest IP. When Coulombic repulsion is included in the
Hamiltonian, there is a more rapid spreading of the charge. There
is a defacto dephasing. The Hamiltonian is purely real so that
the dephasing is only apparent, being due to a sum over 20
eigenstates whose energies are different due to the removal of
degeneracies by the Coulombic repulsion. One expects even
more states to be mixed when three- and four-site terms are
included in the Hamiltonian. We mimic this (bottom panel of
Figure 2) by making the transfer amplitudeâ include a scattering
phase shift, eq 2.3. The first period is still coherent, but beyond
it dephasing rapidly sets in.

Time in Figure 2 is scaled in units ofâ. This is appropriate
whenâ (â ) -0.5 eV in Figure 2) is not small. The classical
limit, discussed below, suggests for smallerâ a scaling with
∆R is more suitable; see Figure 3.

4. The Classical Limit

The classical limit is introduced so that the computational
effort scales linearly with the number of sites. The classical
variables need therefore to characterize an electron, of a given
spin, on a given site. We take the classical limit in a manner
that ensures that the Pauli exclusion principle is satisfied.
Explicitly, we associate with each site spin-orbital a fictitious
spin degree of freedom. This fictitious spin is “up” when the
particular site spin-orbital is occupied and is “down” when
the orbital is empty. Instead of a spin, one can think of a two-
level system, where one level corresponds to occupied site spin-
orbital and the other to an empty site. The Pauli exclusion
principle is satisfied by a level being either empty or full.

Since in the basis set there is one orbital per site, we introduce
two fictitious spins per site, corresponding to the two physical
spins that can be associated with each spatial orbital. Each
fictitious spin gives us one classical degree of freedom.

Using the discussion in Appendix B, the correspondence
between quantal operators and classical variables is as follows.

i. Occupancies.

wheren̂i,µ is the classical number of electrons of spinµ on site
i. The origin of this correspondence is discussed in Appendix
B. The introduction of the variable cosθi,µ as thez component
of the fictitious spin on sitei ensures that

and therefore that one can introduce an angleθi,µ such that

ii. Creation and Annihilation Operators.

Note that, as discussed in eq B.10,〈a†〉〈a〉 f n(1 - n). The
angleφi,µ is the angle conjugate to the classical action variable
ni,µ.

The classical limit of the Hamiltonian is obtained by using
the correspondence (4.1) and (4.4) in the form (2.4) of the
quantal Hamiltonian. Explicitly, with the definition (2.2) ofhij

Note that, as in quantum mechanics, classically too one can
defineni ) ∑µ

2 ni,µ.
The classical Hamiltonian has a form that readily lends itself

to a useful interpretation of the dynamics. To see this, we begin
with the one-electron part which we argue is a Hamiltonian of
coupled oscillators, where the coupling is due to a, so-called,33

1:1 resonance. In other words, the coupling exchanges vibra-
tional quanta from one oscillator to another. Such a transfer is
physically a transfer of charge from one site to a neighboring
one. The factorsx1-nj,µ ensure that a transfer is possible only

n̂i,µ t ai,µ
† ai,µ98

classical limit
ni,µ ) (1 + cosθi,µ)/2 ) cos2(θi,µ/2)

(4.1)

0 e ni,µ e 1 (4.2)

sin θi,µ t 2xni,µx1 - ni,µ (4.3)

ai,µ
† f

1
2

sin θi,µ exp(iφi,µ)

(4.4)
ai,µ f

1
2

sin θi,µ exp(-iφi,µ)

Figure 3. Comparing the analytical classical (curve, eq 5.4) and
quantum mechanical (dots) charge migration for a two-site (aa ) -8.1,
ab ) -8.5) one-electron problem. The initial occupancy of sitea is n
) 0.622. When∆R/2â . 1 (upper and middle panels), the analytical
classical approximation is remarkably close to the exact quantum
mechanical solution. When∆R/2â e 2 (bottom panel), the period of
the classical solution is badly off (dashes). This is only to be expected
because the classical solution uses an approximation, eq 4.8, which is
only valid if ∆R/2â > 1. However, if we use the analytical classical
result (5.4) with the ratio∆R/2â set to its correct value but allow∆R
in the cosine term to be an adjustable parameter, the classical solution
(solid line) better matches the quantum mechanical one. The fit shown
here gives∆R ) 0.43 (instead of 0.5). The classical solution (5.4) is
very sensitive to the value of∆R.

Hclassical) ∑
i

n

Ri∑
µ

2

ni,µ +

∑
i,j

n

′âij∑
µ

2 xni,µ(1 - ni,µ)xnj,µ(1 - nj,µ) exp(i(φi,µ - φj,µ)) +

1

2
I∑

i

ni(ni - 1) +
1

2
γ∑

i,j

′ninj (4.5)
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to a site that is available to accommodate an electron. These
factors are in fact familiar from the algebraic theory34 of
anharmonically coupled oscillators, where they represent an
“anharmonicity cutoff”; that is, they disallow a transfer into a
vibrational level beyond the highest level that the anharmonic
well can contain.

The interpretation of the Hamiltonian follows from the
classical equations of motion for action angle variables

Then, the phase of the oscillator has a constant angular velocity,
Ri, with additional terms due to the coupling (which we take
here to be real),

But since in generalâ , R, to leading ordernj,µ has a constant
angular velocity and the equation of motion for the phases can
be integrated immediately,

The pairwise coupling of two oscillators is modulated by the
temporal evolution of the difference in phases

The first term of the phase in (4.9) is just a constant phase
difference. It is the second term that shows the effect of a
mismatch in theR's, an effect that we discussed extensively
for the quantum case.17,24Unless the couplingâ can bridge the
gap in theR’s, the sites are weakly coupled. Explicitly, the
prephase factor has to have a time dependence that compensates
for the modulation due to the gap in theR’s.

There are two other terms inH, the electrostatic ones. But
these terms do not depend on the phase, so they do not contribute
to the equation of motion of then’s. Their only role is to modify
the equation of motion of the phase so that (4.7) is to be replaced
by

In other words, the two-electron terms make the angular
frequencyn dependent, as for an anharmonic oscillator. The
Coulomb blocking acts as a self-anharmonicity term, while the
cross polarization acts as a cross anharmonicity.

5. Charge Migration in the Classical Limit

The classical equations of motion

are written here forγ ) 0 so that they are not too lengthy.
Even as they are they need to be integrated numerically. Checks
on the integration are, as usual in classical mechanics, the back
integration of the trajectory. Simpler checks are the conservation
of energy, the conservation of charge, and the conservation of
spin

Before we show results, we discuss a simple case where an
analytical solution can be obtained. This solution is both
instructive and is in very good agreement with the quantal
results, and so we present it in some detail.

Consider a two-site (n ) 2) with unequal site energies. Then,
with (4.9) for the coupling and using the conservation of charge
and spin, one is left with only one equation of motion which
we take to be the occupancy of one of the sites. We do not
need a spin label because spin is conserved so that

The dependence of the rate of change onn(1 - n) is an
indication that the numerical solution will be sensitive to the
magnitude of the forefactor 2â sin(∆Rt) because this is an
equation of the “logistic” type.35

By separation of variables and usingC as the constant of
integration, which is determined by the initial conditions, (5.3)
integrates to

The solution is a periodic function with a periodicity determined
primarily by the gap∆R in site energies, whileâ determines
the depth of the modulation. The larger isâ/∆R, the higher is
the fraction of charge that does transfer to the other site.

Figure 3 compares eq 5.4 with the quantum mechanical
results, shown as dots. When∆R/2â . 1, the agreement is quite
good. The quantum and classical results cannot be distinguished
to graph reading accuracy. Once 2â/∆R is larger, deviations
begin to appear. These deviations are not necessarily the fault
of classical mechanics but may well be due to the approximation
(4.8) which we made in order to have an analytical solution.
To check this, we used the analytical solution (5.4) as a fitting
formula and used∆R as a free parameter. Then one obtains an
excellent fit to the quantum mechanical results even when∆R/
2â > 1. The problem stems from the approximation (4.8). When
∆R/2â > 1, it is ∆R that determines the period. Otherwise, the
quantum mechanical solution shows that the period is the

n̆i,µ ) - ∂H
∂φi,µ

, φ̇i,µ ) ∂H
∂Hni,µ

(4.6)

φ̇i,µ ) Ri + â ... (4.7)

φi,µ(t) ) φi,µ(0) + Rit, â/∆R < 1 andI/∆R < 1 (4.8)

âxni,µ(1 - ni,µ)xnj,µ(1 - nj,µ) exp(i(φi,µ - φj,µ)) )

âxni,µ(t)(1 - ni,µ(t))xnj,µ(t)(1 - nj,µ(t)) exp(i((φi,µ(0) -
φj,µ(0)) + (Ri - Rj)t)) (4.9)

φ̇i,µ ) Ri + Ini,-µ +
1

2
γ∑

j

′∑
µ

2

nj,µ + â ... (4.10)

dφi,µ

dt
) ∂H

∂ni,µ
) Ri,µ + Ini,-µ + â( 1 - 2ni,µ

xni,µ(1 - ni,µ)
[cos(φi,µ -

φi+1,µ)xni+1,µ(1 - ni+1,µ) + cos(φi,µ -

φi-1,µ)xni-1,µ(1 - ni-1,µ)] (5.1)

dni,µ

dt
) - ∂H

∂φi,µ
) 2â[(xni,µ(1 - ni,µ)ni+1,µ(1 - ni+1,µ) sin

(φi,µ - φi+1,µ)) + (xni,µ(1 - ni,µ)ni-1,µ(1 - ni-1,µ) sin

(φi,µ - φi-1,µ))] (5.2)

H(t) ) const, ∑
j
∑

µ

2

nj,µ(t) ) const,

∑
j

nj,µ(t) ) const for eachµ

n̆ ) 2ân(1 - n) sin(∆Rt) (5.3)

ln( n(t)

1 - n(t)) ) - 2â
∆R

cos(∆Rt) + C (5.4)
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spacing between the eigenstates, which in the two-state problem
is

This change in period is very evident in Figure 3.
In view of the success of the classical solution in the two-

site problem, we solved the exact classical equations of motion
numerically. A comparison with the quantal solution is shown
for a two-electron four-site problem in Figure 4. The classical
solution dephases somewhat more rapidly than the quantum
mechanical solution but otherwise is able to capture the essence
of the charge migration. The quantum mechanical solution
shown in Figure 4 is for a realâ. As we argued in section 3,
this is numerically correct but physically not fully satisfactory
because it fails to allow for the dephasing which does take place.
So the classical solution is actually a better representation of
the physical reality.

6. Concluding Remarks

Charge migration has been discussed with special reference
to the dephasing which leads to a hopping motion of the charge.
Physically, the dephasing is due to a not fully coherent transfer
from one site to the next. This scattering can be due both to
other electrons and to coupling to the nuclear modes. Our paper
does not address the latter issue. We showed three levels of
description for the role of the other electrons. (i) We included
the role of electrostatic repulsion between two electrons on the
same site, the Hubbard correction, and on other sites, the
Pariser-Parr-Pople correction. This effect was solved for
exactly using a unitary group many-electron basis (Appendix
A) and was shown to lead to some dephasing, Figure 2. (ii)
We included the role of electrostatic repulsion as in (i) and, in

addition, elastic scattering of the transferred electron, eq 2.3.
Finally, (iii) we introduced a classical limit (Appendix B) of
the dynamics. The classical approximation was remarkably
realistic, and we intend to use it for bigger systems for which
the exact quantum mechanics is computationally intractable.
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Appendix A: The Construction of the Many-Electron
Basis

Equation 3.2 specifies that there areN ) 20 doublet (S )
1/2) states corresponding to a (n ) 4) four-site, (N ) 3) three-
electron system. These states are shown schematically in Table
1. Each row is a site state. The columns are the four sites and
spin labels such that each site carries two spin-orbitals, but
what is spin up or down is arbitrary. Only the total spin matters.
The bars show the occupancy.

There are several ways to classify and enumerate the spin-
adapted many-electron states. These are reviewed in detail
elsewhere.32 In this paper, we use the Paldus states10 to generate
the matrix elements of the Hamiltonian in the many-electron
site basis and we show in Table 1 the Young tableaux36 which
correspond to these Paldus states.

i. Paldus States.All the orthonormal spin-adaptedN electron
states can be generated from the highest weight vector, in Paldus
10notation (a, b, c) wherea, b andc are given by

For Table 1, (a, b, c) ≡ (1, 1, 2). To identify the highest row
of the Paldus tableau, we designate (a, b, c) above as (an, bn,
cn).10,32The highest row of the tableau is then the highest weight
vector.

The many-electron states are represented as three-column
Paldus tableaux, built ofn rows (ai, bi, ci), i ) 1, ..., n. The
entries of the different rows are recursively obtained from the
highest weight vector (an, bn, cn). Thesen × 3 matrices have
only nonnegative entries and for each row,ai + bi + ci ) i, so
that the Paldus tableau of (n - i) rows belongs toU(n - i) and
corresponds to a system with (n - i) orbitals andnn-i ) (an-i

- an-i-1) + (1 - (cn-i - cn-i-1)), (a0 ) c0 ) 1) electrons.
These nn-i electrons are coupled to the electrons of the
intermediate level (n - i - 1) of intermediate spin Sn-i-1 in
such a way that the spinSn-i ) (1/2)bn-i characteristic of the (n
- i)th row is obtained. All theN Paldus tableaux differ by at
least a row and have the samenth row, which is the highest
weight vector (an, bn, cn).

We show below the Paldus tableaux corresponding to the
site many-electron states 13 and 14,

where a, b, c, and d are the labels of then ) 4 sites. The
orbital occupancies of these states are also shown in eq 3.1 of
the text.

ii. Young Tableaux. To satisfy the Pauli principle, a site
can be occupied by at most two electrons, which means that

Figure 4. A numerical solution of the exact classical and quantum
mechanical equations of motion for a (triplet) two-electron four-site
problem. Site energies as in Figures 1 and 2.â ) - 0.1 eV. The initial
state has a uniform distribution of charge. The quantum initial state is
a coherent superposition of the six triplet states with equal weights.
(This ensures equal charge on all four sites). The classical initial
condition isni,up ) 0.5, i ) 1, ..., 4.

D ) x(∆R)2 + 4â2 f {∆R(1 + 2â/∆R + ...)
2â(1 + ∆R/2â + ...)

a + b + c ) n, 2a + b ) N, b ) 2S (A.1)

d
c
b
a [1 1 2

1 0 2
0 1 1
0 0 1

] [1 1 2
1 0 2
0 0 2
0 0 1

] (A.2)

(13) (14)
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the N electron states are represented byN boxes arranged in
two columns at most. The total spin is given by the length
difference between the two columns. ForN ) 3 doublet states,
one column has a length of two boxes and the other one consists
of a single box. One column corresponds to electrons of a given
spin and the other column has electrons of opposite spin. To
outline correspondence between the Paldus states and the Young
tableaux, one needs to rewrite the Paldus states in terms of two
column,n row tableaux, known as the∆AC tableaux32 where
the entries,∆ak, of the first column are defined as

while the entries,∆ck, of the second column are given by

Within this notation, the occupation number of sitek is given
by

It is possible to show32 that the entries∆ak and ∆ck
completely specify the many-electron states so that the three
columnsn row shown in eq A.2 are completely equivalent to
the following two-columnn row tableaux:

The Young tableau shown in Table 1 are thus obtained by
inserting in the boxes of the first column the row labels for
which ∆ck ) 1 and in the boxes of the second column, the row
labels for which∆ak ) 1 gives for the two states above:

iii. Matrix Elements of the Hamiltonian in the Paldus
States.The analytical expressions of the matrix elements of
the Hamiltonian in the spin-adapted site many-electron state
basis set are given in terms in the Paldus states in refs 10, 17,
and 32. They are obtained using the commutation relations of
the Ei,j generators of the groupU(n),

Appendix B: The Classical Limit

When the number,n, of sites is not small, the basis size
increases exponentially, cf., eq 3.2. It is then no longer practical
to diagonalize the Hamiltonian as a symmetric matrix, particu-
larly so when the array of sites is two (or more) dimensional
and there are more than two near neighbors of a given site. It
is still possible to defacto diagonalize the Hamiltonian using a
filter diagonalization37,38 or similar methods. Here, however,
we examine an alternative route, namely, taking a classical limit
and solving the classical equations of motion.

It is well-known and goes back to Dirac39 that quantum
mechanics can be transcribed as a problem in classical mechan-

ics if one introduces a classical degree of freedom for every
accessible basisstateof the quantum mechanical problem. See,
for example, ref 40 for a practical realization. This, however,
will not allow a simple scaling of the computational effort with
the size of the system. Rather, we need a scheme that assigns
one classical degree of freedom perparticle. Moreover we would
like to be consistent with the Pauli principle; that is, we want
to ensure that there is not more than one electron of a given
spin on a given site. If it were not for this restriction then one
knows quite well what to do: an annihilation (or creation)
operator of a particle in a given site is represented by the polar
operator form41

The operators carry the label of the site which, in the appendix,
we do not explicitly display. Then, ifn̂ and φ̂ are regarded as
conjugate variables,

The definition (B.2) is equivalent to the boson commutation
relation [a,a†] ) 1. It is now possible to take the classical limit
by the Dirac prescription of replacing the commutator of the
operators by the Poisson bracket of the classical variables,

This shows that in the classical limitn andφ are action-angle
variables. There are problems with the interpretation ofn̂ and
φ̂ as Hermitian operators,42,43but this is not our primary concern.
From our point of view the issue is that the correspondence
(B.1) between creation and annihilation operators and action-
angle variables is valid for operators which satisfyboson
statistics. The creation and annihilation operators, used to define
the quantum mechanical Hamiltonian (2.4), obeyfermion
statistics

This can be used to show that the corresponding number
operatorE,Et a†a, has only two eigenvalues, 0 and 1, a result
that we know as the Pauli exclusion principle. Our problem is
to obtain a classical limit for such fermion operators. The
prescription that we found in the literature44 is to use
“anticommuting numbers” sometimes known as Grassmann
variables. Instead we proceeded as follows.

The Pauli spin matrices, defined as usual,

satisfy the anticommutation relation [σ+,σ-]+ ) 1 identical to
that of the fermion creation and annihilation operators. The role
of the number operator is provided using the third Pauli matrix,

We go to the classical limit by taking the (spin) coherent states
expectation values. The coherent states convenient for our
purpose are where the spin points out in the direction of the
solid angleΩ45and the states are normalized,

∆ak ) ak - ak-1 (A.3)

∆ck ) 1 - ∆ck with ∆ck ) ck - ck-1 (A.4)

nk ) ∆ak + ∆ck (A.5)

d
c
b
a [0 1

1 0
0 1
0 0

] [0 1
1 1
0 0
0 0

] (A.6)

(13) (14)

[Eij,Ekl] ) Eilδjk - Ekjδil (A.8)

a† f xn̂ exp(-iφ̂)
(B.1)

a f exp(iφ̂)xn̂

[n̂, φ̂] ) i (B.2)

i ) [n̂,φ̂] f i{n̂,φ̂} (B.3)

[a,a†]+ t aa† + a†a ) 1 (B.4)

σ( t
1
2
(σ1 ( iσ2)or σ+ ) (0 1

0 0), σ- ) [0 0
1 0] (B.5)

σ3 ) (1 0
0 -1), 1

2
(1 + σ3) ) σ+σ- (B.6)

〈Ω|Ŝ|Ω〉 ) 1
2
n (B.7)
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n is the unit vector in the direction ofΩ, and we took the spin
of the particle to be one-half. For these states,45 and using carats
to designate operators,

Using the correspondence

so that the classical number variable satisfies the exclusion
principle, 0e n e 1, we obtain the classical limit for the fermion
creation and annihilation operators

Note that in terms of (coherent states) expectation valuesn r
〈a†a〉 * 〈a†〉〈a〉 f n(1 - n) so that there is no inconsistency
between (B.9) and (B.10). Indeed, sincen2 e n, this is as it
should be.

The Boltzmann Limit. We do not use the limit where the
effects of the Pauli statistics are negligible, but for completeness
we derive it. Say the spinS is high. For an arbitrary spin, (B.8)
is replaced by

Then, instead of (B.10), we find

In the limit Sf ∞, we recover the classical limit for the boson
operators. The “correction” factorxn(2S-n) is familiar from
the algebraic theory of anharmonic molecules, wheren is the
vibrational quantum number and 2S is the number of bound
states. Here too, this factor serves to limit the range ofn. The
trick of taking the limit of highS is the, so-called contraction
that is used to get the harmonic limit.46,47 For completeness,
we also note that there is more than one way in which one can
take the highS limit. A simple illustrative case is a quantal
Morse oscillator. When taking its classical limit we want the
anharmonicity to remain finite. So theS f ∞ limit must be
taken withp f 0 so as to keep the anharmonicity finite. (see
note 7.5 of ref 48). On the other hand, if we keepp finite but
take the highS limit, we get the harmonic quantal oscillator.

Summary

We use the correspondence

wheren and the phaseφ carry both a site and a spin label and
ni,µ, 0 e ni,µ e 1, is the fraction of electrons on the spin-orbital
of spinµ on theith site. The classical limit of the Hamiltonian
is obtained by using (B.13) in the quantum mechanical Hamil-
tonian.

Note added in proof: Prof. Witt. Miller called our attention
to a similar development by Miller and White (J. Chem. Phys.
1986, 84, 5059).
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2
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a†a f cos2(θ2) t n (B.9)

a† f
1
2

sin θ exp(iφ) ) xn(1 - n) exp(iφ)

(B.10)
a f

1
2

sin θ exp(-iφ) ) xn(1 - n) exp(-iφ)

〈Ω|Ŝ+|Ω〉 ) Ssin θ exp(iφ)

〈Ω|Ŝ-|Ω〉 ) Ssin θ exp(-iφ) (B.11)

〈Ω|Ŝ+Ŝ-|Ω〉 ) 〈Ω|(1 + Ŝz)|Ω〉 ) S(1 + cosθ)

a† f
1
2

sin θ exp(iφ) ) xn(2S- n) exp(iφ)
(B.12)

a f
1
2

sin θ exp(-iφ) ) xn(2S- n) exp(-iφ)
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a†a f n
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