J. Phys. Chem. R000,104,2341-2350 2341

Configuration Interaction between Covalent and lonic States in the Quantal and
Semiclassical Limits with Application to Coherent and Hopping Charge Migration

F. Remaclé
Département de Chimie, B6, Urersitede Ligge, B 4000 Lige, Belgium

R. D. Levine*

The Fritz Haber Research Center for Molecular Dynamics, The Hebrewddsity, Jerusalem 91904, Israel,
and Department of Chemistry and Biochemistry, aénsity of California—Los Angeles,
Los Angeles, California 90095

Receied: August 19, 1999; In Final Form: Nember 11, 1999

Charge transport in molecular and extended systems is discussed with special reference to the mixing of
covalent and ionic states and the evolution of this mixing with time. The formalism allows the electron to
acquire an extra phase when it moves from one site to the next so that a hopping limit can be reached where
the electron transfers with a random phase. The equations of motion are solved for both quantum mechanical
and classical dynamics. An appendix discusses a classical representation of orbital occupancies in a manner
consistent with the Pauli exclusion principle.

1. Introduction includes not only the electrostatic repulsion of two electrons

) _on the same site but also when the two electrons are on different
The molecular orbital (MO) approach to the electronic gjtes.

structure of molecules and of extended structtités a well There is a methodological difference between the routes
developed tool, equally useful for spectroscopy and for under- discussed in the two paragraphs above. In the second paragraph,
standing the geometrical structure and other properties of theone does not attempt to diagonalize the full Hamiltonian. Rather,
ground state. But already 50 years ago Coulson and Ficher one tries to construct a model Hamiltonian, which has much of
pointed out that the MO wave function gives equal weight to the physics built in. Then one solves for this Hamiltonian. For
covalent and ionic structures. As the bond distance is increasedreasons that are obvious, what one often does is to force an
the weights are not allowed to change, and so, asymptotically, orbital description on the wave function. For either the Hubbard
H,, for example, dissociates equally to-HH and H" + H™. or the PPP Hamiltonians, a single determinant wave function
In reality, the ionic channel has a much higher threshold, being cannot be exact because the Hamiltonian explicitly has terms
the difference between the ionization potential (IP) of the H that impose correlations between different electrons. So one
atom and its electron affinity. Coulson and Fisétiatroduced ~ usually solves the problem using a self-consistent field (SCF)
a more flexible wave function which can be regarded as a linear Procedure.

combination of the molecular orbital and the primitive valence I this paper, we use the PPP Hamiltonian, but diagonalize
bond (VB) wave function of Heitler and London. The latter It exactly by maklr)g a complete configuration interaction (QI).
assigns each electron to an atom and so dissociates uniquely td "at, of course, is not the same as a complete unrestricted
H + H. More recently, Goddafd® showed how to achieve the conflguratl_on |_nteract|qn because the PPP Hamllton!an is only
same aim by retaining the form of the valence bond wave an approximation. It fails to allow for three and four site terms.

function without however restricting the “atomic” wave func- But for the problems that we want to addrgss, the full .Cl goes
tions to being necessarily strictly localized well beyond an SCF solution. The technical foundations for

o i . doing the complete configuration interaction have been provided
The same limitation on the MO wave function arises when by Paldusi® Matsent! Shavitt!2 Pauncz3 and many others (see

one wants to discuss charge transfer or charge migration inyef 14y we will particularly use the basis set pioneered by
molecules. In particular, the simple tight binding model of pg|qysto

electrical conductivity suffers from the defect that there is N0 e introduce a minor extension to the PPP Hamiltonian,
energy penalty when two electrons (of opposite spins) occupy which will allow us to discuss electron transport in a more
the same site. In solid-state physics, the required modification realistic (but phenomenological) fashion. In its familiar form,
of the tight binding Hamiltonian so as to incorporate this, so- the PPP Hamiltonian contains one and two center electronic
called, “Coulomb blocking” is usually attributed to Hubbdrd. integrals. In reality, there are additional (three and four center)
Theoretical chemists, on their own, have seen the same needinteractions and these are neglected. What is the physical effect
and the Hamiltonian that incorporates this effect is familiar as of the neglected terms? Take as an example the one-electron
that of PariserPar—Pople (PPP§. 10 The PPP Hamiltonian  “transfer” integral, denoted3 in simple MO theory. This
transports an electron from an atom to its near neighbor. This
* Corresponding author. Fax: 972-2-6513742; E-mail: rafi@fh.hujiac.il. transfer is coherent, and in an extended array it can lead to a
T Chercheur QualifieFNRS, Belgium. conduction band where the electron can move coherently
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throughout the lattice. The wave function is a Bloch wave in that dissociation often does not occur at the site of the initial
solid-state physié&'6or a delocalized MO in molecular physics. ionization but rather at the other end of the molecule. In other
But physically the transferred electron interacts with other words, charge migration can (but not necessarily) occur prior
electrons, particularly those on the same site. We will see (cf. to dissociation. We have discussed the competition between
Figure 2 and ref 17) how including the two-electron Hubbard (coherent) charge migration and dissociation. In this manuscript,
term causes a dephasing of the migrating charge. In the presentve focus on not completely coherent charge migration. Charge
work, the two-electron interaction is explicitly allowed, but there transfe#”28is of course of much theoretical interest in many
are also three or four site terms which are not in the Hamiltonian areas, not the least of which is in molecular electrofics.

that we use. As a result of these extra terms, the transferred The paper is organized as follows. Section 2 defines the
electron is scattered, and due to the Pauli restrictions, thequantum mechanical Hamiltonian we use, with additional
scattering is primarily elastic. So the transferred electron acquirestechnical details given in appendix A. Quantal computations
an additional phase. We allow for this effect by makifig on charge migration, with a special emphasis on the role of
complex but Hermitian. Specifically, we write the transfer dephasing, are presented in section 3. The classical limit is taken

integral between neighboring sitesndj as in section 4, and many of the more technical details are discussed
in appendix B. A comparison of classical and quantum
. 1 - Sk tati is th bject of section 5.
Bij — |ﬁ|§ (1+exp(25,)), Bii = Bii computations is the subject of section

2. The Quantum Mechanical Problem
The magnitude of the additional phase shiftdetermines the
loss of coherence per an elementary transfer. The limit of
incoherent transport is when the phase shif$ so large that,
modulo 2, it is random. Note, however, that even with this
modification we remain within a Hamiltonian formalism so that
energy relaxation effectsare not included.

The other problem we address is that, for complete config-
uration interaction, the scaling of the computational effort with
the number of atoms is prohibitive. As an example, we are
interested in two-dimensional hexagonal arrays of “artificial”
or “designer” atomd?2% Each such atom is a cluster or a
“nanodot” which we approximate as an atom with one valence whereHg is a one-electron Hamiltonian of the tight binding (or
electron. The physical point is that due to their large size; these Huickel) type?-30:3
designer atoms have an unusually low value of the Coulombic

The system we discuss is a linear arrayno$ites. In the
computations reported below, there is one orbital per site, which
can accommodate zero, one, or two (of opposite spin) electrons.
We will introduce some effect of the possible role of other
electrons on a given site in eq 2.3 below, but this is done in a
phenomenological manner.

The form of the many-electron Hamiltonian is

H=Hy+H, (2.1)

repulsion between two electrons on the same site. This brings n 2 :

the energy of the excited ionic states lower than is the typical Hy= z h; Z &8,

case for molecules. It is therefore not possible to approximately ] Z (2.2)
treat these states, and so a proper configuration mixing is called aifi=j

for. There are 784 (doublet) basis states for a seven-electron, h; = {ﬁi,j = 0 for near neighbors only

seven-site problem. This sized Hamiltonian matrix can be readily

handled. For the next completed hexagonal lattice, with two .
layers around the central atom, there are 19 sites. For 19andH; are the electrostatic, two-electron terms, cf. eq 2.4 below.

electrons on this 19-site lattice, eq 3.2 indicates that there will 1hea" andain eq 2.2 are the creation and annihilation operators
be 2821056 160 doublet basis states. Yet our experimental/or @n electron at a given site and with a given spir<(up or
colleagues (correctly) feel that even 19 sites is a very small 4OWn). The sites need not have equal energjeand the actual
hexagonal array. So we need some drastic reduction inVvalues thatare used in the computation are listed in the legend

computational effort. We need a method that scales linearly with of Figure 1.5 is the transfer integral. Any internal structure of
the number of electrons. In classical mechanics, that is what & Site is a source of modulation 6fIn the one electron picture,

will be the case. Each particle in the problem increases the effort "€ migrating electron moves into or out of the site orbital. In
by adding two first-order differential equations of motion reality, the electron is scattered. Even if the scattering is elastic,

(position and momentum). We will, of course, work with action- the electron acquires an extra phase and this phase can be
angle variabled!22 but the need to impose the limitations of different for different sites. In section 4, we shall argue what

the Pauli principle means that the transition from a quantal to Scattering theorists will know, that we only really care about
a classical Hamiltonian, implemented in section 4, is not quite the value of the phase moduler2Hence, if the phase is large

trivial. Essential background technical details for this limit are COMpared to 2, the part that matters is effectively random. It
provided in Appendix B. follows that the simplest correction for the role of the internal

In the interest of brevity, we do not elaborate the details of Structure is to replace the otherwise rgalby a complex
the physical problems for which the formalism is useful. spattenng amplitude. This change is equivalent to the substitu-
Specifically, there are two, and quite distinct, systems which tion
we have considered. One is the already alluded to optical and
electrical response of arraﬂ;%?OTh_e other is charge migration i — 1Bl 1(1 +exp(29,), B =P, (2.3)
and dissociation of molecular catiofs?3-25 In brief, the chain 2 !
cation is modeled as a linear molecule, made of “atomic” sites.

The rightmost site is chromophoric and is the site where In order that the matriy¢ remains Hermitian, we impose the
ionization occurs. The bond-breaking energy is lower when the additional condition; = ,8;'; so that the Hamiltonian can be
charge is at either side of the bond. So reactivity follows the diagonalized by a unitary transformation.

migration of the charge. The experimental observabiéhis The explicit form of the PPP Hamiltonian is
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no o2 " 1 - 1 o TABLE 1: Site Many-Electron States for Three Electrons
H= zhijzai,‘uaj,‘u + El Zni(ni -1+ 5 y ) A (2.4) on Four Sites
3] i -

one-electron on site Cross site a? (b7 et a1 |ad |bd |cd |ad
part Coulomb Coulomb
repulsion  repulsion LEE O ) |
- - itoni 2 Ll |
where the first term is the one-electron Hamiltonidtt,
discussed above, eq 2.2. The new operators (indicated by a carat)3. ﬂ | | |
that enter are the number operators for the different sites
) C
: | | |
P +
ni = zalj,t ai,‘u (25) 5. m I I I
) o fEl )] |
which sums over both directions of the spin. A binary product e
of number operators is a two-electron operator. e | | |
To diagonalize this Hamiltonian exactly (which is equivalent |4 [B]c] | | |
to a full configuration interaction (Cl)), we rewrite it in terms <
of the generatorsj, 0. [4]8] | |
L2 o P | | |
Bj=Daud, b=1..n 11. 519 | | |
Iz (2.6)
g, =F 2 ] | |
Ei,j = ni d
13 [§° | | |
of the unitary grougJ(n) (n is the number of sitegf.11.14
14, | | |
n . n I n . . n A EIEI
H=S o +8) E;j+- E”(E”—l)+ZZE“Eii 1 1o I I
= ' ' 2& 7 ' 2 [H] n [a]d]
' N @ 161619 I I
b
The prime on the second sum indicates thamhdj are near 7 HE‘ | | I
neighbors. Note that only diagonal operators appear in the two-| 1s. (4] [ | |
electron terms. As will be discussed, this makes the analytical BTd
form of the Hamiltonian matrix quite simple. Specifically, we [ '% [a | | |
represent the Hamiltonian in a spin-adapted many-electron basig ,q E‘ | | |
set that belongs to an irreducible representation of the group

U(n ) (Gelfand-Tsetlin states}? These zero-order states we

label as the “site states” because they have sharp values for thgyympers. So each basis state has a given number of electrons
site occupation number operatoks; = f. We show the  op 5 given site. The eigenstates of the Hamiltonian are linear
occupation numbers for these basis states fomtke 4 site.  ompination of such states. The weights of the zero-order states
problem (20 basis states) in Table 1, where each row is a;, two different ground states are shown in Figure 1.

(doublet) state. The eigenstates of the Hamiltonian are linear ) ) ,
combination of these site basis states with coefficients deter- When the site energies (the's of eqs 2.7 or 2.8) are not
mined by diagonalization of the Hamiltonian matrix. Note that equal, there is a qualitative difference in the eigenstates of the

it is only due to the transfer integral that the Hamiltonian matrix Hamiltonian when the site couplinjis weak or strong. Charge
in the site basis is off-diagonal so that it is quite sparse. In other Migration is hindered whefi < Aa, whereAa is the energy
words, the site states diagonalize all the terms in the Hamiltonian difference between two adjacent sites because the wave function
which contain only site operators. Specifically, the part of the is localized (upper panel of Figure 1). The Hamiltonian used
Hamiltonian that is diagonal is includes a Coulomb repulsion terir= 0.4 eV, which is larger
than the differences in the site energies of sites 2, 3, and 4.
N | ARUN y& .. There are three electrons, and they settle in the ground state
Hsie = ZaiEi,i + 5 Ei(Ei—1)+ EzEj,jEi,i (2.8) into the two covalent states where there is one electron on each
= = b one of these three sites, cf. Table 1. Whis significantly

Equation 2.8 is, of course, the reason the site basis provides da"9er (bottom panel of Figure 1) the wave function is delocal-
good zero-order basis for diagonalizing the PPP Hamiltonian, ized on all possible doublet states. A time-dependent view of
eq 2.7. The two-electron operators, that are otherwise thethe role off/Aais also shown in Figure 3 below.

problem, are easily handled. It is only the migration of charge
from site to site that is a one-electron term that requires the
numerical diagonalization of the Hamiltonian.

It is important for us to reiterate that diagonalizing the
Hubbard or the PPP Hamiltonian brings about a mixing of  The zero-order site basis that we use has definite occupation
covalent and ionic states. We emphasize that the site basis stategumbers of electrons at the different sites. An explicit example,
that we used, states which are further discussed in section 3for a three-electron four-site problem is given in Table 1, where
and in Appendix A, are eigenstates of the site occupation each row is a possible state. Two particular states, rows 13 and

n n

3. The Quantum Mechanical Charge Migration
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Figure 1. The weight of the (doublet) ground state of a three-electron 0.2 dephasing
four-site problem on the 20-site zero-order many-electron states. The 0 . L L
numbering of the 20 states is that of Table 1 and the text. Upper 0 5 10 15 20 25
panel: weak sitesite couplings. The ground state is localized. Lower
panel: strong coupling. The sites are numbeaetd d; see inset in ﬁl‘

lower panel. The label “weak” or “strong” coupling refergdoneasured

with respect to the differences in the energies of the sites. Here and inFigure 2. The time evolution of the charges at the two end sites,
Figures 2 and 4, as shown in the inset in the lower pamet —8.1, andd, cf., Figure 1, computed quantum mechanically for an initial state
a = —8.5,a, = —8.5,a4 = —8.4 all in electronvolts. The two Young with no charge at the site, state 13 of the text and Table 1. Top

tableaux shown as an insert in the upper panel are explained inPanel: a Hekel type Hamiltonian with sitesite coupling = —0.5

Appendix A. Essentially, they mean that for weak coupling there is eV. This is sufficie_nt to bridge the difference; in gite en_ergies_ (see
one electron on each one of the three sites with lower energies. bottom panel of Figure 1), and charge flow is quite facile. Middle
panel: same as upper panel but including a repulsion between two

electrons on the same site. This too is a unitary time evolution so that
there is no real dephasing. There is however a defacto dephasing
because with the inclusion of the Coulombic repulsion the degeneracy
of covalent and ionic states is split so that there are many states with

small energy spacings. Lower panel: same as middle panel but
including a dephasing of the electron upon its transfer from one site to
13) another, as in eq 2.3 with a random phase. Now, fairly quickly the

charge distribution tends to equilibrate.

14, each one with no charge on the leftmost site, are shown in
eq 3.1.

3.1

occupanciesiJi = 1,2, ...,n, are determined. The computa-
Q Q @ @ tional effort scales as handling x N matrices, wher&\ is the
(14) size of the site basis.

) ) For n sites andN electrons, the numbeN of linearly

State 13 has every electron_ on a site of its own. State 14 hasindependent basis states of given total multiplicit (2 1)
two electrons (of opposite spins) on the same site. Its energy;qio,32
can be higher because of the Coulombic repulsipbut note
that the site energies need not be all the same, so states 13 and
14 can differ in energy also due to the site energies, first term N = &( n+1 )( n+1 ) (3.2)
in the site Hamiltonian (2.8). There are altogether eight zero- n+1\(N—=2922]\(n — (N +29/2)
order site states (5, 8, 11, 13, 14, 17, 19, 20, cf. Table 1) with
an empty leftmost site. Of these, two states (13 and 17) are
covalent while the other six are ionic. These two covalent states
are those _occup|ed In the weakly coupled ground state (Upperdoublet 6 = Y,) states. These 20 linearly independent states
panel of Figure 1). .

An initial state for charge migration into an initially empty are shown in Table 1.
rightmost site is a linear combination of the eight site states  There is no problem to diagonalize the Hamiltonian for the
above. The time evolution is determined by writing the time N = 20 state problem. It is the exponential increasélafith
evolution operatobJ(t) = exp(—iHt/h) as a 20x 20 matrix in the numbem of sites that requires that we go to the classical
the site basisU(t) = exp(—iHt/h) which is readily computed  limit, section 4. (Assuming that the number of sites, is
when the Hamiltonian matrik is diagonalized. From the time-  comparable td\ and much larger tha8, N is of the order of
evolved wave function, expectation values of, say, the site 2").

The two factors in round brackets are the binomial coefficients.
For the 6 = 4) four-site, N = 3) three-electron problem that
we use below as an illustration, there &Fre= 20 many-electron
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T T T T

Figure 2 shows typical results for a problem of a charge

migration in a four-site three-electron problem. The (negative) 0.3 P e T
charge is initially missing from site a, the site of the lowest ol - o]
ionization potential (IP). In the absence of Coulomb repulsion .
(top panel), the charge coherently propagates up and down the I
chain staying mostly at the two end sites, a and d, which have -03 i ]
the lowest IP. When Coulombic repulsion is included in the ﬁ=005 1
Hamiltonian, there is a more rapid spreading of the charge. There 061 Aa T
is a defacto dephasing. The Hamiltonian is purely real so that } b——t ——
the dephasing is only apparent, being due to a sum over 20 : 0.3 . ) ]
eigenstates whose energies are different due to the removal of = )\\/\/i\\‘/\
degeneracies by the Coulombic repulsion. One expects even - OF -
more states to be mixed when three- and four-site terms are -~ [
included in the Hamiltonian. We mimic this (bottom panel of ~ -03¢f -
Figure 2) by making the transfer amplitudénclude a scattering 5 2B _ 0.125
phase shift, eq 2.3. The first period is still coherent, but beyond = 06} Ao T
it dephasing rapidly sets in. — , , , .
Time in Figure 2 is scaled in units @ This is appropriate 0.3 T 2B losd
whenp (f = —0.5 eV in Figure 2) is not small. The classical P L\'\\ 2 %7 ol
limit, discussed below, suggests for smalfer scaling with oft 1 Vol AR dl]
Aa is more suitable; see Figure 3. [ «\ /,?'/ _ [ ' ‘ | ¢ /‘
T osby oy T
4. The Classical Limit A o *» .l
The classical limit is introduced so that the computational -0.6 | 3332/,/ Yv\?/ '\‘-ﬂ"v'/ ‘\q
effort scales linearly with the number of sites. The classical N T
variables need therefore to characterize an electron, of a given 0 0 20 30 40 50
spin, on a given site. We take the classical limit in a manner time

that ensures that the Pauli exclusion principle is satisfied.
Explicitly, we associate with each site spiarbital a fictitious
spin degree of freedom. This fictitious spin is “up” when the
particular site spirrorbital is occupied and is “down” when

Figure 3. Comparing the analytical classical (curve, eq 5.4) and
quantum mechanical (dots) charge migration for a two-sife=(—8.1,

a, = —8.5) one-electron problem. The initial occupancy of siis n

al s ¢ | = 0.622. WhemAa/23 > 1 (upper and middle panels), the analytical
the orbital is empty. Instead of a spin, one can think of a two- classical approximation is remarkably close to the exact quantum
level system, where one level corresponds to occupied site-spin  mechanical solution. Whefa/23 < 2 (bottom panel), the period of
orbital and the other to an empty site. The Pauli exclusion the classical solution is badly off (dashes). This is only to be expected
principle is satisfied by a level being either empty or full. because the classical solution uses an approximation, eq 4.8, which is

Since in the basis set there is one orbital per site, we introduceOnly valid if Ao/26 > 1. However, if we use the analytical classical
two fictitious spins per site, corresponding to the two physical
spins that can be associated with each spatial orbital. Each
fictitious spin gives us one classical degree of freedom.

Using the discussion in Appendix B, the correspondence
between quantal operators and classical variables is as follows

i. Occupancies.

classical limit
e )

iu

)12 = cog(6,,/12)
(4.2)

wherefy , is the classical number of electrons of spion site

i. The origin of this correspondence is discussed in Appendix

B. The introduction of the variable c@k, as thez component
of the fictitious spin on siteé ensures that

0<n <1

iu =

ﬁi,/A = a:,,uai,‘u nw = (1 + cosé

(4.2)

and therefore that one can introduce an arggjesuch that

sing, , = 2./nw/1 - n, (4.3)
ii. Creation and Annihilation Operators.
1.
a‘iT,,u — E sin Hi,,u exp6¢i,‘tt)
(4.4)

1 . .
a, > sing, , exp(—|¢i,‘u)

result (5.4) with the ratia\o/25 set to its correct value but allowa
in the cosine term to be an adjustable parameter, the classical solution
(solid line) better matches the quantum mechanical one. The fit shown
here givesAa. = 0.43 (instead of 0.5). The classical solution (5.4) is
very sensitive to the value afa.

The classical limit of the Hamiltonian is obtained by using
the correspondence (4.1) and (4.4) in the form (2.4) of the
quantal Hamiltonian. Explicitly, with the definition (2.2) of

n 2
HcIassicaI= Zaizni,ﬂ +
| u

n 2
Z’ﬂijz\/ni’”(l - ni,ﬂ)\/nj,ﬂ(l - nj,u) exp( (¢i,;4 - ¢j,ﬂ)) +
R

1 1
5|Zni(ni -1) +5y; nn, (4.5)

Note that, as in quantum mechanics, classically too one can
definen = 3 ni,.

The classical Hamiltonian has a form that readily lends itself
to a useful interpretation of the dynamics. To see this, we begin
with the one-electron part which we argue is a Hamiltonian of
coupled oscillators, where the coupling is due to a, so-céfied,
1:1 resonance. In other words, the coupling exchanges vibra-

Note that, as discussed in eq B.1&/I&J— n(1 — n). The tional quanta from one oscillator to another. Such a transfer is
angleg, is the angle conjugate to the classical action variable physically a transfer of charge from one site to a neighboring
Ni - one. The factorg/1—n,,, ensure that a transfer is possible only



2346 J. Phys. Chem. A, Vol. 104, No. 11, 2000 Remacle and Levine

to a site that is available to accommodate an electron. Thesedg, ,  gH 1-2n,

factors are in fact familiar from the algebraic the¥nof o oan - % TN, + f|———Icos@, —
anharmonically coupled oscillators, where they represent an i V(1 —n,
“anharmonicity cutoff’; that is, they disallow a transfer into a ¢i+l#)m + cos@,, —

vibrational level beyond the highest level that the anharmonic

well can contain. i1 WN-1, (1 =Nz )] (5.1)

The interpretation of the Hamiltonian follows from the g 9H
classical equations of motion for action angle variables # =- M = Zﬂ[(\/nw(l = MMy, (3= Ny ,) sin
N H . _ oH (4.6) (Diy = Div1,)) T (x/ni,ﬂ(l =M IN_g, (1 —n_yg,) sin
W= " op P ohn, : @10 — b)) (5.2)

are written here fory = 0 so that they are not too lengthy.
Then, the phase of the oscillator has a constant angular velocity,Even as they are they need to be integrated numerically. Checks
o, with additional terms due to the coupling (which we take on the integration are, as usual in classical mechanics, the back
here to be real), integration of the trajectory. Simpler checks are the conservation

of energy, the conservation of charge, and the conservation of

b= +h .. a7 ~SPM

2
H(t) = const, n (t) = const,
But since in generg# < a, to leading orden,, has a constant ® JZZ "”( )
angular velocity and the equation of motion for the phases can n (t) = const for eac
be integrated immediately, JZ W() I

Before we show results, we discuss a simple case where an
analytical solution can be obtained. This solution is both
instructive and is in very good agreement with the quantal
results, and so we present it in some detail.

Consider a two-siten(= 2) with unequal site energies. Then,
with (4.9) for the coupling and using the conservation of charge
and spin, one is left with only one equation of motion which
By (L= )y, (L= 1) expl(d, — ¢,,)) = we take to be the occupancy of one of the sites. We do not

ﬂJn o (t))\/n O 0) expl((6 () need a spin label because spin is conserved so that
N T O+ (@ - at) (49) n=2n = s 9

The dependence of the rate of changergfh — n) is an
indication that the numerical solution will be sensitive to the
magnitude of the forefactor/2sin(Aat) because this is an
equation of the “logistic” typé&>

By separation of variables and usi@as the constant of
integration, which is determined by the initial conditions, (5.3)

$i.(0) = $,(0) + at, flAa<landl/Aa<1 (4.8)

The pairwise coupling of two oscillators is modulated by the
temporal evolution of the difference in phases

The first term of the phase in (4.9) is just a constant phase
difference. It is the second term that shows the effect of a
mismatch in thea's, an effect that we discussed extensively
for the quantum casE:2*Unless the coupling can bridge the
gap in thea’s, the sites are weakly coupled. Explicitly, the .
prephase factor has to have a time dependence that compens.até'%tegrates to

for the modulation due to the gap in tles. ( n(t) )

There are two other terms id, the electrostatic ones. But 1-n() =
these terms do not depend on the phase, so they do not contribute
to the equation of motion of thes. Their only role is to modify  The solution is a periodic function with a periodicity determined
the equation of motion of the phase so that (4.7) is to be replacedyimarily by the gapAa. in site energies, whilg determines
by the depth of the modulation. The largerd&\a, the higher is

the fraction of charge that does transfer to the other site.
1 2 Figure 3 compares eq 5.4 with the quantum mechanical
‘biw =a+In_, + EVZ'Z”W +B.. (4.10) results, shown as dots. Whaw/23 > 1, the agreement is quite
Tou

% cosAat) + C (5.4)

good. The guantum and classical results cannot be distinguished

to graph reading accuracy. Oncg/Ra is larger, deviations

begin to appear. These deviations are not necessarily the fault
In other words, the two-electron terms make the angular of classical mechanics but may well be due to the approximation
frequencyn dependent, as for an anharmonic oscillator. The (4.8) which we made in order to have an analytical solution.
Coulomb blocking acts as a self-anharmonicity term, while the T check this, we used the analytical solution (5.4) as a fitting

cross polarization acts as a cross anharmonicity. formula and used\a. as a free parameter. Then one obtains an
excellent fit to the quantum mechanical results even wheh
5. Charge Migration in the Classical Limit 23 > 1. The problem stems from the approximation (4.8). When

Aa/2f > 1, itis Ao that determines the period. Otherwise, the
The classical equations of motion guantum mechanical solution shows that the period is the
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addition, elastic scattering of the transferred electron, eq 2.3.

e ¢ Finally, (iii) we introduced a classical limit (Appendix B) of
0og b —d . the dynamics. The classical approximation was remarkably
LT realistic, and we intend to use it for bigger systems for which
0.6 |- g the exact quantum mechanics is computationally intractable.
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E 08 L _ ] Appendix A: The Construction of the Many-Electron
o Basis

B Equation 3.2 specifies that there dde= 20 doublet § =
1/,) states corresponding to a € 4) four-site, N = 3) three-
. electron system. These states are shown schematically in Table
1. Each row is a site state. The columns are the four sites and
. spin labels such that each site carries two sfirbitals, but
quantum what is spin up or down is arbitrary. Only the total spin matters.
0 T 1 The bars show the occupancy.
0 1 2 3 4 3 There are several ways to classify and enumerate the spin-
B ¢ adapted many-electron states. These are reviewed in detail
elsewheré? In this paper, we use the Paldus stttés generate
Figure 4. A numerical solution of the exact classical and quantum the matrix elements of the Hamiltonian in the many-electron
mechanical equations of motion for a (triplet) two-electron foursite  gjta pasis and we show in Table 1 the Young tabléawkich
problem. Site energies as in Figures 1 anfl 2 — 0.1 eV. The initial correspond to these Paldus states.

state has a uniform distribution of charge. The quantum initial state is ~. .
a coherent superposition of the six triplet states with equal weights. - Paldus StatesAll the orthonormal spin-adaptedelectron

(This ensures equal charge on all four sites). The classical initial States can be generated from the highest weight vector, in Paldus
condition isny, = 0.5,i = 1, ..., 4. 10notation @, b, c) wherea, b andc are given by

spacing between the eigenstates, which in the two-state problem
is

atb+c=n 2at+b=N, b=2S (A1)

For Table 1, &, b, ¢) = (1, 1, 2). To identify the highest row
of the Paldus tableau, we designagelf, c) above asd,, bp,
€n).1%32The highest row of the tableau is then the highest weight

o _ ] Aol + 26/A0 + ...)
D = (Aa)* +45° {2,8(1+A0L/2ﬁ+...)

_ _ o _ o vector.
This change in period is very evident in Figure 3. The many-electron states are represented as three-column
In view of the success of the classical solution in the two- pg|qus tableaux, built ofi rows @, by, ¢), i = 1, ...,n. The

site problem, we solved the exact classical equations of motion gnries of the different rows are recursively obtained from the
numerically. A comparison with the quantal solution is shown highest weight vectorag, b, ¢). Thesen x 3 matrices have
for a two-electron four-site problem in Figure 4. The classical only nonnegative entries and for each raws# by + ¢ = i, s0

solution dephases somewhat more rapidly than the quantumi,at the Paldus tableau af € i) rows belongs taJ(n — i) and
mechanical solution but otherwise is able to capture the eSSenceorresponds to a system with € i) orbitals andn,_i = (an-i

of the charge migration. The quantum mechanical solution _ ani1) + (L — (Choi — Ci1), (B = Co = 1) electrons.
shown in Figure 4 is for a reg. As we argued in section 3,  Thesen,_; electrons are coupled to the electrons of the
this is numerically correct but physically not fully satisfactory jntermediate levelr{ — i — 1) of intermediate spin Si_1 in

because it fails to allow for the dephasing which does take place.g,ch g way that the spB_; = (M/»)bn_i characteristic of then(
So the classical solution is actually a better representation of _ ))th row is obtained. All theN Paldus tableaux differ by at
the physical reality. least a row and have the sami row, which is the highest
. weight vector &,, by, Cn).
6. Concluding Remarks We show below the Paldus tableaux corresponding to the
Charge migration has been discussed with special referencesite many-electron states 13 and 14,
to the dephasing which leads to a hopping motion of the charge.

Physically, the dephasing is due to a not fully coherent transfer d [112 112

from one site to the next. This scattering can be due both to C |102 102 (A.2)
other electrons and to coupling to the nuclear modes. Our paper b o011 002 ’
does not address the latter issue. We showed three levels of a |[001 001

description for the role of the other electrons. (i) We included (13) (14)

the role of electrostatic repulsion between two electrons on the

same site, the Hubbard correction, and on other sites, thewherea, b, ¢, andd are the labels of th@ = 4 sites. The
Pariser-Parr—Pople correction. This effect was solved for orbital occupancies of these states are also shown in eq 3.1 of
exactly using a unitary group many-electron basis (Appendix the text.

A) and was shown to lead to some dephasing, Figure 2. (i) ii. Young Tableaux. To satisfy the Pauli principle, a site
We included the role of electrostatic repulsion as in (i) and, in can be occupied by at most two electrons, which means that
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the N electron states are representedNbypoxes arranged in  ics if one introduces a classical degree of freedom for every
two columns at most. The total spin is given by the length accessible basitateof the quantum mechanical problem. See,
difference between the two columns. Ror= 3 doublet states,  for example, ref 40 for a practical realization. This, however,
one column has a length of two boxes and the other one consistswill not allow a simple scaling of the computational effort with

of a single box. One column corresponds to electrons of a giventhe size of the system. Rather, we need a scheme that assigns
spin and the other column has electrons of opposite spin. Toone classical degree of freedom perticle. Moreover we would
outline correspondence between the Paldus states and the Yountike to be consistent with the Pauli principle; that is, we want
tableaux, one needs to rewrite the Paldus states in terms of twoto ensure that there is not more than one electron of a given
column,n row tableaux, known as th&AC tableau®? where spin on a given site. If it were not for this restriction then one

the entriesAg, of the first column are defined as knows quite well what to do: an annihilation (or creation)
operator of a particle in a given site is represented by the polar
Ag =a —a_, (A.3) operator formt
while the entriesA_ck, of the second column are given by a'— exp(—ig)
o n (B.1)
Ac,=1-Ac, with Ac,=c,—¢_, (A4) a— exp(g)vi

The operators carry the label of the site which, in the appendix,
b we do not explicitly display. Then, i and¢ are regarded as
y conjugate variables,

Within this notation, the occupation number of gités given

n = Aa, + Ac, (A.5) [, @] =i (B.2)

The definition (B.2) is equivalent to the boson commutation
relation fa,a’] = 1. It is now possible to take the classical limit
by the Dirac prescription of replacing the commutator of the
operators by the Poisson bracket of the classical variables,

It is possible to show3? that the entriesAay and Ac,
completely specify the many-electron states so that the three
columnsn row shown in eq A.2 are completely equivalent to
the following two-columnn row tableaux:

d [o1 01 i =[ng] — i{NG} (B.3)
c 10 11 (A.6) This shows that in the classical limitand¢ are action-angle
b 01 00 ' variables. There are problems with the interpretatiof ahd
a 00 00 ¢ as Hermitian operatorg;*3but this is not our primary concern.

(13) (14) From our point of view the issue is that the correspondence
(B.1) between creation and annihilation operators and action-

The Young tableau shown in Table 1 are thus obtained by angle variables is valid for operators which satigfgson
inserting in the boxes of the first column the row labels for statistics. The creation and annihilation operators, used to define

which Ac, = 1 and in the boxes of the second column, the row the quantum mechanical Hamiltonian (2.4), obfymion

labels for whichAa, = 1 gives for the two states above: statistics
bc clc [a,a], =ad +aa=1 (B.4)
d (A7) This can be used to show that the corresponding number
(13) (14) operatorE,E= a'a, has only two eigenvalues, 0 and 1, a result

that we know as the Pauli exclusion principle. Our problem is
iii. Matrix Elements of the Hamiltonian in the Paldus to obtain a classical limit for such fermion operators. The

States. The analytical expressions of the matrix elements of Prescrlptlon that we fou”nd in the literatur® is to use
the Hamiltonian in the spin-adapted site many-electron state 2nticommuting numbers” sometimes known as Grassmann
basis set are given in terms in the Paldus states in refs 10, 17arables. Instead we proceeded as follows.

and 32. They are obtained using the commutation relations of 1€ Pauli spin matrices, defined as usual,

the Ei; generators of the group(n),

aiE%(alj:ioz)oro+=(8 é),OZ[g 8] (B.5)

) ) o satisfy the anticommutation relation[,c_]+ = 1 identical to

Appendix B: The Classical Limit that of the fermion creation and annihilation operators. The role

When the number, of sites is not small, the basis size of the number operator is provided using the third Pauli matrix,
increases exponentially, cf., eq 3.2. It is then no longer practical
to diagonalize the Hamiltonian as a symmetric matrix, particu- 03 = (1 0
larly so when the array of sites is two (or more) dimensional 0 —
and there are more than two near neighbors of a given site. Itwe go to the classical limit by taking the (spin) coherent states
is still possible to defacto diagonalize the Hamiltonian using a expectation values. The coherent states convenient for our
filter diagonalizatiod”® or similar methods. Here, however, purpose are where the spin points out in the direction of the
we examine an alternative route, namely, taking a classical limit solid angleQ4°and the states are normalized,
and solving the classical equations of motion.

It is well-known and goes back to Dir#cthat quantum ESD|AS|QD=1n (B.7)
mechanics can be transcribed as a problem in classical mechan- 2 '

[Eij1Ek|] = Eiléjk - Ekjéil (A.8)

1), %(1 +o9=0,0. (B.6)
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n is the unit vector in the direction &2, and we took the spin
of the particle to be one-half. For these stafemd using carats
to designate operators,

E§2|§+|QD=%sin9 exp(¢)
E§2|§_|QD=%sin0 exp(-i¢) (B.8)
- 1, & 1
8,8 Q= B}’ S+ SZ)‘QD= 5+ coso)
Using the correspondence

ala— cosz(g) =n (B.9)

so that the classical number variable satisfies the exclusion

principle, 0< n < 1, we obtain the classical limit for the fermion
creation and annihilation operators

a' — % sin 6 exp($) = +/n(1 — n) exp(¢)
(B.10)
a—»%sin 0 exp(=ig) = 4/n(1 — n) exp(—ig)

Note that in terms of (coherent states) expectation vatues
[@fad= @'M@&a0— n(1 — n) so that there is no inconsistency
between (B.9) and (B.10). Indeed, sinee < n, this is as it
should be.

The Boltzmann Limit. We do not use the limit where the

effects of the Pauli statistics are negligible, but for completeness

we derive it. Say the spiSis high. For an arbitrary spin, (B.8)
is replaced by

@S, Q= Ssin 6 exple)
[Q|S |QC= Ssin b exp(ig)
@S5 |Q0= (1 + S§)|QC= Y1 + cosb)

(B.11)

Then, instead of (B.10), we find

al— % sin 6 explg) = Vn(2S — 1) exp(o)
(8.12)

a— % sin 6 exp(-ig) = v/n(2S — n) exp(=i¢)

In the limit S— o, we recover the classical limit for the boson
operators. The “correction” factoyn(25—n) is familiar from
the algebraic theory of anharmonic molecules, whers the
vibrational quantum number ands2s the number of bound
states. Here too, this factor serves to limit the ranga.dfhe
trick of taking the limit of highSis the, so-called contraction
that is used to get the harmonic lim%*’ For completeness,

we also note that there is more than one way in which one can

take the highS limit. A simple illustrative case is a quantal
Morse oscillator. When taking its classical limit we want the
anharmonicity to remain finite. So th® — o limit must be
taken withhi — 0 so as to keep the anharmonicity finite. (see
note 7.5 of ref 48). On the other hand, if we kdefinite but
take the highS limit, we get the harmonic quantal oscillator.

Summary

We use the correspondence

J. Phys. Chem. A, Vol. 104, No. 11, 2008849

a' — /n(1 — n) exp(¢)

a— +/N(1—n)expi¢) (B.13)

a'a—n

wheren and the phase carry both a site and a spin label and
N 0 =< ni, < 1, is the fraction of electrons on the spiarbital

of spinu on theith site. The classical limit of the Hamiltonian
is obtained by using (B.13) in the quantum mechanical Hamil-
tonian.

Note added in proof: Prof. Witt. Miller called our attention
to a similar development by Miller and Whitd.(Chem. Phys.
1986 84, 5059).
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