
Density Functional Calculations ofg-Tensors of Low-Spin Iron(I) and Iron(III) Porphyrins

E. van Lenthe*,† and A. van der Avoird
Institute of Theoretical Chemistry, NSR Center, UniVersity of Nijmegen, ToernooiVeld,
6525 ED Nijmegen, The Netherlands

W. R. Hagen and E. J. Reijerse
Department of Molecular Spectroscopy, NSR Center, UniVersity of Nijmegen, ToernooiVeld,
6525 ED Nijmegen, The Netherlands

ReceiVed: August 20, 1999; In Final Form: December 7, 1999

The g-values of some selected low-spin Fe(I) and Fe(III) porphyrin complexes have been calculated, using
a method based on density functional theory and the zeroth order regular approximation to the Dirac equation.
In agreement with experimental observations the calculatedg-values of these complexes differ strongly from
the free electronge-value. Optimization of the geometries gives iron-ligand distances in good agreement
with the experimentally derived values. The effects of strong ruffling of the porphyrin core and of the relative
orientation of the planes of axial ligands on theg-values are evaluated quantitatively. Mechanisms reported
for these effects are confirmed.

I. Introduction

Iron porphyrins play an important role in the cells of many
living organisms. It is therefore not surprising that such
complexes have been studied extensively, both experimentally
and theoretically. If the iron porphyrin is paramagnetic it can
be investigated by electron paramagnetic resonance (EPR)
spectroscopy. Low-spin Fe(III) porphyrins are of special interest
because much can be learned about the nature of the unpaired
electron. Other techniques are also used often to study the
paramagnetic states of iron, such as NMR and Mo¨ssbauer
spectroscopy. In this article we calculate theg-values for low-
spin iron(I) and iron(III) porphyrins with the use of a recently
developed method,1 which applies density functional theory and
spin-orbit coupled equations. The experimental EPRg-values
of low-spin Fe(III) porphyrins are often analyzed with a
relatively simple model by Taylor,2 in which the orbital of the
unpaired electron is composed only of the iron dxz, dyz, and dxy

orbitals. We will analyze the calculated unpaired electron orbital
in a similar way, and compare the results with Taylor’s model.

Different theoretical approaches have been used to understand
the electronic structure and molecular geometries of iron
porphyrins, for example Extended Hu¨ckel calculations,3,4 ab
initio calculations,5,6 density functional theory,7-9 molecular
mechanics,10 and Car-Parrinello molecular dynamics.11 Our
approach uses density functional theory, with nonrelativistic
density functionals for the exchange-correlation energy. For our
spin-orbit coupled equations we use the zeroth order regular
approximation (ZORA)12-15 to the Dirac equation.

In this article we investigate the 4-coordinate (no axial ligand)
low-spin Fe(I) porphyrin [(P)Fe]- and the 6-coordinate (two
axial ligands) low-spin Fe(III) porphyrins [(P)Fe(ImH)2]+,
[(P)Fe(Pz)2]+, and [(P)Fe(Py)2]+ (see footnotea of Table 1 for
abbreviations). These complexes were chosen because their
experimentalg-values differ significantly from the free electron

ge-value. On the other hand, these complexes are still small
enough to apply our recently developed method1 for the
calculation of g-values. Geometry optimizations have been
performed on all complexes, and the calculated structures are
compared with appropriate X-ray structures. The structures of
the calculated compounds are drawn schematically in Figure 1.

Many experimental and some theoretical investigations of the
relative orientation of planar ligands in low-spin iron (III)
porphyrins, and of the effects of these orientations on the
observed spectra have been performed. (See, for example, Refs
10, 16-21). In this study we also investigate these ligand
orientation effects, especially on the calculatedg-values.

II. The Effective Spin Hamiltonian

In Ref 1 a method was developed for the calculation of the
g-tensor of Kramers doublet open-shell molecules, which uses
the spinor of the unpaired electron of the paramagnetic molecule
obtained from a density functional calculation. Spin-orbit
coupling was taken into account variationally using the ZORA
equation. In this section we repeat some of the main aspects of
this method.

† Present address: Afdeling Theoretische Chemie, Vrije Universiteit, De
Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.

TABLE 1: Calculated g-Values of [(P)Fe]- from ZORA
Spin Restricted Frozen Core Calculations and Calculated
Percentages of the Iron d Orbital Contributions to the
Unpaired Electrona

sign of
gxgygz gx gy gz (dz2)b (dxz)b (dyz)b

AOC + 2.51 2.51 2.01 96.5 1.7 1.7
SCF + 3.02 3.02 1.85 78.6 10.7 10.7
experiment37

[(TPP)Fe]- 2.3 2.3 1.93 96.5 0.3 0.3
[(OEP)Fe]- 2.24 2.24 1.92 96.0 0.2 0.2

a Abbreviations: P, porphyrin; ImH, imidazole; Pz, pyrazole; Py,
pyridine; (TPP)Fe, iron tetraphenylporphyrin; (OEP)Fe, iron octaethyl-
porphyrin; (TMP)Fe, iron tetramesitylporphyrin; (PP)Fe, iron proto-
porphyrin IX. b See the text for the exact meaning of these percentages.
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For a paramagnetic molecule in an external homogeneous
magnetic fieldB0, the electronic Zeeman interactionHZ may
be written effectively as (in a.u.):

The molecularg-tensor parametrizes the interaction between
the effective spinS̃ of the molecule and the external magnetic
field.

We consider only one-electron equations in our theoretical
approach, because we use density functional theory. The
effective Kohn-Sham potentialV in our formalism is the sum
of the nuclear potential, the Coulomb potential caused by the
total electron density, and the exchange-correlation potential,
for which we use nonrelativistic approximations.

The ZORA equation for a negatively charged particle in an
electromagnetic field can be written in atomic units (p ) -i∇)
as1:

with

In these equationsK ) [1 - V/2c2]-1, σ are the Pauli spin
matrixes,c is the velocity of light,B0 ) ∇ × A0 is the magnetic
field, andA0 is the vector potential associated with this field.
We will explicitly substitute the-i∇ form for p when the
gradient only works on the function next to it.

The terms linear in the field in eq 2 form the Zeeman
Hamiltonian:

L ) r × p is the orbital angular momentum operator. A factor
ge/2 was included to account for quantum electrodynamic effects
in theσ‚B0 term. For convenience this factorge/2, which is very
close to unity, was also included in all the other terms that are
linear in A0.

We assume that we have an odd number of electrons in the
paramagnetic molecule and that the ground level has only
Kramers degeneracy. The “spin Hamiltonian” of such a Kramers
doublet was discussed by Abragam and Bleaney.22 Just as in
Ref 1 we follow this discussion, assuming that this doublet
completely determines this spin Hamiltonian. Hence, we only
need to calculate the matrix elements of the Zeeman Hamiltonian
between the two degenerate spinorsΦ1 and Φ2, which are
eigenfunctions of the ZORA equation without a magnetic field.
These two spinors, which are connected by time-reversal

symmetry, may be written as

and for the energy in first order in the magnetic field we obtain
the following equations:

with real coefficientsgkl. Thegkl are calculated as

and from the real numbersgkl one can construct a true tensor:

This tensor can be diagonalized by a proper choice of
coordinate axes. The eigenvalues of this matrix are the squares
of the g-values. Just as in the experiment we can only obtain
the absoluteg-values, although the sign of the product of the
threeg-values can still be calculated (and measured), because
the determinant of the matrixgkl is invariant under spatial
rotations, and under mixing of the two degenerate spinors.22

In the preceding text, it is assumed that the two degenerate
spinors of the unpaired electron completely determine the
magnetic Hamiltonian. This is true in spin-restricted density
functional theory. Without magnetic field in our density
functional calculations we obtain two degenerate wave functions,
which are Slater determinants, connected to each other by time-
reversal symmetry. In the spin-restricted case the spinors of the
‘paired’ electrons in these Slater determinants are also connected
to each other by time-reversal symmetry. Because both are
occupied, they give zero contribution to the matrix elements of
the magnetic Hamiltonian in first order. Therefore, the only
nonzero contribution originates from the two degenerate spinors
of the unpaired electron.

Reference 1 presents details about how the problem of gauge
dependence was solved by using gauge including atomic orbitals
(GIAOs) and how the scaled ZORA energy expression was
included in the evaluation of theg-values. These effects are
included in the calculatedg-values presented in this article. The

Figure 1. Schematic view of the calculated low-spin iron-porphyrin complexes [(P)Fe]-, [(P)Fe(ImH)2]+, [(P)Fe(Pz)2]+, and [(P)Fe(Py)2]+,
respectively.
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scaled ZORA energy expression only gives a very small
correction to the ZORAg-values.

III. Computational Details

The Amsterdam Density Functional (ADF) program23,24was
applied in the calculations. This program performs self-
consistent field calculations using density functional theory
(DFT), solving the one-electron Kohn-Sham equations. We
used the local density functional (LDA) parametrized by Vosko
et al.,25 with gradient correction (BP) terms added, namely the
Becke correction for exchange26 and the Perdew correction for
correlation,27 in its spin-restricted form.

In all our calculations we used the point group symmetry of
the molecule. Double group symmetry adapted functions were
used when spin-orbit coupling was included, in the ZORA case.
For more details concerning the implementation of ZORA in
ADF, see Refs 28 and 29 and references therein. A triple-ú
valence Slater-type orbital (STO) basis set plus two polarization
functions were used for iron, the porphyrin nitrogens, and the
atom in the ligand(s) which is closest to iron. All other atoms
were represented with a double-ú valence STO basis set. The
frozen core approximation was used, with the 1s, 2s, and 2p of
Fe and the 1s of C and N assigned to the core.

We performed ZORA scalar relativistic (no spin-orbit
coupling) geometry optimizations on the low-spin iron porphyrin
[(P)Fe] complexes. We calculated the 4-coordinate (no axial
ligand) low-spin Fe(I) porphyrin [(P)Fe]- and the 6-coordinate
(two axial ligands) low-spin Fe(III) porphyrins [(P)Fe(ImH)2]+,
[(P)Fe(Pz)2]+, and [(P)Fe(Py)2]+ (see footnotea Table 1 for
abbreviations). The structures of the calculated iron-porphyrin
complexes are drawn schematically in Figure 1.

These calculated complexes are open-shell molecules, which
all have one electron less than a closed-shell configuration. We
chose to distribute the corresponding hole equally over the nearly
degenerate orbitals present in the calculation, using fractional
occupation numbers. This means that we calculate an average
of configuration (AOC) of nearly degenerate states. This
procedure was helpful in the convergence of the geometry
optimization. The ZORA scalar relativistic optimized geometries
are used in the ZORA spin-orbit coupled equations (ZORA
SCF). In these spin-orbit coupled equations we use integer
occupation numbers, because our method for the evaluation of
the g-tensor1 requires a one-determinantal (pure state) wave
function. In the ZORA AOC calculation the scalar relativistic
AOC electron density is used for the evaluation of the Kohn-
Sham potential, whereas in the ZORA SCF calculation the spin-
orbit coupled equation is solved self-consistently.

We investigate the influence on the calculatedg-tensor of
the orientation of the axial ligand(s) with respect to the
porphyrin. The axes are chosen such that the iron porphyrin
always lies in thexy-plane. The axial planar ligands, if present,
always lie perpendicular to the plane of the porphyrin. If two
mutually perpendicular planar axial ligands are present, thex-
andy-axes are chosen to bisect the planes of these axial ligands.
If two mutually parallel axial planar ligands are present, these
axial ligands lie in thexz-plane.

IV. Results and Discussion

Four-Coordinate Low-Spin Fe(I) Porphyrin [(P)Fe]-. A
scalar relativistic geometry optimization was performed for
[(P)Fe]- in D4h symmetry. The optimized FeNp distance, with
Np a porphyrin nitrogen, in the AOC calculation was 1.97 Å.
We chose to distribute the unpaired electron hole equally over
the nearly degenerate orbitalsa1g (approximately 85% iron dz2

character),b2g (95% dxy), andeg (65% dxz and dyz), using the
fractional occupation numbers 1/4, 1/4, and 1/2. This means
that we calculate an AOC of the nearly degenerateA1g, B2g,
and Eg states. The ground state in the scalar relativistic
calculation is theA1g state, because thea1g orbital has the highest
orbital energy. ThisA1g state can be written approximately as
(dxy)2(dxz,dyz)4 (dz2)1. In the spin-orbit coupled equation the
unpaired electron has mainlya1g character with a little mixing
of eg character. In Table 1 we present the calculatedg-values.
The percentages given in this table correspond to the calculated
totala1g andeg character of the unpaired electron, thus not only
the part that is due to the iron d orbitals.

If the Kramers pair could be written as

with real coefficientsa andb, theg-values would be

A more involved model can be found in the theoretical work
of McGarvey on Co(II),30 for example. We find that the spinors
do not consist purely of the iron d orbitals, which means that
eq 10 is only approximately valid. In the AOC calculation we
find a ≈ 0.9,b ≈ 0.1, and in the SCF calculationa ≈ 0.8,b ≈
0.25. If we use these numbers to calculate the differenceg⊥ -
g| ) 4x3ab according to eq 10, we find that this relation gives
a value that is slightly too large compared with the actual
difference in Table 1. If we assume that the relation for the
difference also holds approximately for the experimentalg-
values, we find thatb should be on the order of 0.05 to explain
the experiment. The experimental iron d orbital contributions
given in Table 1 are calculated from the experimentalg-values
as the squares of the coefficientsa andb in eq 9 times 100%.
We may expect better agreement with the experiment if the dxz

and dyz character of the unpaired electron in our calculation
decreases.

Six-Coordinate Low-Spin Fe(III) Porphyrins. A simple and
very useful model by Taylor2 describes the Kramers pair of low-
spin Fe(III) porphyrins in terms of the iron dxy, dxz, and dyz

orbitals:

The g-values can then be calculated as

By inversion of these equations one obtains

Φ1 ) (adz2

-bdxz - ibdyz
) Φ2 ) (bdxz - ibdyz

adz2
) (9)

g| ) 2a2 (10a)

g⊥ ) 2a2 + 4x3ab (10b)

Φ1 ) (adyz - ibdxz

-cdxy
) Φ2 ) (cdxy

adyz + ibdxz
) (11)

gx ) 2[a2 - (b + c)2] (12a)

gy ) 2[(a + c)2 - b2] (12b)

gz ) 2[(a + b)2 - c2] (12c)

a )
(gy + gz)

x8(gz + gy - gx)
(13a)

b )
(gz - gx)

x8(gz + gy - gx)
(13b)
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These relations are frequently used to characterize the
unpaired electron from the experimentalg-values. Also the signs
of the g-values are needed for this purpose. However, in EPR
experiments one often only measuresg2. As explained, for
example, by Abragam and Bleaney,22 the only meaningful sign
is the sign of the productgxgygz, which can be determined if
one uses circularly polarized radiation. The remaining signs are
arbitrary. For a given sign of the productgxgygz, it is always
possible to choose the signs of theg-values such thatgz + gy -
gx is positive, which is needed in Taylor’s model.2 The
experimental values of the iron d orbital contributions listed in
Tables 2 to 4 are calculated according to this model as the
squares of the coefficients in eq 13 times 100%. On the other
hand, the percentages of the iron d orbital contributions from
our DFT calculations correspond to the calculated d character
of the unpaired electron, but also include all other contributions
that have the same symmetry as the particular d orbital. In this
way we ensure that the sum of the percentages in our DFT
calculations is 100%.

The g-tensor of the unpaired electron in our calculations is
given approximately by eq 12 if the plane of the (mutually
parallel) axial ligands lies over the porphyrin nitrogens, or if
two mutually perpendicular axial ligands lie over the meso
position of the porphyrin ring. However, if the plane of the
(mutually parallel) axial ligands lies over the meso position of
the porphyrin ring, or if two mutually perpendicular axial ligands
lie over the porphyrin nitrogens, the unpaired electron can be
described better by

In this case theg-values are:

The relations forgx andgy are now reversed with respect to
eq 12, if the values fora, b, andc are the same. Note that the
Kramers pair of eq 11 cannot be related to that of eq 14 by a
simple rotation of axes. Frequently, only the threeg-values are
given experimentally, not the corresponding axes. In Tables 2
to 4 the axes for the experimentalg-values were chosen such
that gz > gy > gx, but they also could have been chosen such
that gz > gx > gy.

Scalar relativistic geometry optimizations were performed for
the 6-coordinate low-spin Fe(III) porphyrins, where the axial
ligands are either imidazole, pyrazole, or pyridine. In these scalar
relativistic calculations we chose to distribute the hole in the
electron configuration equally over five nearly degenerate
orbitals, using fractional occupation numbers. These nearly
degenerate orbitals closely resemble some porphyrin orbitals,
which in D4h symmetry would be labeled asa1u (mainly pz

character of the porphyrin carbons not at the meso position),
a2u (mainly pz character of the porphyrin carbons at the meso
position, and pz character of the porphyrin nitrogens),b2g (mainly
iron dxy), andeg (mainly dxz and dyz).

The geometry optimizations on the bis(imidazole), bis(pyr-
azole), and bis(pyridine) complexes were performed with
different orientations of the planar axial ligands with respect to
the porphyrin core. We carried out separate geometry optimiza-
tions with mutually parallel planes of the two axial ligands (|)
and with two mutually perpendicular planes (⊥), either with
the planes of the two ligands positioned above the porphyrin
nitrogens (over Np) or with those planes positioned above the
meso position of the porphyrin core (meso). For the bis-
(imidazole) and bis(pyrazole) complexes with two mutually
parallel axial ligands the optimization was performed inC2V
and inC2h symmetry, whereas in the two mutually perpendicular
axial ligands the geometry of the complex was optimized inC2

symmetry, with the added restriction that the porphyrin core
hasD2d symmetry. For the bis(pyridine) complexes the sym-
metries areD2h for parallel andD2d for perpendicular axial
ligands, respectively. In our calculations the ruffling of the core
is largest if the two axial ligands are in two mutually
perpendicular planes, particularly if the ligands lie over the meso
position of the porphyrin core. This result is in accord with
molecular mechanics calculations on similar systems.10,19

For the bis(imidazole) and the bis(pyrazole) complexes the
optimized averaged FeNp distance is approximately 2.00 Å,
except when two mutually perpendicular axial ligands lie over
the meso position. In that case the FeNp distance is 1.978 Å,
and the optimized FeNax distance, with N an imidazole nitrogen,
is 1.959 Å for the bis(imidazole) complex and 1.949 Å for the
bis(pyrazole) complex. In the other structures this distance
between iron and the axial ligand is larger, namely in the order
of 1.97-1.98 Å for the bis(imidazole) complex and 1.96-1.97
Å for the bis(pyrazole) complex. In Ref 17 several experimen-
tally determined bond distances were summarized, including
those for some bis(imidazole) iron-porphyrin complexes. Most
of these bis(imidazole) complexes have an FeNp distance on
the order of 1.98-1.99 Å, and an FeNax distance of ap-
proximately 1.96-1.99 Å, not far from our calculated values.

For both the bis(imidazole) and the bis(pyrazole) complexes
we did not find a strong preference for one of the orientations
of the ligands: the calculated binding energies of the different
complexes at the optimized geometries are all within 0.1 eV of
each other. For the bis(pyridine) complex we find a preference
for the complex with two mutually perpendicular pyridines over
the meso position of the porphyrin ring. The energy of this
structure is approximately 0.2-0.3 eV lower than that of the
other structures. As for the related bis(imidazole) and the bis-
(pyrazole) structures with perpendicular ligands lying over the
meso position, this bis(pyridine) structure also has the smallest
FeN distances, namely an FeNp distance of 1.969 Å and an
FeNax distance of 1.993 Å. These distances can be compared
with those derived from experiments for [(TMP)Fe(4-NMe2

Py)2]ClO4 and [(TPP)Fe(Py)2]ClO4, given in Ref 17. The
pyridines in these complexes are nearly perpendicular over the
meso position. The observed FeNp distances are 1.964 Å and
1.982 Å, respectively, and the observed FeNax distances in these
complexes range from 1.978 to 2.005 Å, close to the calculated
values. For the bis(pyridine) complex with two mutually
perpendicular pyridines we calculate an FeNp distance of 1.987
Å and an FeNax distance of 2.023 Å. Both optimized structures
with parallel pyridines have an FeNp distance of 1.996 Å. The
structure with the parallel planes over the meso position has an
FeNax distance of 2.014 Å. For the one with the parallel planes
over the porphyrin nitrogens this distance is 2.053 Å. Experi-
mental results for [(OEP)Fe(4-NMe2 Py)2]ClO4,17 which has two
pyridines that are nearly parallel over the meso position, indicate

c )
(gy - gx)

x8(gz + gy - gx)
(13c)

Φ1 ) (adyz - ibdxz

icdx2-y2
) Φ2 ) (icdx2-y2

adyz - ibdxz
) (14)

gx ) 2[(a + c)2 - b2] (15a)

gy ) 2[a2 - (b + c)2] (15b)

gx ) 2[(a + b)2 - c2] (15c)
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an FeNp distance of 2.002 Å and an FeNax distance of 1.995 Å,
again not far from our calculated values.

Tables 2, 3, and 4 list theg-values calculated for the bis-
(imidazole), bis(pyrazole), and bis(pyridine) complexes, respec-
tively. The results of the ZORA AOC calculations show trends
that can also be observed in the experimental data. Unfortu-
nately, in most of the work which reports the experimental
g-values, the relative orientations of the axial ligands were not
determined. This makes a comparison between theory and
experiment less conclusive.

The results of the ZORA SCF calculations do not agree well
with experiment and, therefore, we did not include them in the
tables. Theg-values calculated by this method are mostly of
the largegmax type, withgmax in the order of 3-3.5, independent
of the type of the axial ligands. When the two ligands lie
perpendicular over the meso positions the results are different:

the calculatedg-values (ZORA SCF method) are all lower than
the free electronge value. In this case the orbital energies of
the orbitals which mostly resemble the iron dxz, dyz, and dxy

orbitals are close in energy, and the unpaired electron has mixed
character comprising each of these orbitals.

In the ZORA AOC calculations we find a similar behavior
of the calculatedg-values when two pyridines lie perpendicular
over the meso position. In that case we have an electron
configuration somewhere between the usual (dxy)2(dxz,dyz)3 and
the unusual (dxz,dyz)4(dxy)1 configuration for low-spin Fe(III)
porphyrins. The fact that we now calculateg-values which are
all lower than the free electronge-value is certainly not in line
with any of the experiments. This discrepancy probably occurs
because a multiconfigurational wave function would be required
in this case, whereas our method works with single Slater
determinants. The calculations do show, however, that the dxy

TABLE 2: Calculated g-Values of [(P)Fe(ImH)2]+ from ZORA Spin Restricted Frozen Core Calculations and Calculated
Percentages of the Iron d Orbital Contributions to the Unpaired Electrona

ligands sign ofgxgygz gx gy gz (dyz)b (dxz)b (dxy) or (dx2-y2)b

AOC
C2V | over N + 1.78 2.16 2.59 96.7 2.5 0.7
C2h | over N + 1.76 2.15 2.61 96.4 2.8 0.7
C2V | meso + 2.04 1.57 2.93 92.0 6.9 1.1
C2h | meso + 1.90 1.41 3.11 88.7 10.1 1.2
C2 ⊥ over N - 0.31 0.33 3.85 49.5 49.0 1.5
C2 ⊥ meso - 0.55 0.92 3.43 42.0 50.1 7.8
experiment38-41

[(PP)Fe(Im-)2]- 1.76 2.27 2.74 96.5 3.7 1.0
[(TPP)Fe(N-MeIm)2]+ 1.549 2.294 2.886 92.4 6.2 1.9
[(PP)Fe(ImH)2]+ 1.55 2.25 2.92 92.3 6.5 1.7
[(OEP)Fe(N-MeIm)2]+ 1.506 2.273 2.986 92.1 7.3 2.0
[(TPP)Fe(2-MeImH)2]+ 0.82 1.87 3.41 78.1 18.8 3.1

a See footnotea of Table 1 for abbreviations.b See the text for the exact meaning of these percentages.

TABLE 3: Calculated g-Values of [(P)Fe(Pz)2]+ from ZORA Spin Restricted Frozen Core Calculations and Calculated
Percentages of the Iron d Orbital Contributions to the Unpaired Electrona

ligands sign ofgxgygz gx gy gz (dyz)b (dxz)b (dxy) or (dx2-y2)b

AOC
C2h | over N + 1.88 2.16 2.32 98.7 0.8 0.4
C2V | over N + 1.88 2.16 2.31 98.9 0.7 0.4
C2h | meso + 2.12 1.86 2.44 97.8 1.6 0.5
C2V | meso + 2.14 1.88 2.40 98.1 1.4 0.5
C2 ⊥ over N - 0.16 0.41 3.75 46.4 52.3 1.4
C2 ⊥ meso - 0.45 0.83 3.39 42.5 51.1 6.3
experiment [18,38,41]
[(TMP)Fe(3-NH2Pz)2]+ 1.929 2.307 2.382 99.6 0.9 0.6
[(TPP)Fe(3-NH2Pz)2]+ 1.845 2.294 2.407 96.7 1.4 0.9
[(TMP)Fe(3-CH3Pz)2]+ 1.76 2.43 2.58 96.5 2.6 1.7
[(TPP)Fe(3-MePz)2]+ 1.739 2.382 2.581 95.5 2.7 1.6
[(OEP)Fe(3-MePz)2]+ 1.72 2.37 2.63 95.3 3.2 1.6

a See footnotea of Table 1 for abbreviations.b See the text for the exact meaning of these percentages.

TABLE 4: Calculated g-Values of [(P)Fe(Py)2]+ from ZORA Spin Restricted Frozen Core Calculations and Calculated
Percentages of the Iron d Orbital Contributions to the Unpaired Electrona

ligands sign ofgxgygz gx gy gz (dyz)b (dxz)b (dxy) or (dx2-y2)b

AOC
D2h | over N + 1.50 1.99 2.98 90.9 8.0 1.1
D2h | meso + 0.22 0.93 3.67 35.4 62.7 1.9
D2d ⊥ over N - 0.33 0.33 3.78 49.2 49.2 1.6
D2d ⊥ meso - 1.95 1.95 1.06 26.1 26.1 47.7
experiment [16-18,40]
[(TPP)Fe(4-NMe2Py)2]+ 1.657 2.284 2.786 94.1 4.7 1.4
[(OEP)Fe(4-NMe2Py)2]+ 1.642 2.278 2.818 94.0 5.0 1.5
[(TMP)Fe(4-NMe2Py)2]+ 0.92 1.80 3.44 79.4 18.4 2.2
[(TPP)Fe(Py)2]+ -0.46 1.12 3.70 55.0 41.0 5.9
[(TPP)Fe(4-CNPy)2]+ 2.63 2.63 0.96 8.1 8.1 80.4
[(TMP)Fe(4-CNPy)2]+ 2.53 2.53 1.56 3.4 3.4 91.4

a See footnotea of Table 1 for abbreviations.b See the text for the exact meaning of these percentages.
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orbital becomes more important, which is mainly because the
porphyrin core is strongly ruffled. Because of this ruffling the
four meso carbon atoms are displaced alternately above and
below the porphyrin mean plane (D2d ruffling). A second effect
of this ruffling is that the pyrrole rings in the porphyrin are
twisted by about 15° (calculated) out of the porphyrin mean
plane.

The ruffling of the porphyrin core is stronger for pyridine
ligands than for imidazole or pyrazole ligands because the
pyridines, especially theR-hydrogens, interact more significantly
with the porphyrin core. Depending on how large the ruffling
is, the iron dxy orbital may become higher in energy than the
iron dxz and dyz orbitals, which leads to the unusual (dxz,dyz)4-
(dxy)1 electron configuration. A mechanism that can explain this
effect was described in Ref 19 and is confirmed by the present
calculations.

We also calculated theg-values in a planar porphyrin core
with two pyridines lying perpendicular over the meso position.
As for the similar situation with two imidazoles or two pyrazoles
we find g-values of the largegmax type and small contributions
of dxy character in the unpaired electron. This again confirms
that the ruffling of the porphyrin core increases the dxy character
of the unpaired electron. In Tables 2, 3, and 4 one also finds
g-values of the largegmax type if the mutually perpendicular
ligands are positioned above the porphyrin nitrogens (⊥ over
N). In this case the ruffling of the core is not so large, and the
unpaired electron consists mainly of the (almost) degenerate
iron dxz and dyz orbitals. For the bis(pyridine) and bis(imidazole)
complexesg-values of the largegmax type have been found. Our
calculations suggest that we are then dealing with complexes
with mutually perpendicular planes of the ligands. This confirms
earlier studies based on experiments, see for example, Ref 17,
whereg-values of the largegmax type have been found for a
complex with two (almost) perpendicular pyridines, andg-values
of the rhombic type for a complex with two parallel pyridines.

Most experiments for the bis(pyrazole) and bis(imidazole)
complexes giveg-values of the normal rhombic type. In our
calculation we find this type ofg-values in two mutually parallel
planes of the ligands, and they are in reasonable agreement with
experimental values. In our ZORA AOC calculations we do
not find any evidence for a (dxz,dyz)4(dxy)1 electron configuration
for the bis(pyrazole) and bis(imidazole) complexes. Such an
electron configuration is not excluded by Taylor’s model if one
only knows the principal values of theg-tensor and not its
orientation, and it might be expected for the bis(pyrazole)
complexes because of the closeness of the two largestg-values.
We refer to Ref 31 for more details on this question and for
experimental evidence of the usual (dxy)2(dxz,dyz)3 electron
configuration for a bis(pyrazole) complex.

We calculate largergz values if the parallel planes lie over
the meso position than if these parallel planes lie over the
porphyrin nitrogens. The orbital energies of the iron dxz and dyz

are closer in energy in the meso case, which increases the effect
of spin-orbit coupling and leads to larger deviations from the
free electronge-value. This effect is strongest for the bis-
(pyridine) complex.

In Figure 2 the effect of the orientation of the planes of the
axial ligands on the calculatedg-values is considered in more
detail for the bis(imidazole) complex. In this figure calculated
g-values are given for structures atφ-values intermediate
between 0° and 90°. The structures were not optimized at each
angle, but the geometries of the porphyrin ring and of the rotated
axial ligands were interpolated linearly between the optimized
structures atφ ) 0°, φ ) 45°, andφ ) 90° that we discussed

before. From the figure we can see that if the axial ligands
remain parallel, the calculatedg-values do not depend strongly
on the actual angleφ. On the other hand, if the ligands are
rotated in opposite directions, there is a stronger dependence,
especially in the region close to 45°, which means close to a
structure with perpendicular planes of the axial imidazoles. In
this region we observe a sign change of at least one of the
g-values. This can already be understood from the model by
Taylor,2 see eq 12, if we start with a situation that the iron dyz

character of the unpaired electron is large (φ ) 0°) and move
to a situation where the dxz and dyz components are large and
almost equal (φ ) 45°), and the dxy contribution can be
neglected. Note that there is some arbitrariness in the signs of
theg-values, because only the sign of the productgxgygz can be
calculated. The signs in Figure 2 were chosen so that smooth
curves resulted.

Another interesting effect is that when the two axial imid-
azoles remain parallel the orientation of theg-tensor strongly
depends on the angleφ. At φ ) 0° (axial ligands| over N) the
principal axis with the smallestg-value lies in the plane of the
axial ligands, whereas atφ ) 45° (axial ligands| over meso
position) the principal axis with the smallestg-value is
perpendicular to the plane of the axial ligands (see Table 2).
This is a nice illustration of the difference between eqs 12 and
15. Soltis and Strouse32 observed this effect in experiments on
two conformers of [(TPP)Fe(ImH)2]+. Theoretically this effect
has been described by the concept of counterrotation of the
g-tensor. (See Ref 21, for example.)

ZORA AOC vs ZORA SCF. For the low-spin iron com-
plexes we observed that the ZORA SCF calculatedg-values

Figure 2. Effect of orientation of the imidazoles in [(P)Fe(ImH)2]+

on the calculatedg-values. The three dotted lines represent the three
g-values of two parallel axial imidazoles, each rotated with the same
angleφ away from lying over the porphyrin nitrogens. Thusφ ) 0°
andφ ) 90° correspond toC2V (| over N) andφ ) 45° corresponds to
C2V (| meso). The solid lines give theg-values if each imidazole is
rotated in the opposite direction. Nowφ ) 0° still corresponds toC2V
(| over N), butφ ) 45° corresponds toC2V (⊥ meso) andφ ) 90°
corresponds toC2h (| over N).
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often deviate (much) more from the free electronge value than
the ones observed experimentally. This means that in the ZORA
SCF calculation the effect of spin-orbit coupling for the
unpaired electron is overestimated. The ZORA AOC calculated
g-values are in better agreement with the experimental values
than the ZORA SCF calculated values. From a theoretical point
of view the ZORA SCF method is preferred over the ZORA
AOC method, because in the latter method there is some
arbitrariness in the construction of the AOC state and spin-
orbit coupling is not included self-consistently. The latter point
implies that the Hellmann-Feynman theorem, which is used
implicitly in the derivation of the method used to calculate the
g-tensor,1 is no longer valid in the AOC method. Formally, this
leads to the occurrence of some extra terms in the formulas for
the g-tensor in the ZORA AOC method, but we ignored such
terms.

We believe that the problems with the accuracy of the ZORA
SCF calculations for the low-spin iron complexes, in comparison
with experiment, are connected with the well-known problems
of density functional calculations for open-shell molecules with
nearly degenerate states. Consider, for example, the open-shell
boron atom where self-consistent calculations with integer
occupation numbers and present day density functionals (see
for example Ref 33), may lead to nonspherical densities and
nondegenerate orbitals which are not pure p orbitals. Similar
problems arise for the p1/2 and the p3/2 orbitals in spin-orbit
coupled equations. If our method for the calculation of the
g-tensors is to be used, it would be preferable to have Kohn-
Sham orbitals adapted to spherical symmetry. The use of
fractional occupation numbers, as in the AOC method, is a
possibility to ensure spherical densities and spherical Kohn-
Sham potentials. In our iron-porphyrin complexes, where only
Kramers degeneracy is present, the problem concerning the
interaction with a small external magnetic field is not the same
as the spatial degeneracy problem in the boron atom, of course,
but also in these complexes there are nearly degenerate states
and we believe that the problems are related.

Several improvements can still be made in the ZORA SCF
calculations. First, one can take spin-polarization effects into
account in the spin-orbit coupled equations, as suggested, for
example, in Refs 34 and 35. Such spin-polarization effects
generally will reduce the effect of spin-orbit coupling, which
is precisely what is needed to improve the ZORA SCF results.
However, the incorporation of spin-polarization effects in spin-
orbit coupled equations is not straightforward and, therefore,
these effects were not yet included. Moreover, the problems
that we encountered in the example of the boron atom remain
if spin-polarization effects are included. Still, spin-polarization
effects may have the desired effect for the iron-porphyrin
complexes.

Second, one may think, in principle, of improved density
functionals that are better suited for the inclusion of the effects
of spin-orbit coupling, because most of the present day density
functionals result from nonrelativistic considerations.

Third, it is well-known that the Hohenberg-Kohn theorem
no longer holds in the presence of a magnetic field. This means
that one has to extend density functional theory to current
density functional theory. Lee et al.,36 for example, considered
such effects in the calculation of nuclear shielding constants,
but they found that the contributions of the current density
functional to their calculated values were very small.

Finally, in addition to electronic effects, one has to consider
nuclear motions as, for example, a rotation of the axial ligands

over the porphyrin plane which may be important in model
hemes and other vibrational effects.

In view of these findings, the ZORA AOC calculation may
be considered as a suitable model that yields reasonable values
for theg-tensor. The errors remaining in the ZORA SCF method
are (partly) compensated by the approximations of the ZORA
AOC method.

V. Conclusions

In agreement with experimental observations theg-values of
low-spin iron porphyrins calculated with the ZORA AOC
method are highly anisotropic. The simple model by Taylor,2

in which the orbital of the unpaired electron consists only of
(three) iron d orbitals, is still useful in the theoretical analysis
if one adds ligand character of the same symmetry to the d
orbitals of the unpaired electron. Our results are then well in
line with the experimental analysis.

Optimization of the geometries of the various complexes gives
iron-ligand distances in good agreement with the experimen-
tally derived values. We confirm a mechanism, described in
Ref 19, that strong ruffling of the porphyrin core of [(P)Fe-
(Py)2]+ can lead to the unusual (dxz,dyz)4(dxy)1 electron config-
uration, instead of the usual (dxy)2 (dxz,dyz)3 configuration for
low-spin Fe(III) porphyrins.

For complexes with parallel planes of the axial ligands the
g-values are rhombic whereas for axial ligands that are mutually
perpendicular theg-values are almost always the largegmax type.
This agrees with the experimental observations in Refs 10, 16-
19.
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