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A microscopic statistical mechanical theory of solvent-induced vibrational line shifts of dilute solutes in
supercritical fluids is presented. The theory is based on a simple model of a spherical solute present at infinite
dilution in a fluid of spherical solvent particles. A microscopic expression for the vibrational line shift is
given, which involves the solute-solvent radial distribution function and interaction potentials. The distribution
function is obtained from integral equations and from Monte Carlo simulations. The theory is applied to
study the experimentally observed anomalous density dependence of line shifts in supercritical fluids in the
vicinity of the critical point. Model calculations of spectral shifts are performed for a range of solvent densities
and temperatures and model potential parameters. In addition, a quantitative comparison of the theory with
experimental data on vibrational spectral shifts is performed, and the agreement is satisfactory.

I. Introduction

Supercritical fluids (SCFs) are currently receiving much
attention as a result of their unique physical properties.1-5 The
combination of unusually high dissolving power and fast mass-
transfer rates makes SCFs attractive alternatives to liquid
solvents for a variety of industrial applications, such as
extraction, separation, and reaction processes.2,6,7 In addition,
the high compressibility of SCFs in the near-critical region
allows one to tune their properties to desired values by applying
small changes in pressure, which in turn makes it possible to
tailor the rates and selectivities of chemical processes. Since
the aforementioned applications of SCFs generally involve dilute
solutions, it is essential to develop a microscopic understanding
of the structure and dynamics of a supercritical solvent in the
vicinity of a single solute molecule. There exists a wealth of
experimental data on supercritical solvation involving thermo-
dynamic, transport, and spectroscopic measurements.1,2 In this
work we focus on some spectroscopic studies.

The simplest spectroscopic observable is the steady-state
absorption line shape. When a solute is in a solvent, the
frequency of the solute’s absorption maximum is different from
its value for the isolated solute, and the change in frequency is
called the solvatochromic shift. Both electronic8-18 and
vibrational19-26 shifts have been measured for a variety of solute/
solvent combinations as a function of solvent density and
temperature, and certain characteristic patterns have emerged.
In particular, when the line shift is measured as a function of
density along an isotherm just above the critical temperature
Tc (typically atTr ≡ T/Tc = 1.01), one often observes an initial
steep linear density dependence in the low-density regime,
followed by a weaker density dependence in the neighborhood
of the critical density. In some cases in the near-critical region
the line shift is nearly density independent, resulting in a
“density plateau”. In contrast, when measurements are performed
at somewhat higher temperatures (aroundTr = 1.06 or higher),
the frequency shifts display a more nearly linear density

dependence throughout the whole density range. It should also
be noted that line shift studies on neat fluids seem in general21,22

(although not always25) to show a nearly linear density
dependence, even in the near-critical region.

The microscopic origin of the nonlinear density dependence
of solvatochromic shifts has been discussed qualitatively in terms
of “clustering” or “local density enhancement” of a near-critical
solvent around the solute.4,13,27-42 This interpretation is based
on the concept of an “attractive mixture”, where the solvent is
attracted more strongly to the solute than to itself. As a result,
the local environment around a dilute solute can differ dramati-
cally from that around a solvent molecule. Many of the
theoretical studies of local density enhancements in attractive
mixtures were based on Percus-Yevick (PY) or hybrid mean
spherical approximation (HMSA) integral equation results. We
have recently shown,43 from a comprehensive comparison
between integral equation and Monte Carlo simulation results,
that for attractive mixtures these integral equation closures can
lead to very significant errors in the near-critical region.
Nonetheless, we believe that the qualitative conclusions drawn
from these studies are basically correct.

Theoretical approaches to understanding spectral line shifts
in SCFs have been based largely on dielectric continuum
theories of solvation.8,13,33,44On the other hand, Schwarzer et
al.,10 Adams,45 and Frankland and Maroncelli46 have calculated
spectral shifts in SCFs from Monte Carlo or molecular dynamics
simulations, but have not considered temperatures belowTr =
1.06. Ben-Amotz and co-workers have developed a “perturbed
hard sphere fluid” microscopic theory,22,47 which is motivated
by the work of Schweizer and Chandler,48 and have used the
theory to analyze data in the near-critical region.22 Cherayil and
Fayer49 ascribe the origin of the density plateau to scaling
aspects of critical phenomena. This approach does not rely on
the notion of attractive mixtures, and thereby predicts a density
plateau even for cases when the solute is very similar to the
solvent, or indeed, for neat fluids.

In this paper we focus on the case of vibrational line shifts,
especially in the near-critical regime, and are particularly
interested in understanding quantitatively from a molecular
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theory why it is that (1) for a dilute attractive mixture near the
critical temperature the line shift shows a nonlinear density
dependence, (2) when the temperature is increased the density
dependence becomes more linear, and (3) for a neat fluid the
density dependence of the line shift is generally nearly linear
for near-critical and higher temperatures. Since these three
features appear to be more or less universal, it would seem
appropriate to study them with simple generic microscopic
models. In this spirit, electronic spectra of chromophores in
liquids and SCFs have recently been studied with a simple model
of a spherical solute present at infinite dilution in a solvent of
spherical particles, with all of the molecules interacting through
isotropic pairwise potentials.50-52 As input, the theory requires
interaction potentials and radial distribution function. Once the
former are specified, the latter can be obtained from the integral
equation formalism or from computer simulation.

One possibly problematic issue with implementing the above
approach50,51in the near-critical region stems from the fact that
none of the currently available integral equation theories are
capable of producing a correct value for the correlation length
exponent (or any of the other exponents for that matter),53 and
as a consequence, the long-range decay of the radial distribution
function is not properly described. Even worse, as discussed
earlier, for attractive mixtures integral equation results for the
short-range aspects of the radial distribution function can be
qualitatively in error.43 Computer simulation results also cannot
provide one with scaling properties of near-critical fluids.
However, as will be shown, the expression for the solvatochro-
mic shift involves an integral of the solute-solvent radial
distribution function times a function related to the solute-
solvent interaction potential. Therefore, for short-range interac-
tions (such as Lennard-Jones) the results are insensitive to the
behavior of the radial distribution function at long distances. It
follows then, that as long as the integral equation theory or
computer simulation gives accurate short-range solute-solvent
structure, this approach should work well.

The organization of this paper is as follows. In section II we
extend the theory presented earlier50,51for electronic line shifts
to the case of vibrational spectral shifts. In section III we
describe our model potentials and the methods we use to
calculate the radial distribution functions. In section IV we then
perform model calculations of solvatochromic shifts as a
function of solvent density at various temperatures and for
several sets of model potential parameters. In section V we
compare our theoretical results with experimental data19,22 on
vibrational solvatochromic shifts. In section VI we conclude.

II. Microscopic Expression for the Vibrational Line Shift

Our simple generic model involves a single solute with several
internal vibrational degrees of freedom immersed in a fluid of
spherical solvent particles without internal vibrations. We will
assume that the solute interacts with the solvent particles through
a spherically symmetric pair potential,φ(r, q, QB), which as
indicated depends not only on the solute-solvent distance,r,
but also on the particular vibrational coordinate of interest,q,
and the solute’s other vibrational coordinates,QB. The Hamil-
tonian is

Hq and HQB are the (assumed to be uncoupled) vibrational
Hamiltonians for modeq and modesQB, respectively,T is the
translational kinetic energy of all particles,ri is the distance
between theith solvent particle and the solute,φs(r) is the

solvent-solvent pair potential,rij is the distance between solvent
particlesi andj, and the summation indices run over all solvent
particle labels. We will leave the forms ofHq and HQB
unspecified, simply noting that each has a set of eigenstates
and eigenvalues, with quantum numbersn andNB, respectively:

Without loss of generality we can define the solute’s internal
coordinates so thatq ) QB ) 0 corresponds to the minimum in
the intramolecular potential. We can then define the reference
potentialφ(r) ) φ(r, 0, 0), and the perturbation potential

With these definitions we can write the Hamiltonian as

where the “system” HamiltonianHq is defined as above, the
“bath” Hamiltonian Hb involves the translational degrees of
freedom and the solute’s vibrational modesQB and is defined
by

andV is the system-bath coupling, defined by

Suppose, for example, that one is interested in the vibrational
transition from the ground(n ) 0) state to the first excited(n
) 1) state for modeq. The zeroth-order frequency for this
transition is (E1 - E0)/p. To first order in perturbation theory,
the average frequency shift from this value,∆ω, is given by

where the brackets correspond to an equilibrium average over
the bath.

To proceed further, but still keeping the discussion fairly
general at this point, we will assume that the solute-solvent
potential has the form

In other words, it can be written as a sum of terms, each of
which is a product of a function of the solute’s vibrational
coordinates and a function of the solute-solvent distance. In
this case the perturbationV can be written as

whereFR ≡ ∑i fR(ri).
In performing the equilibrium average over the bath we will

treat the solute’s vibrational modes quantum mechanically, but
the translational degrees of freedom classically. Substituting eq
10 into eq 8 then gives

where λR are temperature-dependent coupling “constants”

H ) Hq + HQB + T + ∑
i

φ(ri, q, QB) + ∑
i<j

φs(rij). (1)

Hq|n〉 ) En|n〉, (2)

HQB|NB〉 ) ENB|NB〉. (3)

δφ(r, q, QB) ) φ(r, q, QB) - φ(r). (4)

H ) Hq + Hb + V, (5)

Hb ) HQB + T + ∑
i

φ(ri) + ∑
i<j

φs(rij), (6)

V ) ∑
i

δφ(ri, q, QB). (7)

p∆ω ) 〈〈1|V|1〉 - 〈0|V|0〉〉, (8)

φ(r, q, QB) ) ∑
R

AR(q, QB)fR(r). (9)

V ) ∑
R

AR(q, QB)FR - ∑
i

φ(ri), (10)

p∆ω ) ∑
R

λR〈FR〉 (11)
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determined by details of the solute-solvent interaction potential
and the solute’s vibrational Hamiltonian, and are given explicitly
by

The classical average ofFR over the translational degrees of
freedom can be shown from elementary classical statistical
mechanics to be

whereF is the solvent number density andg(r) is the solute-
solvent radial distribution function appropriate for the transla-
tional Hamiltonian

SincefR(r) are typically very short-ranged, the above relation
shows, as discussed in the Introduction, that the spectral shift,
reflects only the local structure of the solvent around the solute.

III. Model Potentials and the Radial Distribution
Function

To perform explicit calculations for solvent-induced spectral
shifts, we need to specify solute-solvent and solvent-solvent
pair potentials. Given that the potentials are isotropic, and hence
we do not consider polar molecules herein, it is natural to assume
that the solvent molecules interact with each other with the
familiar Lennard-Jones (LJ) form:

whereεs is the well depth andσs is the effective diameter of
the solvent molecule.

For the pairwise solute-solvent interaction,φ(r, q, QB), a
potential of the LJ form is also convenient, but in this case the
well depth51,54 and/or the solute-solvent diameter55 should
depend on the solute’s vibrational coordinates. So in general
we write

Setting q ) QB ) 0 defines the reference solute-solvent
potential, which in this case also takes the LJ form:

where of course the well depth and diameter for the reference
potential are given byε ≡ ε(0, 0) andσ ≡ σ(0, 0).

To proceed we next expandσ(q, QB) to first order in the
vibrational coordinates:

whereQj are the components ofQB. Substituting this into the
solute-solvent potential and keeping terms to first order inγ
andγj gives the potential in the form of eq 9, where

To summarize, then, the frequency shift is obtained from eq
11, together with eqs 12, 13, and the above explicit results for
A1, A2, f1, andf2. λ1 andλ2 depend on the differences of certain
diagonal matrix elements ofA1 andA2. SinceHq is in general
anharmonic, ifA1 andA2 are expanded in powers ofq, the linear
terms will provide the first nonvanishing contributions. Thus
we expect the relative magnitude ofλ1 and λ2 to depend
primarily on the relative strength of the dependence onq of
ε(q, QB) and σ(q, QB), respectively. The solute-solvent radial
distribution function that appears in eq 13 is for an infinitely
dilute LJ mixture where the solvent-solvent well depth and
diameter are given byεs and σs, and the solute-solvent well
depth and diameter byε andσ. In what follows we will calculate
g(r) using the HMSA56,57 and PY closures to the Ornstein-
Zernike integral equation,58 and from Monte Carlo simulations
of up to 2000 particles (we increased the number of particles
until converged results were obtained).

IV. Model Calculations for the Line Shift

To present the results of our model calculations, we define
the dimensionless density and temperature asF* ) Fσs

3 andT*
) kT/εs, and the dimensionless distance is defined byr* ) r/σs.
The phase diagram of the LJ fluid is known reasonably well
from simulation, although the exact location of the critical point
is still controversial.59-61 We will use the values that come from
Monte Carlo simulations in the grand canonical ensemble
together with a finite-size scaling analysis:Fc

/ ) 0.316 andTc
/

) 1.312.59

We have performed model calculations for the following two
sets of solute-solvent pair potential parameters:ε ) εs, σ )
σs, λ2 ) 0; andε ) 2.47εs, σ ) 1.22σs, λ2 ) 0. The first set
corresponds to a neat LJ fluid, while the second set is an
attractive mixture roughly corresponding to Xe in Ne.43,57 For
these calculations we are considering the case where the primary
dependence of the solute-solvent potential onq comes from
the well depth, and so in both casesλ2 ) 0. (At the end of this
section we will briefly discuss the case whereλ2 * 0.)

For each set of potential parameters we have calculated line
shifts for the isotherms atT* ) 1.338, 1.41, and 1.70,
corresponding respectively to reduced temperatures (Tr ) T/Tc)
of 1.02, 1.07, and 1.30. Our results forω* ≡ p∆ω/λ1 from eq
11 for the neat fluid are shown in Figure 1. First of all, one
sees that at all temperatures the simulation, HMSA, and PY
results are all in good agreement (although for the lowest
temperature we could not obtain converged HMSA results near
the critical density). Second, note that although the results are
not precisely linear in density at all three temperatures, they
are very nearly so. Third, one sees no particular anomaly near
the critical density, even at the lowest temperature. Fourth, one
sees that the results depend only weakly on temperature.

Our results for the attractive mixture are shown in Figure 2.
One sees that at the highest temperature the simulation and
integral equation results agree well. However, at the intermediate

λR ) ∑
NB

e-ENB/kT[〈1NB|AR(q, QB)|1NB〉 -

〈0NB|AR(q, QB)|0NB〉]/∑
NB

e-ENB/kT. (12)

〈FR〉 ) F∫drbg(r)fR(r), (13)

HT ) T + ∑
i

φ(ri) + ∑
i<j

φs(rij). (14)

φs(r) ) 4εs[(σs

r )12

- (σs

r )6], (15)

φ(r, q, QB) ) 4ε(q, QB)[(σ(q, QB)
r )12

- (σ(q, QB)
r )6]. (16)

φ(r) ) 4ε[(σr )12
- (σr )6], (17)

σ(q, QB) = (1 + γq + ∑
j

γjQj), (18)

A1(q, QB) ) 4ε(q, QB), (19)

A2(q, QB) ) 24ε(q, QB)[γq + ∑
j

γjQj], (20)

f1(r) ) (σr )12
- (σr )6

, (21)

f2(r) ) 2(σr )12
- (σr )6

. (22)
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temperature there are clear discrepancies between the PY result
and the simulation in the vicinity of the critical density. The

same goes for the HMSA result, although here we could not
obtain convergence in the near-critical region. At the lowest
temperature we could not obtain converged HMSA results
betweenF* ) 0.12 and 0.35, and the PY results are very
inaccurate (compared to simulation) betweenF* ) 0.1 and 0.4.
We have recently seen similar disagreements between PY and
simulation results forg(r) and for the solute’s coordination
number for an attractive mixture near the solvent’s critical
point.43

Regarding the density dependence in the case of the attractive
mixture, one sees that from the simulation, especially at the
lowest temperature, the frequency shift rises steeply as a function
of density, then in the vicinity of the critical density the slope
decreases markedly, and finally becomes somewhat steeper
again at aboutF* ) 0.5. This peculiar nonlinear density
dependence becomes less pronounced at higher temperatures.

This nonlinear density dependence follows very closely the
density dependence of the solute’s coordination number,43 since,
at least for this potential model, both the coordination number
and the frequency shift are sensitive to the same feature ofg(r),
namely the first peak. We interpreted43 the density dependence
of the coordination number as a crossover from an energy-
dominated low-density slope, to a packing-dominated value at
high density. At the lowest densitiesg(r) is given simply by
the Boltzmann factor e-φ(r)/kT, and the height of the first peak
of g(r) is eε/kT ) eε/εsT*. Thus the value of the low-density slope
depends sensitively on energetic factors (the potential well
depths) and temperature, decreasing as the latter increases. In
contrast, as is well known,62 the coordination number at high
densities is determined almost entirely from packing effects.
For the attractive mixture the low-density slope extrapolates to
a value higher than the high-density value. Furthermore, for
the attractive mixture, which has a large solute-solvent well
depth, the low density slope is indeed quite sensitive to
temperature, decreasing with higher temperature, while the high-
density packing value is nearly temperature independent. These
observations therefore explain both the nonlinear density
dependence of the frequency shift for attractive mixtures and
the weakening of the effect as temperature is increased. In
contrast, for the neat fluid, the low-density slope is less sensitive
to temperature, and extrapolates nicely (by accident!43) to the
high-density value, and so the overall density dependence is
nearly linear.

In summary, then, these model calculations do show the
features seen experimentally: (1) for attractive mixtures the
density dependence is nonlinear, changing slope near the critical
density, (2) this nonlinearity becomes less pronounced for higher
temperatures, (3) for neat fluids the density dependence is nearly
linear, even for the near-critical isotherm. While our low-
temperature result does not show a density plateau per se, it is
possible that at lower temperatures (closer toTc) and/or for more
attractive mixtures, calculations would show something ap-
proaching a plateau.

One last comment before we conclude this section: The
reason the frequency shift tracks the solute’s coordination
number for the model studied is thatf1(r) is proportional to the
reference LJ potential, which has its minimum near the peak of
g(r). Therefore, it is relatively slowly varying over the region
whereg(r) is peaked, and so the integral up to a cutoff over
g(r) (the coordination number) is roughly proportional to the
frequency shift. In contrast, ifλ2 * 0 butλ1 ) 0, and the primary
dependence of the solute-solvent potential onq comes from
the solute-solvent diameter, then the all-important factor of 2
in the definition off2(r) changes things dramatically. Here,f2(r)

Figure 1. Vibrational frequency shifts versus density for the neat fluid
at three different temperatures.

Figure 2. Vibrational frequency shifts versus density for the Xe in
Ne attractive mixture at three different temperatures.
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is not slowly varying in the region of the maximum ofg(r),
and so the frequency shift does not track the coordination
number. In fact, for this model the frequency shift can start off
negative at low density and become positive for higher densities.
We have not shown calculations for this model since the
resulting density dependence is quite different from that seen
experimentally for near-critical temperatures. But in the next
section we will consider the case where bothλ1 and λ2 are
nonzero.

V. Comparison between Theory and Experiment

The first set of experiments we examine are Raman line shifts
of the CH symmetric stretch mode of neat supercritical ethane.22

The experiments were performed as a function of density, from
3 to 17 mol/L, atT ) 312 K. The critical temperature and
density of ethane areTc ) 305.33 K andFc ) 6.87 mol/L.
Therefore the experiments correspond to a reduced temperature
of Tr ) 1.02. The experimental data are shown in Figure 3.

In our model, ethane is to be represented by a Lennard-Jones
sphere, whose parameters we choose so as to obtain the
experimental critical constants. Using the simulation values for
the LJ critical point mentioned earlier, this procedure yieldsσs

) 4.24 Å andεs/k ) 233 K. For a neat fluid,σ ) σs andε )
εs. We calculate the frequency shift from eq 11, first assuming
that λ2 ) 0, and perform a linear least-squares fit to the
experimental data usingλ1 as the single adjustable parameter.
In doing so we used the PY approximation to the Ornstein-
Zernike equation, since from the model studies we know it to
be accurate for the neat fluid atTr ) 1.02 and at densities in
which we are interested. The results of this fit are also shown

in Figure 3, and the agreement with experiment is good, at least
up to a density of about 14 mol/L. The resulting value ofλ1 is
0.031ε. To describe better the curvature in the shift at high
density, we can also consider a two-parameter fit, allowing both
λ1 andλ2 to be nonzero. This result is also shown in Figure 3,
and the fit is quite good. In this case the values of the parameters
areλ1 ) 0.030ε andλ2 ) 0.011ε.

The second set of data we consider involves the solute
W(CO)6 in supercritical ethane.19 The data come from infrared
line shape measurements of the asymmetric (T1u) CO stretching
mode as function of density from 0.5 to 10.5 mol/L atT )
307.15 K (which corresponds toTr ) 1.006). The experimental
data are shown in Figure 4. Note that these data are not precisely
those in ref 19. The authors of that work have recently realized
that their published data in the close vicinity of the critical point
are slightly in error due to a minor miscalibration of the pressure
of the experimental cell and to small temperature variations
within the apparatus. After these problems were eliminated the
line shapes were remeasured,63 and these new data appear in
Figure 4. Also note that in plotting the frequencyshift we have
subtracted the isolated-solute frequency, 1997.0 cm-1, from the
measured line positions. This value was obtained by extrapolat-
ing the experimental results to the zero-density limit and is in
fair agreement with the value of 1997.3 cm-1 measured
recently.63

The application of our theory to this problem is more involved
for two reasons. First, since it is not a neat fluid, there are in
principle four (too many!) unknown parameters:ε, σ, λ1, and
λ2. (σs andεs for ethane are taken from above.) To ameliorate
this situation we obtainσ from a consideration of the crystal
structure of W(CO)6.64 Modeling the solid state as a close-
packed arrangement of spheres gives the effective diameter of

Figure 3. Vibrational frequency shift versus density for the symmetric
CH stretch mode of neat ethane at 312 K. The diamonds are the
experimental results, the dashed line is the one-parameter fit, and the
solid line is the two-parameter fit.

Figure 4. Vibrational frequency shift versus density for the asymmetric
CO stretch mode of dilute W(CO)6 in ethane at 307.15 K. The diamonds
are the experimental results, and the circles are from theory.
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W(CO)6 as 6.76 Å. Standard combining rules then produce a
value for the solute-solvent diameter ofσ ) 5.50 Å, which is
the value we use in the calculation. Since the vibrational mode
in question is an asymmetric stretch, it seems likely that the
effective size of the solute will not be strongly dependent on
the vibrational coordinate, and so we setλ2 ) 0. This leaves
two unknown parameters,ε and λ1. The second complication
is that from our model studies of the attractive mixture it is
clear that the PY approximation is not at all reliable near the
critical point (and the HMSA approximation does not converge),
indicating that we cannot use this approximation in obtaining a
global fit of the data. Moreover, performing a two-parameter
global fit using Monte Carlo results is next to impossible, since
for each value ofε simulations must be performed at many
densities, each exploring millions of configurations, and then
this must be repeated many times. To guide us in choosing a
value for ε we performed HMSA calculations at low and at
high densities, where we expect this approximation to be
accurate. In addition, we performed a series of simulations for
different ε values at one intermediate density. Comparing our
line shift calculations from these results to experiment, we have
chosen to takeε/k ) 500 K, which cannot be considered a true
best-fit parameter, since we have not optimized it at several
densities. Using this value ofε we then performed Monte Carlo
simulations for a wide range of densities. Using these results
we then adjustedλ1 in order to get the best agreement with
experiment, with the resultλ1 ) 0.0057ε. Using this value of
λ1 our simulation results are compared to experiment in Figure
4, and the agreement is excellent.

On one hand, one should not take the above comparisons
with experiment too seriously. For example, we are the first to
admit that neither ethane nor W(CO)6 are spherical. In addition,
our LJ models for the vibrational shifts are surely oversimplified.
Nonetheless, the good fits to the data do suggest that our simple
generic potential models can capture the essence of the observed
phenomena.

VI. Conclusion

In this paper we have developed a theoretical treatment of
solvent-induced spectral shifts in supercritical fluids based on
a simple model of a dilute spherical solute in a fluid of spherical
solvent particles. We have presented a microscopic expression
for the vibrational solvatochromic shift, which involves interac-
tion potentials and the solute-solvent radial distribution func-
tion. The latter was obtained from integral equations and Monte
Carlo simulations.

We have performed model calculations of spectral shifts for
a range of solvent densities and temperatures and model potential
parameters. We were able to reproduce qualitatively the general
trends observed experimentally: that for a neat fluid the
frequency shift depends more or less linearly on density, while
for an attractive solute-solvent mixture the frequency shift is
nonlinear in density, the nonlinearity being more pronounced
the more attractive the mixture and the closer to the critical
temperature. The anomalous behavior of spectral shifts in the
near-critical region was rationalized on the basis of the density
dependence of the solute’s coordination number, which in turn
is due to a crossover from an energy-dominated to a packing-
dominated regime.43 We also performed quantitative compari-
sons of our theory with experimental data on vibrational spectral
shifts for a neat fluid and for a mixture, and were able to
reproduce experimental results quite well.

This work supports the picture that spectroscopic density
anomalies are due to local density enhancement of the solvent

in the vicinity of the solute.4,13,27-36 As such, one can understand
why SCFs can be such useful solvents: at near-critical densities
(which are reduced significantly from those of a dense liquid),
transport properties are superior to those of a liquid, while
solvation properties can be nearly as good as those of liquids,
since the coordination number of a solute in a near-critical fluid
can be comparable to that in a dense liquid.43

Finally, we note that similar density anomalies have recently
been observed for vibrational energy relaxation rates of poly-
atomic solutes in SCFs.10,19A fascinating temperature anomaly
has also been observed: when the temperature of the SCF is
increased (at constant density) the vibrational relaxation rate
can decrease!19 As the theory of vibrational energy relaxation
is somewhat more involved, it, as well as a comparison with
experiment, will be published separately.65 Here we simply note
that, ultimately, we believe that the origin of the density anomaly
in these experiments can also be traced back to the concept of
local density enhancement in attractive mixtures.
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