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The electronic energies of the lowest3A′ and3A′′ states of the O(3P) + H2 system were calculated for 951
geometries using MOLPRO. The calculations were fitted by a rotating Morse spline method and independently
by a generalized London-Eyring-Polanyi-Sato (LEPS) double-polynomial method. A higher accuracy
calculation for 112 of these geometries was also performed for both3A′ and3A′′ to obtain correction potential
energy surfaces (PESs) used to raise the accuracy of the original surfaces to about 0.3 kcal/mol. The resulting
fitted PESs are presented and compared to each other and to a previous empirical LEPS surface.

1. Introduction
The reaction of O(3P) with H2 is of fundamental interest to

chemical dynamics. It is known to be a major participant in
combustion processes1 and is also of importance in atmospheric
reactions as the OH radical produced is a reactive species in
ozone chemistry.2 Experimental thermal and some state-resolved
rate constants for this reaction have been obtained over a wide
range of temperatures.1,3-5 Its reaction dynamics are, however,
difficult to study experimentally. The cross sections for the
O(1D) + H2 reaction at low energies (∼0.5 eV) are larger than
those of the O(3P)+ H2 one by about 6 orders of magnitude or
more.6,7 As a result, any source of O(3P) atoms having a small
amount (∼1 ppm) of O(1D) atoms will make O(3P) reactions
undetectable at these energies. Theoretical studies are therefore
strongly indicated. The cumulative reaction probability for zero
total angular momentumJ has previously been obtained by an
accurate 3D reactive scattering calculation.8 Several approximate
methods for calculating reaction probabilities and rate constants
have also been used, including quasiclassical trajectory (QCT),9-13

transition-state theory (TST),14-20 and collinear exact quantum
(CEQ) approaches.11,21-24 All of these studies have used
potential energy surfaces (PESs) of less than chemical
accuracy,2,6,9,10,12,14,15,17-28 but nevertheless give rate constants
in reasonable agreement with experiment. However, in terms
of state-to-state dynamics those PESs are not sufficiently
accurate. A series of papers comparing the reaction dynamics
on several available potential energy surfaces revealed disagree-
ment among the surfaces and among different reactive scattering
methods.13,18,21,29-31 This, along with the current inability to
study the state-resolved reaction dynamics experimentally,
suggests the need for a potential energy surface of chemical
accuracy.

Recent developments in electronic structure theory make it
possible to obtain PESs of chemical accuracy for this system.
These include the internally contracted configuration interaction

(ICCI) method,32,33which can be used to routinely carry out CI
calculations equivalent to diagonalizing a matrix of order several
million, and utilization of correlation-consistent basis sets of
different sizes, which can be used to extrapolate to the basis
set limit.34 These methods should permit calculations for the O
+ H2 system that are accurate to a few tenths of a kcal/mol.

Several mathematical forms exist that give reasonably ac-
curate fits to ab initio data. The rotating Morse spline (RMOS)
form is known to give good results.35-43 Bowman et al. have
used this method to fit ab initio data for the HOCl system to
within 0.05 kcal/mol average absolute value error.44 Other
methods have been developed recently that promise accurate
fitting, appropriate physical behavior, and smooth derivatives.
Rabitz and co-workers developed the reproducing kernel Hilbert-
space method and achieved good results for the O(1D) + H2

system.45,46 Jordan et al. have used an interpolation scheme to
fit the OH + H2

47 PES, and Kouri and co-workers have used
the distributed approximating functional (DAF) method to fit
H3 ab initio data with good results.48 Another method that has
been used with various mathematical variants is a many-body
expansion approach.49-53 With the recent development of more
accurate fitting forms, and accurate ab initio data, a potential
energy surface of chemical accuracy for the O(3P) + H2 system
is realizable.

The objective of achieving a quantitatively correct description
of the dynamics of this system with the help of accurate quantum
reactive scattering calculations would be jeopardized if a poten-
tial energy surface of inadequate accuracy were to be used. Such
scattering calculations are computationally intensive, requiring
the use of massively parallel computers with ample memory
and storage space.54-56 To perform such calculations on a
potential energy surface that is not sufficiently accurate would,
in addition, be an inappropriate utilization of such resources.

In this paper we present a chemically accurate (within about
0.3 kcal/mol) representation of the O(3P) + H2 lowest3A′ and
3A′′ PESs. In section 2 the methods used are described. We
compare the PESs obtained in section 3 and give a summary in
section 4.
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2. Methods

2.1. Electronic Energy.We have performed complete-active-
space-self-consistent-field (CASSCF) ICCI calculations using
correlation-consistent basis sets.34 Two basis sets were used.
The calculations denoted in this paper by “regular accuracy”
use the correlation-consistent polarized valence quadruple-ú (cc-
pVQZ) basis set34 plus one set of even-tempered spd functions
on O57 and the cc-pVQZ basis set minus the f functions plus
one set of even-tempered sp functions on H.57 The calculations
denoted by “high accuracy” use the correlation-consistent
polarized valence quintupleú (cc-pV5Z) basis set on O and H
plus the same set of even-tempered functions.57 Some calcula-
tions were performed with a correlation-consistent polarized
valence triple-ú (cc-pVTZ) basis set34 for the purposes of a basis-
set extrapolation.

The CASSCF active space is constructed from the O2p-like
orbitals and the two orbitals of the HH bond pair. The O1s-
and O2s-like orbitals are inactive. For the O(3P) state we use
two singly occupied and one doubly occupied O2p orbitals (in
a localized orbital description). Tight-diffuse correlation is
included by adding an additional O2p′ orbital to the active space
to correlate the doubly occupied O2p orbital. This gives an active
space of seven a′ and one a′′ orbitals for the3A′′ state and six
a′ and two a′′ orbitals for the3A′ state. The ICCI calculations
include all configurations generated as single and double
excitations from the CASSCF wave function. The O1s-like
orbital was frozen in these calculations. Some calculations
include the Davidson correction58 and are denoted ICCI+Q.

2.2. Fitting Methods. Any potential energy surface fitting
method should satisfy three criteria. The fitting procedure should
be simple, the resulting fitted surface should be in good
agreement with the ab initio data, and the mathematical form
of the fitting method should be physically realistic in order to
minimize the number of ab initio geometries needed to obtain
a surface with the correct features and topology.45,48 We have
chosen two different fitting methods, the RMOS and the
generalized London-Eyring-Polanyi-Sato double-polynomial
(GLDP) methods. Both have been shown to satisfy most of these
criteria38,50 with several successful applications.35,37-43,49,51-53

Each has been modified to give better results and overcome
some of the difficulties encountered in the fitting process.

Regular-accuracy calculations were performed for 951 ge-
ometries and high-accuracy ones for a subset of 112 of these
geometries. The latter were used to create a correction surface
that was applied to the regular-accuracy ab initio data for all
951 geometries to generate high-accuracy data for all of them.
This corrected data was then fitted using the RMOS and GLDP
methods to give the high-accuracy surfaces. The fitted regular-
accuracy surfaces were created by subtracting the correction
surface from the fitted high-accuracy surfaces. We will describe
the RMOS and the GLDP fitting method, and then the method
for fitting the correction surface.

2.2.1. The RMOS Method.The strengths of the RMOS fitting
method are its simple, physically realistic mathematical form,
and its ability to easily reproduce physical features with a
relatively small number of ab initio data without introducing
unphysical features.36,41,43,59-62 The five-parameter Morse func-
tion35,43 is quite flexible, which results in a more accurate fit to
the ab initio data than the three-parameter Morse function.

In a general triatomic system, let ABC denote the three nuclei,
R′AB, R′BC, andR′AC the three internuclear distances, andøA,
øB, andøC the three bond angles, as depicted in Figure 1. (The
primes are used to indicate that these distances are not mass-
scaled.) The coordinates used in the RMOS fitting procedure

are defined in Figure 2. For a constantøA, we select a “swing”
pointQ(Rh ′AB, Rh ′AC) on the dissociation plateau of theR′AB, R′AC

Cartesian coordinate plane. The polar coordinates of a general
point P(R′AB, R′AC) on this plane with respect toQ are the
distanceη betweenP andQ and the “swing” angleθ between
the downward vertical line throughQ and theQP half-line, in
the 0-π/2 range. The values ofRh ′AB and Rh ′AC are chosen so
that for R′AB > Rh ′AB (or R′AC > Rh ′AC) the potential energy
function V(R′AB, R′AC, øA) is almost independent ofR′AB (or
R′AC). In addition,V(Rh ′AB, Rh ′AC, øA) should be sufficiently large
for the scattering wave function obtained using the correspond-
ing fitted PES to be negligible atQ. Within these constraints,
it is desirable to makeRh ′AB andRh ′AC be as small as possible,
so that the PES is not too steep a function ofθ in the vicinity
of the strong interaction region.

The RMOS fitting form is that of a generalized (five-
parameter) Morse function in the variableη, combined with a
cubic spline fitting63 form for the swing and bond angles. The
generalized Morse function used is

whereV0 specifies the origin of energy

and

This function describes the potential energy surface for a fixed
θ andøA. The five parameters of the generalized Morse function,
De, âe, ηe, λ1, andλ2, are functions of those two angles. These
five parameters are determined for eachøA andθ from a set of
ab initio values of the electronic energy using the nonlinear least-
squares method of Levenberg and Marquardt.64,65 A two-
dimensional cubic spline interpolation63 in θ and ø for these

Figure 1. Triatomic system. Bond distances and bond angles in a
general triatomic system.

Figure 2. RMOS coordinates. The RMOS coordinates for a point P
areη andθ. The curves depict generic equipotential contour lines in
the R′AB, R′AC Cartesian coordinate plane, for a fixed bond angleøA.
Point Q(Rh ′AB, Rh ′AC) is placed on the dissociation plateau.

V ) De[(1 - eâx)2 - 1] + V0 (1)

â ) âe(1 + λ1x + λ2x
2) (2)

x ) η - ηe (3)
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five parameters is performed for general geometries, and
replacement in the generalized Morse function furnishes the
corresponding potential energy.

The RMOS coordinates for the OH2 system are either (øH,
θ, η) or (øO, θ, η), whereøH is the bond angle for the sides OH
and HH′, R′OH being the smaller of the two OH distances. We
expect the potential energy surface to have a form similar to a
Morse function ofη-ηe for each fixedθ andøΗ or øO. However,
for small values oføH or øO, below 45°, this is not always the
case. Therefore, for bond anglesøO g 67.5°, the coordinates
(øO, θ, η) are chosen. ForøO < 67.5°, the coordinates (øΗ, θ,
η) are chosen. A spline interpolation over a band near the
intersection of these two spaces is used to smooth any
discontinuities caused by the separate fittings in these two sets
of coordinates.

The geometries for the ab initio calculations were chosen
using the RMOS coordinates. For the bond angleøH, the values
56.25°, 67.5°, 78.75°, 90°, 112.5°, 135°, 157.5°, and 180° were
selected to adequately describe the potential energy surface in
the (øH, θ, η) coordinates. The LEPS surface6,10 was used as a
guide for selecting the geometries for which ab initio electronic
energy calculations were to be performed, as it is a simple
empirical PES that has Morse-like behavior for fixedθ andøH

or øO. For the lower of those values oføH, the potential energy
changed more rapidly with this angle than for the higher ones,
necessitating the finerøH grid used. The swing angles chosen
were θ ) 0°, 15°, 30°, 40°, 45°, 50°, 60°, 75°, and 90°. The
LEPS surface showed a more rapid change with swing angle
in the strong interaction region than away from it, thus the finer
grid between 30° and 60°. For someøH angles,θ ) 37° and
53° were added. ForøH < 56.25°, constant values oføO ) 67.5°,
90°, 112.5°, 135°, 157.5°, and 180° were chosen to adequately
describe the PES in the (øH, θ, η) coordinates. For this bond
angle, a uniform grid was adequate. The corresponding swing
angles chosen wereθ ) 0°, 15°, 30°, 42°, and 45°. Again the
LEPS surface displayed a more rapid change with swing angle
in the strong interaction region than away from it. For some
values oføO, θ ) 39° was added. For each pair of constantø
and θ angles, five to seven geometries were selected that
represented well the LEPS surface. The configurations specified
in this paragraph account for the majority of the ab initio
geometries selected.

Other geometries had initially been chosen in the low-øH-
angle region, atøH ) 22.5° and 45° for θ ) 15°, 30°, 45°, 60°,
and 75°. These points were not used in the fitting procedure
but were instead used for the error analysis of the RMOS fitted
surfaces. Some additional geometries were chosen to improve
the RMOS fit. We restricted the geometries used in the fitting
procedure to those with ab initio energies less than 4 eV with
respect to the bottom of the isolated H2 well. This restriction
was imposed to improve the fit in regions considered important
to the dynamics of the reaction. Several geometries were added
to the constantø, θ sets in the strong interaction region near
the dissociation plateau, most of which were used for error
analysis. More geometries were chosen to improve the GLDP
fit. Any of these geometries that did not correspond to one of
the constantø, θ pairs for the RMOS fit were used for error
analysis of the RMOS fitted surfaces.

For a givenø0 and R′OH′ > R′OH, no ab initio (ø, θ) set
calculations were performed forR′OH 10 b (bohr) and the RMOS
potential energy functionV(ø0, R′OH, R′OH′) was taken to be
independent ofR′OH′ for such values of this variable. Similarly,
the RMOSV(øH, R′OH, R′HH′) was taken to be independent of
the largest ofR′OH′, R′HH′ when that quantity exceeded 10 b.

Both regular- and high-accuracy ab initio calculations were
performed at two collinear configurations for higher internuclear
distances, namely,R′HH′ ) 1.401 b,R′OH ) 20.000 b,R′OH′ )
21.401 b andR′HH′ ) 20.000 b,R′OH ) 20.000 b, andR′OH′ )
40.000 b. These were calculated mainly for calibration purposes
and were not used in the RMOS fit but were employed in the
GLDP fit.

2.2.2. The GLDP Method.The many-body expansion method
of fitting the ab initio data gives a very accurate fit of the data
and has a simple mathematical form.50 It is, however, notorious
for generating unphysical features.45 The resulting fit must be
thoroughly examined for spurious wells and barriers resulting
from the mathematical form of the fitting function rather than
from the ab initio data. We have developed a new method of
using virtual points to correct for some of these features. For
other regions we have used localized Gaussian functions66 to
remove unphysical features.

The GLDP mathematical form used is the sum of two terms

where the first is a generalized LEPS term, in which a cubic
spline fit of near-asymptotic ab initio data for each isolated
diatomic molecule is used in place of the Morse function of
the usual LEPS function.67-71 The second term is a sum of two
high-order polynomials multiplied by switching functions and
corrects the initial GLEPS fit to provide greater accuracy. This
term is defined by

where thecijk and c′ijk are coefficients,S(r) and S′(r) are the
switching functions, andr1 ) R′OH, r2 ) R′OH′, andr2 ) R′HH′
are the three interatomic distances. Up to ninth-order terms (i
+ j + k e 9) are used in the polynomials in eq 5, and the sums
extend over all possible sets ofi, j, k satisfying this condition.
The switching functionS is defined by

where

in which thebi for i ) 1-3 are

and

in which

The termst(yi) are defined by

VGLDP ) VGLEPS+ VDPOLY (4)

VDPOLY ) S(r )∑
i,j,k

cijk(r1 - rj1)
i(r2 - rj2)

j(r3 - rj3)
k +

S′(r )∑
i,j,k

c′ijk(r1 - rj′1)
i(r2 - rj′2)

j(r3 - rj′3)
k (5)

S(r ) ) s(b1) s(b2) s(b3) s(b4) t(y1) t(y2) t(y3) (6)

s(bi) ) {0, if bi e 0;
1, if bi e 1;

10bi
3 - 15bi

4 + 6bi
5, otherwise

(7)

bi ) (ri - rjbi)/abi, i ) 1, 2, 3 (8)

b4 ) (ab,4,1w
2 - w + ab,4,2)/ab,4,3 (9)

w )
r1

2 + r2
2 - r3

2

2r1r2
(10)

t(yi) ) 1 - tanh(yi) (11)
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where

The switching functionS′ is analogous toS with a′ and rj′
replacinga and rj, respectively.S and S′ are used to turn the
two polynomials inVDPOLY on and off in different regions of
the PES. Thec, c′, a, a′, rj, and rj′ are variational parameters
determined by the fitting procedure. The parameters forS and
S′ are given in Table 1. For symmetry reasons,ab1 andab2, as
well asrjb1 andrjb2, are equal, as are their primed counterparts.
The same is true foray1 anday2 and their primed counterparts.
Therj parameters are of the order of small internuclear distances.

The s(bi) terms in eq 7 force the contribution of one of the
two high-order polynomials inVDPOLY in eq 5 to vanish when
one of theri or the angle betweenr1 and r2 (øO in the RMOS
coordinates) reaches a reference value. This is accomplished
by the functions(bi) in eq 7, which varies smoothly from 0 to
1, with continuous first derivatives atbi ) 0 andbi ) 1. For i
) 1, 2, 3,s(bi) approaches zero asri approaches the valuerjbi,
at a rate of decay controlled byabi. b4 is a quadratic function of
the cosine of the angle betweenr1 andr2. The termst(yi) turn
the VDPOLY term off for asymptotic geometries. When oneri

reaches its reference valuerji, t(yi) ) 0, and the entire switching
function vanishes. This occurs around 3-4 b, as can be seen
from the values in Table 1. As a result, the asymptotic regions
of the PES have the correct diatomic behavior, included in the
VGLEPS term. The slope parameter,ayi, controls how rapidly
VDPOLY is made to vanish.

The GLDP form is fitted to the ab initio data using a nonlinear
least-squares method to obtain the set of parameters that
simultaneously minimize the root-mean-square error and the
maximum absolute value deviation from the ab initio data. The
unbiased error of the fitted PES is determined with the help of
a set of 100 geometries removed at random from the ab initio
data and not used in the fitting procedure. Using an initial
estimate of the non-linear parameters, the linear parameters, the
rms error and the maximum absolute deviation are first
determined. The non-linear parameters are then varied until that
error and deviation are minimized. New linear parameters are
then determined, and the process is continued iteratively until
acceptable errors are achieved. The final unbiased errors are
then calculated. The resulting PES was examined using equi-
potential contour plots in the corresponding two-internuclear-
distance cartesian space at fixed bond angles as well as
equipotential contour plots in hyperspherical coordinates for
equatorial views at fixed hyperradii, as discussed in section 3.3.
The minimum-energy paths for both the abstraction and
exchange reactions were computed as well. These proved to be
a very sensitive measure of the smoothness of the surface, able
to detect very small irregularities in the low-energy region of
the surface. On the basis of these results, new geometries were
chosen for ab initio calculations. These geometries were added
to the original set of data, and a refitting was performed.

Occasionally, refitting to remove spurious wells was per-
formed using virtual points, defined as geometries for which
ab initio data had not been calculated and at which the fitted
PES displayed unphysical behavior caused by the form of the
fitting function (in particular, the oscillations of the high-order
polynomial functions). Energies were assigned to those points
so as to eliminate this nonphysical behavior. These virtual point
geometries were added to the original data, which was then refit,
with the final error analysis performed using only the original
ab initio data. Virtual points were not used to judge the accuracy
of the new fitted PES. Modifying the degree of the polynomials

in order to remove unphysical features of the surface can be
difficult, since it is not clear which terms in the polynomials
cause these features, and this can also cause other unphysical
features to arise in other regions. Virtual points are a tool that
goes directly to the source of the problem: lack of sufficient
data to produce a physically correct fitting of the PES in all
regions of interest. The introduction of these points permits the
use of physical insight for regions for which ab initio data is
not available, without biasing the regions for which data is
available, as they do not change the fitting in regions removed
from the problem area. As a result, the use of virtual points
furnishes an improved fitting procedure that decreases the
shortcomings of the mathematical form of the fitting function.
They do not bias the effect of the ab initio points since they are
not used to determine the fitting accuracy of the final PES, and
can be considered as equivalent to fitting parameters.

Not always were virtual points sufficient to remove unphysi-
cal features. For regions of the PES along the minimum-energy
path, and for regions for which the system’s configuration is
slightly bent, we found it more helpful to use localized Gaussian
functions66 of the form

(with equivalent forms for the coordinatesR′OH, R′OH, andøO)
to remove unphysical features of the fitted PES. The values
R′OH,e, R′HH′,e, andøH,e determine the location of the maximum
of the Gaussian,dOH, dHH′, anddøH are measures of the width
of the Gaussian, andcE is the value of the Gaussian at its maxi-
mum. These parameters were chosen carefully to remove some
unphysical features. It was often necessary to place two or three
Gaussians in close proximity to each other to remove a broader,
small feature without disturbing the surrounding regions.

Localized Gaussians were particularly helpful in the descrip-
tion of the van der Waals well region. Ab initio data in this
region produced a well depth of 0.2 kcal/mol. The GLDP fit
had resulted in a larger well depth initially and was corrected
to furnish 0.2 kcal/mol using localized Gaussians. The RMOS
fit did not consider the van der Waals region, as these ab initio
geometries were not usable with the RMOS fitting procedure.

The regular-accuracy surfaces were created by subtracting
the fitted correction surface from the fitted high-accuracy PES.
This avoids an additional fitting and gives consistent results.
For large values of the interatomic distances, the fitted high-
and regular-accuracy RMOS PESs were subject to the con-
straints described in the last paragraph of section 2.2.1, owing

yi ) ayi(ri - rji) (12)

TABLE 1: GLDP Switching Function Parametersa

parameter 3A′ S 3A′ S′ 3A′′ S 3A′′ S′′
rjb1, b 1.26 1.26 1.28 1.28
ab1, b 0.04 0.04 0.04 0.04
rjb2, b 1.26 1.26 1.28 1.28
ab2, b 0.04 0.04 0.04 0.04
rjb3, b 0.71 0.60 0.76 1.06
ab3, b 0.10 0.23 0.10 0.26
ab,4,1 -0.09 0.00 0.07 0.00
ab,4,2 1.43 1.01 1.25 0.778
ab,4,3 1.44 1.74 1.51 1.24
rj1, b 2.91 2.90 3.37 2.93
ay1, b-1 1.95 1.49 1.39 2.60
rj2, b 2.91 2.90 3.37 2.93
ay2, b-1 1.95 1.49 1.39 2.60
rj3, b 3.71 2.98 4.04 3.31
ay3, b-1 0.97 1.03 1.39 1.27

a These parameters are used forS andS′, in the latter of which the
parameters are primed, as described in eqs 5-12.

∆V ) cEe-[(R′OH-R′OH,e)2/2d2
OH+(R′HH′-R′HH′,e)2/2d2

HH′+(øH-øH,e)2/2d2
øH]

(13)
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to the lack of constant (ø, θ) sets of data in that region. A similar
constraint was imposed on the regular-accuracy GLDP fitted
PES. The high-accuracy GLDP fit, however, uses all of the data,
including the energies of the two stretched geometries described
in that paragraph. The complete set of data is generated from
all of the ab initio regular-accuracy results by adding to them
the fit to the correction surface, as described in section 2.2.3.

The resulting GLDP PESs for the regular-accuracy and high-
accuracy data for both the3A′ and3A′′ surfaces are compared
to the corresponding RMOS PESs and to the LEPS one in
section 3.3.

2.2.3. The Correction Surface.This surface is produced by
fitting the differences between the ab initio high-accuracy and
regular-accuracy calculations for the 112 geometries used in
the high-accuracy electronic energy calculation. These geom-
etries were chosen on the basis of an initial RMOS fit to the
regular-accuracy data. Examination of the saddle-point energies
for the differentøH and øO constant bond angle equipotential
contour plots determined the three most important values of
each of these two angles needed to represent the corresponding
saddle-point regions. The values were 67.5°, 112.5°, and 180°
for bothøH andøO. Further plotting of the RMOS energies along
cuts transverse to the saddle-point minimum-energy path for
the collinear configurations furnished the initial geometries for
the high-accuracy electronic energy calculations. For each of
these transverse cuts, the saddle-point geometry and geometries
halfway down each side of the barrier were chosen. For each
minimum-energy path, geometries halfway down the barrier and
geometries near the asymptotic region were chosen. After
calculations at these geometries and initial fitting of the
correction surface were performed, other geometries at these
fixed bond angles were chosen to improve the fit. Differences
between the ab initio high-accuracy and regular-accuracy data
were in the range of 3.8-4.8 kcal/mol. This method of taking
a straight difference of the two values produced significant
differences even in the asymptotic O+ H + H region and was
considered undesirable. However, when the two sets of data
were adjusted separately for a zero of energy at an asymptotic
O + H + H geometry, their differences decreased to the range
0.25-1.1 kcal/mol. The smaller range of the correction energies
made possible a more accurate fit to the data. After the
correction surface was added to the regular-accuracy ab initio
data, the zero of energy was placed at the bottom of the H2

well for use in comparison with other surfaces. This final
adjustment does produce some negative differences between the
final high-accuracy and regular-accuracy PESs, even though the
ab initio differences are always positive as expected for a
variational procedure. Nevertheless, this is the most appropriate
way of correcting the regular- and high-accuracy calculations
for differences in the zero of energy.

The correction surface itself consists of three diatomic
correction terms and one global triatomic correction term

The diatomic terms are one-dimensional cubic polynomials

The triatomic term is a global third-degree polynomial in three
variables

where

andi + j + k e 3. TheR′AB are the interatomic distances, and
R′e,AB are the equilibrium interatomic distances.SAB is a
Heaviside function used to cut off the effect of the diatomic
terms at a distance of 10 b. The constantscOH and cOH′, the
equilibrium distancesR′e,OH and R′e,OH′, and the constants a´ ijk

and ákji are equal for symmetry reasons. The diatomic correction
terms make necessary the calculation of diatomic energies.
Electronic energy calculations at eight geometries for the OH
diatom and nine geometries for the H2 diatom were performed.
These were fitted using the diatomic termPAB of eq 15 with
the Levenberg-Marquardt method of least-squares fitting.64,65

The constantscAB were chosen as 0.3 for the OH diatom and
0.7 for the H2 diatom to produce the correct ab initio correction
value at the saddle point. This choice of constant multipliers
left a small positive value of the correction for all data to be
fitted by the triatomic term of eq 16. Subtracting the diatomic
correction terms fromVC without including these constants
resulted in some negative values that would have to be fitted
by that triatomic term, as well as some positive ones. This is
difficult to achieve without introducing spurious features. The
effect of the diatomic polynomials is eliminated at large bond
distances by the Heaviside functionSAB, resulting in small
positive values for the remaining triatomic correction term. The
remainder of the difference between the high- and regular-
accuracy calculations was fitted usingTOHH′ in eq 17 with the
Levenberg-Marquardt fitting method. The final fitted correction
surface was added to the regular-accuracy ab initio electronic
structure energies at all 951 geometries to raise their accuracy
to that of the 112 high-accuracy energies.

Several other mathematical forms were initially considered
for fitting the correction surface in addition to the one just
described. Truhlar and co-workers72 had used a correction
surface to improve specific areas of potential energy surfaces
for the OH+ CH4 f H2O + CH3 and CF3 + CD3H f CF3H
+ CD3 reactions. We were, however, interested in improving
the entire surface, using a smooth mathematical form. Gaussian
and other mathematical forms that tend toward zero asymptoti-
cally were ruled out since the correction surface does not tend
toward zero or to another constant at large interatomic distances.
Asymptotically, the correction for the H2 molecule approaches
0.8 kcal/mol, and the correction for OH approaches 0.3 kcal/
mol. The discrepancies in these corrections are due primarily
to the incomplete basis sets used for the regular-accuracy
calculation and, to a lesser extent, to an incomplete treatment
of electron correlation.

Another mathematical form suggested itself when the ab initio
high-accuracy data and their correction values were displayed
in equipotential contour plots of the regular-accuracy surface.
This allowed better visualization of the correction surface. For
each of the three fixedøH bond angles, the correction increased
smoothly with swing angle from 0.3 to 0.8 kcal/mol. For the
three fixedøO bond angles, the correction increased smoothly
with bond angle from 0.8 kcal/mol to their saddle-point value
for that bond angle. This suggested using a function of the swing
angle that could incorporate most of the correction, and then a
global term to represent the remainder. A spline interpolation
was used for the swing angle term. There were enough ab initio

VC ) POH + PHH′ + POH′ + TOHH′ (14)

PAB ) cABSAB∑
i)0

3

ai
ABR′AB

i (15)

TOHH′ ) ∑
i,j,k)0

3

Rijk Rh ′ OH
i Rh ′ HH

j Rh ′ OH
k (16)

Rh ′AB ) R′AB - R′e,AB (17)
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correction data for each fixed bond angle to expect a good fit
from this interpolation without unphysical features. For the
global term, a low-order three-dimensional polynomial as in
eq 16 was expected to provide a good fit. Both cubic and quartic
polynomials were fit to the remaining correction using the
Levenberg-Marquardt method,64,65 with the cubic polynomial
giving better results than the quartic one. However, this
mathematical form was not chosen for reasons discussed later
in section 3.2.

2.3. Minimum-Energy Path.The collinear minimum-energy
paths used to evaluate the fitted surfaces were determined using
the method of steepest descent.73 The gradient of the potential
energy is followed in the direction of the negative eigenvalue
of the Hessian starting at the saddle-point configuration.74,75This
process is repeated for the opposite side of the barrier to give
the full minimum-energy path. The saddle-point itself is
determined by following the gradient from an initial guess to
the position on the PES where the gradient is zero in all
directions and the Hessian has one negative eigenvalue. This
path is invariant with the choice of coordinate systems.73 We
have used the Jacobi mass-scaled coordinates defined in section
3.2 below. Usually, a fine spacing of steps along the MEP (0.01
b) gave a reasonable representation of the MEP. However, small
wells in the fitted PES, of the order of 0.2 kcal/mol, can result
in a malfunction of the steepest descent algorithm with this fine
step size. A simple doubling of the step size to 0.02 b often
corrected this problem. In addition, if a PES is not smooth at a
high magnification (0.01 b), the resulting MEP will not be
smooth. Also in this case, increasing the step size results in a
smoother MEP. For example, the RMOS PES involves linear
interpolations overθ every 1°, producing a PES that is not
smooth on the 0.01 b scale. To achieve a smooth MEP, a step
size of 0.05 b was required. As a result, the saddle-point region
is not as well-defined as when a 0.01 b step size suffices. Plots
of the energy along the MEP for each of the PESs developed
here are discussed below.

3. Results and Discussion

3.1. Electronic Energy.Table 2 gives the ab initio energetics
for the O(3P)+ H2 reaction at the reactants, products, abstraction
saddle point, and separated atom configurations for the aug-
cc-pVTZ, aug-cc-pVQZ, and aug-cc-pV5Z basis sets. The

numbers in parentheses are the ICCI+Q (Davidson-corrected
ICCI) values, with an upward shift of 76 hartree. Since that
saddle point has a collinear geometry, it is the same for the3A′
and3A′′ states. Using these data, these energies were extrapo-
lated to the basis set limit by a Martin-Schwartz three-point
extrapolation method.76 The corresponding results for the ICCI
and ICCI+Q calculations are given in Table 3. From that table
we see that the extrapolatedDe’s of OH and H2 are 106.3 and
108.3 kcal/mol for ICCI and 107.0 and 109.4 kcal/mol for
ICCI+Q, respectively, compared to 106.6 and 109.5 kcal/mol
from experiment. Because the calculations were done for an
OH2 supermolecule, only the Davidson-corrected58 values are
reliable for H2, and indeed the extrapolatedDe is within 0.1
kcal/mol of experiment. For OH the calculatedDe’s are 0.3 kcal/
mol too small for ICCI and 0.4 kcal/mol too large for ICCI+Q.
This suggests that the multireference Davidson correction
slightly overestimates the effect of higher excitations. The
extrapolated barrier heights for the O-H-H saddlepoint are
14.1 and 13.2 kcal/mol for the ICCI and ICCI+Q calculations,
respectively. There are no experimental numbers for the barrier
height. However, Peterson and Dunning77 obtained 13.2 kcal/
mol, in good agreement with our results, using a very similar
wave function (their ext-CAS+1+2+Q) and basis set. (They
used the full aug-cc-pVnZ basis sets, whereas we used even-
tempered functions as discussed above.) The ICCI+Q results
with the aug-cc-pV5Z basis set are very close to the extrapolated
values. TheDe’s for OH and H2 at this level of calculation
(without basis set extrapolation) differ from experiment by no
more than 0.2 kcal/mol, and the barrier height is within 0.1 kcal/
mol of the extrapolated value. Thus, the aug-cc-pV5Z results
are within chemical accuracy and appear to be accurate to within
a few tenths of a kcal/mol. As discussed below, these results
(denoted as high accuracy) were used to calibrate the surface,
while the regular accuracy was used to generate the global PES.
For the regular-accuracy calculations, the abstraction barrier
height is 0.1 kcal/mol higher, the H2 De is 0.2 kcal/mol smaller,
and the OHDe is 0.5 kcal/mol smaller than the high-accuracy
results.

Tables 4, 5, and 6 give the results of regular- and high-
accuracy ab initio calculations for OH, H2, and O(3P) + H2

PES, respectively. They were used to develop a correction term
to convert the regular-accuracy energies to high-accuracy ones.
The starting point is the correction for the diatomic terms using

TABLE 2: Ab Initio O( 3P) + H2 Energetics for Special Geometriesa

structure aug-cc-pVTZ (hartree) aug-cc-pVQZ (hartree) aug-cc-pV5Z (hartree)

O-H-Hb -76.118 72 (-0.127 44) -76.137 23(-0.146 67) -76.143 49 (-0.153 15)
O + H2 -76.142 16 (-0.149 49) -76.160 09(-0.168 02) -76.166 18 (-0.174 30)
OH + H -76.136 51 (-0.143 03) -76.156 05(-0.163 22) -76.162 62 (-0.170 00)
O + H + Hc -75.971 15 (0.023 33) -75.988 12 (0.005 86) -75.993 92 (-0.000 11)

a The numbers in parentheses are ICCI+Q (ICCI values with the Davidson correction) and a shift of+76. b Saddle-point configuration.c Separated
atom configuration.

TABLE 3: O( 3P) + H2 Saddle-Point and Asymptotic Configuration Energetics

aug-cc-pVTZ
(kcal/mol)

aug-cc-pVQZ
(kcal/mol)

aug-cc-pV5Z
(kcal/mol)

ebsa

(kcal/mol)
exptl

(kcal/mol)

ICCI
Eb

b 14.7 14.3 14.2 14.1
DeOH 103.8 105.4 105.9 106.3 106.6
DeHH 107.3 107.9 108.1 108.3 109.5

ICCI+Q
Eb

b 13.8 13.4 13.3 13.2
DeOH 104.4 106.1 106.6 107.0 106.6
DeHH 108.4 109.1 109.3 109.4 109.5

a Extrapolation to the basis set limit of the aug-cc-pVnZ results (n ) T, Q, 5). b Barrier height for the O(3P) + H2 f H + OH reaction.
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the data in Tables 4 and 5, which is then modified by a three-
body term. Taking the O+ H + H asymptote (separated atoms)
as the zero of energy makes this three-body correction term
positive over the entire surface.

As discussed by Walch,78 the amount of negative ion (O-)
character in the O(3P)+ H2 reaction is larger at the saddle point
than at the reactants or products. Thus, it is important to use
basis functions and a CASSCF wave function that can describe
the electron affinity (EA) of oxygen. More recently Kendall et
al.79 did a systematic study of the EA of the first-row atoms.
For O they found that addition of diffuse functions to the cc-
pVQZ basis set increased the EA by 0.451 eV for diffuse sp
functions, by 0.029 eV for diffuse d functions, by 0.019 eV for
diffuse f functions, and by 0.019 eV for diffuse g functions.
Thus, at least diffuse sp functions are required for O(3P) + H2

and diffuse d functions were also added in our calculations.
The same authors also found that a Hartree-Fock reference
wave function gave an EA for O of 1.060 eV, but going to a
CAS(2p,2p′) reference wave function gave 1.347 eV compared
to 1.401 eV for a full CI calculation (all with the aug-cc-pVQZ
basis set). This is the reason for including a 2p′ shell in our
calculations. We found that only the 2p′ orbital corresponding
to the doubly occupied O2p orbital had to be included (for
ICCI+Q). Omitting this orbital increases the barrier height for

O(3P) + H2 by 0.6 kcal/mol. Adding the 2p′ orbitals corre-
sponding to the singly occupied O2p orbitals had less than a
0.1 kcal/mol effect on this height. We also tried the method of
coupled-cluster single and double excitation with a perturba-
tional estimate of triple excitation (CCSD(T)) and found that
this gave the same barrier height as did ICCI (using the aug-
cc-pVQZ basis set). However, the ICCI barrier height with this
basis set is 0.9 kcal/mol higher than for ICCI+Q, which in turn
is much closer to the best estimate from experiment.

Two other sources of error that must be taken into account
are the effects of core valence (CV) correlation and spin-orbit
interactions. The CV effect arises from correlating the O1s shell,
which was kept frozen in all the other calculations reported here.
The calculation with the correlated O1s shell requires the use
of basis sets that were developed for this purpose.80 (These basis
sets include additional functions for correlating the inner shell.)
The CCSD(T) method was used for these correlated calculations.
The results obtained for OH are given in Table 7 as a function
of R′OH. It is seen that at the OH equilibrium distance of 1.835
b the CV effect increasesDe by 0.14 kcal/mol. This effect,
however, rapidly decreases asR′OH increases. In fact, at the
saddle point (R′OH ) 2.314 b), the CV effect decreases the
barrier height by only 0.01 kcal/mol. Thus, the CV effect on
the potential energy surface is mainly a small (0.15 kcal/mol)

TABLE 4: OH Diatomic Data

regular accuracy high accuracy

R (b)
ICCI

(hartree)
ICCI+Qa

(hartree)
∆Eb

(kcal/mol)
ICCI

(hartree)
IC CI+Qa

(hartree)
∆Eb

(kcal/mol)
∆∆Ec

(kcal/mol)

10.0 -75.488 18 -0.494 20 0.0 -75.493 94 -0.500 12 0.0 0.00
5.0 -75.490 58 -0.496 72 -1.58 -75.496 40 -0.502 71 -1.63 0.05
4.0 -75.501 64 -0.508 17 -8.77 -75.507 66 -0.514 38 -8.95 0.18
3.0 -75.552 99 -0.560 28 -41.47 -75.559 43 -0.566 96 -41.94 0.47
2.5 -75.602 12 -0.60 952 -72.36 -75.608 82 -0.616 46 -73.00 0.64
1.83 -75.655 63 -0.662 77 -105.78 -75.662 63 -0.670 00 -106.60 0.82
1.6 -75.637 10 -0.644 09 -94.06 -75.64 422 -0.651 44 -94.95 0.89
1.4 -75.570 62 -0.577 49 -52.27 -75.577 96 -0.585 03 -53.28 1.01

a ICCI results with a Davidson correction and a shift of+76. b Differences between the ICCI value atRand the ICCI value at 10.0 b.c Differences
between the regular- and high-accuracy∆E.

TABLE 5: H 2 Diatomic Data

regular accuracy high accuracy

R (b)
ICCI+Qa

(hartree)
∆Eb

(kcal/mol)
ICCI+Qa

(hartree)
multicolumn1c∆Eb

(kcal/mol)
∆∆Ec

(kcal/mol)

10.0 -0.999 90 0.0 -1.000 00 0.0 0.00
5.0 -1.003 47 -2.24 -1.003 65 -2.29 0.05
4.0 -1.015 84 -10.00 -1.016 17 -10.15 0.15
3.0 -1.056 59 -35.57 -1.057 08 -35.82 0.25
2.5 -1.093 17 -58.53 -1.093 70 -58.80 0.27
2.0 -1.137 33 -86.24 -1.137 91 -86.54 0.30
1.4 -1.173 58 -108.99 -1.174 23 -109.33 0.34
1.2 -1.16396 -102.95 -1.164 66 -103.33 0.38
1.0 -1.12344 -77.52 -1.124 23 -77.96 0.44

a ICCI results with a Davidson correction and a shift of+76. b Differences between the ICCI value atRand the ICCI value at 10.0 b.c Differences
between the regular- and high-accuracy∆E.

TABLE 6: OHH High-Accuracy Data

regular accuracy high accuracy

structure
ICCI+Qa

(hartree)
∆Eb

(kcal/mol)
ICCI+Qa

(hartree)
∆Eb

(kcal/mol)
∆∆Ec

(kcal/mol)

O + H + Hd 0.005 86 0.0 -0.000 11 0.0 0.00
O + H2 -0.167 78 -108.96 -0.174 30 -109.31 0.35
OH + H -0.162 73 -105.79 -0.170 00 -106.61 0.82
O - H - He -0.146 17 -95.4 -0.153 15 -96.03 0.63

a ICCI results with a Davidson correction and a shift of+76. b Differences between the ICCI+Q result and its value for O+ H + H. c Differences
between the regular- and high-accuracy∆E. d Separated atom configuration.e Saddle-point configuration.
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lowering of the OH+ H asymptote with respect to reactants.
This effect is of the same order as the estimated error in the
high-accuracy calculations. Our values for the CV effect are in
good agreement with the results of Peterson and Dunning.77

Spin-orbit interactions can, in general, have a significant
effect on the system’s barrier heights.81-86 However, for the
OH2 system, the3P state of the O atom is split into three
components:3P2, 3P1, and3P0. 3P2 is the lowest one, and the
3P1 and 3P0 states are 0.45 and 0.65 kcal/mol higher, respec-
tively.87 However, it has been pointed out18 that all five
components of the3P0 state correlate with the3P surface of
OHH, but only one component of the3P1 state does so, and no
components of3P2 do. Thus the3P surface of OHH correlates
with the 3P0 and3P1 states of the O atom, and these states are
split by only 0.2 kcal/mol. Once again this effect is within the
estimated accuracy of the ab initio calculations.

3.2. Correction Surface.The spline swing angle fitting form
resulted in a good overall fit to the correction surface with a
root-mean-square error of 0.15 kcal/mol for both the3A′ and
3A′′ states. However, it gave a large maximum absolute value
error. In the saddle-point regions, this spline form was unable
to reproduce occasional deviations from the usually smoothly
increasing correction term. This left negative values, in areas
surrounded by small positive values, for the global triatomic
cubic polynomial function to describe. The low-order polynomi-
als were unable to fit these negative areas without higher order
terms that would have themselves produced spurious features
in the surface.

The diatomic polynomial fitting method gave better results
than the spline swing angle approach. The correspondingTOHH′
term in eq 14 did not have to describe negative wells. The small
positive values left after subtracting the diatomic termsPAB were
well-represented with the global cubic polynomialTOHH′. This
fitting method was chosen owing to the resulting improved root-
mean-square deviation and much smaller maximum absolute
value deviation. Table 8 displays the results of the error analysis
for the 3A′′ and3A′ surfaces. The fitted correction surface has
a root-mean-square error with respect to the ab initio data of
0.058 kcal/mol for the3A′′ state and 0.059 kcal/mol for the3A′
state. The maximum absolute value deviation from the ab initio
data is 0.14 kcal/mol for the3A′′ state and 0.15 kcal/mol for
the 3A′ state. Both surfaces are smooth over the entire region
spanned by the regular-accuracy ab initio data.

Plots of these surfaces in kinematic-rotation-invariant hyper-
spherical coordinates using an equatorial projection afford the
best information for reactive scattering calculations using these
coordinates. The interatomic distances are first transformed into
the Jacobi coordinatesR′C′, r ′C, andγC depicted in Figure 3.
These coordinates are then mass-scaled according to88-91

whereµAB is the reduced mass of AB andµC,AB is the reduced
mass of the C, AB pair. A set of spherical polar coordinates92,93

are defined as the hyperradiusF, and the anglesγC andωC

The corresponding internal configuration space Cartesian co-
ordinates are defined by

The coordinates we use for Figures 4 and 5 correspond to a
projection or mapping of the points of a constantF hemisphere
onto a plane tangent to it at the point theYC axis intersects that
hemisphere. This projection93 is defined as follows. We first
introduce the kinematic-rotation-invariant internal hyperangles
ϑC andæC related toωC, γC by

The Cartesian coordinatesxC, yC of the point on this tangent
plane onto which the point (XC, YC, ZC) on the hemisphere is
mapped are defined by

This mapping of the PES onto this plane is called the equatorial
view because it is a projection of the hemisphere on a plane

TABLE 7: Core-Valence Effect for OH

R′OH (b) ∆Ea (kcal/mol)

2.2 0.00
2.0 0.08
1.835 0.14

a The net change in energy produced by the core-valence effect.

TABLE 8: Correction Surface Error Analysis

error (kcal/mol) 3A′′ 3A′
rms 0.058 0.059
maxa 0.14 0.15

a Maximum absolute value error.

Figure 3. Jacobi coordinates. The diagram depicts the Jacobi
coordinatesR′C, r′C, andγC for a general ABC system.GAB is the center
of mass of diatom AB, andγC is in the 0-π range.

RC ) aCR′C, rC ) aC
-1r ′c, aC ) (µC,AB/µAB) (18)

F ) (RC
2 + rC

2)1/2 (19)
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rCRC
); 0 e γC e π (20)
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tangent to it at the point on its equator defined byωC ) γC )
π/2. It permits viewing all three arrangement channel regions
(for which two of the atoms are closer to each other than to the
third one) as well as regions for which the distances between
all three atoms are of the same order, for a given value of the
hyperradiusF. In Figures 4 and 5, atom C is O. For each plot,
the O + H2 arrangement region is at the top, and the two
symmetric H+ OH regions are on the left and right. The circle
at the edge of each plot represents collinear configurations. The
equipotentials in the arrangement channel regions cover a wide
range ofγ. For a given surface, as the system moves toward an
asymptotic configuration, the energy remains nearly constant
with respect toγC. For the O+ H2 system, the vertical line
through the center of the plot is a symmetry line.

Figures 4e and 5e display equatorial views of the3A′′ and
3A′ correction surfaces for the abstraction saddle-point hyper-
radius. The saddle point, denoted by+, has a correction of 0.64
kcal/mol. The correction energy varies smoothly from slightly
below 0.5 kcal/mol in the O+ H2 arrangement channel region
to 1.3 kcal/mol in the corresponding H+ OH arrangement
channel region. The correction changes more rapidly as one
approaches the H+ OH channel configuration. Near arrange-
ment configurations, the energy is nearly constant with respect
to γC. The3A′ correction surface has similar characteristics to
the 3A′′ one, but with slightly higher values overall. The
equatorial views of the3A′′ and3A′ correction surfaces for the
exchange saddlepoint hyperradius given in Figures 4f and 5f
show the same behavior as for the abstraction hyperradii, again
with a higher overall energy for the3A′ correction surface as
compared to the3A′′ one. The exchange saddle point, denoted
by ×, has a correction of 0.95 kcal/mol. The correction surface
no longer changes more rapidly when approaching the H+ OH
arrangement channel configuration. For a given surface, the
correction for the exchange saddle-point hyperradius is higher
than for the abstraction saddle-point hyperradius.

3.3. Comparison of the RMOS, GLDP, and LEPS Poten-
tial Energy Surfaces.Table 9 gives results of the error analysis
for the GLDP regular-accuracy, GLDP high-accuracy, and
RMOS high-accuracy surfaces for the3A′ and3A′′ states. The
two 3A′′ GLDP surfaces have root-mean-square (rms) errors of
0.27 kcal/mol, with maximum absolute value deviations of 0.39
kcal/mol. These errors are calculated using a subset of 100 ab
initio randomly chosen geometries not used in the fitting
procedure. The errors for the3A′ GLDP surfaces are very similar
to the 3A′′ ones, having a rms error of 0.28 kcal/mol with a
maximum absolute value deviation of 0.38 kcal/mol. The fitting
procedure for the GLDP minimized the maximum absolute value
deviation as well as the rms error. As a result, the maximum
absolute value deviation is within 0.1 kcal/mol of the rms error.
The RMOS surfaces have a rms error of 0.42 kcal/mol for3A′′
and 0.53 kcal/mol for3A′. The maximum absolute value
deviations are 2.38 kcal/mol for the3A′′ RMOS surface and
2.44 kcal/mol for the3A′ RMOS surface. These deviations are
not controlled in this fitting procedure. The error analysis for

the RMOS surfaces are based on the ab initio data that was
unusable for the RMOS fitting method. These include geom-
etries initially calculated in the lowøH angle region, atøH )
22.5° andøH ) 45° for θ ) 15°, 30°, 45°, 60°, and 75° and all
geometries calculated for the GLDP surface that did not
correspond to the selectedø, θ of the RMOS fit. The RMOS
fitting procedure forced the generalized Morse curves to pass
through all ab initio points at the preselectedθ, ø for all but 8
of the 120θ, ø pairs of values. Because only 5 points perθ, ø
were chosen for these 112θ, ø cuts, and the generalized Morse
function has 5 parameters, no error minimization was performed.
For the other eight cuts more than five points were chosen to
improve the fitted surface. For those, an error minimization fit
was performed. The significantly larger maximum absolute
deviations observed for the RMOS fit compared to the GLDP
one occur in the repulsive regions of the Morse function. A
slight deviation of the Morse shape from the correct one in this
region can cause a large deviation in the energy. The rms error
for the GLDP fit is 0.15 kcal/mol lower than for the RMOS fit
for the3A′′ surface and 0.25 kcal/mol lower for the3A′ surface,
which is nearly as much as the GLDP error itself. The maximum
deviations have larger discrepancies, with nearly a six-fold
difference between GLDP and RMOS.

In Figure 4 we compare the GLDP, RMOS, and LEPS
surfaces for the3A′′ state. Here, the LEPS surface was chosen
for comparison as it was originally used in the selection of ab
initio geometries. The plots are equatorial views of equipotential
contours of the PESs at constant values of the hyperradiusF,
as defined in section 3.2. Panel a displays the LEPS surface for
the abstraction saddle pointF. The saddle point is indicated by
a + on the upper right side of the plot. Panel b depicts the
GLDP high-accuracy surface at its abstraction saddlepointF )
4.5047 b, and panel c shows the RMOS surface at its abstraction
saddle pointF ) 4.5100 b. Again the saddle point is marked
by a+. All three have similarly shaped equipotential contours,
with the LEPS PES differing more from the GLDP surface than
the RMOS one does. The 0.5 eV contour in the O+ H2

arrangement channel region spreads over that entire region for
the LEPS PES, whereas for the RMOS and GLDP PESs that
contour is closed. The GLDP contours display small wiggles
near the central region of the plot. This is the region for which
the ab initio geometries were selected from both OHH and HOH
configurations. Small differences in the ab initio data for these
configurations can cause such features. The RMOS fit imposed
a cubic spline smoothing in this region and as a result does not
display this behavior. The GLDP surface is hatched for energies
below 2 eV, to show the most accessible regions of the surface
for reaction energies below that value. Figure 4d shows the
difference between the RMOS and GLDP surface for the GLDP
abstraction saddle-point hyperradius. The hatching covers the
regions for which these differences are less than 0.5 kcal/mol
(∼0.02 eV) in absolute value. This region significantly overlaps
the area below 2 eV of panel 4b. This suggests that cross
sections for the abstraction reaction on the3A′′ GLDP and

Figure 4. Equipotential contours on equatorial views of the3A′′ surface for selected hyperradiiF. (a) LEPS surface at itsF ) 4.3427 b abstraction
saddle point. (b) High-accuracy GLDP surface at itsF ) 4.5047 b abstraction saddle point. The hatched regions correspond to energies below 2 eV.
(c) RMOS surface at itsF ) 4.5100 b abstraction saddle point. (d) Differences between RMOS and GLDP energies atF 4.5047 b. The hatched
regions correspond to configurations for which the agreement between these surfaces is better than 0.5 kcal/mol. (e) Correction surface atF )
4.5047 b. (f) Correction surface atF ) 3.2849 b. (g) LEPS surface at itsF ) 3.0375 b exchange saddle point. (h) High-accuracy GLDP surface at
its F ) 3.2849 b exchange saddle point. The hatched regions correspond to energies below 2 eV. (i) RMOS surface at itsF ) 3.2710 b exchange
saddle point. (j) Differences between RMOS and GLDP energies atF ) 3.2849 b. The hatched regions correspond to configurations for which the
agreement between these surfaces is better than 0.5 kcal/mol. The numbers associated with the contours indicate the energy values along them, and
their energy spacing is 0.5 eV for panels a-c and g-i, 0.5 kcal/mol for panels d and j, and 0.1 kcal/mol for panels e and f. The position of the
saddle points is indicated by+ in panels a-e and× in panels f-j. The radius of the circle that surrounds each panel isF(π/2), and this value
defines the corresponding distance scale.
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RMOS high-accuracy PESs might be close to each other.
Regions near the saddle point are in very good agreement.
Regions near the H+ OH exchange pathway display larger
differences, up to 1.5 kcal/mol.

Panels g-j correspond to the exchange saddle pointsF. There
are significant differences between the LEPS surface and the
GLDP and RMOS ones for the O+ H2 arrangement channel
region. At this hyperradius the LEPS PES has a small barrier

Figure 5. Equipotential contours on equatorial views of the3A′ surface for selected hyperradiiF. (a) LEPS surface at itsF ) 4.3427 b abstraction
saddle point. (b) High-accuracy GLDP surface at itsF ) 4.4855 b abstraction saddle point. The hatched regions correspond to energies below 2 eV.
(c) RMOS surface at itsF ) 4.4277 b abstraction saddlepoint. (d) Differences between RMOS and GLDP energies atF 4.4855 b. The hatched
regions correspond to configurations for which the agreement between these surfaces is better than 0.5 kcal/mol. (e) Correction surface atF )
4.4855 b. (f) Correction surface atF ) 3.2440 b. (g) LEPS surface at itsF ) 3.0375 b exchange saddle point. (h) High-accuracy GLDP surface at
its F ) 3.2440 b exchange saddle point. The hatched regions correspond to energies below 2 eV. (i) RMOS surface at itsF ) 3.2627 b exchange
saddle point. (j) Differences between RMOS and GLDP energies atF ) 3.2440 b. The hatched regions correspond to configurations for which the
agreement between these surfaces is better than 0.5 kcal/mol. The numbers associated with the contours indicate the energy values along them, and
their energy spacing is 0.5 eV for panels a-c and g-i, 0.5 kcal/mol for panels d and j and 0.1 kcal/mol for panels e and f. The position of the saddle
points is indicated by+ in panels a-e and× in panels f-j. The radius of the circle that surrounds each panel isF(π/2), and this value defines the
corresponding distance scale.

Figure 6. Minimum-energy path energies, calculated in mass-scaled coordinates, for the GLDP (solid curves), RMOS (dotted curves), and LEPS
(dash-dotted curves) surfaces, as a function of the distances along the minimum-energy path. The valuess0 of s for the three PESs are set equal
to each other at a large value of the Jacobi mass-scaled coordinateRO or RH, chosen so that the peak in the GLDP MEP occurs ats ) 0. (a) 3A′′
abstraction MEP,s0 ) -6.0 b, RO ) 10.322 b. (b)3A′′ exchange MEP,s0 ) -4.0 b,RO ) 6.2598 b. (c)3A′ abstraction MEP,s0 ) -6.0 b,RO )
10.258 b. (d)3A′ exchange MEP,s0 ) -4.0 b,RO ) 6.2478 b. Error bars on the GLDP paths show the rms error of the surfaces, 0.27 kcal/mol
for 3A′′ and 0.28 kcal/mol for3A′. The small horizontal lines indicate the top and bottom of these error bars.
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Figure 7. Comparison of saddle-point geometries. The GLDP, RMOS, and LEPS saddle points and mass-scaled collinear equipotential contours
of the high-accuracy GLDP surface are depicted for (a) the3A′′ abstraction collinear configuration (H being the middle atom), (b) the3A′′ exchange
collinear configuration (O being the middle atom), (c) the3A′ abstraction collinear configuration, and (d) the3A′ exchange collinear configuration.

TABLE 9: Surface Fitting Errors
3A′′ 3A′

error
(kcal/mol) GLDP reg. GLDP high RMOS high GLDP reg. GLDP high RMOS high

rms 0.27 0.27 0.42 0.28 0.28 0.53
maxa 0.39 0.39 2.38 0.38 0.38 2.44

a Maximum absolute value error.

Figure 8. Mass-scaled collinear equipotential contours for GLDP surface. (a) Equipotential contours (solid curves) and MEP (dotted curve) for the
collinear 3A′′ GLDP abstraction (H in the middle) configuration. (b) Contours of the differences between the3A′′ RMOS and GLDP PESs. (c)
Contours of the differences between the LEPS and3A′′ GLDP abstraction collinear configurations. Similar plots are presented for the3A′′ exchange
(O in the middle) configurations (panels d-f), the 3A′ abstraction configurations (panels g-i), and the3A′ exchange configurations (panels j-l).
The saddle points are denoted by+. The hatched regions in panels a, d, g, and j correspond to energies below 2.0 eV. The remaining hatched
regions indicate agreement to within 0.5 kcal/mol.
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in this region which is not present in either of the other two. In
this O + H2 region, the LEPS PES has significantly higher
energies than the GLDP and RMOS ones. Overall, the LEPS
energies at the exchange saddle pointF are higher than either
the GLDP or RMOS ones. In panel h, corresponding to the
GLDP surface, the regions for which the energy is below 2 eV
is indicated by the hatching. Again the GLDP surface shows
wiggles in the equipotential contours in the switch-over region
from OHH to HOH geometries. The hatched regions of panel
j indicate agreement between the RMOS and GLDP energies
to within 0.5 kcal/mol. There are slightly larger differences
between the RMOS and GLDP energies for the exchangeF than
for the abstraction one.

The same plots are shown for the3A′ surfaces in Figure 5.
The LEPS panels are the same as for Figure 4, but repeated
here for easy comparison. The GLDP and RMOS3A′ surfaces
have higher energies than their3A′′ counterparts. The abstraction
saddle-point hypersphere has regions in its center with energies
above 4 eV. The3A′′ surfaces did not reach 3.5 eV in this region.
There is no 0.5 eV contour in the O+ H2 arrangement channel
region. Differences between the RMOS and GLDP3A′ surfaces
are larger than in the3A′′ case, as depicted by the smaller size
of the hatched area of agreement to within 0.5 kcal/mol. The
exchange saddle pointF contours again show large differences
between the LEPS and the GLDP and RMOS energies. Most
of the hatched region below 2 eV in the GLDP panel corre-
sponds to geometries whose energies differ from the RMOS
energies by more than 0.5 kcal/mol in absolute value. A very
small portion of the difference plot, panel j, corresponds to an
agreement between those two fits to within 0.5 kcal/mol,
suggesting that they could display significant dynamics differ-
ences.

A comparison of the energy along the MEPs is presented in
Figure 6. In panel a, the energy for the MEP of the3A′′
abstraction path is plotted against the distances along that path,
and the error bars represent the rms fitting error of that surface.
The origin s ) 0 is chosen to correspond to the peak of the
GLDP MEP. Fors ) -6.0 b, the value ofRO for this PES is
10.322 b, which represents a point in the asymptotic O+ H2

region. The three MEPs start at thisRO with the same value of
s. This allows one to view differences in the position of the
saddle points among the surfaces. Figure 7 shows the positions
of the three surfaces saddle points and equipotential contours
of the collinear GLDP surfaces. Panel (a) depicts the positions
of the LEPS, GLDP, and RMOS3A′′ abstraction saddle points
and contours of the collinear abstraction GLDP PES. The RMOS
saddle point occurs earliest (i.e., at the largestRO) in the reaction
path, followed closely by the GLDP saddle point, with the LEPS
saddle point being last and further removed from and lower
than the other two. The GLDP and RMOS surfaces have very
similar MEP potentials, with only minor differences near the
top and at the bottom of the barriers. The LEPS MEP potential
has a wider barrier that peaks 0.5 kcal/mol lower than the GLDP
barrier. The GLDP and RMOS MEP potentials have a broad
well of depth 0.2 kcal/mol fors > 0, which is present in the ab

initio data and is not an artifact of the fitting. All minimum
energy paths are along collinear configurations. Table 10 gives
the position and height of the abstraction saddle point for the
various surfaces. The GLDP abstraction barrier has a height of
13.04 kcal/mol, and the RMOS one is 13.26 kcal/mol. The
difference between the two is within the rms error of either
surface. The LEPS barrier is 12.49 kcal/mol,6,10 smaller than
either of the other two.

The energy along the exchange MEP is given in Figure 6b.
The curves all start froms ) -4.0 b and a Jacobi mass-scaled
RH value of 6.2598 b in the OH asymptotic region. Again, the
GLDP and RMOS barriers are similar, and the LEPS one is
wider. However, the LEPS barrier is now higher than the other
two. The exchange saddle point properties are given in Table
11. The GLDP barrier height is 1.626 eV. The RMOS barrier
height of 1.597 eV is slightly smaller. The LEPS barrier, which
was corrected from its original low value by Schatz,6 is 1.67
eV. The relative position of the saddle points can be seen in
Figure 7b. The RMOS and GLDP exchange saddle points are
very close, and the LEPS saddlepoint is 0.2 b shorter in the
mass-scaled JacobiRH.

The3A′ minimum-energy paths are given in Figure 6c,d. The
two surfaces,3A′ and 3A′′, are degenerate for collinear
configurations. This property is displayed by the ab initio data.
However, the fitting methods used are global methods and as
such may produce small differences in the collinear configu-
ration energies. The GLDP abstraction path has a well after the
barrier along the exit channel that is 0.1 kcal/mol deeper than
the3A′′ GLDP well. These minor differences are however less
than the rms error of the surfaces. The distance along the paths
in Figure 6(c) are set equal to-6.0 b for a Jacobi mass-scaled
RO ) 10.258 b. The saddle-point positions are compared in
Figure 7c. The RMOS and GLDP abstraction saddle points are
close to each other, with the order switched from the3A′′
ordering. The LEPS saddle point is closer to them than it was
for the3A′′ abstraction saddle point. As shown in Table 10, the
3A′ barrier heights are 0.2 kcal/mol higher than the correspond-
ing 3A′′ ones. This is another consequence of the fitting error.
The exchange3A′ MEP barrier of Figure 6d agrees better with
the LEPS one than did the3A′′ barrier, the LEPS being however
wider as was also the case when compared to the3A′′ one. The
distance along the MEPs are set equal to-4.0 b atRH ) 6.2478
b for the three curves, and the barriers are better aligned than
for the3A′′ surface. The saddle-point positions are switched as
in the abstraction case. Figure 7d shows that the RMOS and
GLDP saddle points are close to each other, with the RMOS
one occurring at a slightly largerRH. The LEPS saddle point is
located at aRH that is 0.2 b smaller. The3A′ barrier heights, as
shown in Table 11, are smaller than the corresponding3A′′ ones.

Figure 8 displays equipotential contours for the high-accuracy
GLDP surface in mass-scaled Jacobi coordinates, along with
contours of the differences between the RMOS and LEPS
energies. The3A′′ abstraction collinear configurations are
displayed in panels (a-c). It is obvious that more of the
accessible regions for reaction are in agreement with the RMOS

TABLE 10: Abstraction Saddle-Point Propertiesa

3A′′ 3A′
GLDP RMOS LEPS GLDP RMOS

R′OH (b) 2.3004 2.3502 2.113 2.3096 2.2425
R′HH (b) 1.7058 1.6352 1.801 1.7050 1.6693
E (kcal/mol) 13.04 13.26 12.49 13.22 13.44
E (eV) 0.565 0.575 0.542 0.573 0.583

a TheR′OH andR′HH represent non-mass-scaled internuclear distances.

TABLE 11: Exchange Saddle-Point Propertiesa

3A′′ 3A′
GLDP RMOS LEPS GLDP RMOS

R′OH ) R′OH′ (b) 2.2554 2.2458 2.103 2.2402 2.2273
E (kcal/mol) 44.41 36.83 38.5 36.80 36.67
E (eV) 1.626 1.597 1.67 1.596 1.590

a The R′OH and R′OH′ represent non-mass-scaled internuclear
distances.
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Figure 9. Comparison of the3A′′ and3A′ GLDP PESs at different bond angles. Equipotential contours of the3A′′ GLDP high-accuracy surface (panels a-d) and the3A′ GLDP high-accuracy surface (panels
e-h) are given for fixed bond anglesøH andøO of 90° and 180°.
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than with the LEPS surface. Contours for the3A′′ exchange
collinear configuration are depicted in panels (d-f). Again the
RMOS surface agrees with the GLDP one to a greater extent
than does the LEPS PES, and nearly all of the regions below 2
eV of the first two differ by less than 0.5 kcal/mol. The3A′
surfaces, for the abstraction collinear configuration (Figure 8g-
i) and the exchange collinear configuration (Figure 8j-l), are
nearly identical to those for the3A′′ surfaces, suggesting that
the two fitting methods used yield similar differences between
the 3A′′ and3A′ surfaces.

Figure 9 displays contours for the GLDP surface for fixed
values of the bond anglesøH andøO equal to 180° and 90°. For
the constantøH plots, panels a and b for3A′′ and e and f for
3A′, show no noticeable differences for a givenøH. The øO )
90° contours, given in panels c and g, show major differences.
The 3A′ PES has a barrier to reaction in excess of 3.5 eV at
this angle, whereas the3A′′ barrier is slightly larger than 1.5
eV, nearly a 2 eVdifference. TheøO ) 180° plots d and h are
again similar. This is another degenerate collinear configuration
for the 3A′′ and3A′ states. The contours displayed in Figure 9
do not sample the crossover region from OHH configurations
to HOH configurations, and as a result the wiggles apparent in
Figures 4 and 5 for the GLDP PES are now absent.

Overall, the GLDP fit and RMOS fit to the ab initio data are
very similar. The GLDP has a higher fitting accuracy although
the RMOS displays a more physical behavior. There were no
unphysical features that had to be removed from the RMOS
surface, whereas in the GLDP fit many unphysical wells had
to be eliminated.

4. Summary

We have calculated and fitted potential energy surfaces for
the lowest3A′ and lowest3A′′ electronic states of OH2. These
PESs have chemical accuracy (about 0.3 kcal/mol), are devoid
of apparent unphysical features, and should yield accurate cross
sections when used in accurate quantum reactive scattering
calculations. The determination of these PESs benefited by an
iterative approach between ab initio calculations and surface
fittings. By fitting an initial set of data, followed by further ab
initio calculations for additional geometries, and refitting, we
were able to achieve a better fitting accuracy with fewer data
than would otherwise be possible. The elimination of unphysical
features caused by the form of the fitting function was
accomplished by the introduction of virtual points and localized
Gaussians. These are invaluable fitting tools. A full listing of
the regular-accuracy ab initio data, the 112 high-accuracy ab
initio data, and their fits and the final GLDP3A′ and3A′′ fitted
surfaces are available upon request.

We have generated chemically accurate potential energy
surfaces using less computer resources than might otherwise
be necessary by performing high-accuracy ab initio calculations
on about 12% of the set of geometries for which regular
accuracy calculations were done and fitting the differences
between these calculations. This correction surface was used
to raise the regular-accuracy calculations to the high-accuracy
level. The two resulting surfaces, one for3A′ and one for3A′′,
are the best currently available.

It will be interesting to determine in future accurate scattering
calculations whether or not the different fitting methods used
result in different reaction cross sections.
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