Ab Initio Molecular Orbital Studies on the Chemiluminescence of 1,2-Dioxetanes

Chizuko Tanaka and Jiro Tanaka*
Department of Chemistry, Faculty of Science, Kanagawa University, Hiratsuka, 259-1293, Japan

Received: September 1, 1999; In Final Form: December 14, 1999

Abstract

The mechanism of chemiluminescence of 1,2-dioxetane (DO) and 3,3,4,4-tetramethyl-1,2-dioxetane (TMDO) are investigated by the ab initio molecular orbital calculation. The rate-determining step of the chemiluminescent reaction is the $\mathrm{O}-\mathrm{O}$ bond breaking to form the biradicals. The potential energies along the reaction path are calculated by uB3LYP and uB3P86 methods with $6-31+G(d)$; the calculated potential barriers are in reasonable agreement with experimental activation energies. An overview of the potential surfaces for overall reaction is obtained. The intersystem crossing mechanism from the singlet biradical to the triplet state is investigated, and the reaction path is followed to the ${ }^{3}\left(n \pi^{*}\right)$ excited states of the carbonyl group of respective fragment molecules. The mechanism of promotion to the ${ }^{1}\left(n \pi^{*}\right)$ excited state of formaldehyde is investigated by the MCSCF method on DO. The reaction rates and the yield of chemiluminescence are discussed by the RRKM theory of unimolecular reaction.

1. Introduction

Chemiluminescence of dioxetanes is a process in which chemical energy is converted to light due to breaking and making of bonds in the reaction. The change of the electronic structure during the reaction is particularly interesting from a view of producing an excited state through chemical reaction.

Dioxetanes are prototypes of chemiluminescent molecules. By heating they smoothly decompose into two carbonyl compounds, one of which has a good chance of being formed in an excited electronic state. A lot of papers have been published on the experimental and theoretical studies of chemiluminescence of 1,2-dioxetane (DO), ${ }^{1-3}$ and it is established that the emission from the triplet state is dominant. The biradical mechanism has been considered ${ }^{4-7}$ for the thermal decomposition of 1,2-dioxetane. On substituted dioxetanes and dioxetanones with easily oxidized groups, the electron or the charge transfer mechanism has been proposed to account for the high yields of the singlet excited state..8,9 Accordingly, the detailed analysis of the electronic structure of DO is important to understand the two different types of chemiluminescent processes. Recently, attention to chemiluminescence has been growing as more efficient chemiluminescent molecules have been synthesized. ${ }^{10-13}$

Theoretical studies have continued to elucidate the reaction path and the energetics of the dissociation process. In particular, Reguero, Bernardi, and Robb et al. ${ }^{14}$ found structures of transient species appearing in the dissociation reaction by the ab initio MCSCF calculation. Wilson and Halpern ${ }^{15}$ and Vasil' ${ }^{\text {ev }}{ }^{16}$ used a semi-empirical method to find the reaction path of decomposition of DO and confirmed the earlier work of Goddard et al. ${ }^{7}$ Yamaguchi et al. ${ }^{17}$ used the uMP2 method to calculate the energies of biradical states for the decomposition of DO.

A series of methyl-substituted dioxetanes were synthesized by Adam and Baader, ${ }^{18}$ and it was found that the stabilities and quantum yields of chemiluminescence were significantly affected by the methyl group substitution. Infrared lasers were used to investigate the dynamics of chemiluminescence of 3,3,4,4-tetramethyl-1,2-dioxetane (TMDO); a short-lived X-
emission band was found, but its origin has not yet been clarified. ${ }^{19-21}$
Recently, the accuracy and utility of the ab initio MO calculation have been improved by the introduction of the DFT method. ${ }^{22-24}$ We used Becke's three-parameter hybrid method to calculate the optimized structures and energies of transient species in thermal decomposition of DO and TMDO. We also used the MCSCF method ${ }^{14}$ to study the mechanism of the singlet excited $\left(\mathrm{S}_{1}\right)$ state being formed. The intersystem crossing mechanism is also investigated. The reaction rates of the thermal dissociation and the yield of chemiluminescence are discussed by the RRKM theory.

2. Methods

All calculations were performed with the Gaussian 94 and 98 programs. ${ }^{24}$ The main part of the calculations includes the geometry optimizations, vibrational frequencies, and intrinsic reaction coordinate (IRC) calculations for the structures on the reaction path. The optimized geometries were characterized with the use of their vibrational frequencies.

Becke's three-parameter hybrid method (uB3LYP) ${ }^{22}$ with the basis functions $6-31+G(d)$ was used for the species either in the ground state $\left(\mathrm{S}_{0}\right)$ and the triplet state $\left(\mathrm{T}_{1}\right)$. We also used the uB3P86/6-31+G(d) ${ }^{23}$ to confirm the energies of several important species. To produce the unrestricted guess orbitals for the S_{0} state, the HOMO and the LUMO were mixed so as to destroy spatial symmetries in $\alpha-\beta$ spin orbitals. The following reaction path was performed with the IRC program using mass-weighted internal coordinates with a step size of 0.1 bohr $(\mathrm{amu})^{1 / 2}$ unit. The MCSCF was used to find the $\mathrm{S}_{0} / \mathrm{T}_{1}$ and the $\mathrm{S}_{0} / \mathrm{S}_{1}$ intersections, to calculate the energies of spin-orbit coupling, and to calculate IRC curves for the $\mathrm{S}_{0}, \mathrm{~T}_{1}$, and S_{1} states.
The accuracy of the B3LYP and B3P86 methods compared to G2 theory has been discussed for many molecules. ${ }^{22,25,26}$ Politzer and Seminario ${ }^{27}$ have calculated the bond dissociation energies of $\mathrm{H}_{3} \mathrm{C}-\mathrm{NO}_{2}, \mathrm{H}_{3} \mathrm{C}-\mathrm{OH}$, and $\mathrm{H}_{3} \mathrm{C}-\mathrm{CN}$ by several hybrid DFT methods with different basis sets. Most of the calculated results are in reasonable agreement with the experiment (within $4 \mathrm{kcal} / \mathrm{mol}$). These calculations are carried out by

TABLE 1: Yield of Chemiexcitation of 3,3,4,4-Tetramethyl-1,2-Dioxetane and 1,2-Dioxetane ${ }^{18}$

compounds	triplet	singlet
3,3,4,4-tetramethyl-1,2-dioxetane	0.35	2.5×10^{-3}
1,2-dioxetane		
din a	0.0024	3.1×10^{-6}

${ }^{a}$ The values for 1,2-dioxetane may suffer some error because they were estimated by fluorescence of 9,10-dibromoanthracene (DBA) through energy transfer from the T_{1} of formaldehyde to the T_{2} of DBA, which may not be 100% efficient because the T_{2} state is higher by 2 $\mathrm{kcal} / \mathrm{mol}$ than the T_{1} state. We thank referees for commenting on this point.
finding energy differences between the reactants and the products. On the other hand, energy changes in the same molecule-for example, rotational barriers-are calculated with much better accuracy (within less than $0.5 \mathrm{kcal} / \mathrm{mol}$) because little change in molecular and electronic structure is concerned.

The calculations were carried out mainly with the computers at Kanagawa University (Hiratsuka campus) and partly in the computation center of the Institute for Molecular Science (IMS) in Okazaki.

3. Summary of Experimental Results

Experimental features on thermolysis, energetics, and yields of chemiexcitation are summarized as follows. ${ }^{3,4,18,19,20,21}$

1. Methylsubstituted 1,2-dioxetanes need thermal energy to form the activated complex; the activation enthalpies are 22 $\mathrm{kcal} / \mathrm{mol}$ for DO and $25 \sim 27 \mathrm{kcal} / \mathrm{mol}$ for methylsubstituted DOs, depending on the number of methyl groups.
2. The activated complex dissociates to the triplet or the singlet excited fragments and ground state of formaldehyde, acetaldehyde, or acetone.
3. The $\mathrm{S}_{1} n \pi^{*}$ excited state of acetone was estimated at 85 $\mathrm{kcal} / \mathrm{mol}$ and the $\mathrm{T}_{1} n \pi^{*}$ state at $80 \mathrm{kcal} / \mathrm{mol}$. The values for formaldehyde are $80 \mathrm{kcal} / \mathrm{mol}$ and $72 \mathrm{kcal} / \mathrm{mol}$ for the S_{1} and the T_{1} states, respectively. Taking the sum of thermochemical data on the heat of reaction and the activation enthalpies, the energy of the activated complex of DO is estimated as $74 \sim 77$ $\mathrm{kcal} / \mathrm{mol}$; this is not sufficient to excite for the S_{1} state. The activated complex of TMDO has $94 \mathrm{kcal} / \mathrm{mol}$, which is sufficient for the T_{1} and the S_{1} excitation of acetone.
4. The triplet excitation yields are two orders of magnitude larger than those of the singlet state in both DO and TMDO. The triplet yield of TMDO is 0.35 , while the value for DO is smaller by two orders of magnitude (Table 1).
5. By the infrared laser excitation to the overtones of the $\mathrm{C}-\mathrm{H}$ vibration of TMDO, the chemiluminescence starts by the rate which depends on the energy of the excitation. Immediately after the excitation, a blue-shifted emission (X band) was found before the triplet emission of acetone became apparent. The

Tetramethyl 1,2-dioxetane
Figure 1. Perspective of 1,2-dioxetane and 3,3,4,4-tetramethyl-1,2dioxetane molecules.
origin of the X band has not yet been assigned. These characteristics will be discussed in the following section.

4. Results and Discussion

4.1. (a) Stable Structures of DO and TMDO. The optimized geometries of the stable conformation (A) of DO and TMDO are shown in Figure 1. The geometrical parameters of the DO ring are listed in Table 2, with the data of two DO derivatives by the X-ray crystal structural analysis. ${ }^{28,29}$ The agreement between the calculated and the experimental values is satisfactory. The $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond lengths show the effect of bulky substituent groups; the dihedral angles show the same effect, except in DMTOH, where the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond of the DO ring is shared by the tetrahydrofuran ring. The square rings of DO and TMDO at point A are not planar; consequently, they have their antipodes. The transition state between them (denoted 0 in Table 3) has a planar ring, where the barrier heights are only 0.09 and $0.69 \mathrm{kcal} / \mathrm{mol}$ for DO and TMDO, respectively.

To clarify the electronic process of producing the excited state by the bond rupture, the changes of MOs during the reaction are illustrated in Figure 2, where the coordinate axis is the same as in Scheme 1. In state (A), the HOMO (No. 16) and the next HOMO (No. 15) comprise the nonbonding orbitals, the $\mathrm{O}_{3} 2$ py and the $\mathrm{O}_{4} 2 \mathrm{py}$, which are antisymmetrically combined in the 16th MO and symmetrically combined in the 15 th MO. The 11th and the 14th MOs constitute the σ bonding orbitals of the $\mathrm{C}_{1}-\mathrm{C}_{2}$ and the $\mathrm{O}_{3}-\mathrm{O}_{4}$ bonds, which are described by the $\mathrm{O}_{4}-$ $2 \mathrm{pz}-\mathrm{O}_{3} 2 \mathrm{pz}$ and the $\mathrm{C}_{1} 2 \mathrm{pz}-\mathrm{C}_{2} 2 \mathrm{pz}$ orbitals. The 17 th MO is the $\mathrm{O}_{3}-\mathrm{O}_{4}$ antibonding orbital, $\mathrm{O}_{3} 2 \mathrm{pz}+\mathrm{O}_{4} 2 \mathrm{pz}$, which is unoccupied in state A. If DO is decomposed concertedly from A, keeping the symmetry of MOs, the two formaldehyde molecules produced are in the $\pi-\pi^{*}$ excited states; this is not allowed energetically, as has been discussed by WoodwardHoffman's rule.

TABLE 2: Bond Lengths and Angles in the 1,2-Dioxetane ring

compounds	optimized geometries				X-ray analysis	
	DO		TMDO			
	$\overline{B 3 L Y P}^{c}$	B3P86 ${ }^{\text {c }}$	$\overline{B 3 L Y P}^{c}$	B3P86 ${ }^{\text {c }}$	AADO^{a}	DMTOH $^{\text {b }}$
$\mathrm{r}(\mathrm{C} 1-\mathrm{C} 2)$ A	1.521	1.515	1.558	1.549	1.549	1.584
$\mathrm{r}(\mathrm{C} 1-\mathrm{O} 3)$ A	1.455	1.445	1.471	1.461	1.476	1.485
$\mathrm{r}(\mathrm{C} 2-\mathrm{O} 4) \AA$	1.455	1.445	1.471	1.461	1.474	1.459
$\mathrm{r}(\mathrm{O} 3-\mathrm{O} 4) \AA$	1.492	1.476	1.488	1.473	1.491	1.497
$\angle \mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 3^{\circ}$	88.87	88.61	87.46	87.19	86.9	87.1
$\angle \mathrm{C} 1-\mathrm{C} 2-\mathrm{O}^{\circ}$	88.87	88.61	87.46	87.18	86.8	89.0
$\angle \mathrm{O} 4-\mathrm{C} 2-\mathrm{C} 1-03^{\circ}$	11.54	11.96	16.39	17.30	21.3	7.7

[^0] ${ }^{c}$ Basis set is $6-31+\mathrm{G}(\mathrm{d})$.

TABLE 3: Energies and Skeletal Part of Geometrical Parameters ${ }^{a}$ for Energy Minima and Transition States along the Reaction Path of Thermolysis of 1,2-Dioxetane into Two Formaldehyde Molecules in the Ground State (S_{0}): uB3LYP/6-31+G(D)//uB3LYP/6-31+G(D)
a. Ground State $\left(\mathrm{S}_{0}\right)$

species	ts 0	$\min \mathrm{A}$	ts B	$\mathrm{S}_{0} / \mathrm{T}_{1}$	min K1	ts G1	$\min \mathrm{K} 2$	ts D1	min F	ts P1	min K3	ts D2
total energy E												
Hartree (-228. +)	-0.933325	-0.933466	-0.901267	-0.903521	-0.922622	-0.922581	-0.922844	-0.922655	-1.021818	-0.921446	-0.924142	-0.923591
$\Delta E \mathrm{kcal} / \mathrm{mol}$	0.09	0.00	20.21	18.79	6.80	6.83	6.67	6.78	-55.44	7.54	5.85	6.20
zero-point energy Hartree (ZPE)	0.062001	0.062233	0.058540		0.055471	0.053892	0.056065	0.054533	0.055095	0.055411	0.055889	0.054931
$\Delta(E+$ ZPE) $\mathrm{kcal} / \mathrm{mol}$	-0.06	0.00	17.89		2.56	1.60	2.79	1.95	-59.92	3.26	1.87	1.61
$\mathrm{r}(\mathrm{C} 1-\mathrm{C} 2)$ Å	1.523	1.521	1.519	1.522	1.540	1.534	1.545	1.581	3.685	1.550	1.546	1.600
$\mathrm{r}(\mathrm{C} 1-\mathrm{O} 3) \AA$	1.455	1.455	1.427	1.411	1.367	1.370	1.366	1.354	1.213	1.365	1.365	1.348
$\mathrm{r}(\mathrm{C} 2-\mathrm{O} 4) \AA$	1.455	1.455	1.427	1.411	1.367	1.370	1.366	1.354	1.213	1.365	1.365	1.348
$\mathrm{r}(\mathrm{O} 3-\mathrm{O} 4) \AA$	1.491	1.492	1.996	2.145	3.028	3.073	3.137	3.086	3.513	3.477	3.647	3.598
$\angle \mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 3$	89.37	88.87	97.17	100.12	114.94	114.97	114.14	112.24	66.53	115.11	114.22	111.17
$\angle \mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 4$	89.37	88.87	97.17	100.12	114.94	114.96	114.13	112.24	66.53	115.10	114.22	111.17
$\angle \mathrm{O} 4-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 3$	0.00	-11.54	-28.04	-30.42	-67.96	-73.11	-83.42	-82.59	-180.00	-123.74	-179.92	-180.00
b. Triplet $\left(\mathrm{T}_{1}\right)$ Energies for the Same Geometries with Those of Energy Minima and Transition States in Singlet Ground State (S_{0})												
species ts 0	min A	ts B	$\mathrm{S}_{0} / \mathrm{T}$		K1	ts G1	min K2	ts D1	min F	ts P1	min K3	ts D2
total energy E												
Hartree (-228. +)	-0.827337	-0.89753	$1-0.903$	$428-0.9$	$22913-0$	0.922449	-0.923651	-0.923278		-0.922013	-0.924680	-0.923714
$\Delta E \mathrm{kcal} / \mathrm{mol}$	66.60	22.55	18.85	6.6		6.91	6.16	6.39		7.19	5.51	6.12

${ }^{a}$ The unit of angle is degree.
routes, respectively. Potential
values to point A, except as otherwise stated. reaction paspectively. Potential energies are given in relative in Tables 3 and 4. Figures 3 and 4 show the results of the
reaction path obtained by the IRC for the gauche and trans optimized geometrical parameters for these points are shown optimized geometries to the $\mathrm{O}_{3}-\mathrm{C}_{1}-\mathrm{C}_{2}$ plane. White circles
refer to O atoms. The total energies, zero-point energies, and are illustrated in Scheme 1; the drawings are projections of
optimized geometries to the $\mathrm{O}_{3}-\mathrm{C}_{1}-\mathrm{C}_{2}$ plane. White circles states of the S_{0} and the T_{1} states found along the reaction path (b) Thermal Decomposition of DO in the $\mathbf{S}_{\mathbf{0}}$ State. DO
thermally decomposes easily. The energy minima and transition oxygen atoms. Thermolytic process is shown on the right and the
chemiluminescent process is on the left. The symbols for the potential
maxima are underlined.

 The bottom four rows are MOs (17-14) of the T_{1} state. The symbols
of states are the same as those of Scheme 1 and Tables 3-4. Figure 2. Change of molecular orbitals of 1,2 -dioxetane along the
reaction path. The top three rows are MOs $(16-14)$ of the S_{0} state.

TABLE 4: Energies and Skeletal Part of Geometrical Parameters ${ }^{a}$ for Energy Minima and Transition States along the Reaction Path of Thermolysis of 1,2-Dioxetane into Two Formaldehyde Molecules in the Triplet State $\left(T_{1}\right)$: uB3LYP/6-31+G(d) $/ / \mathbf{u B 3 L Y P} / 6-31+G(d)$
${ }^{a}$ The unit of angle is degree.

Figure 3. Potential energy curves of the decomposition of 1,2dioxetane to two formaldehyde molecules through gauche route. The solid line is the IRC curve of the S_{0} state and the broken line is the IRC curve of the T_{1} state. Circles are calculated values of the T_{1} state with the geometries of the S_{0} state on the IRC. The insets are details of the potential energy curves; the top right shows the T_{1} surface is below the S_{0} surface. The bottom left shows the T_{1} surface intersects with the S_{0} surface and is below the S_{0} surface after the intersection. The bottom right illustrates the symbols of states shown in Scheme 1 and Tables 3-4.

Figure 4. Potential energy curves of the decomposition of 1,2dioxetane to two formaldehyde molecules through the trans route. The thick solid line is for the S_{0} state and the broken line is for the T_{1} state. Circles show the calculated energies of the T_{1} state with the geometries of the S_{0} state. The upper inset illustrates the T_{1} surface is below the S_{1} surface in the biradical region. The lower inset shows symbols of states shown in Scheme 1 and Tables 3-4.

As shown in these figures, the highest energy point on the reaction path is B; accordingly, the process $A \rightarrow B$ is the ratedetermining step. The geometry of B is characterized by the dihedral angle τ, $\tau=\angle \mathrm{O}_{4}-\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{O}_{3}, 28^{\circ}$, and the $\mathrm{O}_{3}-\mathrm{O}_{4}$ distance of $2.00 \AA$. The potential barrier is $20.2 \mathrm{kcal} / \mathrm{mol}$ by the uB3LYP/6-31+G*. Slightly larger values are obtained by the $\mathrm{uB} 3 \mathrm{P} 86 / 6-31+\mathrm{G}^{*}$ and the $\operatorname{CCSD}(\mathrm{T}) / 6-31 \mathrm{G}^{*}$, as shown in

TABLE 5: Activation Energies for the $\mathbf{O}-\mathbf{O}$ Bond Breaking; Total Energies, E_{A} and E_{B}, of the Initial and Transition States

	$E_{\mathrm{A}}($ Hartree $)$	$E_{\mathrm{B}}($ Hartree $)$	$\Delta E^{a}(\mathrm{kcal} / \mathrm{mol})$	$\Delta(E+\mathrm{ZPE})^{b}(\mathrm{kcal} / \mathrm{mol})$	$\mathrm{exptl}(\mathrm{kcal} / \mathrm{mol})$
DO					
uB3LYP c	-228.933466	-228.901267	20.2	17.9	
uB3P86 d	-229.502016	-229.465299	23.0	20.7	
uCCSD $^{\text {(T) }}$	-228.298562	-228.263844	21.8	19.5	18.9^{3}
TMDO				22.7^{18}	
uB3LYP c	-386.217914	-386.181234	23.0	21.5^{4}	24.9^{3}
uB3P86 d	-387.373961	-387.332837	25.8	23.8	27.8^{18}
24.7^{4}					

${ }^{a}$ The energy difference between the initial state A and the transition state B. ${ }^{b}$ The energy difference including the zero point correction (ZPE) calculated with method c. The scale factor is $1.0 .{ }^{c}$ uB3LYP/6-31+G(d)//uB3LYP/6-31+G(d). ${ }^{d}$ uB3P86/6-31+G(d)//uB3P86/6-31+G(d). ${ }^{e} u C C S D(T) /$ 6-31G(d)//uB3LYP/6-31+G(d).

Figure 5. Change of atomic spin densities along the reaction coordinates. In the singlet biradical region, $\mathrm{B}-\mathrm{D}_{1}$ (gauche), the positive and negative spin densities are found on O_{3} and O_{4}, respectively. After the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond breaking through the point Q_{1}, the triplet spin state appears on the C_{2} and the O_{4} atoms. The trans route shows similar changes of atomic spin densities.

Table 5. The agreement with experimental activation energies is satisfactory, and further discussion will be given in the last section.

The transition state (B) is a biradical whose total atomic spin densities on the O_{3} and the O_{4} atoms are 0.78 and -0.78 , respectively (Figure 5). We will explain the electron configuration of the biradical with the MOs shown in Figure 2. By elongating the $\mathrm{O}_{3}-\mathrm{O}_{4}$ bond, the antibonding σ^{*} orbital, $\mathrm{O}_{3} 2 \mathrm{pz}$ $+\mathrm{O}_{4} 2 \mathrm{pz}$, is mixed with the σ bonding orbital (the 14th MO of A) to give localized spin orbitals on the O_{3} and the O_{4} atoms, respectively. Moreover, the nonbonding orbitals (the 16 th and 15th MOs of A) are combined to give localized spin orbitals on the $\mathrm{O}_{3} 2$ py and the $\mathrm{O}_{4} 2$ py orbitals, respectively. By combination of these localized orbitals, the 14th MOs of B are produced as

$$
\begin{gather*}
0.33 \mathrm{O}_{3} 2 \mathrm{py}-0.39 \mathrm{O}_{3} 2 \mathrm{pz} \tag{1}\\
0.39 \mathrm{O}_{4} 2 \mathrm{pz}-0.26 \mathrm{O}_{4} 2 \mathrm{py}-0.20 \mathrm{O}_{4} 2 \mathrm{px} \tag{2}
\end{gather*}
$$

for the α - and the β-spin orbitals, respectively. Here the coefficients for the C_{1} and the C_{2} atomic orbitals (AO) are omitted for brevity. The 16th and 15 th MOs are less polarized; accordingly, the origin of the biradical in the transition state B is attributed to the 14th MOs (1 and 2), which are the mixed σ and nonbonding orbitals.

Along the reaction path B to K_{1}, the energy of the singlet biradical decreases as the torsional angle $\tau, \tau=\angle \mathrm{O}_{4}-\mathrm{C}_{2}-$ $\mathrm{C}_{1}-\mathrm{O}_{3}$ increases from 28° to 68° (Table 3). A more detailed inspection of the potential energy curve is shown in the inset of Figure 3. The first minimum point along the flat potential is found at K_{1}, a small barrier was found at G_{1}, and the second minimum is found at K_{2}. The point G_{1} is the transition state between the points K_{1} and K_{2}. The reactant keeps the biradical spin states on the reaction path $B \rightarrow D_{1}$ as shown in Figure 5.

At the points A and B , two nonbonding orbitals are doubly occupied. At the point G_{1}, one of the nonbonding orbitals is vacant and a couple of electrons are moved to the σ^{*} orbitals (15 th MO). The σ orbital (14 th MO) of A is going to the π or π^{*} orbitals of the formaldehyde molecule after the dissociation; accordingly, we will call the σ orbital a π or π^{*} orbital hereafter. The 14th spin orbitals of G_{1} are the nonbonding orbitals of the O_{3} and the O_{4}, which are completely polarized (Figure 2). The 16th spin orbitals are π^{*} type on both the $\mathrm{C}_{1}-\mathrm{O}_{3}$ and $\mathrm{C}_{2}-\mathrm{O}_{4}$ bonds and are partly polarized. By filling the 16th and the 14th MOs of G_{1}, the electron configuration leading to the $n \pi^{*}$ excited states of formaldehyde is appearing on both sides of DO. If the $\mathrm{C}_{1}-\mathrm{C}_{2}$ breaking proceeds keeping the electron configuration, two formaldehyde molecules will be formed in the $n \pi^{*}$ excited state. The 15 th MOs of G_{1} (σ^{*} type mentioned above) are regarded as the $\pi(\mathrm{C}-\mathrm{O})$ type partly polarized on both of the $\mathrm{C}-\mathrm{O}$ bonds. Inspection of these MOs show that chemogenesis of the $n \pi^{*}$ excited states $\left(\mathrm{S}_{1}\right)$ is emerging on both of the $\mathrm{C}-\mathrm{O}$ bonds, because two of four nonbonding electrons in A and B are brought to the π^{*} orbitals (the 16th MOs). Actually, DO on the point G_{1} decays to the ground state unless enough energy is given; however, it has a chance of being raised to the S_{1} state if the energy is supplied through this passage. The main route of deactivation is $\mathrm{G}_{1} \rightarrow \mathrm{~K}_{2} \rightarrow \mathrm{D}_{1} \rightarrow \mathrm{~F}$; the molecule loses the energy by radiationless transition and dissociates to two formaldehyde molecules.

At the point D_{1}, the nonbonding orbitals $\left(\mathrm{O}_{3} 2 \mathrm{py}\right.$ and $\left.\mathrm{O}_{4} 2 \mathrm{px}\right)$ mix with the π orbitals; this point is a junction to the S_{1} and the S_{0} state. Two formaldehyde molecules in the ground state (F) are formed by the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond breaking, unless more energy is supplied at the point D_{1}.

The trans isomer of the singlet biradical $\left(\mathrm{K}_{3}\right)$ is obtained by internal rotation from the point K_{2} through the potential barrier of $0.87 \mathrm{kcal} / \mathrm{mol}$ at the point P_{1}, as shown in Scheme 1 and in the inset of Figure 4. Because the barrier height is too low, the trans form will be easily formed and dissociate exothermally through the minimum $\left(\mathrm{K}_{3}\right)$ and the edge $\left(\mathrm{D}_{2}\right)$ to two formaldehyde molecules in the ground state (F).

Small energy barriers are found on the potential surfaces of the biradical. To confirm the accuracy of calculation, we have calculated energies of these points by the uB3P86 method, as shown in Table 6. Taking an origin of energy at the minimum K_{1} in the S_{0} surface, both methods give almost the same energy

TABLE 6: Comparison of Calculated Energies for Energy Minima and Transition States on the Reaction Path of Thermolysis of 1,2-Dioxetane into Two Formaldehyde Molecules using UB3P86/6-31 $+\mathrm{G}(\mathrm{D}) / / \mathrm{UB} 3 P 86 / 6-31+\mathrm{G}(\mathrm{D})$ and UB3LYP/6-31 + G(D)//UB3LYP/6-31 + G(D)

${ }^{a} \Delta E$ is the relative value with reference to energy of $\mathrm{K} 1 . \Delta E=E-E(\mathrm{~K} 1) .{ }^{b}$ The total energies E calculated by the UB3LYP method are listed in Table 3.
values at $G_{1}, K_{2}, D_{1}, J_{1}, H_{1}$, and J_{2}. However, at the initial state A or the transition state Q_{2}, energy values given by B3P86 are different from those given by B3LYP by 2 to $3 \mathrm{kcal} / \mathrm{mol}$ because the molecular structures in A and Q_{2} are very different from those of biradical states.

In the final conformation F , two formaldehyde molecules are in an antiparallel arrangement on the same plane, which is stabilized by dipole-dipole interaction and hydrogen bonding between the hydrogen atoms of the $\mathrm{C}-\mathrm{H}$ bonds and the O atoms of the carbonyl groups, as shown in Scheme 1.
(c) Chemiluminescence of DO. Chemiluminescence appears from either the triplet $\left(\mathrm{T}_{1}\right)$ or the singlet $\left(\mathrm{S}_{1}\right)$ excited states. The potential energy curves of the T_{1} states are calculated from the saddle points Q_{1} or Q_{2} to the energy minimum points on both sides by the IRC program. In the region between the point B and the point G_{1}, the potential energies of the T_{1} state are calculated with the same geometries of the S_{0} state along the IRC curve, as shown in Figures 3 and 4. The S_{0} and T_{1} intersection is found near the point B . After the intersection, the T_{1} curve is below the S_{0} curve, as shown in the inset of Figure 3.

To find the process of formation of the T_{1} state, we examine the MOs of the $\mathrm{S}_{0} / \mathrm{T}_{1}$ intersection point on the IRC curve, because the change of the spin state must be correlated with the changes in the electronic configuration and MOs. In the S_{0} state at the intersection, the character of MOs is almost the same as that of B ; therefore, we compare the MOs of B in the S_{0} state and those of S_{0} / T_{1} in the T_{1} state (Figure 2) to find the orbital changed. We find that the 14 th β spin MO of B (formula 2) is transformed to the 15 th α spin MO of T_{1}, which is given by

$$
\begin{array}{r}
0.29 \mathrm{O}_{3}(2 \mathrm{py})-0.26 \mathrm{O}_{4}(2 \mathrm{py})+0.20 \mathrm{O}_{4}(2 \mathrm{pz})- \\
0.11 \mathrm{O}_{4}(2 \mathrm{px}) \tag{3}
\end{array}
$$

This transition is associated with the orbital angular momentum changes at the O_{4} orbitals associated with the transitions between the $2 \mathrm{py} \rightarrow 2 \mathrm{pz}$, the $2 \mathrm{pz} \rightarrow 2 \mathrm{px}$, and the $2 \mathrm{px} \rightarrow 2 \mathrm{py}$.

To transfer the S_{0} to the T_{1} state, the matrix element V of the spin-orbit (SO) coupling, or LS coupling, is important. It is now obvious that the matrix elements $<2 p y\left|L_{x}\right| 2 p z>$, $<2 p z\left|L_{y}\right| 2 p x>$, and $<2 p x\left|L_{z}\right| 2 p y>$ are significant because of the presence of the AO coefficients of 2px, 2py, and 2pz at the O_{4} in the 14 th $\beta \mathrm{MO}$ of B in the S_{0} state and the 15 th $\alpha \mathrm{MO}$ of $\mathrm{S}_{0} / \mathrm{T}_{1}$ in the T_{1} state (formulas 2 and 3). The SO coupling energies were calculated with the conformation of the intersec-
tion $\left(\mathrm{S}_{0} / \mathrm{T}_{1}\right)$ by the Gaussian CASSCF program; the energy is estimated to be as large as $1 \mathrm{~cm}^{-1}$. This value is big enough to avoid crossing. Moreover, the geometry of the molecule is the same for the S_{0} and the T_{1} states at the S_{0} / T_{1} intersection; accordingly, the one-dimensional Landau-Zener formula is applicable.

Nakamura and Zhu ${ }^{30}$ presented a rigorous and approximate Landau-Zener ${ }^{31,32}$ formula of the transition probability p. The approximate formula is as follows:

$$
\begin{gather*}
p=\exp \left[-\frac{2 \pi V^{2}}{\hbar v\left|F_{1}-F_{2}\right|}\right]=\exp \left[-\frac{\pi}{4 \sqrt{\alpha \beta}}\right] \tag{4}\\
\alpha=\frac{\hbar^{2} \sqrt{\left|F_{1}-F_{2}\right|}\left(F_{1}-F_{2}\right)}{\left(16 m V^{3}\right)} \tag{5}\\
\beta=\frac{\left(E-E_{\mathrm{x}}\right)\left(F_{1}-F_{2}\right)}{2 \sqrt{\left|F_{1}-F_{2}\right| V}} \tag{6}
\end{gather*}
$$

where F_{1} and F_{2} are the slopes of two potential curves near the crossing point, E_{x} is the energy of the crossing point, and m is the reduced mass in the reaction coordinate. This formula is useful when the signs of slopes, F_{1} and F_{2}, are the same. By estimating these values from Figure 3, and when E is taken close to E_{x}, the p value at the crossing point is found to be zero. This means that the singlet $\left(\mathrm{S}_{0}\right)$ to the triplet $\left(\mathrm{T}_{1}\right)$ intersystem crossing occurs completely at the crossing point.

After crossing, the T_{1} and the S_{0} curves are almost parallel, and the energies of the T_{1} state are always less than the S_{0} state, as shown in Figures 3 and 4 and Tables 3 and 4. The overview of potential surfaces is shown in Figures 6 and 7. The two potential curves coincide at the points G_{1} and H_{1}, and the geometry of H_{1} is exactly the same as that of point G_{1} (Tables 3 and 4).

In this region where potential surfaces contact, the energy difference between the S_{0} and the T_{1} states is of the same order of magnitude as the thermal energy, $k_{B} T$; accordingly, the $\mathrm{T}_{1} /$ S_{0} conversion occurs frequently, and the T_{1} and S_{0} states may coexist. The MOs at the point H_{1} show that the 14th and the 15th α-spin MOs are symmetric and antisymmetric combinations, respectively, of the nonbonding orbitals of the $\mathrm{O}_{3} 2$ py and the $\mathrm{O}_{4} 2 \mathrm{px}$ orbitals (Figure 2). These orbitals are occupied by the α spin electrons giving the triplet state. In the G_{1} state the nonbonding orbitals, the $\mathrm{O}_{3} 2 \mathrm{py}$ and the $\mathrm{O}_{4} 2 \mathrm{px}$, are not coupled

Figure 6. (a) The potential energy of the S_{0} and the T_{1} states of 1,2dioxetane vs the bond distances of the $\mathrm{C}_{1}-\mathrm{C}_{2}$ and $\mathrm{O}_{3}-\mathrm{O}_{4}$ bonds (units in \AA) along the gauche route. The projections of the potential curves on the $x y$ plane show that the $\mathrm{O}_{3}-\mathrm{O}_{4}$ bond breaking occurs first and the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond rupture occurs subsequently. (b) The potential energy curves of Figure 6a are shown by expanded scale of z axis to compare with those of MCSCF/6-31G(d) shown in Figure 11.

Figure 7. The potential energy of the S_{0} and the T_{1} states of 1,2dioxetane vs the bond distances of the $\mathrm{C}_{1}-\mathrm{C}_{2}$ and $\mathrm{O}_{3}-\mathrm{O}_{4}$ bonds (units in \AA) along the trans route. A small barrier P_{1} is the barrier of the internal rotation to the trans conformer in the S_{0} state. The projections of the potential curves, drawn on the $x y$ plane, show that the $\mathrm{O}_{3}-\mathrm{O}_{4}$ bond rupture precedes the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond rupture.
and are singly occupied with antiparallel spin electrons. Actually, the orbital energies of the 14th MOs of G_{1} and H_{1} are the same,
and the 15 th MO of H_{1} is only slightly $(0.06 \mathrm{eV})$ higher; this means that these four orbitals are almost degenerate at these points.

At the point H_{1}, the $\mathrm{O}_{4} 2 \mathrm{px}$ in the 14th $\alpha-\mathrm{MO}$ is not coupled with the $\mathrm{O}_{4} 2$ pz orbital. At the points J_{1} and J_{2}, the $\mathrm{O}_{4} 2 \mathrm{pz}$ mixes with the $\mathrm{O}_{4} 2 \mathrm{px}$ MO in the 14 th and 15 th β MOs, in phase $\left(\mathrm{J}_{2}\right)$ and out of phase $\left(\mathrm{J}_{1}\right)$. The change in the sign of the coefficients of mixed orbitals correlates to the change of the electronic structure. At the point J_{2}, the biradical becomes the precursor of the $n \pi^{*}$ excited state. The torsional angle increased by 20°, from 66° at J_{1} to 86° at J_{2} (Table 3). In the earlier studies on MOs of dioxetanes, such electron configurations with singly occupied nonbonding orbitals were mentioned by Turro and Devaquet. ${ }^{33}$

From the energy minimum point J_{2} to the saddle point Q_{1}, the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond length is increased from 1.555 to $2.286 \AA$. The MOs at Q_{1} (Figure 2) show that the left side of DO is going to the ground state of formaldehyde and the right side is forming the $n \pi^{*}\left(\mathrm{~T}_{1}\right)$ state of formaldehyde. The potential energy at Q_{1} is $9.07 \mathrm{kcal} / \mathrm{mol}$ higher relative to the J_{2} (Figure 3, inset). In the final conformation, Z , the formaldehyde molecule in the T_{1} state takes a nonplanar conformation (Scheme 1).

The overview of potential energy curves and their projections (Figures 6 and 7) shows that the $\mathrm{O}_{3}-\mathrm{O}_{4}$ bond breaking precedes the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond cleavage. These curves clearly indicate that the chemiluminescence occurs through the two steps of the bond rupture.

In the region where the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond begins to break near point D_{1}, the S_{0} and the T_{1} curves cross again; accordingly, the possibility of back transfer from $\mathrm{T}_{1} \rightarrow \mathrm{~S}_{0}$ is conceivable, although Turro and Devaquet ${ }^{33}$ disregarded it. Quantitative estimate of the portion of back transfer is a difficult problem; therefore, we used experimental chemiluminescence yield to estimate the nonradiative rate of deactivation through the S_{0} route in the last section.

The change of the spin population in the T_{1} state is illustrated in Figure 5, where the generation of the T_{1} state on one side of DO is clearly indicated. In the final minimum point Z , formaldehyde molecules in the S_{0} and the T_{1} states take face-to-face arrangement as shown in Scheme 1. The face-to-face arrangement of molecules indicates that a stacked structure is more stable; it implies that the triplet excimer is formed. In the ground state (F) the two formaldehyde molecules are bound by hydrogen bonding (Scheme 1). The yield of the T_{1} state of DO is only 0.0024 (Table 1). This point will be discussed in the last section.

The trans conformer of T_{1} is obtained by internal rotation from J_{2} through a low potential barrier at P_{2}. It dissociates after overriding the barrier of 8.73 kcal at Q_{2} to the T_{1} and the S_{0} fragments of formaldehyde molecules (Z). Because the association energy of Z is very small, they will easily decompose to the T_{1} and the S_{0} of formaldehyde molecules. A detail of the potential function is illustrated in the inset of Figure 4.

Comparing with the earlier MO calculation on the reaction path, we found that the semiempirical calculation of Wilson and Halpern ${ }^{15}$ is closest to our result. Parallel potential curves of the singlet and the triplet biradicals were confirmed in both calculations, thus ruling out an asymmetric triplet state far below the potential barrier proposed by Turro and Devaquet. ${ }^{33}$
(d) Reaction Pathway of TMDO. TMDO is more stable than DO, and the yield of chemiluminescence is much higher than DO. Accordingly, more experimental results are reported on TMDO than on DO. ${ }^{18,34-36}$ The energy minima and transition states of the S_{0} and the T_{1} states found along the reaction path

TABLE 7: Energies and Skeletal Part of Geometrical Parameters ${ }^{a}$ for Energy Minima and Transition States along the Reaction Path of Thermolysis of 3,3,4,4-Tetramethyl-1,2-dioxetane into Two Acetone Molecules in the Ground State (S_{0}); uB3LYP/6-31 + G(d) $/ / \mathbf{u B 3 L}$ YP/6-31 + G(d)

species	ts 0	min A	ts B	min K1	$\min \mathrm{K} 2$	ts D	F
total energy E							
Hartree (-386. +)	-0.216809	-0.217914	-0.181234	-0.192948	-0.194278	-0.193039	-0.337452
$\Delta E \mathrm{kcal} / \mathrm{mol}$	0.69	0.00	23.02	15.67	14.83	15.61	-75.01
zero-point energy Hartree (ZPE)	0.173537	0.173882	0.170881	0.169583	0.170100	0.168571	0.168705
$\Delta(E+$ ZPE) $\mathrm{kcal} / \mathrm{mol}$	0.48	0.00	21.13	12.97	12.46	12.28	-78.26
$\mathrm{r}(\mathrm{C} 1-\mathrm{C} 2) \AA$	1.563	1.558	1.561	1.584	1.601	1.627	3.526
$\mathrm{r}(\mathrm{C} 1-\mathrm{O} 3) \AA$	1.469	1.471	1.432	1.382	1.368	1.363	1.222
$\mathrm{r}(\mathrm{C} 2-\mathrm{O} 4) \AA$	1.469	1.471	1.432	1.382	1.368	1.370	1.222
$\mathrm{r}(\mathrm{C} 1-\mathrm{C} 5) \AA$	1.526	1.528	1.533	1.545	1.567	1.545	1.516
$\mathrm{r}(\mathrm{C} 2-\mathrm{C} 6) \AA$	1.526	1.528	1.533	1.545	1.567	1.555	1.516
$\mathrm{r}(\mathrm{C} 1-\mathrm{C} 7) \AA$	1.526	1.521	1.536	1.562	1.544	1.566	1.516
$\mathrm{r}(\mathrm{C} 2-\mathrm{C} 8) \AA$	1.526	1.521	1.536	1.562	1.544	1.542	1.516
$\mathrm{r}(\mathrm{O} 3-\mathrm{O} 4) \AA$	1.485	1.488	2.052	2.843	2.891	2.910	3.562
$\angle \mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 3$	88.48	87.46	96.62	109.13	110.23	111.37	70.62
$\angle \mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 4$	88.48	87.46	96.62	109.09	110.26	105.27	70.62
$\angle \mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$	117.58	115.53	114.42	112.50	108.95	111.23	96.79
$\angle \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$	117.58	115.57	114.38	112.51	108.96	109.69	101.83
$\angle \mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	117.58	119.59	116.82	113.13	113.69	110.50	101.83
$\angle \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 8$	117.58	119.57	116.82	113.19	113.62	113.42	96.79
$\angle \mathrm{O} 4-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 3$	0.00	-16.39	-32.50	-63.57	-64.24	-71.59	-180.00
$\angle \mathrm{C} 5-\mathrm{C} 1(\mathrm{C} 2)-\mathrm{O} 3$	111.88	110.18	115.19	121.36	112.54	123.36	121.13
$\angle \mathrm{C} 6-\mathrm{C} 2(\mathrm{C} 1)-\mathrm{O} 4$	111.88	110.16	115.19	121.33	112.52	113.73	119.60
$\angle \mathrm{C} 7-\mathrm{C} 1(\mathrm{C} 2)-\mathrm{O} 3$	-111.88	-112.54	-113.28	-114.32	-125.00	-114.49	-119.60
$\angle \mathrm{C} 8-\mathrm{C} 2(\mathrm{C} 1)-\mathrm{O} 4$	-111.88	-112.55	-113.26	-114.28	-125.10	-122.13	-121.13

${ }^{a} \angle \mathrm{p}-\mathrm{q}-(\mathrm{r})-\mathrm{s}$ represents the dihedral angle between the plane(p-q-r) and the plane(s-q-r). The unit of angle is degree.
are listed in Tables 7 and 8. The stable structure of TMDO is shown in Figure 1. The overview of the potential energy curve of the S_{0} state shown in Figure 8 is similar in shape to that for DO. The calculated dissociation energy is $23 \mathrm{kcal} / \mathrm{mole}$, which is larger than for DO, in agreement with experimental trend shown in Table 5. uB3P86 gives larger dissociation energies, in better agreement with the experimental activation energies (Table 5).

The most remarkable result of TMDO is that the barrier for the dissociation of the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond is almost zero. It implies that the T_{1} state is easily produced after the $\mathrm{O}_{3}-\mathrm{O}_{4}$ bond breaking, and that therefore a high quantum yield of chemiluminescence (Table 1) is reasonable. Because the total energy of two fragments, where one of acetone is in the triplet state (a $\left.+a^{*}\right)$, has lower energy than the energy at Q_{1}, the reaction from the biradical to the fragments is exothermic. Accordingly, the triplet state of acetone $\left(a^{*}\right)$ will be easily populated by thermal decomposition of the intermediate at Q_{1}.

The X band of TMDO, which was found by Cannon and Crim ${ }^{19}$ and studied by Haas et al., ${ }^{20,21}$ transiently appears immediately after the laser excitation at the blue side of acetone phosophorescence. To investigate further the origin of the X band, the dissociation curve is followed along the $\mathrm{C}_{1}-\mathrm{C}_{2}$ distance from the minimum point $\mathrm{Z}_{1}\left(\mathrm{C}_{1}-\mathrm{C}_{2}=4.06 \AA\right)$ to 14 \AA, keeping other geometrical parameters fixed. The potental energy curve is shown in Figure 9 and the geometrical structure at the point Z_{1} is shown in Figure 10. Similarly, along the trans route, the minimum point is found at Z_{2}, whose structure is shown in Figure 10. The structures for the points Z_{1} and Z_{2} are a kind of excimer, because two acetone molecules are bound together and one is in the triplet excited state. For comparison, the stable conformation of the acetone dimer in the ground state is also illustrated in Figure 10.

Cannon and Crim ${ }^{19}$ and Haas et al. ${ }^{21 \mathrm{~b}}$ once mentioned the possibility of an excimer for the X band. In the later work, Has et al. ${ }^{21 a}$ have interpreted the X band as vibrationally excited acetone in a mixed singlet and triplet $n \pi^{*}$ state. However, an intermediate spin state with a different lifetime is unlikely. The
lifetime of the X band is about $50 \mu \mathrm{~s}$ at reduced pressure, ${ }^{19}$ representing collisional quenching, which is close to acetone triplet ($170 \mu \mathrm{~s}^{37}$) rather than singlet (few $n s$). ${ }^{38}$ It is more likely that the X band is due to the triplet state of hitherto unknown species. An intermediate state in the shallow minima at Z_{1} may be responsible for it. The emission occurs from the triplet to the singlet state vertically, and the energy difference between the two potential curves corresponds to the X band. The vertical transition energy between the point Z_{1} and the ground state is $17700 \mathrm{~cm}^{-1}$, while the value for free acetone is $17400 \mathrm{~cm}^{-1}$. In the experiment, the blueshift is about $1700 \mathrm{~cm}^{-1}$, the X band appeared at $23800 \mathrm{~cm}^{-1}$, and the phosophorescence of acetone is at $22100 \mathrm{~cm}^{-1}$; accordingly, the calculated result is semiquantitatively in agreement with the experiment showing the blueshift.

The calculations on the stabilization energies of the dimers and the excimers of formaldehyde and acetone are summarized in Table 9. The ground state dimers show much larger dimerization energies than the excimers, but the values of the excimers are substantial enough to be detected in favorable conditions.

Finally, heat of dissociation of 1,2-dioxetane is calculated by B3LYP, B3P86, and G2 theory as shown in Table 10. The results are in good agreement with thermochemical estimates with deviation less than $6 \mathrm{kcal} / \mathrm{mol}$. For DO B3LYP/6-31+G(d) and G2 theory gave the same results, which are in better agreement with thermochemical data than B3P86/6-31+G(d). For TMDO, B3P86/6-31 $+\mathrm{G}(\mathrm{d})$ gave better results.
4.2. MCSCF Calculation of the Excited States of DO. To study the mechanism of the S_{1} excited state being formed, an MCSCF calculation was performed for the S_{0}, S_{1}, and T_{1} states of DO along the reaction path. The calculation covered the whole reaction path for comparison with the earlier results of Reguero et al. ${ }^{14}$ They used eight electrons in the six orbitals for the configuration interaction (CI) $(8,6)$, two nonbonding orbitals $\left(\mathrm{O}_{3} 2 \mathrm{py}, \mathrm{O}_{4} 2 \mathrm{py}\right)$ and four π type orbitals in the dissociated formaldehyde $\left(\mathrm{O}_{3}, \mathrm{O}_{4} 2 \mathrm{pz}\right.$ and $\left.\mathrm{C}_{1}, \mathrm{C}_{2} 2 \mathrm{pz}\right)$ of the
TABLE 8: Energies and Skeletal Part of Geometrical Parameters ${ }^{a}$ for Energy Minima and Transition States along the Reaction Path of the Thermolysis of

species	min J1	ts H	\min J2	ts Q1	Z1	ts P	min J3	ts Q2	Z2
total energy E									
Hartree (-386. +)	-0.194767	-0.194137	-0.194396	-0.193353	-0.215604	-0.190023	-0.200357	-0.199521	-0.215419
$\Delta E \mathrm{kcal} / \mathrm{mol}$	14.52	14.92	14.76	15.41	1.45	17.50	11.02	11.54	1.57
zero-point energy Hartree (ZPE)	0.170211	0.169066	0.169533	0.168370	0.166189	0.169559	0.169531	0.168377	0.166237
$\Delta(E+$ ZPE) $) \mathrm{kcal} / \mathrm{mol}$	12.22	11.90	12.03	11.95	-3.38	14.79	8.29	8.09	-3.19
$\mathrm{r}(\mathrm{C} 1-\mathrm{C} 2)$ A	1.602	1.642	1.691	1.907	4.056	1.765	1.717	1.923	4.006
$\mathrm{r}(\mathrm{C} 1-\mathrm{O} 3) \AA$	1.367	1.359	1.344	1.292	1.221	1.333	1.333	1.290	1.221
$\mathrm{r}(\mathrm{C} 2-\mathrm{O} 4) \AA$	1.367	1.354	1.345	1.314	1.326	1.331	1.335	1.310	1.326
r(C1-C5) Å	1.566	1.555	1.545	1.539	1.517	1.541	1.544	1.539	1.517
$\mathrm{r}(\mathrm{C} 2-\mathrm{C} 6) \AA$	1.567	1.565	1.557	1.547	1.524	1.567	1.556	1.548	1.525
$\mathrm{r}(\mathrm{C} 1-\mathrm{C} 7) \AA$	1.545	1.543	1.546	1.543	1.517	1.545	1.543	1.539	1.517
$\mathrm{r}(\mathrm{C} 2-\mathrm{C} 8)$ A	1.545	1.550	1.557	1.550	1.523	1.554	1.555	1.548	1.525
$\mathrm{r}(\mathrm{O} 3-\mathrm{O} 4) \AA$	2.888	2.898	2.912	2.973	3.614	3.307	3.557	3.619	3.657
二C2-C1-O3	110.05	105.45	102.30	99.52	78.42	102.86	103.40	101.69	70.11
$\angle \mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 4$	110.08	111.09	110.68	107.51	49.48	110.65	109.72	109.30	57.24
$\angle \mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$	109.00	107.79	107.69	103.77	104.12	106.49	107.18	102.97	99.89
$\angle \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$	109.01	109.97	110.79	107.47	81.80	110.24	110.02	106.38	85.99
$\angle \mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	113.70	112.55	110.79	106.90	87.26	110.85	107.13	102.97	99.89
$\angle \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 8$	113.64	111.64	110.17	108.56	159.40	111.40	109.97	106.38	85.99
二O4-C2-C1-O3	-64.69	-70.24	-75.27	-77.55	-142.53	-113.52	180.0	180.0	180.0
$\angle \mathrm{C} 5-\mathrm{C} 1(\mathrm{C} 2)-\mathrm{O} 3$	112.76	115.05	117.89	119.62	120.01	119.02	120.39	121.37	120.21
$\angle \mathrm{C} 6-\mathrm{C} 2(\mathrm{C} 1)-\mathrm{O} 4$	112.75	115.29	118.92	119.13	130.33	116.90	119.63	120.17	120.96
$\angle \mathrm{C} 7-\mathrm{C} 1(\mathrm{C} 2)-\mathrm{O} 3$	-124.76	-122.28	-119.61	-120.19	-123.01	-119.66	-120.36	-121.37	-120.21
$\angle \mathrm{C} 8-\mathrm{C} 2(\mathrm{C} 1)-\mathrm{O} 4$	-124.86	-122.98	-119.48	-119.11	-35.84	-121.65	-119.63	-120.17	-120.96

Figure 8. (a) Potential energy for the decomposition of $3,3,4,4-$ tetramethyl-1,2-dioxetane to two acetone molecules vs the bond distances of the $\mathrm{C}_{1}-\mathrm{C}_{2}$ and $\mathrm{O}_{3}-\mathrm{O}_{4}$ bonds (units in \AA). The projections of the IRC curves indicate that the $\mathrm{O}_{3}-\mathrm{O}_{4}$ bond rupture precedes the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond rupture. P is a small barrier of the internal rotation in the trans route in the T_{1} state. The Z 1 and Z 2 are the potential minima of the excimer of the gauche and the trans routes, respectively. The geometries of the Z1 and Z2 are shown in Figure 9. (b) Potential energy curves of Figure 8a are shown by expanded scale of z axis to compare with those of unsubstituted 1,2-dioxetane shown in Figure 6b.
$\mathrm{C}_{1}-\mathrm{C}_{2}$ and the $\mathrm{O}_{3}-\mathrm{O}_{4}$ bonds. We have referred to their reported structures to start the calculation.

To improve the numerical results, the $6-31 \mathrm{G}(\mathrm{d})$ basis is used and the size of the active space is expanded to $(12,8)$. A large active space is necessary for the IRC calculation connecting two different states, where more orbitals are involved in the conversion process from one configuration to the other. The choice of orbitals is important, and the orbtials participating in bond deformation or breaking should be included. At point A, the O2s orbitals included in the active space are effective, but at point B , the contribution of O 2 s is comparable to the O 2 px and the O2py orbitals.

In the previous MCSCF calculation, the potential barrier for the $\mathrm{O}_{3}-\mathrm{O}_{4}$ bond breaking was too low, while the barrier for the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond cleavage was too high. With the use of the $6-31 \mathrm{G}(\mathrm{d})$ basis, the energies and the optimized structures are improved to some extent; however, the potential barrier for the

Figure 9. The potential energy curve of the decomposition of 3,3,4,4-tetramethyl-1,2-dioxetane(T_{1}) to two acetone molecules (one is in the S_{0} state and the other is in the T_{1} state) along the gauche route. The minimum point Z 1 is an excimer state (Table 8) whose structure is shown in Figure 10. The energy at the end of the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond elongation is shown by the symbol $\left(a+a^{*}\right)$. Potential energies are given by relative values to the point A.

Figure 10. Geometrical structures of the dimer of acetone in the ground state (F) and in the excimer state in the gauche route $(\mathrm{Z} 1)$ and the trans route (Z 2). The distances of atomic contact are $\mathrm{C}_{1}-\mathrm{C}_{2}=3.526$, $\mathrm{C}_{1}-\mathrm{O}_{4}=3.326$, and $\mathrm{C}_{2}-\mathrm{O}_{3}=3.326 \AA$ at $\mathrm{F} ; \mathrm{C}_{1}-\mathrm{C}_{2}=4.056, \mathrm{C}_{1}-\mathrm{O}_{4}$ $=3.350$ and $\mathrm{C}_{2}-\mathrm{O}_{3}=3.994 \AA$ at Z 1 ; and $\mathrm{C}_{1}-\mathrm{C}_{2}=4.006, \mathrm{C}_{1}-\mathrm{O}_{4}=$ 3.472, and $\mathrm{C}_{2}-\mathrm{O}_{3}=3.770 \AA$ at Z 2 , respectively.
$\mathrm{O}_{3}-\mathrm{O}_{4}$ bond breaking is only $9.2 \mathrm{kcal} / \mathrm{mol}$, which is certainly better than the previous value of $2.6 \mathrm{kcal} / \mathrm{mol}$, but still too low compared to the $20.2 \mathrm{kcal} / \mathrm{mol}$ obtained by the uB3LYP method.

The S_{0} potential curve is calculated by the IRC method from B to A and B to the minimum (K) of the S_{0} curve, which is found at the torsional angle of $\tau=66.9^{\circ}$. The calculated energies for various states are shown in Table 11. The potential energy curves for the T_{1} and the S_{1} states in the region from A to K are calculated with the same geometries of the S_{0} states as shown in Figures 11 and 12, where the overview of the potential curves for the gauche and the trans routes, respectively, are illustrated. These curves differ by the presence of a small barrier for the internal rotation from the gauche to the trans form at P in Figure 12. The S_{0} and T_{1} curves contact after the $\mathrm{O}_{3}-\mathrm{O}_{4}$ bond breaking at the $\mathrm{S}_{0} / \mathrm{T}_{1}$ conical intersection shown by a large white square in Figures 11 and 12 , which is at $\tau=57.6^{\circ}$ near the bottom of
the S_{0} and the T_{1} potential curves. The energy minimum, J, of the T_{1} state is found at $\tau=66.5^{\circ}$, which is almost the same as the minimum K in the S_{0} state found at $\tau=66.9^{\circ}$. The $\mathrm{S}_{0} / \mathrm{S}_{1}$ conical intersection is found at $\tau=74.8^{\circ}$, as shown by a large gray circle in Figures 11 and 12; the energy at this point is only $2.4 \mathrm{kcal} / \mathrm{mol}$ higher than the energy at K. Accordingly, the S_{1} state will be populated thermally through the S_{1} / S_{0} intersection.

The potential curves for the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond rupture are calculated by the IRC method using the CASSCF $(12,8)$ calculation for the T_{1} and S_{1} states. The height of the potential barrier for the T_{1} state is calculated as $20.2 \mathrm{kcal} / \mathrm{mol}$ for the gauche and $18.8 \mathrm{kcal} / \mathrm{mol}$ for the trans routes, respectively, which are too high compared to the values of the uB3LYP method, 9.1 and $8.7 \mathrm{kcal} / \mathrm{mol}$ for the gauche and the trans routes, respectively. The potential barriers for the $C_{1}-C_{2}$ bond rupture in the S_{1} state are calculated relative to K as $24.7 \mathrm{kcal} / \mathrm{mol}$ and $23.5 \mathrm{kcal} / \mathrm{mol}$ for the gauche and trans routes, respectively (Table 11).

Inspection of the CAS MOs (Figure 13) shows similarities with the uB3LYP results (Figure 2). In the potential energy minimum of the S_{0} curve, K, the 17 th and the 16 th MOs are singly occupied with antiparallel spin electrons. These MOs are composed of the nonbonding orbitals described by

$$
\begin{equation*}
\mathrm{O}_{3} 2 \mathrm{py} \pm \mathrm{O}_{4}(2 \mathrm{px}+2 \mathrm{py}) \tag{7}
\end{equation*}
$$

At the minimum points of the T_{1}, J , the 16 th and the 17 th MOs are $\mathrm{O}_{3} 2$ py and $\mathrm{O}_{4}(2 \mathrm{px}+2 \mathrm{py})$ and are singly occupied.

The MOs at the $\mathrm{S}_{0} / \mathrm{T}_{1}$ intersection are almost the same as those of the K for both the S_{0} and the T_{1} states. In the S_{0} at $\mathrm{S}_{0} / \mathrm{T}_{1}$, the 16 th and 17 th MOs are occupied by antiparallel spin electrons, while in the T_{1} at $\mathrm{S}_{0} / \mathrm{T}_{1}$, they are filled with parallel spin electrons.

At the S_{0} / S_{1} intersection, the electron configuration of the two states is different in the occupancy of the 15 th and 16 th MOs. In the S_{0}, the 15 th MO is singly and the 16 th MO is doubly occupied, and in the S_{1} state, the 15 th is doubly and the 16 th is singly occupied, while the 17 th MO is singly occupied in both states. The transformation of the $S_{0} \rightarrow S_{1}$ occurred in the changes of occupancy of the $\mathrm{O}_{4} 2 \mathrm{px}-\mathrm{O}_{4} 2 \mathrm{pz}$ orbital to the $\mathrm{O}_{4} 2 \mathrm{px}+\mathrm{O}_{4} 2 \mathrm{pz}$ orbital. Emergence of the S_{1} excited state is correlated to the change of the electron configuration at the O_{4} nonbonding and the π^{*} orbitals. At the potential maxima Q , the 16 th and the 17 th MOs are singly occupied with the antiparallel spin electrons in the S_{1} and with the parallel spin electrons in the T_{1} state, respectively (Figure 13). The electron configuration demonstrates that the $n \pi^{*}$ excited state is prepared on the right side of the carbonyl group of DO at the saddle point Q .

Quite recently, Wilsey et al. ${ }^{39}$ have presented extensive calculations on DO by using CASSCF (MCSCF) with MP2 correction to improve exploratory work. ${ }^{14}$ The deficient barrier for $\mathrm{O}-\mathrm{O}$ bond breaking is improved from 3 to $16 \mathrm{kcal} / \mathrm{mol}$ with MP2 correction; however, the potential surfaces of biradi$\mathrm{cal}, \mathrm{S}_{0}$ and T_{1}, are separated by 3 to $6 \mathrm{kcal} / \mathrm{mol}$. The T_{1} is higher in energy than the S_{0} for all points in the biradical region; this is not consistent with Hund's rule for open-shell systems. By the uB3LYP method, most of the T_{1} states in the biradical region are lower in energy than S_{0} state, consistent with Hund's rule.

The present MCSCF calculation shows the energies of the S_{1} and T_{1} states and the change of occupancies in the MOs of biradical at the T_{1} / S_{0} and S_{1} / S_{0} intersections. The sequence of MOs is changed accompanying conformational changes, and the excited states of fragments are produced after the dissociation

TABLE 9: Total Energies of Monomers, Dimers, and Excimers of Formaldehyde and Acetone;
uB3LYP/6-31 + G(d)//uB3LYP/6-31 + G(d)

monomer	formaldehyde		acetone		
	f (S_{0} state)	f^{*} (T_{1} state)	a (S_{0} state)		
total energy E (Hartree)	-114.508839	-114.400882	-193.166253	-19	304
two monomers	$\mathrm{f}+\mathrm{f}$	$\mathrm{f}+\mathrm{f}$ *	$\mathrm{a}+\mathrm{a}$		
total energy E (Hartree)	-229.017678	-228.909721	-386.332506	-38	557
dimers and excimers	dimer (F)	excimer (Z)	dimer (F)	excimer (Z1)	excimer (Z2)
total energy E (Hartree)	-229.021818	-228.912222	-386.337452	-386.215604	-386.215419
stabilization energy ($\mathrm{kcal} / \mathrm{mol}$)	2.60	1.57	3.10	1.91	1.80

TABLE 10: ΔH_{r} of the Dissociation of 1,2-Dioxetanes to Carbonyl Compounds

	B3LYP ${ }^{a}$	B3P86 ${ }^{\text {b }}$	G2MP2	thermochemical calc.
Sum of Electronic and Thermal Enthalpies				
DO	-228.866370 Hartree	-229.434519 Hartree	-228.574175 Hartree	
formaldehyde	-114.478272	-114.757006	-114.332262	
$\Delta \mathrm{H}_{\mathrm{r}}$	-56.59 $\mathrm{kcal} / \mathrm{mol}$	-49.88 kcal/mol	-56.69 kcal/mol	-55.4 kcal/ $\mathrm{mol}^{4 \mathrm{a}, 4 \mathrm{~b}}$
Sum of Electronic and Thermal Enthalpies				
TMDO	-386.033855 Hartree	-387.189219 Hartree		
acetone	-193.076026	-193.647862		
$\Delta \mathrm{H}_{\mathrm{r}}$	-74.17 kcal/mol	-66.88 kcal/mol		$-68.35 \mathrm{kcal} / \mathrm{mol}^{4 \mathrm{a}, 4 \mathrm{~b}}$

${ }^{a}$ B3LYP/6-31+G(d)//B3LYP/6-31+G(d). ${ }^{b}$ B3P86/6-31+G(d)//B3P86/6-31+G(d).
TABLE 11: Energies and Skeletal Part of Geometrical Parameters ${ }^{a}$ for Energy Minima and Transition States along the Reaction Path of Thermolysis of 1,2-Dioxetane into Two Formaldehyde Molecules Calculated by CASSCF $(12,8) / 6-31 \mathrm{G}(\mathrm{d}) / / \mathrm{CASSCF}(12,8) / 6-31 \mathrm{G}(\mathrm{d})$

species	S_{0}			conical intersections		T_{1} gauche $\min \mathrm{J}$	T_{1} gauche ts $\mathrm{Q}\left(\mathrm{T}_{1}\right)$	S_{1} gauche ts $\mathrm{Q}\left(\mathrm{S}_{1}\right)$	T_{1} trans ts $Q\left(T_{1}\right)$	S_{1} trans ts $\mathrm{Q}\left(\mathrm{S}_{1}\right)$
	min A	ts B	$\min \mathrm{K}$	$\mathrm{S}_{0} / \mathrm{T}_{1}$	$\mathrm{S}_{0} / \mathrm{S}_{1}$					
total energy										
Hartree (-227. +)	-0.701673	-0.687031	-0.698409	-0.697594	-0.694528	-0.698147	-0.665959	-0.659111	-0.668158	-0.660993
$\Delta E \mathrm{kcal} / \mathrm{mol}$	0.0	9.19	2.05	2.56	4.48	2.21	22.41	26.71	21.03	25.53
zero-point energy Hartree (ZPE)	0.066044	0.064282	0.061986			0.061708	0.058831	0.058824	0.058925	0.058797
$\Delta(E+$ ZPE) $\mathrm{kcal} / \mathrm{mol}$	0.0	8.08	-0.50			-0.51	17.88	22.18	16.56	20.98
$\mathrm{r}(\mathrm{C} 1-\mathrm{C} 2) \AA$	1.538	1.534	1.547	1.550	1.561	1.547	2.037	2.091	2.033	2.084
$\mathrm{r}(\mathrm{C} 1-\mathrm{O} 3) \AA$	1.423	1.409	1.384	1.381	1.379	1.384	1.251	1.246	1.252	1.246
$\mathrm{r}(\mathrm{C} 2-\mathrm{O} 4) \AA$	1.423	1.409	1.384	1.381	1.384	1.385	1.335	1.346	1.336	1.348
$\mathrm{r}(\mathrm{O} 3-\mathrm{O} 4) \AA$	1.551	2.146	2.961	2.898	2.980	2.964	3.261	3.273	3.729	3.762
$\angle \mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 3$	89.89	99.13	112.44	112.93	113.47	112.63	104.66	103.77	103.87	104.11
$\angle \mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 4$	89.89	99.12	112.45	112.91	107.80	112.61	112.02	110.86	110.21	109.02
$\angle \mathrm{O} 4-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 3$	-9.53	-34.49	-66.89	-57.64	-74.84	-66.45	-80.23	-79.45	180.02	179.96

${ }^{a}$ The unit of angle is degree. Energies in $\mathrm{kcal} / \mathrm{mol}$ relative to the minimum $\mathrm{A}\left(\mathrm{S}_{0}\right)$.
TABLE 12: Reaction Rate Constants of Thermolysis of 1,2-Dioxetane and 3,3,4,4-Tetramethyl-1,2-dioxetane

		$\Delta E \mathrm{kcal} / \mathrm{mol}$	$\Delta(E+\mathrm{ZPE}) \mathrm{kcal} / \mathrm{mol}$	$k(333 \mathrm{~K}) \mathrm{s}^{-1}$	$k_{\mathrm{DO}} / k_{\mathrm{TMDO}}$
experimental 18	DO		22.7	9.71×10^{-3}	
best fit	TMDO	24.79	27.8	7.3×10^{-5}	9.71×10^{-3}
	DO	27.57	25.47	7.31×10^{-5}	1.33×10^{2}
uB3P86 a	TMDO	DO	23.04	20.72	10^{-1}
uB3LYP b	TMDO	25.81	23.93	1.05×10^{-3}	
	DO	20.21	17.89	9.84	1.30×10^{2}
	TMDO	23.02	21.13	7.08×10^{-2}	

${ }^{a} \mathrm{uB} 3 \mathrm{p} 86 / 6-31+\mathrm{G}(\mathrm{d}) / / \mathrm{uB} 3 \mathrm{P} 86 / 6-31+\mathrm{G}(\mathrm{d}) .{ }^{b} \mathrm{uB} 3 \mathrm{LYP} / 6-31+\mathrm{G}(\mathrm{d}) / / \mathrm{uB} 3 \mathrm{LYP} / 6-31+\mathrm{G}(\mathrm{d})$.
of $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond. The mechanism of chemogenesis is clarified on the basis of electronic configurations of DOs during the $\mathrm{O}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ bond cleavage and reorganization to two carbonyl compounds.
4.3. RRKM Theory Applied to the Unimolecular Decomposition of Dioxetanes. The reaction rates of thermal decomposition are extensively studied by Adam and Baader ${ }^{18}$ experimentally, and the activation energies and frequency factors are tabulated. Thermolyses of DOs are typical unimolecular reactions; RRKM theory is very efficient to analyze the reaction rate. Cannon and Crim ${ }^{19}$ already used RRKM theory to calculate the energy-dependent reaction rate $k(E)$ on the laser photolysis of TMDO. In this section we will calculate the reaction rate of
thermal decomposition from point A to point B and estimate chemiluminescence yield by finding the rate at point Q with the RRKM theory.

According to the RRKM theory, the unimolecular decomposition is given by

$$
\begin{equation*}
k(T)=\frac{e^{-E_{0} / k_{B} T}}{h \mathrm{Q}} \int_{0}^{E} G^{\ddagger}\left(E^{\ddagger}\right) e^{-E^{\ddagger} k_{B} T} d E^{\ddagger} \tag{8}
\end{equation*}
$$

where Q is the partition function of the initial state, and $G^{\ddagger}\left(E^{\ddagger}\right)$ is the sum over states for the energy range of $0 \sim E^{\ddagger}$ in the transition state. The Eyring formula is derived by using the partition function of the transition state Q^{\ddagger}, which is obtained

Figure 11. Potential energy curves calculated by the MCSCF for the decomposition of 1,2 -dioxetane to two formaldehyde molecules through the gauche route. One of the produced formaldehyde molecules is in either the T_{1} or the S_{1} excited state. The S_{0} / T_{1} conical intersection is shown by a large white square and the $\mathrm{S}_{0} / \mathrm{S}_{1}$ conical intersection is shown by a large gray circle. The small white squares are calculated energies of the T_{1} state with the geometries of the S_{0} state, and the small gray circles are those of the S_{1} state with the geometries of the S_{0} state. Potential energies are given by relative values to the point A . Unit of bond length is \AA.

Figure 12. Potential energy curves calculated by the MCSCF for the decomposition of 1,2-dioxetane to two formaldehyde molecules through the trans route. A small barrier P near the S_{0} / T_{1} conical intersection is the barrier for the internal rotation from the gauche to the trans conformer in the S_{0} state. One of the produced formaldehyde molecules is in either the T_{1} or the S_{1} excited state. The $\mathrm{S}_{0} / \mathrm{T}_{1}$ conical intersection is shown by a large white square and the $\mathrm{S}_{0} / \mathrm{S}_{1}$ conical intersection is shown by a large gray circle. The small white squares are calculated energies of the T_{1} state with the geometries of the S_{0} state, and the small gray circles are those of the S_{1} state with the geometries of the S_{0} state. Potential energies are given by relative values to the point A . Unit of bond length is \AA.
by integration of the above integral to ∞.

$$
\begin{equation*}
k(T)=\frac{k_{B} T}{h} \frac{\mathrm{Q}^{\ddagger}}{\mathrm{Q}} e^{-E_{0} k_{B} T} \tag{9}
\end{equation*}
$$

where E_{0} is the energy difference between the initial and the transition state including the zero-point vibrational energy (ZPE) correction.
The vibrational partition functions are calculated with all vibrational frequencies in the initial and the transition states using the uB3LYP method. The prefactor of eq 9 is the

Figure 13. Change of MO along the reaction path leading to the excited state by the MCSCF calculation. K and J refer to the potential energy minima in the S_{0} and T_{1} states, respectively. $\mathrm{S}_{0} / \mathrm{S}_{1}\left(\mathrm{~S}_{0}\right)$ and $\mathrm{S}_{0} / \mathrm{S}_{1}\left(\mathrm{~S}_{1}\right)$ are the S_{0} and S_{1} states in the intersection, respectively. $S_{0} / T_{1}\left(T_{1}\right)$ is the T_{1} state in the intersection. $\mathrm{Q}\left(\mathrm{S}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{T}_{1}\right)$ are the transition states leading to the S_{1} and the T_{1} excited states of formaldehyde, respectively. All illustrations are projected onto the $\mathrm{O}_{3}-\mathrm{C}_{1}-\mathrm{C}_{2}$ plane.

Arrhenius parameter. The calculated values are $\log _{10} \mathrm{~A}=12.7$ for DO and TMDO, while reported values are 13.1 and 12.3 for DO and TMDO, respectively. ${ }^{4}$ Because the rate is very sensitive to the activation energies, we estimate the activation energies to fit experimental rates as shown in Table 12. The difference between the calculated activation energies by the uB3P86 method with the best-fit values are only $1.7 \mathrm{kcal} / \mathrm{mol}$ (9% of ΔE), while the values by the uB3LYP method are 4.4 $\mathrm{kcal} / \mathrm{mol}(18 \%$ of $\Delta E)$. The ratio of $k(\mathrm{DO}) / k(\mathrm{TMDO})$ is ~ 1.3 $\times 10^{2}$ for all calculated results. This implies that the present calculation explains the ratio of the reaction rates successfully, or, in other words, that the stability of TMDO compared to DO is calculated to a satisfactory level.

As regards the excited states, the chemiexcitation yields of DO and TMDO in the T_{1} states are considered by calculating the rate for the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond cleavage along the $\mathrm{J}_{2} \rightarrow \mathrm{Q}_{1}$. As mentioned in the previous sections, the potential barrier for the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond cleavage in TMDO is almost zero ($0.65 \mathrm{kcal} / \mathrm{mol}$), while the value for DO is about $9.07 \mathrm{kcal} / \mathrm{mol}$. The rates of the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond breaking, $k_{\mathrm{d}}\left(T_{1}\right)$, are calculated by the RRKM theory as $0.82 \times 10^{9} \mathrm{~s}^{-1}$ and $0.79 \times 10^{13} \mathrm{~s}^{-1}$ for DO and TMDO, respectively. The nonradiative deactivation process, including the $\mathrm{T}_{1} \rightarrow \mathrm{~S}_{0}$ back transfer, competes with this process. Denoting the nonradiative rate as k_{nr}, and the rate of the $\mathrm{C}_{1}-$ C_{2} bond breaking at the $\mathrm{J}_{2} \rightarrow \mathrm{Q}_{1}$, as $k_{\mathrm{d}}\left(T_{1}\right)$, and the dissociation to the S_{1} state, $k_{\mathrm{d}}\left(\mathrm{S}_{1}\right)$, the experimental triplet emission yield η_{t} will be given by

$$
\begin{equation*}
\eta_{\mathrm{t}}=\frac{3 k_{\mathrm{d}}\left(T_{1}\right)}{3 k_{\mathrm{d}}\left(T_{1}\right)+k_{\mathrm{d}}\left(\mathrm{~S}_{1}\right)+k_{\mathrm{nr}}} \tag{10}
\end{equation*}
$$

where the value of $k_{\mathrm{d}}\left(\mathrm{S}_{1}\right)$ is negligible compared to other terms. The calculated rates $k_{\mathrm{d}}\left(\mathrm{T}_{1}\right)$ are multiplied by a factor of 3 of spin multiplicity. Using the values of triplet yield η_{t} shown in Table 1, the nonradiative rates are estimated as $k_{\mathrm{nr}}=1 \times 10^{12}$ s^{-1} for DO and $k_{\mathrm{nr}}=4.4 \times 10^{13} \mathrm{~s}^{-1}$ for TMDO, respectively. In view of the presence of many more vibrational modes in TMDO than DO, the larger value for TMDO is reasonable.

Finally, the branching ratio of S_{1} and T_{1} states, $\eta_{s} / \eta_{\mathrm{t}}$, in the dissociation of DO is estimated by the ratio of rates, $k_{\mathrm{d}}\left(\mathrm{T}_{1}\right)$ and $k_{\mathrm{d}}\left(\mathrm{S}_{1}\right)$ calculated with MCSCF potential barriers and partition
functions as

$$
\begin{equation*}
\frac{\eta_{\mathrm{s}}}{\eta_{\mathrm{t}}}=\frac{k_{\mathrm{d}}\left(\mathrm{~S}_{1}\right)}{3 k_{\mathrm{d}}\left(\mathrm{~T}_{1}\right)} \tag{11}
\end{equation*}
$$

The calculated value is 0.0007 , whereas the experimental ratio was 0.0013 (Table 1). The agreement is fairly satisfactory in view of the accuracy of the potential barrier calculation given in section 4.2.

5. Conclusion

Mechanisms of chemiluminescence of DO and TMDO are studied by Becke's three-parameter hybrid methods. Dissociation enthalpies of DO and TMDO to two carbonyl fragments calculated by uB3LYP/6-31+G(d) and uB3P86/6-31+G(d) are in reasonable agreement with thermochemical estimates. The $\mathrm{O}-\mathrm{O}$ bond breakings of DO and TMDO are the rate-determining step of thermolysis, where activation energies of thermolysis calculated by these methods are in good agreement with experimental values. Stability of TMDO is more than 100 times larger than DO; this fact is well-explained by the rates of thermolysis calculated with RRKM theory. The rates of $\mathrm{C}-\mathrm{C}$ bond rupture in the T_{1} state are correlated to the triplet yield and radiationless transition rates of DO and TMDO. The higher triplet yield of TMDO compared to DO is well-explained by the potential barriers for the $\mathrm{C}-\mathrm{C}$ bond rupture. The ratio of triplet to singlet yield of DO is discussed by the rates of $\mathrm{C}-\mathrm{C}$ bond dissociation in the T_{1} and S_{1} states. Changes of molecular orbitals of DO along the reaction path are studied in detail, and the excitation mechanism is analyzed by the changes of electronic configuration.

These results demonstrate the utility of the uB3LYP and uB3P86 methods or the MCSCF method for calculating energies and geometries of dioxetanes in the S_{0} and T_{1}, or the S_{1} states, to a level of discussing the reaction rates and relative stabilities of reaction intermediates.

Acknowledgment. The authors thank Profs. M. Matsumoto, M. Ohashi, and Mr. H. Murayama of Kanagawa University for their kind suggestions, discussions, and help in computation. We also thank Profs. W. Adam of Würzburg University, T. Wilson of Harvard University, K. Yamaguchi of Osaka University, and H. Nakamura of the Institute for Molecular Science for kind discussions and sending information to us. We thank the computation center of the Institute for Molecular Science for the use of computers.

References and Notes

(1) (a) Wilson, T. Int. Rev. Sci. Phys. Chem. 1976, 9, 265. (b) Wilson, T. Photochem. Photobiol. 1995, 62, 601.
(2) Adam, W.; Cilento, G. Angew. Chem., Int. Ed. Engl. 1983, 22, 529.
(3) Adam, W.; Heil, M.; Mosandl, T.; Saha-Möller, C. R. In Organic Peroxides; Ando, W., Ed.; John Wiley and Sons: Chichester, 1992; p 252.
(4) (a) O'Neal, H. E.; Richardson, W. H. J. Am. Chem. Soc. 1970, 92, 6553. (b) O'Neal, H. E.; Richardson, W. H. J. Am. Chem. Soc. 1971, 93, 1828. (c) Richardson, W. H.; Yelvington, M. B.; O’Neal, H. E. J. Am. Chem. Soc. 1972, 94, 1619.
(5) Yamaguchi, K.; Fueno, T.; Fukutome, H. Chem. Phys. Lett. 1973, 22, 466.
(6) Evlet, E. M.; Feler, G. Chem. Phys. Lett. 1973, 22, 499.
(7) Harding, L. B.; Goddard, W. A., III. J. Am. Chem. Soc. 1977, 99, 4520.
(8) Horn, K. A.; Koo, J.; Schmidt, S. P.; Schuster, G. B. Mol. Photochem. 1978, 9, 1.
(9) McCapra, F. In Bioluminescence and Chemiluminescence; Hastings, J. W., Kricka, L. J., Stanley, P. E., Eds.; John Wiley and Sons: Chichester, 1996; p 7.
(10) Schaap, A. P.; Gagnon, S. D. J. Am. Chem. Soc. 1982, 104, 3504.
(11) (a) Matsumoto, M.; Suganuma, H.; Katao, Y.; Mutoh, H. Chem. Commun. 1995, 431. (b) Matusmoto, M.; Arai, N.; Watanabe, N. Tetrahedron Lett. 1996, 37, 8535.
(12) Adam, W.; Bronstein, I.; Trofimov, A.V. J. Phys. Chem. A 1998, 102, 5406.
(13) Adam, W.; Bronstein, I.; Edwards, B.; Engel, T.; Reinhardt, D.; Schneider, F. W.; Trofimov, A. V.; Vasil'ev, R. F. J. Am. Chem. Soc. 1996, 118, 10400.
(14) Reguero, M.; Bernardi, F.; Bottoni, A.; Olivucci, M.; Robb, M. A. J. Am. Chem. Soc. 1991, 113, 1566.
(15) Wilson, T.; Halpern, A. M. J. Phys. Org. Chem. 1995, 8, 359.
(16) Vasil'ev, R. F. J. Biolumin. Chemilumin. 1998, 13, 69.
(17) Takano, Y.; Tsunesada, T.; Isobe, H.; Yoshioka, Y.; Yamaguchi, K.; Saito, I. Bull. Chem. Soc. Jpn. 1999, 72, 213.
(18) Adam, W.; Baader, W. J. J. Am. Chem. Soc. 1985, 107, 410.
(19) (a) Cannon, B. D.; Crim, F. F. J. Chem. Phys. 1980, 73, 3013. (b) Cannon, B. D.; Crim, F. F. J. Chem. Phys. 1981, 75, 1752. (c) Cannon, B. D.; Crim, F. F. J. Am. Chem. Soc. 1981, 103, 6722.
(20) Haas, Y. Adv. Chem. Phys. 1981, 47, 713.
(21) (a) Haas, Y.; Ruhman, S.; Greenblatt, G. D.; Anner, O. J. Am. Chem. Soc. 1985, 107, 5068. (b) Haas, Y.; Yahav, G. Chem. Phys. Lett. 1977, 48, 63.
(22) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(23) Perdew, J. P. Phys. Rev. B 1986, 33, 8822.
(24) (a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; HeadGordon, M.; Gonzalez, C.; Pople, J. A. GAUSSIAN 94, Revision E.1; Gaussian, Inc: Pittsburgh, PA, 1995. (b) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. GAUSSIAN 98, Revision A.5; Gaussian, Inc.: Pittsburgh, PA, 1998.
(25) Gill, P. M. E.; Johnson, B. G.; Pople, J. A.; Frisch, M. J. Int. J. Quantum Chem. 1992, 26, 319.
(26) Curtiss, L. A.; Raghvachari, K. In Computational Thermochemistry; Irikura, K. K., Frurip, D. J., Eds.; American Chemical Society: Washington, DC, 1998; p 176.
(27) Politzer, P.; Seminario, J. M. In Computational Thermochemistry; Irikura, K. K., Frurip, D. J., Eds.; American Chemical Society: Washington, DC, 1998; p 359.
(28) Hess, J.; Vos, A. Acta Crystallogr., Sect. B 1977, 33, 3527.
(29) Matsumoto, M.; Watanabe, N.; Kasuga, N. C.; Hamada, F.; Tadokoro, K. Tetrahedron Lett. 1997, 2863.
(30) Nakamura, H.; Zhu, C. Comm. Mol. Phys. 1996, 32, 249.
(31) Landau, L. D. Phys. Zts. Sowiet. 1932, 2, 46.
(32) Zener, C. Proc. R. Soc. London, Ser. A, 1932, 137, 696.
(33) Turro, N. J.; Devaquet, A. J. Am. Chem. Soc. 1975, 97, 3859.
(34) Simo, I.; Stauff, J. Chem. Phys. Lett. 1975, 34, 326.
(35) Brown, J. C.; Menzinger, M. Chem. Phys. Lett. 1978, 54, 235.
(36) Turro, N. J.; Lechtken, P.; Schore, N. E.; Schuster, G.; Steinmetzer, H. C.; Yekta, A. Acc. Chem. Res. 1974, 7, 97.
(37) Miller, J. C.; Borkmann, R. F. J. Chem. Phys. 1972, 56, 3727.
(38) Halpern, A. M.; Ware, W. R. J. Chem. Phys. 1971, 54, 1271.
(39) Wilsey, S.; Bernardi, F.; Olivucci, M.; Robb, M. A.; Murphy, S.; Adam, A. J. Phys. Chem. A 1999, 103, 1669.
(40) Hehre, W. J.; Radom, L.; Schleyer, P. v.R.; Pople, J. A. In $A b$ Initio Molecular Orbital Theory; John Wiley and Sons: New York, 1985, p 273.

[^0]: ${ }^{a}$ AADO: adamantylideneadamantane-1,2-dioxetane. ${ }^{28}{ }^{b}$ DMTOH: 1-aryl-5-(9-methylfluorene-9-yl)-4,4-dimethyl-2,6,7-trioxabicyclo[3,2,0]heptane. ${ }^{29}$

