Kinetic Analysis for HO₂ Addition to Ethylene, Propene, and Isobutene, and Thermochemical Parameters of Alkyl Hydroperoxides and Hydroperoxide Alkyl Radicals

Chiung-Ju Chen and Joseph W. Bozzelli*

Department of Chemical Engineering, Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102

Received: September 1, 1999; In Final Form: February 2, 2000

Thermochemical kinetic analysis for the reactions of HO_2 radical addition to the primary, secondary, and tertiary carbon-carbon double bonds of ethylene, propene, and isobutene are studied using canonical transition state theory (TST). Thermochemical properties of reactants, alkyl hydroperoxides (ROOH), hydroperoxy alkyl radicals (R•OOH), and transition states (TSs) are determined by ab initio and density functional calculations. Enthalpies of formation ($\Delta H_{f^{\circ}298}^{\circ}$) of product radicals (R•OOH) are determined using isodesmic reactions with group balance at MP4(full)/6-31G(d,p)//MP2(full)/6-31G(d), MP2(full)/6-31G(d), complete basis set model chemistry (CBS-q with MP2(full)/6-31g(d) and B3LYP/6-31g(d) optimized geometries), and density functional (B3LYP/6-31g(d) and B3LYP/6-311+g(3df,2p)//B3LYP/6-31g(d)) calculations. $\Delta H_{f^{\circ}298}^{\circ}$ of TSs are obtained from the $\Delta H_{f^{\circ}298}^{\circ}$ of reactants plus energy differences between reactants and TSs. Entropies (S°_{298}) and heat capacities ($C_p(T)$ 300 \leq T/K \leq 1500) contributions from vibrational, translational, and external rotational are calculated using the rigid-rotor-harmonic-oscillator approximation based on geometric parameters and vibrational frequencies obtained at MP2(full)/6-31G(d) and B3LYP/6-31G(d) levels of theory. Selected potential barriers of internal rotations for hydroperoxy alkyl radicals and TSs are calculated at MP2(full)/6-31G(d) and CBS-Q//MP2(full)/6-31G(d) levels. Contributions from hindered rotors of S°_{298} and Cp(T) are calculated by the method of Pitzer and Gwinn and by summation over the energy levels obtained by direct diagonalization of the Hamiltonian matrix of hindered internal rotations when the potential barriers of internal rotations are available. Calculated rate constants obtained at CBS-q//MP2(full)/6-31G(d) and CBS-q//B3LYP/6-31G(d) levels of theory show similar trends with experimental data: HO_2 radical addition to the tertiary carboncarbon double bond (HO₂ addition at CD/C2 carbon atom of isobutene) has a lower activation energy than addition to the secondary carbon-carbon double bond CD/C/H, which is lower than addition to the primary carbon-carbon bond CD/H2; the values are 12.11(11.56), 11.08(10.34), and 7.63(7.03) kcal/mol, respectively, at CBS-q//MP2 (full)/ 6-31G(d) level. Data in parentheses are calculations at the CBS-q//B3LYP/6-31G(d) level. The E_a for addition to primary carbon-carbon double bonds of ethylene, propene, and isobutene also show a decreasing trend 13.49(12.89), 12.16(11.20), and 10.70(10.59) kcal/mol, respectively. The high-pressure limit rate constants are (based on CBS-q//MP2(full)/6-31G(d) calculations) (Q = OOH): $k_{1,\infty}(HO_2 + C = C$ \Rightarrow C·CQ) = 4.13 × 10⁴ T^{2.332} exp(-13.49 kcal mol⁻¹/RT) cm³/mol-s; $k_{2,\infty}$ (HO₂ + C=CC \Rightarrow CC·CQ) = 2.47 × 10⁴ $T^{2.132} \exp(-12.16 \text{ kcal mol}^{-1}/RT) \text{ cm}^3/\text{mol}\text{-s}; k_{3,\infty}(\text{HO}_2 + C = CC \rightarrow C \cdot CQC) = 7.74 \times 10^3 T^{2.285} \text{exp}^{-1}/RT$ $(-11.08 \text{ kcal mol}^{-1}/RT) \text{ cm}^{3}/\text{mol}\text{-s}; k_{4,\infty}(\text{HO}_{2} + \text{C}_{2}\text{C}=\text{C} \Rightarrow \text{C}_{2}\text{C}\cdot\text{C}\text{Q}) = 3.45 \times 10^{5} T^{1.765} \exp(-10.70 \text{ kcal})$ mol^{-1}/RT) cm³/mol-s; $k_{5,\infty}(HO_2 + C_2C = C \Rightarrow C_3 \cdot CQ) = 2.78 \times 10^4 \text{ T}^{2.106} \exp(-7.63 \text{ kcal mol}^{-1}/RT) \text{ cm}^{-3}/RT$ mol-s. Enthalpies of formation for alkyl hydroperoxides are determined to be $\Delta H_{\rm f^{\circ}298}^{\circ}$ (CCQ) = -39.70 ± 0.3 kcal/mol, $\Delta H_{\rm f}^{\circ}_{298}$ (CCCQ) = -44.77 ± 0.41 kcal/mol, $\Delta H_{\rm f}^{\circ}_{298}$ (CCQC) = -48.99 ± 0.32 kcal/mol, $\Delta H_{f^{\circ}298}^{\circ}$ (C₂CCQ) = -51.32 ± 0.38 kcal/mol, and $\Delta H_{f^{\circ}298}^{\circ}$ (C₃CQ) = -57.91 ± 0.47 kcal/mol. $\Delta H_{f^{\circ}298}^{\circ}$ of hydroperoxy alkyl radicals are $\Delta H_{f^{\circ}298}^{\circ}$ (C·CQ) = 10.96 ± 1.06 kcal/mol, $\Delta H_{f^{\circ}298}^{\circ}$ (CC·CQ) = 2.62 ± 1.29 kcal/mol, $\Delta H_{\rm f}^{\circ}_{298}$ (C•CQC) = 0.68 ± 1.54 kcal/mol, $\Delta H_{\rm f}^{\circ}_{298}$ (C₂C•CQ) = -7.24 ± 1.25 kcal/mol, and $\Delta H_{\rm f}^{\circ}_{298}$ $(C_3 \cdot CQ) = -6.42 \pm 1.28$ kcal/mol.

Introduction

The addition of an HO₂ radical to alkenes plays an important role in combustion kinetics and atmospheric chemistry.^{1–4} Hydroperoxides and alkyl hydroperoxides are also important in biochemical synthesis and metabolism.^{5–9} HO₂ is a relative nonreactive radical having weak HOO–H and HOO–CH₃ bonds of 88.2 and 70.1 kcal/mol, respectively; its low reactivity is responsible for the buildup in concentration in atmospheric and moderate-temperature combustion systems. HO₂ radical addition to carbon–carbon double bonds of alkenes is part of a complex chemical reaction system that results in a number of different products. These include oxiranes (cyclic oxygenates) and OH radicals; peroxy radicals (formed via two paths—direct reaction and isomerization), a biradical plus OH radical (chain branching); or stabilized hydroperoxy alkyl adduct radicals that can further react with O₂. The hydroperoxy alkyl radicals are also formed via reactions of alkyl radicals with O₂ (Scheme 1). The reactions of these stabilized adducts are important in controlling the negative temperature regime of hydrocarbon oxidation,¹⁰ and include isomerization, HO₂ elimination, and

^{*} Corresponding author. E-mail: bozzelli@tesla.njit.edu.

further addition with O_2 . The peroxy radicals can dissociate to alkyl radicals $+ O_2$, or they can undergo reaction with nitric oxides or the radical pool.

Under moderately low-temperature, precombustion conditions, the alkyl radical + O_2 , hydroperoxy radical + olefin and the two adducts often exist in near-equilibria, with slower rate (bleed) reactions, to the oxiranes and biradical + OH controlling the process(es) (Scheme 1):

The research group of Baldwin and Walker^{4a-e} has studied relative rate constants on the addition of HO₂ radicals to alkenes, and reported Arrhenius parameters based on measurements of product—reactant ratios, i.e., [oxirane]/[reactants]. Accurate kinetic parameters are often difficult to derive from a complex reaction system using an overall, stable product slate resulting from several minutes of oxidation reaction. This problem is amplified when thermochemistry is uncertain and equilibrium constants are important to the kinetic analysis.

In this study we use ab initio and density functional calculations with isodesmic reactions that retain group balance to estimate thermochemical properties for the alkyl hydroperoxides; and for kinetic parameters in HO₂ radical addition to ethylene, propene, and isobutene carbon–carbon double bonds forming the hydroperoxy alkyl radicals.

Method

The geometries of reactants, transition states, and product radicals were pre-optimized using UHF/PM3 in MOPAC,¹¹ followed by optimization and vibrational frequency calculation at the MP2(full)/6-31G(d) and B3LYP/6-31G(d) levels of theory using the GAUSSIAN94¹² program. Zero-point vibrational energies (ZPVE), vibrational frequencies, and thermal contributions to enthalpy from harmonic frequencies were scaled as recommended by Scott et al.¹³ Transition state (TS) geometries were identified by the existence of only one imaginary frequency in the normal mode coordinate analysis, evaluation of the TS geometry, and coordinate information on the vibration movement.

Total energy for all species were calculated at the MP2(full)/ 6-31G(d), MP4(full)/6-31G(d,p)//MP2(full)/6-31G(d), B3LYP/ 6-31G(d), and B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d) levels of theory. Complete basis set (CBS-q) model chemistry^{14a-c} based on MP2(full)/6-31G(d) and B3LYP/6-31G(d) geometries are also calculated. CBS-q//MP2(full)/6-31G(d), CBS-q//B3LYP/ 6-31G(d), MP4(full)/6-31G(d,p)//MP2(full)/6-31G(d), and B3LYP/ 6-311+G(3df,2p)//B3LYP/6-31G(d) are abbreviated in the remainder of the text as CBSlqM, CBSlqB, MP4F, and B3LYP311, respectively.

Contributions of vibration, translation, and external rotation to entropies and heat capacities were calculated from scaled vibrational frequencies, molecular mass, and moments of inertia of the optimized structures. Potential barriers of internal rotations for 2-hydroperoxy-1-ethyl radical (C•–COOH, C•C–OOH, and C•CO–OH bonds) and TS1 (CC–OOH and CCO–OH bonds) were calculated at the MP2(full)/6-31G(d) and CBS-Q//MP2-(full)/6-31G(d) (abbreviated as CBSQM) levels. The C•-COOH bond in other hydroperoxy radicals and the C-C single bond in TSs were calculated at the MP2(full)/6-31G(d) level. The geometries and harmonic vibrational frequencies were calculated for all rotational conformers at the MP2(full)/6-31G(d) level.

Contributions from hindered rotors to S°_{298} and Cp(T) were determined by the method of Pitzer and Gwinn¹⁵ and by direct integration over energy levels of the calculated intramolecular rotation potential energy curves.¹⁶ The number of optical isomers and spin degeneracy of unpaired electrons were also incorporated for calculation of S°_{298} and Cp(T).

A Fourier series was used to represent the potential calculated at discrete torsional angles:

$$V(\Phi) = a_0 + a_i \cos(i\Phi) + b_i \sin(i\Phi), i = 1, 2, 3...$$
(F1)

where values of the coefficients were calculated to provide the true minima and maxima of the torsional potentials with allowance of a shift of the theoretical extrema of angular positions. Further description on this method to calculate contributions from the internal rotors are reported by method of Lay et al.^{16–17}

Reaction enthalpy $(\Delta H^{\dagger}_{TS-reactants})_{298}$ was obtained from the differences of total energies, ZPVE, and thermal correction for entropies between the TS and the reactants. Enthalpies of formation for the TSs are estimated from experimental data on $\Delta H_{\rm f}^{\circ}{}_{298}$ of the reactants plus the reaction enthalpy $(\Delta H^{\dagger}_{TS-reactants})_{298}$. Two sets of isodesmic reactions with group balance, shown in Schemes 2 and 3, were used in this study to accurately estimate the enthalpy of formation of the hydroperoxide alkyl radicals, CH2•CH2OOH (C•CQ), CH3CH•CH2OOH (CC·CQ), CH₂·CH(OOH)CH₃ (C·CQC), (CH₃)₂C·CH₂OOH (C₂C•CQ), and CH₂•C(OOH)(CH₃)₂(C₃•CQ). An isodesmic reaction with group balance is characterized by conservation of both bonds and the number of groups of each group type in the reactants and products, where a group is defined as a polyvalent atom (ligancy ≥ 2) in a molecule.¹⁸ To obtain $\Delta H_{f^{\circ}298}$ of hydroperoxy alkyl radicals, we also needed the $\Delta H_{\rm f}^{\circ}{}_{298}$ of corresponding hydroperoxide alkanes (Scheme 2). Reactions in

SCHEME 2

CCQ + COH = CQ + CCOH	(IR1)
CCCQ + COH = CQ + CCCOH	(IR2)
CCQC + COH = CQ + CC(OH)C	(IR3)
$C_2CCQ + COH = CQ + C_2CCOH$	(IR4)
$C_3CQ + COH = CQ + C_3COH$	(IR5)

- - -

$$(Q = OOH)$$

SCHEME 3

 $CCO + C \bullet C = C \bullet CO + CC \qquad (IR6)$

- $CCCO + C \bullet CO = CC \bullet CO + CCO \qquad (IR7)$
- $CCQC + C \bullet CQ = C \bullet CQC + CCQ \qquad (IR8)$
- $C_2CCQ + C \bullet CQ = C_2C \bullet CQ + CCQ \qquad (IR9)$

 $C_3CO + C \bullet CO = C_3 \bullet CO + CCO \qquad (IR10)$

TABLE 1: Enthalpy Data Used in Isodesmic Reactions to Determine $\Delta H_{1,298}^{\circ}$ of Other Species

compound	$\Delta H_{\rm f}^{\circ}{}_{298}$ in kcal/mol	source
COOH	-31.8	ref 19
COH	-48.08	ref 20
CCOH	-56.21	ref 21
CCCOH	-60.97	ref 21
C2COH	-65.20	ref 21
C2CCOH	-67.85	ref 21
C3COH	-74.69	ref 21
HOO•	3.5	ref 22

Scheme 2 are based on the reaction of CH₃OOH with the alcohols to form the desired hydroperoxides alkanes and CH₃-OH. The value of $\Delta H_{\rm f}^{\circ}_{298}$ (CH₃OOH) = -31.8 kcal/mol was taken from Lay et al.¹⁹ Enthalpies of formation for the alcohols used in reactions IR1–IR5 were obtained from literature data^{19–22} and listed in Table 1.

Calculated enthalpies of formation of hydroperoxy alkyl radicals, C•CQ, CC•CQ, C•CQC, C₂C•CQ and C₃•CQ, were derived from the reactions in Scheme 3 and bond dissociation enthalpy of DH°_{298} (QCC-H). (Q = OOH hydroperoxide group).

High-Pressure Limit A Factors (A_{∞}) and Rate Constants (k_{∞}) Determination. The high-pressure limit rate constant (k_{∞}) of HO₂ addition reactions were fit by three parameters A_{∞} , n, and E_a over the temperature range from 298 to 2000 K:

$$k_{\infty} = A_{\infty}(T)^n \exp(-E_a/RT)$$

Entropy differences between reactants and TS were used to determine the Arrhenius preexponential factor, A_{∞} , via canonical transition state theory²³ (TST) for unimolecular and bimolecular reactions $A_{\infty} = (kT/h) \exp(\Delta S^{\ddagger}/R)$ and $A_{\infty} = (ekT/h) \exp(\Delta S^{\ddagger}/R)$, respectively, where *h* is Plank's constant, and *k* is the Boltzmann constant. The activation energy was calculated from the difference in the enthalpies of formation of the reactants and the TS.

Results and Discussion

Geometries. Optimized structures and selected geometric parameters for reactants, transition states, and product radicals of ethylene, propene, and isobutene reactions with HO₂ radical are illustrated in Table 2. Vibration frequencies and moments of inertia for all species are listed in Table 3, the calculated vibrational frequencies were scaled by the factor 0.9427 and 0.9614 for MP2(full)/6-31G(d) and B3LYP/6-31g(d) theoretical frequencies, respectively, in the calculation of ZPVEs and thermal energies, as recommended by Scott et al.¹³ Torsion frequencies are not included in Table 3.

Reactants and Product Radicals. Structures from the MP2-(full)/6-31G(d) and B3LYP/6-31g(d) calculations are similar for both reactants and product radicals. C=C double bonds in MP2-(full)/6-31G(d) geometries are slightly longer (\sim 0.004 Å) than B3LYP/6-31g(d) for olefin reactants only; other bond lengths in MP2(full)/6-31G(d) are slightly shorter (\sim 0.006 Å) than B3LYP/6-31g(d). The differences of bond length and angles for olefin reactants between MP2(full)/6-31G(d) and B3LYP/6-31g(d) are less than 0.006 Å and 1 degree, respectively. Both calculated reactant geometries are in good agreement with experimental results (Table 2). Differences between the calculated and measured bond lengths and angles are within 0.015 Å and 1.2 degrees, respectively.

Bond lengths of hydroperoxy alkyl radicals in B3LYP/6-31g(d) geometries are longer than those in MP2(full)/6-31G(d)

geometries except R·O–OH and R·OO–H bonds. The R·OO–H and R·O–OH bonds (except C3·CQ radical) in MP2-(full)/6-31G(d) geometries are longer than B3LYP/6-31g(d) by 0.003 Å and 0.021–0.003 Å, respectively. The R·–COOH bond in the hydroperoxy alkyl radicals is ca. 0.16 Å longer than the experimental C=C double bond in ethylene, propylene, and isobutene (average value ca. 1.329 Å²⁴) and 0.04 Å shorter than experimental C–C single bond in ethanol (1.530 Å²⁴). The newformed R·C–OOH bond lengths in product radicals are between 1.434 Å (C·CQ) and 1.466 Å (C3·CQ) in B3LYP/6-31g(d) geometries, while MP2(full)/6-31G(d) geometries yield slightly shorter bond length between 1.431 Å (C·CQ) and 1.459 Å (C3· CQ). Differences of bond angles and dihedral angles are within 1.9° and 13.6° between B3LYP/6-31g(d) and MP2(full)/6-31G-(d) geometries.

Transition States. MP2(full)/6-31g(d) and B3LYP/6-31g(d) calculations both show structures of the hydrocarbon in the transition states having a near-planar ethylene configuration with HO₂ addition perpendicular to the plane. The \angle CCO bond angle varies from 96.1° (TS of HO₂ addition at CD/C2 carbon atom of isobutene) to 104.07° (TS of HO2 addition at CD/H2 carbon atom of propene) for MP2(full)/6-31G(d) geometry. The ∠CCO of B3LYP/6-31g(d) is $2.1 \sim 3.9^{\circ}$ larger than those calculated by MP2(full)/6-31G(d). The forming RC-OOH bond lengths range from 1.9365 Å (TS of HO₂ addition ethylene) to 1.9743 Å (TS of HO₂ addition at CD/C2 carbon atom of isobutene) for MP2-(full)/6-31G(d) geometry. RC-OOH bond lengths from B3LYP/ 6-31G(d) geometries are shorter than those of MP2(full)/6-31G(d) by 0.02–0.046 Å. The breaking C==C bond length is 1.35 and 1.38 Å from MP2(full)/6-31G(d) and B3LYP/6-31G-(d) geometries, respectively (in case of HO₂ addition isobutene forming C₃•COOH, it is slightly longer than other TSs by 0.01 Å for both MP2 and DFT geometries). This distance is longer than average C=C double bonds, 1.33 Å, and shorter than average C-C single bonds 1.51 Å. The bond lengths of RO-OH in transition states are shorter than the R•O-OH bond in hydroperoxy alkyl radicals, but the ROO-H bond in TSs are slightly longer than the R•OO-H bond in hydroperoxy alkyl radicals.

Rotational Barriers. 2-Hydroperoxy-1-ethyl Radical and TS1. Potential barriers of internal rotations for 2-hydroperoxy-1-ethyl radical (C•-COOH, C•C-OOH, and C•CO-OH bonds) and TS1 (CC-OOH and CCO-OH bonds) are calculated at MP2(full)/6-31G(d) and CBSQM levels. Calculation of the potential energy as a function of the dihedral angle is performed by varying the torsion angle in 30° intervals and allowing other parameters to be optimized (except the C-COOH bond in the C•CQ radical, where the HCCH dihedral angle is fixed as 174°). The minimum and maximum on the torsional potential are full optimized for 2-hydroperoxy-1-ethyl radical. The geometries and harmonic vibrational frequencies are calculated for all rotational conformers and transition states at MP2(full)/6-31G-(d) level. The barriers for internal rotations are calculated from the differences between the total energy of each conformation and that of the most stable conformer, where the zero-point vibrational energy (ZPVE) and thermal correction to 298 K are also included. Total energies, ZPVE, thermal correction to 298 K, and calculated rotation barriers for each rotational conformer of 2-hydroperoxy-1-ethyl radical and TS1 are listed in Table 4. Potential barrier diagrams for internal rotations about C--COOH, C·C-OOH and C·CO-OH bonds of 2-hydroperoxy-1-ethyl radical are shown in Figure 1, parts a, b, and c, respectively. Figure 2a, b shows the diagrams about CC-OOH and CCO-OH bonds of TS1. Points are calculated values at

 TABLE 2: Geometrical Parameters (distances in Å, angles in deg)

bond length				bond angle				dihedral angle		
	B3LYP	MP2	expt ²⁴		B3LYP	MP2	expt ²⁴		B3LYP	MP2
		Reactan	ts: Ethyle	ne, Propene	e, and Isobut	ene				-
r21	1.087	1.085	1.085	a321	116.3	116.6	117.8	d4213	180.0	180.0
r32	1.087	1.085		a421	121.9	121.7		d5421	0.0	0.0
r42	1.331	1.335	1.339	a542	121.9	121.7		d6421	180.0	180.0
r54	1.087	1.085		a642	121.9	121.7				
r64	1.087	1.085								
r21 r32 r41 r51 r62 r73 r83 r93	1.333 1.502 1.087 1.089 1.091 1.099 1.095 1.099	1.337 1.498 1.085 1.086 1.089 1.095 1.093 1.095	1.318	a321 a412 a512 a621 a732 a832 a932	125.2 121.8 121.6 118.9 111.2 111.5 111.2	124.6 121.7 121.5 119.0 111.1 111.0 111.1	124.3	d4123 d5123 d6213 d7321 d8321 d9321	180.0 0.0 180.0 239.3 0.0 120.7	180.0 360.0 180.0 239.5 360.0 120.4
r21 r32 r42 r51 r61 r71 r83 r93 r103 r114 r124	$\begin{array}{c} 1.509 \\ 1.509 \\ 1.337 \\ 1.094 \\ 1.099 \\ 1.099 \\ 1.099 \\ 1.099 \\ 1.099 \\ 1.099 \\ 1.087 \\ 1.087 \end{array}$	$\begin{array}{c} 1.503 \\ 1.503 \\ 1.339 \\ 1.093 \\ 1.096 \\ 1.096 \\ 1.096 \\ 1.096 \\ 1.096 \\ 1.086 \\ 1.086 \\ 1.086 \end{array}$	1.507 1.330	a321 a421 a512 a612 a712 a832 a1032 a1142 a1242	115.8 122.1 111.9 111.0 111.0 111.0 111.0 111.0 121.8 121.8	115.8 122.1 111.6 110.8 110.8 111.6 110.8 110.8 110.8 121.7 121.7	122.4	d4213 d5123 d6123 d7123 d8321 d9321 d10321 d11421 d12421	180.0 180.0 59.1 300.9 180.0 59.1 300.9 180.0 0.0	180.0 180.0 59.2 300.8 180.0 59.3 300.8 180.0 0.0

	bond l	ength		bond angle		dihedral angle		
	B3L	YP MP2		B3LYP	MP2		B3LYP	MP2
Produ	ct Radicals Corres	ponding to HO ₂	Addition to 1	Ethylene, Prop	ene, and Iso	obutene		
(H3) (H3) (H6) (H9)	r21 1.44 r32 1.44 r43 1.45 r54 0.97 r61 1.08 r71 1.08 r82 1.11 r92 1.10 r21 1.44 r32 1.44	34 1.483 34 1.431 37 1.467 34 0.977 34 1.081 34 1.081 34 1.097 34 1.100 01 1.488 38 1.486	a321 a432 a543 a612 a712 a821 a921 a321 a432	107.1 106.4 99.8 121.2 119.6 111.8 111.8 121.9 106.9	106.2 104.9 98.5 120.8 119.5 111.9 112.2	d4321 d5432 d6123 d7123 d8213 d9213 d4321 d5432	169.9 112.7 137.7 314.9 238.8 118.2 283.7 181.3	171.9 120.5 147.4 317.8 239.6 118.3 293.9 179.5
H(7) H(7) C(2) H(7) C(2) H(1) H(1) H(1) H(1)	r43 1.44 r54 1.44 r54 1.44 r61 1.09 r71 1.10 r81 1.09 r92 1.08 r103 1.09 r113 1.10 r125 0.97	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a432 a543 a612 a712 a812 a921 a1032 a1132 a1254	106.9 106.6 111.7 111.5 111.6 118.6 112.0 111.4 99.9	100.4 105.2 111.6 111.2 110.9 119.2 112.4 111.3 98.9	d5432 d6123 d7123 d8123 d9213 d10321 d11321 d12543	206.8 87.6 328.3 194.4 164.4 42.5 250.4	179.3 199.4 79.3 320.4 197.3 174.3 52.1 244.0
H(12) H(12) H(11) H(10) H(10)	r21 1.49 r32 1.53 r42 1.44 r54 1.45 r65 0.99 r71 1.08 r81 1.00 r92 1.09 r103 1.09 r113 1.09 r123 1.09	02 1.489 34 1.525 15 1.439 52 1.465 75 0.977 35 1.082 37 1.084 97 1.096 94 1.092 95 1.092 95 1.092	a321 a421 a542 a654 a712 a812 a921 a1032 a1132 a1232	113.1 111.5 107.8 100.7 122.0 119.4 110.4 110.0 110.6 110.1	113.1 111.1 106.4 99.6 121.6 118.9 110.5 109.9 110.0 110.1	d4213 d5421 d6542 d7123 d8123 d9213 d10321 d11321 d12321	243.7 291.3 96.2 245.2 61.5 123.6 62.5 302.7 182.6	244.3 291.3 98.9 258.8 66.8 124.1 61.6 302.0 181.9
H(14) H(15) H(13) H(13) H(13) C(4) H(13) C(4) H(2) H(13) H(12) H(13) H(13) H(13) H(13) H(13) H(13) H(13) H(13) H(13) H(14) H(15) H(1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	a312 a412 a512 a651 a765 a841 a1084 a1184 a1284 a1394 a1494 a1594	108.5 112.0 101.9 105.6 99.7 119.0 117.7 111.5 111.1 111.8 111.1 111.4 111.2	108.1 111.9 101.5 104.9 97.8 117.6 118.2 111.6 110.9 111.9 111.4 110.9 110.9	d4123 d5123 d6512 d7651 d8412 d9412 d10841 d11841 d12841 d13941 d13941 d15941	123.6 245.2 169.2 96.1 253.2 59.0 332.7 211.5 92.9 265.8 147.1 25.6	123.6 244.7 169.6 95.0 265.3 61.7 321.7 200.8 81.8 273.2 154.3 32.7

TABLE 2: continued

		bond length			bond angle		dihedral angle		
		B3LYP	MP2		B3LYP	MP2		B3LYP	MP2
Product Radicals	Correspon r21 r31 r41 r51 r65 r76 r84 r94 r102 r112 r122 r133 r143 r153 Correspon r21 r31 r52 r72 r87	nding to HO 1.533 1.533 1.496 1.466 1.467 0.974 1.085 1.093 1.096 1.095 1.096 1.095 1.094 nding to HO 1.379 1.086 1.085 1.909 1.393	 Addition 1.522 1.494 1.459 1.458 0.977 1.083 1.093 1.094 1.093 1.091 2 Addition 1.352 1.083 1.082 1.937 1.387 	to Ethylen a312 a412 a512 a651 a765 a841 a941 a1021 a1121 a1221 a1331 a1431 a1531 to Ethylen a312 a521 a721 a872 a987	e, Porpene, 112.2 111.6 109.5 109.1 99.6 120.7 120.2 110.3 110.6 110.2 110.4 110.4 e, Propene, 121.3 120.1 105.6 109.2 102.5	and Isobut 112.1 111.2 109.4 107.7 98.9 120.5 119.9 110.3 110.2 109.7 109.9 110.3 110.4 and Isobut 121.3 120.7 103.5 108.7 102.2	ene d4123 d5123 d6512 d7651 d8412 d9412 d10213 d1213 d12213 d12213 d13312 d14312 d15312 ene d4123 d5213 d7213 d8721 d9872	125.9 237.7 61.2 110.1 205.8 35.9 60.1 299.8 179.7 181.1 61.3 301.4 186.8 343.1 87.7 273.5 106.3	125.3 237.7 60.3 114.0 206.2 39.3 58.6 298.1 178.2 182.7 63.1 303.2 185.7 346.2 87.7 280.8 102.9
	r98	1.000	0.978	-212	108.2	109 5	44102	244.4	042 7
H H H H H H H H H H H H H H H H H H H	r21 r31 r41 r51 r65 r75 r87 r98 r109 r117 r127	$\begin{array}{c} 1.099 \\ 1.095 \\ 1.100 \\ 1.496 \\ 1.090 \\ 1.381 \\ 1.396 \\ 0.976 \\ 1.087 \\ 1.085 \end{array}$	$\begin{array}{c} 1.093\\ 1.092\\ 1.096\\ 1.492\\ 1.088\\ 1.351\\ 1.943\\ 1.390\\ 0.977\\ 1.085\\ 1.082\\ \end{array}$	a312 a412 a512 a651 a751 a875 a987 a1098 a1175 a1275	108.2 106.3 111.2 116.9 124.3 106.1 109.1 102.5 119.3 120.1	108.5 106.9 111.0 117.0 124.0 103.1 108.6 102.2 120.2 120.8	d5123 d6512 d7512 d8751 d9875 d10987 d11751 d12751	244.4 123.0 57.3 230.7 275.1 272.3 104.7 16.8 170.4	243.7 122.3 58.0 231.9 275.0 278.8 102.5 13.9 173.1
HI CO-H HI CO-H HI CO-H HI HI CO-H HI HI TS2B	r21 r31 r41 r54 r65 r71 r82 r92 r102 r113 r123	1.506 1.384 1.920 1.396 0.976 1.087 1.093 1.095 1.098 1.086 1.087	1.498 1.353 1.954 1.388 0.978 1.085 1.091 1.092 1.094 1.083 1.084	a312 a412 a541 a654 a712 a821 a921 a1021 a1131 a1231	121.7 97.8 119.3 102.4 115.7 110.6 111.2 110.1 121.3 121.1	122.6 95.9 109.8 102.2 116.1 110.4 110.8 109.9 121.3 121.2	d4123 d5412 d6541 d7123 d8213 d9213 d10213 d11312 d12312	250.9 209.8 251.0 154.0 152.9 32.1 272.5 169.4 342.2	254.7 200.5 254.3 159.9 146.2 25.5 265.7 172.1 346.2
	r21 r31 r41 r51 r65 r76 r84 r108 r118 r118 r128 r139 r149 r159	$\begin{array}{c} 1.086\\ 1.087\\ 1.382\\ 1.933\\ 1.399\\ 0.977\\ 1.501\\ 1.500\\ 1.094\\ 1.099\\ 1.100\\ 1.101\\ 1.098\\ 1.095\end{array}$	$\begin{array}{c} 1.085\\ 1.085\\ 1.349\\ 1.953\\ 1.394\\ 0.978\\ 1.495\\ 1.495\\ 1.494\\ 1.092\\ 1.096\\ 1.096\\ 1.097\\ 1.095\\ 1.092 \end{array}$	a312 a412 a512 a651 a765 a841 a941 a104 a1184 a1284 a1284 a1494 a1494 a1594	115.3 119.9 91.2 110.4 102.8 121.2 120.8 112.1 111.2 111.7 110.1 111.6 112.1	115.7 120.7 90.1 110.8 102.4 121.3 121.2 111.7 110.9 109.9 109.3 111.2 111.8	d4123 d5123 d6512 d7651 d8412 d9412 d10841 d11841 d12841 d13941 d13941 d15941	$\begin{array}{c} 154.4\\ 262.5\\ 170.4\\ 275.2\\ 17.6\\ 187.5\\ 350.3\\ 228.8\\ 110.6\\ 261.9\\ 143.2\\ 21.2 \end{array}$	159.9 262.9 179.4 274.8 15.4 184.9 349.6 228.0 109.7 259.5 140.6 18.9
	r21 r31 r41 r51 r65 r76 r84 r94 r103 r113 r123 r132 r132 r142 r152	1.511 1.512 1.392 1.928 1.399 0.975 1.086 1.086 1.098 1.094 1.094 1.098 1.094 1.094	$\begin{array}{c} 1.503\\ 1.504\\ 1.357\\ 1.974\\ 1.391\\ 0.978\\ 1.085\\ 1.085\\ 1.084\\ 1.095\\ 1.092\\ 1.092\\ 1.095\\ 1.092\\ 1.091\end{array}$	a312 a412 a312 a651 a765 a841 a1031 a1131 a1231 a1321 a1321 a1421 a1521	116.0 119.4 100.1 111.9 102.2 121.1 121.1 110.0 111.5 11.4 110.0 110.7 111.1	115.9 120.6 98.3 111.8 102.0 121.1 121.3 109.6 111.3 110.1 109.5 110.3 110.9	d4123 d5123 d6512 d7651 d8412 d9412 d10312 d11312 d12312 d13213 d14213 d15213	206.9 100.0 46.1 107.0 341.8 168.8 296.2 176.2 55.4 73.2 313.6 193.3	200.3 98.2 48.4 107.0 345.5 171.5 296.8 176.6 55.8 71.3 311.9 191.6

TABLE 3: Harmonic Vibrational Frequencies (cm⁻¹) for Transition States Corresponding to HO₂ Addition to Ethylene, Propene, and Isobutene

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				F	requencie	s (based o	on MP2(fu	ıll)/6-31g((d) level)					moments of inertia (amu-Bohr∧2)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TS1	-783.7	287.0	422.3	476.4	807.5	867.6	955.2	1048.7	1110.1	1210.3	1276.0	1347.3	103.1
$\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ \end{array} \\ \hline \end{array} \\ TS2A & 1169,3 & 1267,5 & 1341,5 & 1379,4 & 1413.1 & 1451.5 & 1466,6 & 1565,5 & 2917,5 & 2984,8 & 3019,5 & 3046,7 & 723.3 \\ \hline \end{array} \\ \hline \end{array} \\ 3049,4 & 3143,4 & 3471,9 & 757,9 & 775,9 & 775,2 & 853,4 & 891,6 & 925,8 & 990,4 & 1029,1 & 1105,3 & 224,4 & \\ 1169,2 & 1262,2 & 1343,6 & 1371,2 & 1417,0 & 1453,9 & 1468,9 & 1546,4 & 2935,0 & 3015,6 & 3037,2 & 3044,9 & \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ TS3A & -737,7 & 176,3 & 285,2 & 367,8 & 424,4 & 436,2 & 457,3 & 800,0 & 851,8 & 935,3 & 945,6 & 972,0 & 380,3 & \\ 1010,4 & 1055,7 & 1070,2 & 1114,3 & 1288,1 & 1336,1 & 1378,8 & 1385,5 & 1399,1 & 1443,4 & 1452,6 & 1459,5 & 762,5 & \\ 1470,9 & 1595,6 & 2912,1 & 2916,0 & 2983,9 & 2986,4 & 3020,2 & 3026,0 & 3035,2 & 312,3,1 & 3456,8 & 878,6 & \\ TS3B & -731,2 & 227,0 & 291,0 & 375,3 & 380,8 & 424,3 & 453,6 & 626,1 & 784,7 & 841,2 & 936,6 & 954,9 & 395,5 & \\ 957,1 & 1001,8 & 1053,0 & 1103,0 & 1282,5 & 1337,5 & 1368,7 & 1382,3 & 1407,3 & 1446,2 & 1457,5 & 1458,9 & 703,3 & \\ 1474,1 & 1541,4 & 2927,4 & 2931,9 & 3009,5 & 3014,9 & 3032,3 & 3037,5 & 3043,7 & 313,1 & 3469,5 & 731,4 & \\ CeCQ & 286,7 & 417,8 & 475,2 & 801,5 & 895,7 & 979,7 & 1059,4 & 1122,9 & 1186,6 & 1299,8 & 1143,4 & 488,4 & 441,6 & \\ 4443,4 & 2880,5 & 2393,5 & 3070,8 & 3181,7 & 3510,6 & & & & & & & & & & & & & & & & & & &$		3052.6	3058.4	3139.6	3158.9	3470.9	1438.5	1546.5						411.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														445.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TS2A	-774.1	200.4	336.7	417.5	431.7	696.0	897.5	921.6	954.9	1019.3	1039.0	1110.0	175.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1169.3	1267.5	1341.5	1379.4	1413.1	1451.5	1466.6	1565.5	2917.5	2984.8	3019.5	3046.7	723.3
TS2B -759.2 275.3 297.1 419.5 433.1 575.2 853.4 891.6 925.8 990.4 1029.1 1105.3 224.4 1169.2 1262.2 1343.6 1371.2 1417.0 1453.9 1468.9 1546.4 2935.0 3015.6 3037.2 3044.9 541.3 3070.7 3141.5 3471.6 689.8 1546.4 2935.0 305.6 972.0 380.3 1010.4 1055.7 1070.2 1114.3 1288.1 1336.1 1378.8 1335.5 1399.1 1443.4 1452.6 1459.5 762.5 TS3B -731.2 227.0 291.0 375.3 380.8 424.3 453.6 626.1 784.7 841.2 936.6 954.9 395.5 987.1 1001.8 1053.0 1103.0 1282.5 1337.5 1368.7 1382.3 1407.3 1446.2 1457.5 1458.9 703.3 1474.1 1541.4 2927.4 2931.9 3009.5 301.4 930.3 3037.5 3043.7 3133.1 3465.5 731.4		3049.4	3143.4	3471.9										757.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS2B	-759.2	275.3	297.1	419.5	433.1	575.2	853.4	891.6	925.8	990.4	1029.1	1105.3	224.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1169.2	1262.2	1343.6	1371.2	1417.0	1453.9	1468.9	1546.4	2935.0	3015.6	3037.2	3044.9	541.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3070.7	3141.5	3471.6										689.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TS3A	-737.7	176.3	285.2	367.8	424.4	436.2	457.3	800.0	851.8	935.3	945.6	972.0	380.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1010.4	1055.7	1070.2	1114.3	1288.1	1336.1	1378.8	1385.5	1399.1	1443.4	1452.6	1459.5	762.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1470.9	1595.6	2912.1	2916.0	2983.9	2986.4	3020.2	3026.0	3035.2	3123.1	3456.8		878.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS3B	-731.2	227.0	291.0	375.3	380.8	424.3	453.6	626.1	784.7	841.2	936.6	954.9	395.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		987.1	1001.8	1053.0	1103.0	1282.5	1337.5	1368.7	1382.3	1407.3	1446.2	1457.5	1458.9	703.3
C•CQ 286.7 417.8 475.2 801.5 895.7 979.7 1059.4 1122.9 1186.6 1299.8 1344.4 488.4 54.1 1483.4 2880.5 2939.5 3070.8 3181.7 3510.6 444.3 CC•CQ 252.2 348.4 445.6 507.5 883.2 920.5 950.0 984.2 1117.2 1123.4 1135.3 1207.1 125.7 1297.4 1326.3 1368.8 1393.4 1453.3 1465.2 1489.3 2897.9 290.6 2971.0 2974.8 3011.5 708.2 3083.9 3505.9 768.6 C•CQC 269.0 317.2 442.0 453.6 532.5 809.8 879.8 900.7 930.0 1040.5 1134.8 1149.1 218.6 1281.9 1302.3 1343.3 1370.6 1428.3 1459.5 1470.3 2938.5 2941.3 3031.3 3033.7 3046.9 459.9 3158.0 3496.3 766.4 128.1 1136.4 1450.0 1456.8 1464.9 802.7 1057.1 1207.9 1251.4 1282.6 1303.1 1346.2 1379.2 1390.2 1436.4 1450.0 1456.8 1464.9 802.7 1473.5 2871.5 2872.9 2876.0 2958.7 2960.6 2962.3 3005.4 3014.8 3488.5 896.3 C3C•CQ 269.2 333.9 340.5 375.0 443.3 506.5 536.4 733.2 864.0 896.0 928.9 977.1 395.1 1001.8 1146.3 1240.5 1263.7 1282.5 1317.5 1364.2 1377.8 1432.3 1452.3 1467.1 1471.5 624.0 1485.2 2931.9 2936.8 3016.6 3022.6 3033.9 3039.9 3048.2 3157.7 3505.9 634.0		1474.1	1541.4	2927.4	2931.9	3009.5	3014.9	3032.3	3037.5	3043.7	3133.1	3469.5		731.4
1483.4 2880.5 2939.5 3070.8 3181.7 3510.6 411.6 CC•CQ 252.2 348.4 445.6 507.5 883.2 920.5 950.0 984.2 1117.2 1123.4 1135.3 1207.1 125.7 1297.4 1326.3 1368.8 1393.4 1453.3 1465.2 1489.3 2897.9 2900.6 2971.0 2974.8 3011.5 708.2 3083.9 3505.9 768.6 768.6 768.6 768.6 768.6 768.6 C•CQC 269.0 317.2 442.0 453.6 532.5 809.8 879.8 900.7 930.0 1040.5 1134.8 1149.1 218.6 1281.9 1302.3 1343.3 1370.6 1428.3 1459.5 1470.3 2938.5 2941.3 3031.3 3033.7 3046.9 459.9 611.8 C2C•CQ 250.0 295.4 346.3 387.4 540.2 766.3 817.5 908.7 920.4 953.0 981.3 1007.2 333.1 1057.1 1207.9 1251.4 1282.6	C•CQ	286.7	417.8	475.2	801.5	895.7	979.7	1059.4	1122.9	1186.6	1299.8	1344.4	488.4	54.1
CC•CQ 252.2 348.4 445.6 507.5 883.2 920.5 950.0 984.2 1117.2 1123.4 1135.3 1207.1 125.7 1297.4 1326.3 1368.8 1393.4 1453.3 1465.2 1489.3 2897.9 2900.6 2971.0 2974.8 3011.5 708.2 3083.9 3505.9 768.6 768.6 768.6 768.6 768.6 768.6 C•CQC 269.0 317.2 442.0 453.6 532.5 809.8 879.8 900.7 930.0 1040.5 1134.8 1149.1 218.6 1281.9 1302.3 1343.3 1370.6 1428.3 1459.5 1470.3 2938.5 2941.3 3031.3 3033.7 3046.9 459.9 3158.0 3496.3 877.4 540.2 766.3 817.5 908.7 920.4 953.0 981.3 1007.2 333.1 1057.1 1207.9 1251.4 1282.6 1303.1 1346.2 1379.2 1390.2 1436.4 1450.0 1456.8 1464.9 802.7 1473.5<		1483.4	2880.5	2939.5	3070.8	3181.7	3510.6							411.6
CC•CQ 252.2 348.4 445.6 507.5 883.2 920.5 950.0 984.2 1117.2 1123.4 1135.3 1207.1 125.7 1297.4 1326.3 1368.8 1393.4 1453.3 1465.2 1489.3 2897.9 2900.6 2971.0 2974.8 3011.5 708.2 3083.9 3505.9 768.6 768.6 768.6 768.6 768.6 768.6 C•CQC 269.0 317.2 442.0 453.6 532.5 809.8 879.8 900.7 930.0 1040.5 1134.8 1149.1 218.6 1281.9 1302.3 1343.3 1370.6 1428.3 1459.5 1470.3 2938.5 2941.3 3031.3 3033.7 3046.9 459.9 3158.0 3496.3 877.4 540.2 766.3 817.5 908.7 920.4 953.0 981.3 1007.2 333.1 1057.1 1207.9 1251.4 1282.6 1303.1 1346.2 1379.2 1390.2 1436.4 1450.0 1456.8 1464.9 802.7 1473.5<														444.3
1297.4 1326.3 1368.8 1393.4 1453.3 1465.2 1489.3 2897.9 2900.6 2971.0 2974.8 3011.5 708.2 3083.9 3505.9 768.6 768.6 768.6 768.6 768.6 C•CQC 269.0 317.2 442.0 453.6 532.5 809.8 879.8 900.7 930.0 1040.5 1134.8 1149.1 218.6 1281.9 1302.3 1343.3 1370.6 1428.3 1459.5 1470.3 2938.5 2941.3 3031.3 3033.7 3046.9 459.9 3158.0 3496.3 87.4 540.2 766.3 817.5 908.7 920.4 953.0 981.3 1007.2 333.1 1057.1 1207.9 1251.4 1282.6 1303.1 1346.2 1379.2 1390.2 1436.4 1450.0 1456.8 1464.9 802.7 1473.5 2871.5 2872.9 2876.0 2958.7 2960.6 2962.3 3005.4 3014.8 3488.5 896.3 C3C•CQ 269.2 333.9 340.5 3	CC•CQ	252.2	348.4	445.6	507.5	883.2	920.5	950.0	984.2	1117.2	1123.4	1135.3	1207.1	125.7
3083.9 3505.9 768.6 C•CQC 269.0 317.2 442.0 453.6 532.5 809.8 879.8 900.7 930.0 1040.5 1134.8 1149.1 218.6 1281.9 1302.3 1343.3 1370.6 1428.3 1459.5 1470.3 2938.5 2941.3 3031.3 3033.7 3046.9 459.9 3158.0 3496.3 611.8 611.8 611.8 611.8 611.8 C2C•CQ 250.0 295.4 346.3 387.4 540.2 766.3 817.5 908.7 920.4 953.0 981.3 1007.2 333.1 1057.1 1207.9 1251.4 1282.6 1303.1 1346.2 1379.2 1390.2 1436.4 1450.0 1456.8 1464.9 802.7 1473.5 2871.5 2872.9 2876.0 2958.7 2960.6 2962.3 3005.4 3014.8 3488.5 896.3 C3C•CQ 269.2 333.9 340.5 375.0 443.3 506.5 536.4 733.2 864.0 896.0 928.9 977.1		1297.4	1326.3	1368.8	1393.4	1453.3	1465.2	1489.3	2897.9	2900.6	2971.0	2974.8	3011.5	708.2
C•CQC 269.0 317.2 442.0 453.6 532.5 809.8 879.8 900.7 930.0 1040.5 1134.8 1149.1 218.6 1281.9 1302.3 1343.3 1370.6 1428.3 1459.5 1470.3 2938.5 2941.3 3031.3 3033.7 3046.9 459.9 3158.0 3496.3 611.8 611.8 611.8 611.8 611.8 C2C•CQ 250.0 295.4 346.3 387.4 540.2 766.3 817.5 908.7 920.4 953.0 981.3 1007.2 333.1 1057.1 1207.9 1251.4 1282.6 1303.1 1346.2 1379.2 1390.2 1436.4 1450.0 1456.8 1464.9 802.7 1473.5 2871.5 2872.9 2876.0 2958.7 2960.6 2962.3 3005.4 3014.8 3488.5 896.3 C3C•CQ 269.2 333.9 340.5 375.0 443.3 506.5 536.4 733.2 864.0 896.0 928.9 977.1 395.1 1001.8 1146.3		3083.9	3505.9											768.6
1281.9 1302.3 1343.3 1370.6 1428.3 1459.5 1470.3 2938.5 2941.3 3031.3 3033.7 3046.9 459.9 3158.0 3496.3 250.0 295.4 346.3 387.4 540.2 766.3 817.5 908.7 920.4 953.0 981.3 1007.2 333.1 1057.1 1207.9 1251.4 1282.6 1303.1 1346.2 1379.2 1390.2 1436.4 1450.0 1456.8 1464.9 802.7 1473.5 2871.5 2872.9 2876.0 2958.7 2960.6 2962.3 3005.4 3014.8 3488.5 896.3 C3C•CQ 269.2 333.9 340.5 375.0 443.3 506.5 536.4 733.2 864.0 896.0 928.9 977.1 395.1 1001.8 1146.3 1240.5 1263.7 1282.5 1317.5 1364.2 1377.8 1432.3 1467.1 1471.5 624.0 1485.2 2931.9 2936.8 3016.6 3022.6 3033.9 3039.9 3048.2 3157.7 3505.9	C•CQC	269.0	317.2	442.0	453.6	532.5	809.8	879.8	900.7	930.0	1040.5	1134.8	1149.1	218.6
3158.0 3496.3 611.8 C2C•CQ 250.0 295.4 346.3 387.4 540.2 766.3 817.5 908.7 920.4 953.0 981.3 1007.2 333.1 1057.1 1207.9 1251.4 1282.6 1303.1 1346.2 1379.2 1390.2 1436.4 1450.0 1456.8 1464.9 802.7 1473.5 2871.5 2872.9 2876.0 2958.7 2960.6 2962.3 3005.4 3014.8 3488.5 896.3 C3C•CQ 269.2 333.9 340.5 375.0 443.3 506.5 536.4 733.2 864.0 896.0 928.9 977.1 395.1 1001.8 1146.3 1240.5 1263.7 1282.5 1317.5 1364.2 1377.8 1432.3 1467.1 1471.5 624.0 1485.2 2931.9 2936.8 3016.6 3022.6 3033.9 3039.9 3048.2 3157.7 3505.9 634.0		1281.9	1302.3	1343.3	1370.6	1428.3	1459.5	1470.3	2938.5	2941.3	3031.3	3033.7	3046.9	459.9
C2C•CQ 250.0 295.4 346.3 387.4 540.2 766.3 817.5 908.7 920.4 953.0 981.3 1007.2 333.1 1057.1 1207.9 1251.4 1282.6 1303.1 1346.2 1379.2 1390.2 1436.4 1450.0 1456.8 1464.9 802.7 1473.5 2871.5 2872.9 2876.0 2958.7 2960.6 2962.3 3005.4 3014.8 3488.5 896.3 C3C•CQ 269.2 333.9 340.5 375.0 443.3 506.5 536.4 733.2 864.0 896.0 928.9 977.1 395.1 1001.8 1146.3 1240.5 1263.7 1282.5 1317.5 1364.2 1377.8 1432.3 1467.1 1471.5 624.0 1485.2 2931.9 2936.8 3016.6 3022.6 3033.9 3039.9 3048.2 3157.7 3505.9 634.0		3158.0	3496.3											611.8
1057.1 1207.9 1251.4 1282.6 1303.1 1346.2 1379.2 1390.2 1436.4 1450.0 1456.8 1464.9 802.7 1473.5 2871.5 2872.9 2876.0 2958.7 2960.6 2962.3 3005.4 3014.8 3488.5 896.3 C3C•CQ 269.2 333.9 340.5 375.0 443.3 506.5 536.4 733.2 864.0 896.0 928.9 977.1 395.1 1001.8 1146.3 1240.5 1263.7 1282.5 1317.5 1364.2 1377.8 1432.3 1452.3 1467.1 1471.5 624.0 1485.2 2931.9 2936.8 3016.6 3022.6 3033.9 3039.9 3048.2 3157.7 3505.9 634.0	C2C•CQ	250.0	295.4	346.3	387.4	540.2	766.3	817.5	908.7	920.4	953.0	981.3	1007.2	333.1
1473.5 2871.5 2872.9 2876.0 2958.7 2960.6 2962.3 3005.4 3014.8 3488.5 896.3 C3C•CQ 269.2 333.9 340.5 375.0 443.3 506.5 536.4 733.2 864.0 896.0 928.9 977.1 395.1 1001.8 1146.3 1240.5 1263.7 1282.5 1317.5 1364.2 1377.8 1432.3 1452.3 1467.1 1471.5 624.0 1485.2 2931.9 2936.8 3016.6 3022.6 3033.9 3039.9 3048.2 3157.7 3505.9 634.0		1057.1	1207.9	1251.4	1282.6	1303.1	1346.2	1379.2	1390.2	1436.4	1450.0	1456.8	1464.9	802.7
C3C•CQ 269.2 333.9 340.5 375.0 443.3 506.5 536.4 733.2 864.0 896.0 928.9 977.1 395.1 1001.8 1146.3 1240.5 1263.7 1282.5 1317.5 1364.2 1377.8 1432.3 1457.1 1467.1 1471.5 624.0 1485.2 2931.9 2936.8 3016.6 3022.6 3033.9 3039.9 3048.2 3157.7 3505.9 634.0		1473.5	2871.5	2872.9	2876.0	2958.7	2960.6	2962.3	3005.4	3014.8	3488.5			896.3
1001.8 1146.3 1240.5 1263.7 1282.5 1317.5 1364.2 1377.8 1432.3 1452.3 1467.1 1471.5 624.0 1485.2 2931.9 2936.8 3016.6 3022.6 3033.9 3039.9 3048.2 3157.7 3505.9 634.0	C3C•CQ	269.2	333.9	340.5	375.0	443.3	506.5	536.4	733.2	864.0	896.0	928.9	977.1	395.1
1485.2 2931.9 2936.8 3016.6 3022.6 3033.9 3039.9 3048.2 3157.7 3505.9 634.0 moments of inertia		1001.8	1146.3	1240.5	1263.7	1282.5	1317.5	1364.2	1377.8	1432.3	1452.3	1467.1	1471.5	624.0
moments of inertia		1485.2	2931.9	2936.8	3016.6	3022.6	3033.9	3039.9	3048.2	3157.7	3505.9			634.0
														moments of inertia

	Frequencies (based on B31yp/6-31g(d) level) (amu-Bohr^2)												
TS1	-496.8	291.8	404.5	455.9	786.4	790.7	897.8	995.4	1041.5	1202.4	1229.8	1354.5	103.1
	1430.7	1514.8	3044.6	3049.7	3119.2	3141.3	3501.8						412.0
													445.7
TS2A	-483.0	210.6	333.3	396.9	415.4	671.1	877.3	885.2	912.4	977.7	1006.1	1027.7	165.1
	1158.8	1236.5	1348.0	1373.1	1397.7	1445.2	1459.3	1515.9	2903.2	2943.1	2998.4	3037.5	768.7
	3042.0	3129.2	3502.7										795.5
TS2B	-476.0	280.6	300.8	400.8	422.2	507.9	765.2	869.4	913.5	932.3	992.9	1045.6	231.0
	1155.7	1230.3	1350.5	1364.2	1398.6	1449.8	1464.4	1500.0	2932.0	2992.0	3020.6	3041.9	546.9
	3060.3	3129.4	3508.7										696.7
TS3A	-466.4	166.1	285.4	362.0	407.6	426.6	442.8	778.0	835.5	889.0	939.0	959.1	368.3
	988.9	1010.1	1039.9	1046.3	1272.6	1347.1	1362.8	1379.0	1386.3	1439.6	1447.3	1454.5	818.4
	1467.0	1522.0	2900.5	2906.5	2945.6	2952.8	3001.2	3007.3	3032.9	3112.2	3483.2		953.7
TS3B	-457.9	231.0	300.6	364.6	378.9	409.0	431.4	516.5	743.9	769.2	911.7	922.6	404.2
	947.3	993.3	1032.4	1051.4	1265.2	1342.8	1348.3	1376.2	1390.0	1444.2	1452.1	1454.9	708.2
	1472.5	1493.7	2929.7	2934.0	2994.1	2999.4	3019.7	3029.5	3041.3	3128.1	3512.4		734.1
C•CQ	287.6	443.3	490.3	791.3	895.8	965.0	1037.5	1115.3	1190.9	1326.9	1344.0	459.0	53.9
	1469.9	2857.1	2910.9	3063.3	3166.3	3555.2							415.5
~~~~													445.8
CC•CQ	260.9	346.8	455.3	518.0	858.2	869.8	917.4	927.5	971.0	1121.9	1125.1	1203.4	118.2
	1311.1	1327.5	1367.2	1380.9	1445.3	1456.1	1482.4	2871.6	2890.3	2943.6	2957.0	2984.5	748.6
	3067.2	3549.4	10.00			007				1010 0			795.5
C•CQC	269.5	320.4	436.2	460.7	541.5	807.6	881.1	896.3	916.8	1010.9	1122.9	1141.2	220.6
	1281.0	1334.7	1341.3	1367.5	1423.0	1453.9	1467.1	2941.1	2942.2	3015.2	3018.2	3040.4	464.0
	3144.3	3542.2	250.0	204.4	504.6	<b>350 3</b>	0050	011.0	0151	046.0	071 6	000 5	618.8
C2C•CQ	234.8	293.8	350.0	384.4	534.6	750.7	835.2	911.0	917.1	946.0	9/1.6	982.7	343.7
	1028.2	1203.9	1254.4	1269.4	1331.4	1342.2	1372.4	1387.3	1429.0	1442.3	1448.1	1457.8	805.4
<u></u>	1466.8	2848.3	2853.0	2866.2	2926.7	2934.3	2955.8	2985.6	2993.1	3540.6	070 4	00000	903.2
C3C•CQ	258.7	528.6	336.2	3/2.8	439.7	505.1	556.6	1277.0	826.3	843.2	8/9.4	926.9	401.5
	900.5	998.1	1123.1	1220.0	1255.6	1309.4	1303.2	15/7.0	1427.2	1448.4	1403.1	140/./	033.3
	1481.6	2936.5	2945.2	3002.2	3008.1	3018.3	3027.0	3047.1	3148.3	3360.5			645.2

MP2(full)/6-31g(d) (circles) and CBSQM (triangles). Lines are results of Fourier expansions F1. Coefficients of the Fourier expansion components,  $a_i$  and  $b_i$  in eq F1 are presented in the Supporting Information (Table S1).

Contributions from hindered rotors of  $S^{\circ}_{298}$  and Cp(T) calculated using the method of Pitzer and Gwinn¹⁵ and by direct

integration over energy levels of the exact potential curve are listed in Table 5. The differences between rotational barriers calculated at MP2(full)/6-31g(d) and CBSQM levels are less than 1.6 kcal/mol. Direct diagonalization of the Hamiltonian matrix of rotational potential energy and the Pitzer and Gwinn approximation method both lead to similar results in determi-

 TABLE 4: Total Energy, Zero-Point Vibrational Energies, Thermal Correction, and Internal Rotation Barriers of TS1 and

 2-Hydroperoxy-1-ethyl Radical

		total energy (	(hartree)	$ZPVE^{a}$	$H_{\text{thermal}}^{b}$	rotational barrier (ke	cal/mol) ^c
tors	ion angle	MP2(full)/6-31g(d)	$CBS-Q^d$	(kcal/mol)	(kcal/mol)	MP2(full)/6-31g(d)	CBS-Q ^d
T\$1	СС-00Н						
151	-5	-228 7621645	-229 1274687	42.18	3 41	2 71	3 43
	Ő	-228.7620629	-229.1272540	42.18	3.41	2.77	3.56
	5	-228.7620359	-229.1271514	42.18	3.41	2.78	3.63
	30	-228.7628320	-229.1281435	42.17	3.42	2.28	3.02
	60	-228.7644161	-229.1303841	42.18	3.44	1.33	1.52
	75.20	-228.7647060	-229.1311215	42.23	3.44	1.19	1.05
	90	-228.7644496	-229.1307296	42.28	3.43	1.38	1.31
	115	-228.7634505	-229.1297802	42.29	3.41	2.01	1.98
	120	-228.7632756	-229.1297161	42.28	3.41	2.11	2.02
	125	-228.7631293	-229.1297196	42.27	3.41	2.19	2.02
	150	-228.7628813	-229.1303355	42.20	3.42	2.28	1.64
	1/5	-228.7630742	-229.1300503	42.16	3.42	2.13	1.78
	210	-228.7030973	-229.1290801	42.10	3.42	2.11	2.01
	240	-228.7633213	-229.1295580 -229.1301744	42.21	3.41	1 21	1 73
	270	-228.7665092	-229.1323222	42.33	3.42	0.14	0.27
	280.70	-228.7666916	-229.1327393	42.30	3.43	0.00	0.00
	300	-228.7660909	-229.1322836	42.23	3.43	0.31	0.29
	330	-228.7636625	-229.1297477	42.19	3.41	1.77	2.01
	360	-228.7620629	-229.1272616	42.18	3.41	2.77	3.56
	CCO-OH	228 7474757	220 1151426	42.00	2 75	12.17	11 51
	30	-228.7474737 -228.7517307	-229.1131430	42.09	3.73	0.03	8 03
	50	-228.7517507	-229.1191947	41.03	3.72	3.05	3 35
	90	-228.7661446	-229.1274317 -229.1322706	42.23	3 43	0.27	0.29
	103.01	-228.7666916	-229.1327375	42.30	3.43	0.00	0.00
	120	-228.7657577	-229.1317874	42.36	3.43	0.66	0.61
	150	-228.7600745	-229.1264396	42.33	3.55	4.31	4.07
	180	-228.7523517	-229.1180858	42.37	3.77	9.42	9.68
	190	-228.7509029	-229.1156923	42.39	3.81	10.38	11.22
	195	-228.7507782	-229.1160681	42.31	3.83	10.41	11.01
	200	-228.7511861	-229.1151786	42.16	3.85	10.01	11.58
	210	-228.75318	-229.1188890	41.92	3.84	8.51	9.24
	240	-228.7605883	-229.12/3410	42.08	3.54	3.73	3.53
	270	-228.7645911	-229.1310102	42.22	3.45	1.26	1.12
	275.75	-228.764700 -228.7626601	-229.1311229	42.23	5.44 2.44	1.19	1.05
	330	-228.7020001 -228.755464	-229.1207307 -229.1244116	42.22	3.44	2.40	2.35
	360	-228.755404	-229.1244110 -229.1151436	42.01	3.75	12 17	11 51
	500	220.7171737	22).1101100	12.09	5.75	12.17	11.51
C∙CQ	C•−COOH						
	0	-228.8124851	-229.1598939	41.82	3.93	0.46	0.27
	0.28	-228.8124854	-229.1598863	41.83	3.93	0.46	0.27
	30 42 24	-228.8129439	-229.1598858	41.87	3.90	0.19	0.10
	+2.2+ 60	-228.8128062	-229.1597075	41.97	3.85	0.20	0.10
	90	-228.8121396	-229.1584321	42.59	3.82	1.33	1.07
	92.31	-228.8121347	-229.1584197	42.59	3.82	1.33	1.08
	120	-228.8127581	-229.1590216	42.46	3.83	0.82	0.71
	147.35	-228.8134071	-229.1599021	42.02	3.86	0.00	0.00
	180	-228.8126679	-229.1599364	41.84	3.93	0.36	0.23
	197.04	-228.8124388	-229.1597525	41.83	3.93	0.49	0.35
	210	-228.8125460	-229.159/816	41.84	3.92	0.43	0.32
	240	-228.8129120	-229.1592929	42.39	3.84	0.66	0.53
	240.92	-228.8129302	-229.1391378	42.55	3.02	0.78	0.05
	203.58	-228.8129203	-229.1589552	42.00	3.81	0.91	0.74
	300	-228,8131254	-229.15092107	42.55	3.82	0.67	0.58
	308.86	-228.8131546	-229.1592939	42.42	3.83	0.53	0.47
	330	-228.8129498	-229.1596399	41.98	3.89	0.28	0.25
	360	-228.8124854	-229.1598902	41.83	3.93	0.46	0.27
	-102	-100 0027462	-220 1409704	12.02	2 00	6 02	6 10
	-1.02	-228 8071461	-229.1498/00	42.03	5.8U 3.27	0.83	0.48
	66.98	-228 813076	229.1342349 	+1.00 <u>∕</u> 11 77	3.37	0.58	0.62
	90	-228 8111734	-229.1509102	41.79	3.42	1 51	1 54
	116.52	-228.8090495	-229.1559429	42.06	3.77	3.02	2.70
	150	-228.8119317	-229.1589051	41.77	3.44	0.67	0.68
	172.03	-228.8134071	-229.1597629	41.81	3.45	0.00	0.00
	210	-228.8095028	-229.1567332	41.99	3.78	2.95	2.63
	239.16	-228.8087762	-229.1558283	41.99	3.84	3.34	2.95
	240	-228.8083101	-229.1553129	41.99	3.78	3.60	3.27
	270	-228.8123781	-229.1585331	42.11	3.72	1.39	1.12
	300	-228.813511	-229.1592246	42.22	3.75	1.04	0.74
	289.30	-228.8141222	-229.1598/1	42.14	3./4 2.88	0.52	0.23
	358 98	-220.000/1/3 -228 8037463	-227.1341043	41.90 12 A2	3.00 3.80	4.42 6.83	4.00 6.48
	550.70	220.003/403	227.1470/00	+2.00	5.00	0.05	0.40

	total energy	(hartree)	$ZPVE^{a}$	$H_{\text{thermal}}^{b}$	rotational barrier (kcal/mol) ^c			
torsion angle	MP2(full)/6-31g(d)	CBS-Q ^d	(kcal/mol)	(kcal/mol)	MP2(full)/6-31g(d)	CBS-Q ^d		
С•СО-ОН								
0	-228.8016037	-229.1517770	41.97	3.93	7.42	5.84		
0.17	-228.8016036	-229.1517754	41.97	3.93	7.42	5.84		
30	-228.8044058	-229.1539892	41.90	3.94	5.61	4.45		
60	-228.8095432	-229.1570267	42.06	3.77	2.38	1.94		
90	-228.8126289	-229.1594660	42.09	3.77	0.47	0.41		
120	-228.8134069	-229.1601160	42.02	3.86	0.00	0.00		
120.49	-228.8134071	-229.1601187	42.02	3.86	0.00	0.00		
150	-228.8131274	-229.1610336	42.03	3.90	0.23	0.03		
180	-228.8128132	-229.1606958	42.06	3.90	0.46	0.25		
191.07	-228.8127838	-229.1605611	42.05	3.91	0.47	0.33		
210	-228.8128679	-229.1605997	42.01	3.92	0.39	0.31		
238.88	-228.8130701	-229.1598785	41.97	3.90	0.21	0.15		
238.99	-228.8130699	-229.1598915	41.97	3.90	0.20	0.14		
240	-228.8130694	-229.1598873	41.97	3.89	0.20	0.15		
270	-228.8123060	-229.1593540	42.06	3.79	0.66	0.49		
300	-228.8092943	-229.1705722	42.03	3.78	2.52	1.92		
330	-228.8043895	-229.1541411	41.87	3.94	5.59	4.36		
360	-228.8016037	-229.1517764	41.97	3.93	7.42	5.84		

^{*a*} ZPVE with the frequency of the torsion motion about CC–OOH bond excluded. ^{*b*} Thermal correction to 298 K with the frequency of the torsion motion about CC–OOH bond excluded. ^{*c*} Rotational barriers are calculated as the difference in total energies + scaled (0.9661) zero-point vibrational energies + thermal correction to 298 K, where the corresponding torsional frequencies are excluded in the calculation of ZPVE and thermal correction. ^{*d*} Based on MP2(full)/6-31g(d) geometry.

TABLE 5:	Calculation of $S^{\circ}_{298}$ as	nd $C_p(T)$	<b>Contribution from</b>	<b>Internal Rotor for</b>	2-Hydroperoxy-	1-ethyl J	Radical and	TS1

rotors	method	S° ₂₉₈ cal/mol K	C _{p300} cal/mol K	$C_{p400}$	$C_{p500}$	$C_{p600}$	$C_{p800}$	$C_{p1000}$	$C_{p1500}$	Ir ^e amu-Å ²	V _{mean} ^f kcal/mol	$N^{g}$
					C•CQ							
С•-СООН	$P\&G^a$	4.92	1.38	1.25	1.17	1.12	1.07	1.04	1.02	1.70	0.91	3
	$P\&G^b$	5.00	1.26	1.16	1.10	1.07	1.04	1.02	1.01	1.70	0.73	3
	ROT ^c	4.92	1.37	1.24	1.17	1.12	1.07	1.05	1.02			
	$ROT^d$	4.97	1.30	1.19	1.13	1.09	1.05	1.03	1.01			
С•С-ООН	$P\&G^a$	5.41	2.18	2.29	2.32	2.25	2.03	1.81	1.45	15.55	4.48	3
	$P\&G^b$	5.50	2.21	2.31	2.29	2.20	1.95	1.73	1.40	15.55	4.15	3
	$ROT^{c}$	5.49	2.30	2.32	2.26	2.14	1.83	1.54	0.98			
	$ROT^d$	5.42	2.83	2.57	2.34	2.13	1.76	1.46	0.93			
С•СО-ОН	$P\&G^a$	2.92	1.96	2.14	2.16	2.08	1.86	1.66	1.36	0.91	3.95	2
	$P\&G^b$	3.20	2.07	2.11	2.01	1.88	1.63	1.45	1.23	0.91	3.09	2
	$ROT^{c}$	3.50	1.32	1.35	1.39	1.43	1.48	1.49	1.43			
	$ROT^d$	3.57	1.34	1.39	1.44	1.48	1.50	1.47	1.36			
					TS1							
СС•••ООН	$P\&G^a$	6.03	2.30	2.13	1.93	1.75	1.49	1.35	1.16	13.93	2.53	2
	$P\&G^b$	5.97	2.31	2.17	1.97	1.79	1.53	1.37	1.18	13.93	2.64	2
	ROT ^c	5.65	3.50	2.87	2.32	1.94	1.45	1.15	0.72			
	$ROT^d$	5.41	3.37	2.53	1.85	1.38	0.83	0.55	0.25			
CCO-OH	$P\&G^a$	1.99	1.26	1.57	1.78	1.91	2.11	2.23	2.22	0.91	11.29	2
	$P\&G^b$	2.03	1.30	1.61	1.81	1.94	2.14	2.24	2.19			
	ROT ^c	1.71	2.33	2.35	2.29	2.23	2.18	2.14	2.00	0.91	10.59	2
	$ROT^d$	1.93	2.09	2.29	2.42	2.46	2.39	2.23	1.83			

^{*a*} Use of Pitzer and Gwinn approximation and rotational barrier based on MP2(full)/6-31g(d) level of theory. ^{*b*} Use of Pitzer and Gwinn approximation and rotational barrier based on CBS-Q//MP2(full)/6-31g(d) level of theory. ^{*c*} Using direct integration over energy levels of the exact potential energy curve of the rotational barriers which are calculated at MP2(full)/6-31g(d) level of theory. ^{*d*} Using direct integration over energy levels of the exact potential energy curve of the rotational barriers which are calculated at CBS-Q//MP2(full)/6-31g(d) level of theory. ^{*e*} Reduced moments of inertia are calculated about the rotational bonds based on MP2(full)/6-31g(d) level of theory. ^{*f*} Arithmetic mean of rotational barriers. ^{*g*} Number of potential maxima.

nation of hindered rotor contributions to  $S^{\circ}_{298}$  (difference within 0.58 cal/mol-K) and  $Cp(T)_{298}$  (difference within 1.16 cal/mol-K).

Other Hydroperoxy Alkyl Radicals and TSs. In TSs, -CH3 torsions are approximated by a symmetrical sinusoidal potential. The rotational barrier heights are calculated to be 1.34, 1.71, 1.63, and 2.15 kcal/mol for TS2A, TS2B, TS3A, and TS3B, respectively, at MP2(full)/6-31G(d) level. Rotational barriers about the CO-OH bond in other hydroperoxy alkyl radicals (CC•CQ, C•CQC, C2C•CQ, and C3•CQ) and TSs (TS2A, TS2B, TS3A, and TS3B) use the CBSQM values for torsional barriers of the CO-OH bond in the C•CQ radical and TS1, respectively. Table 6 lists  $S^{\circ}_{298}$  and Cp(T) contributions from hindered rotors which are calculated using the Pitzer and Gwinn approximation

for hydroperoxy radicals and TSs (except 2-hydroperoxy-1-ethyl radical and TS1). Rotation barriers used in this study are also listed in Table 6.

Thermodynamic Properties— $\Delta H_{f^{\circ}298}$ ,  $S^{\circ}_{298}$ , and Cp (300) to Cp (1500). Enthalpies of formation for species used in the working reactions are adopted from literature data and are listed in Table 1. Table 7 lists reaction enthalpies in Scheme 2 using CBSIqM, CBSIqB, MP4F, and B3LYP311 calculations. The very low, near-zero,  $\Delta H_{rxn,298}$  shows the reactions are thermoneutral which suggest good accuracy (cancellation of errors) for the calculated enthalpies. Table 7 lists reaction enthalpies in Scheme 3 at various levels of theory. Enthalpy of reaction IR6 indicates that the bond enthalpy  $DH^{\circ}_{298}$  (QCC—H) is about 1.67 kcal/mol (average value from CBSIqM, CBSIqB, MP4F,

TABLE 6: Internal Rotor Contribution to Entropies and Heat Capacities Obtained Using Pitzer and Gwinn Approximation

	rotors ^a	S° ₂₉₈ cal/mol K	$C_{p300}$ cal/mol K	C::400	C::500	C:::600	C.,800	C ₁₁₀₀₀	C ₁₁₅₀₀	$I_r^b$ amu-Å ²	$V_{\text{mean}}^{c}$ kcal/mol	n ^d
00.00	101010	••••	••••	Cp400	C p300	<i>cp</i> 000	0,0800	<i>cp</i> 1000	0,01500	unu n		
	C C COOU	5 40	1.20	1 10	1 1 2	1.00	1.04	1.02	1.01	2.02	0.74	2
	C-C.COOH	5.49	1.29	1.18	1.12	1.08	1.04	1.05	1.01	2.85	0.74	2
	CCCOOH	0.92	1.91	1.03	1.45	1.34	1.20	1.15	1.00	18.52	1.5	2
	CC.C-OOH	5.82	2.23	2.32	2.30	2.21	1.95	1./3	1.40	21.55	4.15	3
	CC.CO-OH	3.20	2.07	2.12	2.02	1.88	1.63	1.45	1.23	0.92	3.09	2
0.000	total int. rotors	21.43	7.50	7.24	6.88	6.50	5.82	5.34	4.70			
C·CQC												
	CC(C)OOH	4.79	1.57	1.39	1.28	1.20	1.12	1.07	1.03	1.72	1.2	3
	C-C(C.)OOH	4.08	2.06	2.20	2.19	2.09	1.85	1.65	1.35	3.06	3.87	3
	C(C.)C-OOH	5.43	2.10	2.22	2.30	2.33	2.23	2.06	1.66	21.67	5.76	3
	C(C.)CO-OH	3.20	2.07	2.11	2.02	1.88	1.63	1.45	1.23	0.92	3.09	2
	total int. rotors	17.50	7.81	7.93	7.78	7.50	6.83	6.24	5.27			
C2C·CQ												
	$C-C.(C)COOH(\times 2)$	10.31	3.66	3.18	2.85	2.64	2.38	2.25	2.11	3.03	1.5	3
	C2C.COOH	6.94	2.21	1.96	1.74	1.58	1.37	1.25	1.11	27.47	2.1	3
	C2C.C-OOH	5.92	2.23	2.32	2.30	2.21	1.96	1.73	1.40	23.91	4.15	3
	C2C.CO-OH	3.20	2.07	2.12	2.02	1.88	1.63	1.45	1.23	0.92	3.09	2
	total int. rotors	26.37	10.17	9.57	8.91	8.30	7.33	6.68	5.85			
C3·CQ												
-	$C-C(C.)(C)OOH(\times 2)$	7.71	3.90	4.31	4.46	4.42	4.08	3.66	2.96	3.06	4.7	3
	CC(C2)OOH	4.63	1.75	1.55	1.40	1.31	1.18	1.12	1.05	1.73	1.5	3
	$C2C(C_{1}) = OOH$	5.32	2.05	2.15	2.24	2.30	2.32	2.22	1.85	24.15	7.0	3
	$C_{2}C(C_{1})O - OH$	3.19	2.07	2.11	2.01	1.88	1.63	1.45	1.23	0.91	3.09	2
	total int. rotors	20.85	9.77	10.12	10.12	9.91	9.21	8.46	7.09			_
TS2A		20000					/	0110				
10211	C - CCO	5.21	1.77	1.52	1.37	1.27	1.16	1.10	1.04	2.95	1.34	2
	CCC-OOH	6.25	2 32	2.17	1.97	1 79	1 53	1 37	1 18	18 51	2 64	2
	CCCO-OH	2.03	1.30	1.61	1.97	1.75	2.14	2.24	2.19	0.89	10.59	2
	total int_rotors	13 50	5 30	5 30	5 15	5.01	483	472	<b>4 4 1</b>	0.07	10.57	2
TS2B	total Int. Totors	15.50	5.57	5.50	5.15	5.01	4.05		111			
1520	C = C(OOH)C	5.05	1.0/	1 70	1.52	1.40	1.24	1 16	1.07	3.03	1 71	3
	CC(C) = 004	5.05	1.24	2.17	1.52	1.40	1.24	1.10	1.07	10.40	2.64	2
		2.02	1.30	2.17	1.97	1.79	2.14	2.24	2.10	19.49	10.50	2
	total int notana	2.05	1.50	1.01 5.40	1.01 5.20	1.93 E 12	2.14	2.24 4 77	2.19	0.89	10.39	Z
TC2 A	total int. rotors	15.59	5.50	5.49	5.30	5.15	4.92	4.//	4.44			
155A		10.12	2.70	2.22	2.07	0.72	2.44	2.20	0.12	2.05	1.62	2
	$C = C(C)COOH(\times 2)$	10.13	3.79	3.32	2.97	2.73	2.44	2.29	2.13	2.95	1.63	3
	C2CC-OOH	6.37	2.32	2.17	1.97	1.79	1.53	1.37	1.18	20.93	2.64	2
	C2CCO-OH	2.04	1.30	1.61	1.81	1.95	2.15	2.24	2.19	0.90	10.59	2
	total int. rotors	18.54	7.41	7.10	6.75	6.47	6.12	5.90	5.50			
TS3B												
	$C-C(C)2OOH(\times 2)$	9.59	4.19	3.83	3.44	3.13	2.73	2.50	2.23	3.05	2.15	3
	C3C-OOH	6.41	2.32	2.17	1.97	1.79	1.53	1.37	1.18	21.76	2.64	2
	C3CO-OH	2.04	1.30	1.61	1.81	1.95	2.15	2.24	2.19	0.90	10.59	2
	total int. rotors	18.03	7.82	7.61	7.22	6.87	6.41	6.11	5.60			

^{*a*} Reduced moments of inertia are calculated about the rotational bonds based on MP2(full)/6-31g(d) level of theory. ^{*b*} Arithmetic mean of rotational barriers. ^{*c*} Number of potential maxima.

and B3LYP311, CBSQ and G2 calculations) higher than DH° ²⁹⁸ (CH3CH2–H). Bond enthalpy of DH°₂₉₈ (QCC–H) is determined to be 101.1 + 1.67 = 102.77 kcal/mol, using DH°₂₉₈ (CH3CH2–H) = 101.1 kcal/mol.²⁵  $\Delta H_{\rm f}^{\circ}_{298}$  (C·CQ) is determined as 11.12 kcal/mol, using DH°₂₉₈ (QCC–H) = 102.77 kcal/mol and  $\Delta H_{\rm f}^{\circ}_{298}$  (CCQ) = -39.52 kcal/mol which is derived from reaction IR1 in Scheme 2 at the CBSlqM level.

Enthalpies of formation of other hydroperoxy alkyl radicals can be also determined using DH°₂₉₈ (QCC–H) and  $\Delta H_{\rm f}^{\circ}{}_{298}$ of corresponding hydroperoxide alkanes.  $\Delta H_{\rm f}^{\circ}{}_{298}$  of alkyl hydroperoxides and hydroperoxy alkyl radicals determined in this work are listed in Table 7, with evaluated literature and our previous work reported by Lay et al.¹⁹ Enthalpies of formation for alkyl hydroperoxides are determined to be  $\Delta H_{\rm f}^{\circ}{}_{298}$ (CCQ) = -39.70 ± 0.3 kcal/mol,  $\Delta H_{\rm f}^{\circ}{}_{298}$  (CCCQ) = -44.77 ± 0.41 kcal/mol,  $\Delta H_{\rm f}^{\circ}{}_{298}$  (CCQC) = -48.99 ± 0.32 kcal/mol,  $\Delta H_{\rm f}^{\circ}{}_{298}$  (C2CCQ) = -51.32 ± 0.38 kcal/mol, and  $\Delta H_{\rm f}^{\circ}{}_{298}$  (C3-CQ) = -57.91 ± 0.57 kcal/mol based on average values from CBSlqM, CBSlqB, MP4F, and B3LYP311 levels. The uncertainties in  $\Delta H_{\rm f}^{\circ}{}_{298}$  are estimated as the sum of deviations between various levels of theory and the uncertainties of  $\Delta H_{\rm f}^{\circ}{}_{298}$  of reference species in group balance isodesmic reactions. The deviations between various levels of theory (CBSlqM, CBSlqB, MP4F, and B3LYP311 levels) are small and less than 0.58 kcal/mol. Enthalpies of formation of hydroperoxy alkyl radicals are determined to be  $\Delta H_{\rm f}^{\circ}_{298}$  (C•CQ) = 10.96 ± 1.06 kcal/mol,  $\Delta H_{\rm f}^{\circ}_{298}$  (C•CQ) = 2.62 ± 1.29 kcal/mol,  $\Delta H_{\rm f}^{\circ}_{298}$  (C•CQC) = 0.68 ± 1.54 kcal/mol,  $\Delta H_{\rm f}^{\circ}_{298}$  (C₂C•CQ) = -7.42 ± 1.25 kcal/mol, and  $\Delta H_{\rm f}^{\circ}_{298}$  (C₃•CQ) = -6.42 ± 1.28 kcal/mol based on average values from CBSlqM, CBSlqB, MP4F, and B3LYP311 levels.

Thermodynamic parameters of transition states and hydroperoxy alkyl radicals based on CBSlqM and CBSlqB calculations are listed in Table 8, with properties of reactants determined from THERM.²⁶ MP2(full)/6-31g(d)- and B3LYP/6-31g(d)determined  $S^{\circ}_{298}$  and Cp(T)'s are in agreement; DFT-determined values are consistently higher than values of MP2 (one exception is  $S^{\circ}_{298}$  of C·CQ where MP2-determined entropy is higher than DFT value by 0.04 cal/mol-K). Differences are within 0.6 cal/ mol-K ( $S^{\circ}_{298}$  of TS3B) and 1.22 cal/mol-K (Cp(800 K) of C3-CQ) for MP2 and DFT-determined  $S^{\circ}_{298}$  and Cp(T)'s, respectively.  $S^{\circ}_{298}$  of hydroperoxy alkyl radicals are determined to be

ТА	BL	Æ	7
----	----	---	---

			CBS-q	MP2(full)/6	-31g(d)	MP4(full)/6-31G	i(d,p)	CBS-q	B3LYP/6-31g(d)	B3LYP/6-311+g(3df,2p)		
				//MP2(full)/6-31G(d)					//B3LYP/6-31G(d)			
			Reactio	on Enthalpies ^a	of Grou	p Isodesmic Reacti	ions Use	d in Schen	ne 2			
CCQ + COH = +CCOH + COOH			-0.41	0.1	2	0.23		-0.42	-0.10	-0.32		
CCCQ + COH = CCCOH + COOH		0.50	-0.3	4	-0.46		0.52	-0.74	-0.24			
C2CQ +	-COH =	C2COH + COOH	0.19	0.1	9	0.16		0.30	-0.59	-0.35		
C2CCQ	+ COH =	= C2CCOH + COOH	-0.15	-0.3	4	-0.34		-0.03	-0.62	-0.49		
C3CQ +	COH =	C3COH + COOH	-0.42	-0.1	8	-0.08		-0.30	-1.16	-1.20		
			CBS-q	MP2(full)/6-3	31g(d)	MP4(full)/6-31G(	d,p)	CBS-q	B3LYP/6-31g(d)	B3LYP/6-311+g(3df,2p)		
				//MP20	full)/6-3	1G(d)			//B3LYP/6	5-31G(d)		
			Reactio	on Enthalpiesa	of Grou	p Isodesmic Reacti	ions Use	d in Schen	ne 3			
CCQ +	$C \cdot C = C \cdot$	$CQ + CC^b$	1.64	1.90		1.84		1.79	1.45	1.37		
CCCQ +	$-C \cdot CQ =$	$= CC \cdot CQ + CCQ$	-2.53	-3.08		-3.26		-3.04	-4.79	-4.29		
C2CQ +	$-C \cdot CQ =$	$C \cdot CQC + CCQ$	-1.88	-2.00		-2.21		0.13	-0.28	-0.03		
C2CCQ	$+ C \cdot CQ$	$= C2C \cdot CQ + CCQ$	-6.25	-5.78		-6.16		-6.41	-8.89	-7.54		
C3CQ +	$-C \cdot CQ =$	$C3 \cdot CQ + CCQ$	1.10	1.66		1.15		0.52	-0.03	0.49		
	CBS-q	MP2(full)/6-31g(d)	MP4(full)	/6-31G(d,p)	CBS-q	B3LYP/6-31g(d)	B3LYF	P/6-311+g	(3df,2p) Lay et al. ^c	literature		
		//MP2(full)/6-	31G(d)			//B3LYP/	/6-31G(d	ł)				
		Calculate	d Enthalpio Us	es of Formatic	n ^a for A desmic I	lkyl Hydroperoxid Reactions in Scherr	es and A ne 2 and	lkyl Hydro Scheme 3	operoxy Radicals			
CCQ	-39.52	-40.05	-4	0.16	-39.51	-39.83		-39.61	-39.9	$-39.71$ , d $-38.9$ , e $-41.92^{j}$		
CCCQ	-45.19	-44.35	-4	4.23	-45.21	-43.95		-44.45				
CCQC	-49.11	-49.11	-4	9.08	-49.22	-48.33		-48.57	-49.0	$-49.0,^{f}-49.3,^{g}-47.5,^{h}$ $-43.5,^{e}-51.0^{j}$		
C2CCQ	-51.42	-51.23	-5	51.23	-51.54	-50.95		-51.08				
C3CQ	-57.99	-58.23	-5	58.33	-58.11	-57.25		-57.21	-58.4	$-58.8,^{i}-57.1,^{f}-57.6,^{h}$ $-57.4,^{e}-59.63^{j}$		
C•CQ	11.12	10.85	1	0.69	11.27	10.62		10.77		,		
CC•CQ	2.96	3.24		3.18	2.43	1.92		1.93				
C•CQC	-0.32	-0.45	-	0.62	1.59	2.06		2.07				
C2C•CQ	-6.99	-6.35	_	6.72	-7.29	-9.17		-7.95				
C3•CQ	-6.22	-5.91	_	6.51	-6.92	-6.60		-6.05				

^{*a*} kcal/mol. ^{*b*} Calculated reaction enthalpies are 1.40 kcal/mol and 1.77 kcal/mol based on CBS-Q and G2 calculations. ^{*c*} Ref 19. ^{*d*} Ref 33. ^{*e*} Ref 34. ^{*f*} Ref 35. ^{*s*} Ref 36. ^{*h*} Ref 9. ^{*i*} Ref 37. ^{*j*} Ref 38.



**Figure 1.** Potential barriers for internal rotations about C·-COOH, C·C-OOH, and C·CO-OH bonds in 2-hydroperoxy-1-ethyl radical (a, b, and c, respectively). Points are calculated values at MP2(full)/6-31g(d) and CBS-Q// MP2(full)/6-31g(d) levels of theory, in circles and triangles, respectively. Lines are results of Fourier expansion equation, F1, with the coefficients listed in the Supporting Information (Table S1).

as follows:  $S_{298}^{\circ}$  (C•CQ) = 82.23 cal/mol-K,  $S_{298}^{\circ}$  (CC•CQ) = 91.39 cal/mol-K,  $S_{298}^{\circ}$  (C•CQC) = 88.15 cal/mol-K,  $S_{298}^{\circ}$  (C₂C•CQ) = 97.93 cal/mol-K, and  $S_{298}^{\circ}$  (C₃•CQ) = 93.02 cal/mol-K based on average values from MP2(full)/6-31g(d) and B3LYP/6-31g(d) calculations.  $C_p(300)$  of hydroperoxy alkyl radical are determined to be the following:  $C_p(300)$  (C•CQ) = 20.17 cal/mol-K,  $C_p(300)$  (CC•CQ) = 24.48 cal/mol-K,  $C_p(300)$ 

 $(C \cdot CQC) = 26.16 \text{ cal/mol-K}, C_p(300) (C_2C \cdot CQ) = 30.32 \text{ cal/mol-K}, and <math>C_p(300) (C_3 \cdot CQ) = 32.02 \text{ cal/mol-K}$ . Thermodynamic properties are referred to standard state of an ideal gas and pure enantiomer of the most stable conformer.

**High-Pressure Rate Constants** ( $k_{\infty}$ ) and Trends. Table 9 lists the total energy, ZPVE, thermal correction to enthalpies, and spin contamination  $\langle S^2 \rangle$  of reactants, transition states, and

TABLE 8: Ideal Gas Phase Thermodynamic Properties^a

			)	• <b>F</b> ••••						
species		${H_{\mathrm{f}}}^{\mathrm{o}}{}_{298}{}^{b}$	$S^{\circ}_{298}{}^{c}$	$C_p(300)^c$	$C_p(400)$	$C_p(500)$	$C_p(600)$	$C_p(800)$	$C_p(1000)$	$C_p(1500)$
		12.50	52.20	10.24	I HEKM	14.96	1676	10.04	22.27	26.10
etnylene		12.50	52.30	10.34	12.72	14.86	10.70	19.94	22.37	26.10
propene		4.65	63.81	15.45	19.23	22.72	25.79	30.74	34.49	40.39
isobutene		-3.80	69.99	21.58	26.65	31.30	35.34	41.91	46.89	54.71
				CBS-a/	/MP2(full)/6-2	31g(d)				
$C \cdot CO$	$TVR^d$		68.29	14.62	18.06	21.19	23.84	27.98	31.07	36.07
0.04	internal rotor ^e		13.96	5 47	5 15	4 91	47	4 31	3.96	33
	total	11 12	82.25	20.00	22 21	26.1	28 51	22.20	25.02	20.27
00.00		11.12	62.23	20.09	23.21	20.1	20.12	26.46	33.03	19.51
LL.LQ	IVK		09.9	10.09	21.51	20.11	50.12	5 92	41.18	48.00
	internal rotor	2.04	21.43	7.5	7.24	0.88	0.5	5.82	5.34	4.7
	total	2.96	91.33	24.19	28.75	32.99	36.62	42.28	46.52	53.36
CCQC	TVR		70.6	18.18	23.11	27.56	31.35	37.28	41.71	48.85
	internal rotor		17.5	7.81	7.93	7.78	7.5	6.83	6.24	5.27
	total	-0.32	88.1	25.99	31.04	35.34	38.85	44.11	47.95	54.12
C2C•CQ	TVR		71.41	19.9	26.2	32.17	37.38	45.66	51.83	61.53
	internal rotor		26.37	10.17	9.57	8.91	8.3	7.33	6.68	5.85
	total	-6.99	97.78	30.07	35.77	41.08	45.68	52.99	58.51	67.38
C3•CQ	TVR		71.95	21.77	28.01	33.7	38.59	46.35	52.18	61.54
-	internal rotor		20.85	9.77	10.12	10.12	9.91	9.21	8.46	7.09
	total	-6.22	92.8	31.54	38.13	43.82	48.5	55.56	60.64	68.63
TS1	TVR		68.9	14.66	18.1	21.2	23.82	27.89	30.94	35.93
101	internal rotor		7 34	5 46	4.82	4 27	3.84	3 22	2 78	2.08
	total	20.57	76.24	20.12	22 02	25.47	27.66	31.11	23.70	38.01
TS21	TVD	29.51	71.24	17.62	22.92	25.47	27.00	36.70	JJ.72 41 35	18 67
152A	I VIX		12.5	5.20	5.2	20.07	5.01	1.02	41.55	40.07
	internal rotor	20.50	13.5	5.39	3.3	5.15	5.01	4.85	4.72	4.41
TCOD	total	20.50	84.74	23.01	27.71	32.02	35.72	41.62	46.07	53.08
TS2B	TVR		/0.96	18	22.81	27.22	31.01	36.98	41.47	48.71
	internal rotor		13.39	5.56	5.49	5.3	5.13	4.92	4.77	4.44
	total	19.47	84.35	23.56	28.3	32.52	36.14	41.9	46.24	53.15
TS3A	TVR		72.8	21.03	27.16	32.91	37.91	45.88	51.88	61.44
	internal rotor		18.54	7.41	7.1	6.75	6.47	6.12	5.9	5.5
	total	10.39	91.34	28.44	34.26	39.66	44.38	52	57.78	66.94
TS3B	TVR		72.59	21.75	27.93	33.59	38.48	46.25	52.11	61.51
	internal rotor		18.03	7.82	7.61	7.22	6.87	6.41	6.11	5.6
	total	7 44	90.62	29.57	35 54	40.81	45 35	52.66	58.22	67.11
	totai	/	20.02	27.57	55.54	40.01	45.55	52.00	50.22	07.11
				CBS-c	₄ /B3LYP/6-31	lg(d)				
C•CQ	TVR		68.25	14.78	18.32	21.49	24.15	28.29	31.37	36.31
	internal rotor		13.96	5.47	5.15	4.91	4.7	4.31	3.96	3.3
	total	11.27	82.21	20.25	23.47	26.40	28.85	32.60	35.33	39.61
CC•CQ	TVR		70.02	17.27	22.31	26.96	30.94	37.19	41.82	49.11
-	internal rotor		21.43	7.5	7.24	6.88	6.5	5.82	5.34	4.7
	total	2.43	91.45	24.77	29.55	33.84	37.44	43.01	47.16	53.81
CCOC	TVR		70.7	18.51	23.54	28.02	31.81	37.72	42.13	49.17
	internal rotor		17.5	7.81	7.93	7.78	7.5	6.83	6.24	5.27
	total	1 59	88 20	26.32	31.47	35.80	39.31	44 55	48 37	54 44
$C^2C \cdot CO$	TVR	1.07	71.7	20.32	26.84	32.80	38.09	46.35	52 47	62.02
020 00	internal rotor		26.37	10.17	9.57	8.91	83	7 33	6.68	5.85
	total	-7.20	20.37	20.56	26.41	41.78	46.30	53.68	50.15	67.87
C3•C0	TVD	1.29	72.20	20.50	20.22	24.05	40.39	17 27	53.05	62.12
CSICQ	IVK		72.39	22.12	29.22	34.93	39.79	47.37	55.05 9.46	7.00
	internal rotor	6.00	20.85	9.77	10.12	10.12	9.91	9.21	8.40	7.09
<b>T</b> C 1	total	-6.92	93.24	32.49	39.34	45.07	49.70	56.58	61.51	69.21
151	TVR		69.22	15.31	18.87	21.97	24.53	28.48	31.44	36.27
	internal rotor		7.34	5.46	4.82	4.27	3.84	3.22	2.78	2.08
	total	29.12	76.56	20.77	23.69	26.24	28.37	31.70	34.22	38.35
TS2A	TVR		71.54	18.35	23.3	27.79	31.6	37.57	42.03	49.14
	internal rotor		13.5	5.39	5.3	5.15	5.01	4.83	4.72	4.41
	total	19.75	85.04	23.74	28.60	32.94	36.61	42.40	46.75	53.55
TS2B	TVR		71.41	18.87	23.81	28.21	31.93	37.77	42.14	49.16
	internal rotor		13.39	5.56	5.49	5.3	5.13	4.92	4.77	4.44
	total	18.93	84.80	24.43	29.30	33.51	37.06	42.69	46.91	53.60
TS3A	TVR	- 5.70	73.39	21.83	28.16	33.96	38.94	46.81	52.7	62.02
	internal rotor		18 54	7 41	7 1	675	6 47	612	59	5 5
	total	10.52	91 93	29.24	35.26	40.71	45 / 1	52.93	58.60	67 52
TS3P	TVR	10.52	73 15	27.24	29.15	3/ 70	30.41	17 21	52 03	62.08
1000	internal rotor		18 02	22.00	29.13 7 61	J+.17 7 00	59.0	-77.21 6 /1	52.95	56
	filternal rotor	7.00	10.03	1.82	1.01	1.22	0.8/	0.41	0.11	J.0
	total	7.08	91.18	30.68	36.76	42.01	46.47	53.62	59.04	07.08

^{*a*} Thermodynamic properties are referred to a standard state of an ideal gas of pure enantiomer at 1 atm. ^{*b*} In kcal mol⁻¹. ^{*c*} In cal mol⁻¹ K⁻¹. ^{*d*} The sum of contributions from translation, external rotation, vibration, optical isomer, and spin degeneracy. ^{*e*}  $S^{\circ}_{298}$  and  $C_p(T)$  contributions from hindered rotors.

product radicals calculated using MP2(full)/6-31G(d) and B3LYP/6-31G(d) geometries. The ZPVE are scaled by the factor

0.9661 and 0.9804 for MP2(full)/6-31G(d) and B3LYP/6-31g-(d) frequencies, respectively. Table 10 lists reaction enthalpies

TABLE 9: Total Energies (0 K, Hartree), Zero-Point Vibrational Energies (ZPVE, kcal/mol), and Thermal Corrections to Enthalpies (*H*_{thermal}, kcal/mol)

	CBS-q	MP2(full)/6-31g(d) MP4(full)/6-31g(d,p)		ZPVE	$H_{\rm thermal}$	spin contam	ination $\langle S^2 \rangle$
		//MP2(full)/6-31g(	d)		-	MP2	CBS-q
		Based					
HO2	-150.7691008	-150.502365	-150.5380066	9.03	2.38		
C2H4	-78.456045	-78.294286	-78.363698	32.69	2.50		
CDCC	-117.7049391	-117.4696584	-117.5715729	51.23	3.14		
C2CDC	-156.9556433	-156.6463965	-156.7808087	69.45	3.90		
TS1	-229.2019201	-228.7666916	-228.872815	43.93	3.88	1.004	0.997
TS2a	-268.4531959	-267.9432248	-268.0822207	62.25	4.80	0.993	0.987
TS2b	-268.4547135	-267.9442604	-268.0831538	62.10	4.72	0.994	0.988
TS3a	-307.7067101	-307.1220775	-307.2938753	80.41	5.66	0.982	0.975
TS3b	-307.7111594	-307.1231334	-307.2948341	80.16	5.50	0.988	0.982
	675 G						
	CBS-q	B31yp/6-31g(d)	B31yp/6-311+g(3df,2p)	ZPVE	$H_{ m thermal}$	spin contan	ination $\langle S^2 \rangle$
	CBS-q	B31yp/6-31g(d) //B31yp/6-31g(d)	B31yp/6-311+g(3df,2p)	_ ZPVE	$H_{ ext{thermal}}$ -	spin contan B3LYP	cBS-q
	CBS-q	B31yp/6-31g(d) //B31yp/6-31g(d) Base	B31yp/6-311+g(3df,2p) d on B3Lyp/6-31g(d) Geome	ZPVE etries	$H_{ m thermal}$ -	spin contan B3LYP	cBS-q
НО2		B31yp/6-31g(d) //B31yp/6-31g(d) Base -150.8991541	B31yp/6-311+g(3df,2p) d on B3Lyp/6-31g(d) Geome -150.9676579	ZPVE etries 8.80	H _{thermal} -	spin contan B3LYP	CBS-q
HO2 C2H4	-150.7692372 -78.45610003	B31yp/6-31g(d) //B31yp/6-31g(d) Base -150.8991541 - 78.5874573	B31yp/6-311+g(3df,2p) d on B3Lyp/6-31g(d) Geome -150.9676579 -78.6210637	etries 8.80 32.14	H _{thermal}	spin contan B3LYP	CBS-q
HO2 C2H4 CDCC	-150.7692372 -78.45610003 -117.7052425	B31yp/6-31g(d) //B31yp/6-31g(d) Base -150.8991541 - 78.5874573 -117.9075542	B31yp/6-311+g(3df,2p) d on B3Lyp/6-31g(d) Geome -150.9676579 -78.6210637 -117.9535269	ZPVE etries 8.80 32.14 50.24	H _{thermal} 2.39 2.50 3.15	spin contan B3LYP	CBS-q
HO2 C2H4 CDCC C2CDC	CBS-q -150.7692372 -78.45610003 -117.7052425 -156.9561062	B31yp/6-31g(d) //B31yp/6-31g(d) Base -150.8991541 - 78.5874573 -117.9075542 -157.2272862	B31yp/6-311+g(3df,2p) d on B3Lyp/6-31g(d) Geome -150.9676579 -78.6210637 -117.9535269 -157.285488	ZPVE etries 8.80 32.14 50.24 68.08	H _{thermal} 2.39 2.50 3.15 3.92	spin contan B3LYP	tination (S ² ) CBS-q
HO2 C2H4 CDCC C2CDC TS1	CBS-q -150.7692372 -78.45610003 -117.7052425 -156.9561062 -229.2029457	B31yp/6-31g(d) //B31yp/6-31g(d) Base -150.8991541 - 78.5874573 -117.9075542 -157.2272862 -229.471956	B31yp/6-311+g(3df,2p) d on B3Lyp/6-31g(d) Geome -150.9676579 -78.6210637 -117.9535269 -157.285488 -229.5712395	ZPVE etries 8.80 32.14 50.24 68.08 42.46	H _{thermal} 2.39 2.50 3.15 3.92 3.95	spin contan B3LYP 0.782	ination (S ² ) CBS-q 1.019
HO2 C2H4 CDCC C2CDC TS1 TS2a	CBS-q -150.7692372 -78.45610003 -117.7052425 -156.9561062 -229.2029457 -268.454965	B31yp/6-31g(d) //B31yp/6-31g(d) Base -150.8991541 - 78.5874573 -117.9075542 -157.2272862 -229.471956 -268.7930636	B31yp/6-311+g(3df,2p) d on B3Lyp/6-31g(d) Geome -150.9676579 -78.6210637 -117.9535269 -157.285488 -229.5712395 -268.9051628	ZPVE etries 8.80 32.14 50.24 68.08 42.46 60.27	H _{thermal} 2.39 2.50 3.15 3.92 3.95 4.89	spin contan B3LYP 0.782 0.779	1.019 1.014
HO2 C2H4 CDCC C2CDC TS1 TS2a TS2b	CBS-q -150.7692372 -78.45610003 -117.7052425 -156.9561062 -229.2029457 -268.454965 -268.4562084	B31yp/6-31g(d) //B31yp/6-31g(d) Base -150.8991541 - 78.5874573 -117.9075542 -157.2272862 -229.471956 -268.7930636 -268.7919922	B31yp/6-311+g(3df,2p) d on B3Lyp/6-31g(d) Geome -150.9676579 -78.6210637 -117.9535269 -157.285488 -229.5712395 -268.9051628 -268.9039991	ZPVE 8.80 32.14 50.24 68.08 42.46 60.27 60.12	H _{thermal} 2.39 2.50 3.15 3.92 3.95 4.89 4.84	spin contan B3LYP 0.782 0.779 0.781	1.019 1.014 1.014
HO2 C2H4 CDCC C2CDC TS1 TS2a TS2b TS2b TS3a	CBS-q -150.7692372 -78.45610003 -117.7052425 -156.9561062 -229.2029457 -268.454965 -268.454965 -268.4562084 -307.7073561	B31yp/6-31g(d) //B31yp/6-31g(d) Base -150.8991541 - 78.5874573 -117.9075542 -157.2272862 -229.471956 -268.7930636 -268.7919922 -308.113774	B31yp/6-311+g(3df,2p) d on B3Lyp/6-31g(d) Geome -150.9676579 -78.6210637 -117.9535269 -157.285488 -229.5712395 -268.9051628 -268.9039991 -308.2383777	ZPVE 8.80 32.14 50.24 68.08 42.46 60.27 60.12 77.92	H _{thermal} 2.39 2.50 3.15 3.92 3.95 4.89 4.84 5.83	spin contan B3LYP 0.782 0.779 0.781 0.778	1.019 1.014 1.014 1.014 1.011

^a S² values before annihilation. After annihilation values are 0.761, 0.75, 0.761, and 0.763 for MP2, B3LYP, CBSqM, CBSqB.

#### **TABLE 10:**

		pro	pene	isob	utene	
computation level	ethylene CD/H2 (P)	CD/H2 (P)	CD/C/H (S)	CD/H2 (P)	CD/C2 (T)	
Reaction En	thalpies for HO ₂ Addition to Eth	ylene, Propene, ar	d Isobutene, at 298	3 K		
B3LYP/6-31g(d)	9.75	9.12	9.60	8.50	9.99	
B3LYP/6-311+g(3df,2p)//B3LYP/6-31g	(d) 11.52	10.62	11.15	9.82	11.46	
$CBS-q//B3LYP/6-31g(d)^a$	13.12	11.60	10.78	10.82	7.38	
MP2(full)/6-31g(d)	19.93	19.26	18.39	17.98	16.92	
MP4(full)/6-31g(d,p)//MP2(full)/6-31g(d	) 19.26	18.35	17.55	16.89	15.88	
CBS-q//MP2(full)/6-31g(d) ^a	13.57	12.35	11.32	10.69	7.74	
	A (s-	l or cc/mol-s)	$E_{\rm a}$ (kcal/	mol)	<i>T</i> (K)	
Experi	mental Rate ^b Constants for React	tions of HO2 Addi	tion with Olefins			
ethylene	CD/H2 (P) 3.8	$30 \times 10^{12}$	17.85	5	653-793	
(E)-but-2-ene	CD/C/H (S) 4.0	$07 \times 10^{11}$	11.95	5	673-793	
2,3-dimethylbut-2-ene	CD/C2 (T) 3.8	$80 \times 10^{11}$	8.46	5	653-793	

^a Choose unit: kcal/mol, include thermal correction and zero-point energy correction. ^b Ref 4a–e.

(energy differences between reactants and TSs) obtained from various levels of theory. Reaction enthalpy ( $\Delta H^{\ddagger}_{TS}$  – reactants) 2988 for HO₂ addition to the primary, secondary, and tertiary carbon double bonds are 12.20 (11.85), 11.32 (10.78), and 7.74 (7.38) kcal/mol, respectively, at CBSlqM level. Data in parentheses are calculations at CBSlqB level. The value of 12.20 (11.85) kcal/mol is the average value of HO₂ addition to the primary carbon—carbon double bond of ethylene, propene, and isobutene.

The charge at the carbons where addition is occurring is important to the barrier for HO₂ + olefin. The trend in barrier vs charge at the carbons is often used to estimate barriers for addition reactions.^{4,27} In the transition states (TS1, TS2B, and TS3B), CH₃ groups donate electrons (ca. 0.2 Mulliken charge per CH₃, at MP2(full)/6-31g(d) level) to the olefinic carbon (CD/ H2, CD/C/H, and CD/C2 carbon atoms), which is undergoing bond formation with HO₂. The Mulliken charges for CD/H2, CD/C/H, and CD/C2 carbon atoms in transition states TS1, TS2B, and TS3B are -0.2913, -0.0917, and +0.0888, respectively. The charge on the oxygen atom in the C- -O forming bond is ca. -0.15. Partial electron donation from two  $-CH_3$ groups in the HO₂, addition to the CD/C2 carbon atom of isobutene results in a lower activation energy than addition to the CD/H2 atom, 7.63 vs 13.49 kcal/mol at CBSIqM level. The Mulliken charge for all species calculated at MP2(full)/6-31g-(d) level is presented in the Supporting Information (Table S2).

Table 11 lists rate constants  $k_{\infty}$  determined from TST and fit by three parameters  $A_{\infty}$ , *n*, and  $E_a$  over the temperature range 298-2000 K. Calculated rate constants obtained at CBSlqM and CBSlqB levels of theory show similar trends with experimental data (in Table 10b): HO₂ radical addition to the tertiary carbon double bond (HO2 addition at CD/C2 carbon atom of isobutene) has a lower activation energy than addition to secondary carbon double bond CD/C/H, which is lower than addition to primary double bonds; the values are 12.11(11.56), 11.08(10.34), and 7.63(7.03) kcal/mol, respectively. The  $E_a$ 's for addition to primary double bonds of ethylene, propene and isobutene also show a respective decreasing trend 13.49(12.89), 12.16(11.20), and 10.70(10.59) kcal/mol, respectively. Values reported by Walker's research group^{4a-e} from experiments on overall cyclic ether product formation rates show the  $E_a$  for HO₂ addition to carbon double bond CD/H2 (HO₂ + ethylene), CD/ C/H (HO₂ + (E)-but-2-ene) and CD/C2 (HO₂ + 2,3-dimeth-

TABLE 11: Rate Constants  $k_{\infty}$  Determined from TST and Reaction Enthalpies

reaction		A (s ⁻¹ or cm ³ /mol-	-s)	п	(	E _a kcal/mol)
		CBSq//MP2	(full)/6-31g(d)			
forward C2H4+HO2=TS1 C3H6+HO2=TS2A C3H6+HO2=TS2B <i>i</i> -C4H8+HO2=TS3B <i>i</i> -C4H8+HO2=TS3B		4.13E+04 2.47E+04 7.74E+03 3.45E+05 2.78E+04		2.3323 2.1322 2.2849 1.7648 2.1061		13.49 12.16 11.08 10.70 7.63
C·CQ=TS1 CC·CQ=TS2A C·CQC=TS2B C2C·CQ=TS3A C3·CQ=TS3B		3.89E+10 7.33E+09 3.65E+12 2.00E+10 4.89E+13		$\begin{array}{c} 0.4809\\ 0.6457\\ -0.0771\\ 0.5005\\ -0.3253\end{array}$		18.87 17.68 20.32 17.58 14.43
reaction	$A_{300}$	$A_{800}$ (s ⁻¹ or cm ³ /mol-s)	$A_{1500}$	k ₃₀₀	$k_{800}$ (s ⁻¹ or cm ³ /mol-s)	k ₁₅₀₀
forward C2H4+HO2=TS1 C3H6+HO2=TS2A C3H6+HO2=TS2B <i>i</i> -C4H8+HO2=TS3A <i>i</i> -C4H8+HO2=TS3B reverse C•CQ=TS1 CC•CQ=TS2A C•CQC=TS2B	2.48E+10 4.72E+09 3.54E+09 8.12E+09 4.58E+09 6.04E+11 2.91E+11 2.35E+12	2.44E+11 3.82E+10 3.32E+10 4.59E+10 3.61E+10 9.68E+11 5.49E+11 2.18E+12	1.06E+12 1.46E+11 1.40E+11 1.39E+11 1.36E+11 1.31E+12 8.24E+11 2.08E+12	3.71E+00 6.52E+00 3.00E+01 1.31E+02 1.27E+04 1.08E-02 3.81E-02 3.69E-03	5.05E+07 1.82E+07 3.13E+07 5.49E+07 2.98E+08 6.77E+06 8.09E+06 6.12E+06	1.15E+10 2.47E+09 3.40E+09 3.85E+09 1.05E+10 2.33E+09 2.18E+09 2.27E+09
$C2C \cdot CQ = TS3A$ $C3 \cdot CQ = TS3B$	3.47E+11 7.65E+12	5.67E+11 5.56E+12	7.77E+11 4.53E+12	5.40E-02 2.36E+02	8.92E+06 6.36E+08	2.13E+09 3.58E+10
reaction		A (s ⁻¹ or cm ³ /mol-	-s)	n	(	E _a kcal/mol)
forward C2H4+HO2=TS C3H6+HO2=TS C3H6+HO2=TS <i>i</i> -C4H8+HO2=T <i>i</i> -C4H8+HO2=T	l 2A 2B S3A S3B	CBSq//B3L 6.97E+03 2.30E+03 7.40E+02 2.62E+04 1.59E+03	.YP/6-31g(d)	2.6280 2.5130 2.6762 2.1984 2.5839		12.89 11.20 10.34 10.59 7.03
C·CQ=TS1 CC·CQ=TS2A C·CQC=TS2B C2C·CQ=TS3A C3·CQ=TS3B		1.80E+10 6.52E+09 1.35E+12 1.15E+10 6.02E+13		$\begin{array}{c} 0.6306 \\ 0.6781 \\ 0.1047 \\ 0.6102 \\ -0.3446 \end{array}$		18.21 17.45 17.79 17.97 14.79
reaction	$A_{300}$	$A_{800}$ (s ⁻¹ or cm ³ /mol-s)	A ₁₅₀₀	$k_{300}$	$k_{800}$ (s ⁻¹ or cm ³ /mol-s)	k ₁₅₀₀
forward C2H4+HO2=TS1 C3H6+HO2=TS2A C3H6+HO2=TS2B <i>i</i> -C4H8+HO2=TS3A <i>i</i> -C4H8+HO2=TS3B reverse	2.25E+10 3.86E+09 3.15E+09 7.31E+09 4.01E+09	2.97E+11 4.54E+10 4.35E+10 6.32E+10 5.06E+10	1.55E+12 2.20E+11 2.34E+11 2.52E+11 2.57E+11	9.23E+00 2.66E+01 9.24E+01 1.41E+02 3.05E+04	8.95E+07 3.95E+07 6.51E+07 8.09E+07 6.09E+08	2.05E+10 5.14E+09 7.28E+09 7.21E+09 2.43E+10
$C \cdot CQ = TS1$ $CC \cdot CQ = TS2A$ $C \cdot CQC = TS2B$ $C2C \cdot CQ = TS3A$ $C3 \cdot CQ = TS3B$	6.56E+11 3.12E+11 2.46E+12 3.74E+11 8.43E+12	1.22E+12 6.06E+11 2.72E+12 6.81E+11 6.01E+12	1.81E+12 9.28E+11 2.91E+12 9.99E+11 4.84E+12	3.53E-02 6.03E-02 2.67E-01 3.04E-02 1.41E+02	1.29E+07 1.04E+07 3.75E+07 8.40E+06 5.47E+08	4.02E+09 2.66E+09 7.43E+09 2.41E+09 3.39E+10

ylbut-2-ene) to be 17.85, 11.95, and 8.46 kcal/mol, respectively. These values from cyclic ether formation result from a kinetic analysis which often incorporates equilibrium and thermochemical properties significantly different from data in this study or our previously published evaluations.^{16, 19, 28}

Comparison of calculated  $A_{\infty}$  factors for HO₂ radical addition to the primary, secondary, and tertiary carbon double bonds indicates they are all similar, within 1 order of magnitude. Calculated values (listed in Table 11) are lower by factors of 0.11-0.18 than experimental data,  $1.92 \times 10^{12}$ ,  $2.04 \times 10^{11}$ ,  $1.90 \times 10^{11}$  cm³/mol-s (653 to 793 K) for addition to CD/H2, CD/C/H and CD/C2, respectively. The experimental A factors have been divided by two from reported values for steric effect adjustment. Experimental and calculated A factors both show that HO₂ addition at CD/C/H and CD/C2 carbons have similar A factors, which are lower by a factor of 10 than addition at CD/H2. Reaction of HO₂ radical addition to tertiary carbon double bond has higher rate constant than HO₂ radical addition to primary and secondary, resulting from the lower  $E_a$  and similar  $A_{\infty}$  factor.



**Figure 2.** Potential barriers for internal rotations about CC–OOH and CCO–OH bonds in TS1 (a and c, respectively). Points are calculated values at MP2(full)/6-31g(d) and CBS-Q// MP2(full)/6-31g(d) levels of theory, in circles and triangles, respectively. Lines are results of Fourier expansion equation, F1, with the coefficients listed in the Supporting Information (Table S1).

**Comparison with Experimental Work.** We have analyzed data reported on two systems, *tert*-butyl radical +  $O_2^{29}$  and allylic isobutenyl radical +  $O_2^{30}$  where HO₂ + olefin reactions play an important role; our modeling shows very good agreement with the reported data.^{31,32} Figure 3 shows a comparison of our calculation with experimental data³¹ for loss of *tert*-butyl precursor, 2,2,3,3-tetramethylbutane (C₃CCC₃), production of isobutene and 2,2-dimethyloxirane from the *tert*-butyl radical



Figure 3. Comparison of model prediction²⁹ and experimental data³¹ for loss of *tert*-butyl precursor, 2,2,3,3-tetramethylbutane (C₃CCC₃), production of isobutene and 2,2-dimethyloxirane from *tert*-butyl radical +  $O_2$  reaction system.



**Figure 4.** Comparison of model prediction³⁰ with experimental data³² for productions of 2,5 dimethylhexa-1,5-diene, methacrolein, isobutene oxides (methylene oxirane + 2,2-dimethyloxirane), and acetone from isobutane oxidation reaction system.

+  $O_2$  reaction system. Figure 4 shows a comparison of our calculation with experimental data³² for production of 2,5 dimethylhexa-1,5-diene, methacrolein, isobutene oxides, and acetone from the allylic isobutenyl radical +  $O_2$  reaction system for condition of 0–210 s, 743 K, and 60 Torr.

Sensitivity analysis indicates that the cyclic oxides (oxiranes) formed in these two systems result from further reaction of the corresponding hydroperoxy alkyl radical. Furthermore, the important formation path of this hydroperoxy alkyl radical is via  $HO_2$  addition to olefin. The agreement of our modeling results on the oxirane formation profiles supports the kinetic analysis presented in this study.

Oxirane product formation from  $HO_2$  addition to olefin is not a single, direct reaction (see Scheme 1). The reaction system includes multiple reaction channels and products, with paths from both chemical activation and reaction of stabilized adducts important to product formation. The kinetic data derived from the experimental values are from these relatively complex kinetic systems. The experimental rate constants (listed in Table 10) are obtained from research group of Walker.^{4a-e} The experimental values result from studies on thermal reactions of radical precursor species in  $H_2/O_2/i$ nert atmospheres using flow reactors (both KCl and boric acid coated)-at slow flow-up to several minute reaction times. The analysis involves profiles of stable species vs time and assumptions on reaction paths and thermodynamic properties. Accurate thermodynamic properties are important because equilibrium relationships are assumed in deriving the reported kinetic parameters. In addition, it has recently been shown that  $HO_2$  + olefin are a direct product set from molecule elimination of peroxy radicals formed in alkyl radical + O₂ reaction systems, where some previous mechanisms postulated these products occurred via isomerization (H shift) and then either oxirane formation or elimination to HO₂ + olefin. The direct HO₂ elimination was not fully understood in the early analysis of the  $C_3C_2 + O_2$  reaction system.

#### Summary

Thermodynamic properties of product radicals and transition states are calculated for HO₂ addition to primary, secondary, and tertiary carbon–carbon double bond of ethylene, propene, and isobutene using ab initio and density functional calculations.  $\Delta H_{\rm f}^{\circ}_{298}$  for the hydroperoxy alkyl radicals, C·CQ, CC·CQ, C·CQC, C₂C·CQ, and C₃·CQ, are estimated using total energies derived from CBSlqM, CBSlqB, MP4F, and B3LYP311 calculations and group balance isodesmic reactions with ZPVE and thermal correction to 298.15K.  $\Delta H_{\rm f}^{\circ}_{298}$  are determined to be  $\Delta H_{\rm f}^{\circ}_{298}$  (C·CQ) = 10.96 ± 1.06 kcal/mol,  $\Delta H_{\rm f}^{\circ}_{298}$  (CC·CQ) = 2.62 ± 1.29 kcal/mol,  $\Delta H_{\rm f}^{\circ}_{298}$  (C·CQC) = 0.68 ± 1.54 kcal/mol,  $\Delta H_{\rm f}^{\circ}_{298}$  (C₂C·CQ) = -7.24 ± 1.25 kcal/mol, and  $\Delta H_{\rm f}^{\circ}_{298}$  (C₃·CQ) = -6.42 ± 1.28 kcal/mol.

 $S^{\circ}_{298}$  and Cp(T) (300  $\leq T/K \leq 1500$ ) contributions from vibrational, translational, and external rotational are calculated using the rigid rotor harmonic oscillator approximation based on geometric parameters and vibrational frequencies obtained at MP2(full)/6-31G(d) and B3LYP/6-31G(d) levels of theory. Contributions from hindered rotors of  $S^{\circ}_{298}$  and Cp(T) for C·CQ radical and TS1 are calculated by summation over the energy levels obtained by direct diagonalization of the Hamiltonian matrix of hindered internal rotations, while contributions for other radicals and TSs are calculated by the Pitzer and Gwinn approximation method.

Activation energy based on CBSlqM and CBSlqB calculations show similar trends with experimental data. Calculated  $E_a$ 's for HO₂ radical addition to the tertiary, secondary, and primary carbon double bond are 12.11(11.56), 11.08(10.34), and 7.63-(7.03) kcal/mol, respectively. The Arrhenius preexponential factor,  $A_{800}$ , calculated from TST along with MP2- and DFTdetermined entropy, 2.44 × 10¹¹ (2.97 × 10¹¹), 3.32 × 10¹⁰ (4.35 × 10¹⁰), and 3.61 × 10¹⁰ (5.06 × 10¹⁰) cm³/mol-s for addition to CD/H2, CD/C/H, and CD/C2 carbon—carbon double bonds, respectively, are also in agreement with experiment. Data in parentheses are calculations at the CBSlqB level.

The high-pressure limit rate constants are (based on CBSlqM calculations) as follows:  $k_{1,\infty}(\text{HO}_2 + C=C \rightarrow C \cdot CQ) = 4.13 \times 10^4 T^{2.232} \exp(-13.49 \text{ kcal mol}^{-1}/RT) \text{ cm}^3/\text{mol}\text{-s}; k_{2,\infty}(\text{HO}_2 + C=CC \rightarrow CC \cdot CQ) = 2.47 \times 10^4 T^{2.132} \exp(-12.16 \text{ kcal mol}^{-1}/RT) \text{ cm}^3/\text{mol}\text{-s}; k_{3,\infty}(\text{HO}_2 + C=CC \rightarrow C \cdot CQC) = 7.74 \times 10^3 T^{2.285} \exp(-11.08 \text{ kcal mol}^{-1}/RT) \text{ cm}^3/\text{mol}\text{-s}; k_{4,\infty}(\text{HO}_2 + C_2C=C \rightarrow C_2C \cdot CQ) = 3.45 \times 10^5 T^{1.765} \exp(-10.70 \text{ kcal mol}^{-1}/RT) \text{ cm}^3/\text{mol}\text{-s}; k_{5,\infty}(\text{HO}_2 + C_2C=C \rightarrow C_3 \cdot CQ) = 2.78 \times 10^4 T^{2.106} \exp(-7.63 \text{ kcal mol}^{-1}/RT) \text{ cm}^3/\text{mol}\text{-s}.$ 

Reverse (hydroperoxide alkyl radical unimolecular dissociation) rate constants are also reported:  $k_{-1,\infty} = 3.89 \times 10^{10} T^{0.481}$  
$$\begin{split} &\exp(-18.87 \text{ kcal mol}^{-1}/RT) \text{ cm}^3/\text{mol-s}; \, k_{-2,\infty} = 7.33 \times 10^9 \, T^{0.646} \\ &\exp(-17.68 \text{ kcal mol}^{-1}/RT) \text{ cm}^3/\text{mol-s}; \, k_{-3,\infty} = 3.65 \times 10^{12} \\ &T^{0.08} \exp(-20.32 \text{ kcal mol}^{-1}/RT) \text{ cm}^3/\text{mol-s}; \, k_{-4,\infty} = 2.0 \times 10^{10} \\ &T^{0.501} \exp(-17.58 \text{ kcal mol}^{-1}/RT) \text{ cm}^3/\text{mol-s}; \, k_{-5,\infty} = 4.89 \times 10^{13} \, T^{-0.325} \exp(-14.43 \text{ kcal mol}^{-1}/RT) \text{ cm}^3/\text{mol-s}. \end{split}$$

Acknowledgment. We acknowledge funding from the U.S. EPA Research Center on Airborne Organics and the U.S. Air Force Materials Research Laboratory, Wright Patterson Air Force Base, OHIO computational assistance.

**Supporting Information Available:** Coefficients of Truncated Fourier Series Representation Expansions for Internal Rotation Potentials (Table S1); the Mulliken charge for all species calculated at MP2(full)/6-31g(d) level (Table S2). This material is available free of charge via the Internet at http://pubs.acs.org.

#### **References and Notes**

(1) Walker, R. W. 22nd Symposium (International) on Combustion; The Combustion Institute: Pittsburgh, 1989; p 883.

- (2) Pitz, W. J.; Westbrook, C. K. Combust. Flame 1986, 63, 113.
- (3) Jachimowski, C. J. Combust. Flame 1984, 55, 213.

(4) (a) Baldwin R. R.; Stout, D. R.; Walker, R. W. J. Chem. Soc., Faraday Trans. 1991, 87 (14), 2147. (b) Stothard, N. D.; Walker, R. W. J. Chem. Soc., Faraday Trans. 1990, 86 (12), 2115. (c) Gulati, S. K.; Mather S.; Walker, R. W. J. Chem. Soc., Faraday Trans. 1987, 83 (11), 2171. (d) Baldwin R. R.; Dean, C. E.; Walker, R. W. J. Chem. Soc., Faraday Trans. 1986, 82, 1445. (e) Baldwin R. R.; Stothard, N. D.; Walker, R. W. J. Chem. Soc., Faraday Trans. 1984, 80, 3481.

(5) Benassi, R.; Taddie, F. J. Mol. Struct. (THEOCHEM) 1994, 3.3, 101.

(6) Jonsson, M. J. Phys. Chem. 1996, 100, 6814.

(7) Bach, R. D.; Ayala, P. Y.; Schlegel, H. B. J. Am. Chem. Soc. 1996, 118, 12758.

(8) Raiti, M. J.; Sevilla, M. D. J. Phys. Chem. 1999, 103, 1619.

(9) Benassi, R.; Folli, U.; Sbardellati, S.; Taddei, F. J. Comput. Chem. 1993, 4, 379.

(10) Koert, D. N.; Pitz, W. J.; Bozzelli, J. W. 26th Symposium (International) on Combustion; The Combustion Institute: Pittsburgh, 1996, p 633.

(11) Stewart, J. J. P. *MOPAC 6.0*; Frank J. Seiler Research Lab., U.S. Air Force Academy: Colorado, 1990.

(12) Frisch, M. J.; Truck, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Pople, J. A.; *Gaussian 94 Computer Program, Revision C* 2; Gaussian Inc.: Pittsburgh, 1995.

(13) Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.

(14) (a) Montgomery, J. A.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1994, 101, 5900. (b) Ochterski, J. W.; Petersson, G. A.; Wiberg, K. B. J. Am. Chem. Soc. 1995, 117, 11299. (c) Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A. J. Chem. Phys. 1996, 104, 2598.

(15) Pitzer, K. S.; Gwinn, W. D. J. Chem. Phys. 1942, 10, 428.

(16) Lay, T. H.; Krasnoperov, L. N.; Venanzi, C. A.; Bozzelli, J. W. J.

Phys. Chem. **1996**, 100, 8240.

(17) McQuarrie, D. A. *Statistical Mechanics*; Haper & Row: New York, 1976.

(18) Benson, S. W.; Buss, J. H. J. Chem. Phys. 1958, 29, 546.

(19) Lay, T. H.; Bozzelli, J. W. J. Phys. Chem. 1997, 101, 9505.

(20) Stull, D. R.; Westrum, E. F.; Sinke, G. C. The Chemical Thermodynamics of Organic Compounds; Robert E. Krieger Publishing:

Malibar, FL, 1987.

(21) Pedley, J. B.; Naylor, R. O.; Kirby, S. P. *Thermodynamic Data of Organic Compounds*; Chapman and Hall: New York, 1986.

(22) Benson, S. W. J. Phys. Chem. 1996, 100, 13544.

(23) Steinfeld, J. I.; Franciso, J. S.; Hase, W. L. Chemical Kinetics and Dynamics; Prentice Hall: New York, 1989.

(24) Hehre, W. J.; Radom, L.; Schleyer. P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; John Wiley & Sons: New York, 1986.

(25) Marshall, P. J. Phys. Chem. 1999, 103, 4560.

(26) Ritter, E. R.; Bozzelli, J. W. Int. J. Chem. Kinet. 1991, 23, 767.

(27) Simoes, A. M.; Greenberg, A.; Liebman, J. F. *Energetics of Organic Free Radicals*; Kluwer Academic & Professional: New York, 1996.

(28) Lay, T. H.; Yamada, T.; Bozzelli, J. W. J. Phys. Chem. 1997, 101, 2471.

(29) Chen, C. J.; Bozzelli, J. W. J. Phys. Chem. 1999, 103, 9731–9769.
(30) Chen, C. J.; Bozzelli, J. W. Thermochemical Kinetic Analysis on the Reactions of Allylic Isobutenyl Radical with O₂: An Elementary Reaction Mechanism for Isobutene Oxidation. J. Phys. Chem., submitted.

(31) Atri, M. G.; Baldwin, R. R.; Evans, G. A.; Walker, R. W. J. Chem.
Soc., Faraday Trans. 1 1978, 74, 366.
(32) Ingham, T.; Walker, R. W.; Woolford, R. E. 25th Symposium

(32) Ingham, T.; Walker, R. W.; Woolford, R. E. 25th Symposium (International) on Combustion; The Combustion Institute: Pittsburgh, 1994; p 783.

- (33) Jungkamp, T. P. W.; Seinfeld, J. H. Chem. Phys. Lett. 1996, 257, 15.
- (34) Cohen, N.; Benson, S. W. *Chem. Rev.* **1993**, *93*, 2419.
  (35) Carballeira, L.; Mosquera, R. A.; Rios, M. A. *Comput. Chem.* **1988**,
- (36) Benson, S. W. J. Chem. Phys. 1964, 40, 1007.
- (37) Kozolov, N. A.; Rabinovich, I. B. Tr. po Khim. I Khim. Tekhnol. 1964, 2, 189.
- (38) Knyazev, V. D.; Slagle, I. R. J. Phys. Chem. 1998, 102, 1770.