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Two-dimensional (2D) line shapes derived from four types of coherent third-order nonlinear spectroscopies
as a function of two independent time or frequency variables are compared. The signals scattered into two
wave-vector-matching directions in the limits of high-time or high-frequency resolution are calculated for an
inhomogeneously broadened ensemble of two-level systems with phenomenological dephasing and population
relaxation times. While one-dimensional (1D) line shape analysis for this model is ambiguous, the contours
of these 2D line shapes are shown to be characteristic of the relative time scales of the three relevant line-
broadening parameters. These broadening mechanisms are also apparent by comparing 2D spectral profiles
along the diagonal and antidiagonal frequency axes. For time domain experiments, in analogy with NMR
correlation spectroscopy, the radiated signal is observed as a function of the two coherence periods and is 2D
Fourier transformed to obtain a line shape. For experiments based on the photon echo, the ellipticity of the
absolute value 2D line shape is related to the ratio of the inhomogeneous width to the dephasing rate, whereas
experiments based on the transient grating method are shown to be functionally 1D. For frequency domain
experiments, the contours of the 2D line shape can yield information on static and both dynamic broadening
mechanisms. While the addition of spectral diffusion to such calculations will modify these results for frequency
domain experiments, characterizing these dynamics in the time domain naturally leads to a 3D experiment
analogous to the spin diffusion experiment in NMR.

Introduction

Describing the dynamics of amorphous condensed phases
requires sensitivity to molecular motions and interactions on
multiple time scales. Nonlinear spectroscopic methods are
proving to be unusually discriminating for separating and
quantifying the time scales of molecular and collective dynamics
in systems such as liquids and solutions, supercooled liquids
and glasses, polymers, and proteins. Of these methods, the most
selective to dynamics of differing nature or with variable time
scale are those that can peer beneath the ensemble average, such
as hole burning and the photon echo.

Although these are well-understood experiments, control of
the multiple time variables inherent to these third-order spec-
troscopic methods is still elusive. Hole-burning measurements
are sensitive to the time scale of burning and the time between
reading and burning.1,2 Control over these variables allows the
dynamics of spectral diffusion to be monitored. Although
selective to the fast dynamics in inhomogeneously broadened
systems, the traditional two-pulse photon echo is not particularly
sensitive to the dynamics of systems with a broad distribution
of time scales. This realization led to the use of multiple time
variables in the photon echo experiment to get at spectral
diffusion. These experiments include stimulated photon echo
experiments1,3 and the three-pulse photon echo peak shift
measurement.4-6 It has been realized that observing the time
evolution of the radiated polarization holds much of the
information on the time scales and mechanism over which
memory of an initial excitation is lost. This is the motivation
for experiments such as the gated photon echo,7,8 heterodyne-
detected photon echo,9,10 and fifth-order three-pulse echo.11,12

These techniques are now being used as the template for the
development of even more insightful two-dimensional (2D)
electronic13-15 and vibrational16-25 spectroscopies. These 2D
spectroscopies are in many ways optical analogues of 2D
correlation spectroscopies used in nuclear magnetic resonance
(NMR);26 they attempt to observe microscopic interactions
through macroscopic correlations between differing spectro-
scopic features. What is particularly appealing is the time scale
over which these measurements can be made: as short as a
few tens of femtoseconds.

2D spectroscopies are those observed as a function of two
independent time or frequency variables, and thereby they can
be related to correlation functions in two time variables (three-
point correlation functions). Whether they are observed in time
or frequency, observables are most often presented as a 2D
spectrum, which represents the correlation between spectro-
scopic features. The 2D spectrum has an amplitude and phase
spectrum associated with it. The amplitude is a measure of the
degree of correlation, which can refer to the strength of coupling
of two modes or the extent of spectral diffusion between two
transition energies. The phase offers a new level of information
on the correlation. It can be used to assist in distinguishing the
mechanism of coupling, describing the momentum of electronic
and vibrational wave packets, and separating dynamics on the
ground and excited electronic surfaces.

Our aim in this paper is to illustrate how 2D line shape
analysis of features in a 2D spectrum has the ability to separate
different dynamic and static contributions to a molecular dipole
transition. While one-dimensional (1D) line shapes based on
optical, infrared, or Raman spectroscopy cannot unambiguously
separate fast and slow dynamics or dynamics of dephasing and
population relaxation, 2D line shapes can.13,19,27Resonant third-
order nonlinear spectroscopies can be related to correlation† E-mail: tokmakof@mit.edu. Fax: (617) 253-7030.
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functions in three time variables.28 Time ordering of pulses,
frequency selection of the interaction fields, wave-vector-
matching conditions, and polarization conditions allow an
experiment to be designed that is selective to the form of these
correlation functions. Here we use selectivity by wave vector,
time-ordering, and frequency to illustrate which microscopic
variables 2D line shapes can be sensitive to.

The manner in which dynamic information can be extracted
from 2D line shapes can be illustrated by the 2D representation
of a traditional hole-burning experiment on an inhomogeneously
broadened absorption line. As shown in Figure 1, a subset of
the ensemble can be photobleached by an intense monochro-
matic field with a frequencyωburn. The induced change in the
absorption line shape is measured by a weak read-out beam at
frequencyωread. For a distribution of homogeneous line shapes
masked by inhomogeneous broadening, the difference spectrum
is representative of the homogeneous line shape of the suben-
semble absorbing atωburn. This experiment is a function of two
independent frequency variables, and is thus two-dimensional.
If we now allow bothωburn andωread to be tuned through the
inhomogeneous line shape, we can construct a 2D line shape
as a function of these two variables. This line shape will have
an elliptical line shape whose profile along the diagonal
frequency axis (ωburn ) ωread) reproduces the traditional 1D
absorption spectrum. The width perpendicular to the diagonal
represents the homogeneous line width. The ellipticity of the
line tells about the extent of inhomogeneous broadening. These
observations suggest that the 2D line shape, in addition to giving
a quantitative description of multiple time scales, allows
tremendous intuitive insight into the nature of spectral broaden-
ing and the makeup of the ensemble.

The following calculations aim to demonstrate the information
content on spectral broadening mechanisms found in 2D line
shapes, as derived from four types of coherent third-order
nonlinear spectroscopies. Using a phenomenological Bloch
model for a two-level system (2LS), 2D line shapes are derived
for signals observed in two phase-matching conditions in the
limit of high-time or high-frequency resolution. These calcula-
tions show the complementary nature of these experiments in
extracting dynamic information on the system. In each case, as
with the example in Figure 1, the shapes of the contours that
represent the 2D line shape are uniquely representative of the

time scales of the dynamics. Time domain experiments are
selective to the influence of static (inhomogeneous) broadening,
while frequency domain experiments are sensitive to the ratio
of the rates of dephasing to population relaxation. To demon-
strate the sensitivity of 2D spectroscopies to the makeup of the
ensemble beyond traditional means, a system with a frequency-
dependent dephasing time is investigated. These examples also
serve to build intuitive analysis of 2D line shapes by demon-
strating how 2D line shapes allow a simplified representation
of the dynamics of a complex system. By designing the
experiment with varying degrees of time or frequency resolution
and wave-vector selection, different types of information can
be extracted from the system. Further, these calculations
demonstrate the remarkable ability of 2D observables to lend
tremendous qualitative and quantitative insight into the dynamics
of ensembles.

Calculations

To illustrate the information content of various 2D line shapes
based on coherent third-order resonant nonlinear spectroscopy,
we calculate the 2D response from four types of experiments.
The description of the response from an ensemble of 2LSs in
the limits of high-time or high-frequency resolution leads to
the four 2D experiments outlined in Table 1. Two experiments
are measured in the time domain, and two are measured in the
frequency domain. For each domain, we consider two wave-
vector-matching conditions,kPE ) -k1 + k2 + k3, the photon
echo (PE) wave-vector-matching condition, andkTG ) +k1 -
k2 + k3, the wave-vector-matching condition for transient grating
(TG), pump-probe, or hole-burning experiments. For the time
domain experiments we calculate an observable in the two time
variablesτ1 andτ3, the first and last time variables associated
with the four-point correlation functions that describe third-order
nonlinear experiments.28 For an optical 2LS, these time periods
are those during which the system evolves in coherences. Most
nonlinear experiments would not measure such an observable,
since traditional detection integrates overτ3, yet heterodyne
detection and gating of theτ3 signal are potential methods for
such an observation.7-10 For frequency domain 2D experiments,
we choose two independent frequency variables for the input
fields and set the third equal to one of the others. This constraint
dictates that only two distinct experiments exist after consid-
eration of the symmetry of the frequency variables. In this case,
no time-ordering is retained, and the response is obtained by
summing over all possible interaction pathways. We use an
ensemble of 2LSs consisting of a ground state|g〉 and an excited
state|e〉 split by a frequencyωeg ) ωe - ωg. The damping of

Figure 1. Schematic of a two-dimensional experiment based on hole
burning. A narrow bandwidth burning pulse atωburn bleaches an
inhomogeneously broadened transition. The differential absorption
derived from a scan of the line shape before and after the bleach by
ωreadyields a slice (b) from the 2D line shape. Tuning both frequencies
allows a 2D line shape to be constructed. The diagonal slice (a) of this
spectrum reproduces the absorption line shape. The pictured line shape
is representative of a system with an invariant homogeneous width
across the distribution. If it were frequency dependent, then shapes such
as those in Figure 6a would be expected.

TABLE 1: Resonant Third-Order Nonlinear Experiments
on a Two-Level System with Two Independent Time or
Frequency Variablesa

case
independent

variables
wavevector

matching condition
frequency

conservation condition

I τ1, τ3 kPE ) -k1 + k2 + k3 ωPE ) -ω1 + ω2 + ω3

II τ1, τ3 kTG ) +k1 - k2 + k3 ωTG ) +ω1 - ω2 + ω3

III(a) ω1 ) ω2, ω3 kPE ) -k1 + k2 + k3 ωPE ) -ω1 + ω2 + ω3

(b) ω1, ω2 ) ω3

(c) ω1 ) ω3, ω2

IV(a) ω1 ) ω2, ω3 kTG ) +k1 - k2 + k3 ωTG ) +ω1 - ω2 + ω3

(b) ω1, ω2 ) ω3

(c) ω1 ) ω3, ω2

a Of these, there are four independent experiments, when considering
the following symmetries: case IIIa) case IVa; case IIIb) case IVc;
case IIIc ) case IVb; case IIIa,S(ω1,ω3) ) case IVb, S(ω3,ω1)
(reflection symmetry).
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the 2LS is governed by two phenomenological constants for
the dephasing rateΓeg ) Γge and population relaxationΓee )
Γgg.

As illustrated by the example in Figure 1, the dimensions
that most clearly describe a 2D spectrum are the diagonal and
antidiagonal axes. The diagonal axis, in which the two frequency
arguments are the same (ωread - ωburn ) 0), is usually
representative of the information in a 1D experiment. The
antidiagonal axis, which satisfies the relationshipωread+ ωburn

) 2ω0, is perpendicular to the diagonal at the point (ω0,ω0) in
the 2D plane. As a first level of characterization, the shape of
the line can be described by comparing the width along these
two axes. More generally, these two primary axes represent a
translation of the origin to (ω0, ω0) and rotation of the axis
frame by 45°. In the following, for an observable in two
frequency variables,ω1 andω3, the diagonal frequency variable
will be defined as

and the antidiagonal as

These axes are pictured in Figure 2. These definitions, which
neglect a factor of 1/x2 for rotation of the axes, are chosen to
retain a direct relationship between the shape and width of
spectral features in the 2D plane, and their 1D counterparts.

Time Domain Experiments.We first consider two four-wave
mixing experiments in which three successive optical pulses
are directed at the sample, in which the time variables for the
separation between successive pulses areτ1 and τ2, andτ3 is
the time period after the final field interaction. The pulses are
considered short compared with the dynamics, yet long com-
pared with the optical cycle. For the case of third-order nonlinear
experiments within the rotating wave approxiation, the signal
radiated duringτ3 by the nonlinear polarization,P(3), is a
convolution of the input fields over the third-order response
function R(3) 28

where the third-order response function is given by a sum of
four time-ordered, frequency- and wave-vector-matched con-
tributions

with

Hereθ(t) is the unit step function. The response functions can
in turn be calculated from the line-broadening functiong(t)
which describes the dynamics of the spectroscopic energy gap
V

The line-broadening function can be related to a spectral density,
F(ω), for the fluctuations inV. A detailed description of the
evaluation ofP(3) in terms of g(t) and F(ω) can be found
elsewhere.28-30 By assuming short, well-separated pulses, we
replace the electric field functions in eq 3 withδ function
envelopes. Thus, the nonlinear polarization is proportional to
R(3). Also for these calculationsτ2 is set to zero, so thatR1 )
R4 and R2 ) R3. For the first set of calculations, our simple
model is equivalent to the traditional Bloch picture, with

leading to

Here all constant factors that influence the overall magnitude
of the signal, but not its time dependence, have been dropped.
We also include a slow dynamic time scale through inhomo-
geneous broadening, which is described as a Gaussian distribu-
tion of transition frequencies,ωeg, with width σ

Here ω0 is the center of the distribution. The time domain
response for the ensemble is obtained by integrating the time
domain response function over the inhomogeneous distribution

This leads to the well-known ensemble-averaged response
function for the two time domain experiment:28

Figure 2. Relationship between the frequency variables from Fourier
transformation of the response function time variables and the rotated
axis frame of the diagonal (ω-) and antidiagonal (ω+) axes.

ω- ) ω3 - ω1 (1)

ω+ ) ω1 + ω3 - 2ω0 (2)

P(3)(τ1,τ2,τ3) ∝ ∫0

∞
dτ3∫0

∞
dτ2∫0

∞
dτ1 R(3)(τ1,τ2,τ3) ×

Eh3(τ-τ3) Eh2(τ-τ3-τ2) Eh1(τ-τ3-τ2-τ1) (3)

R(3)(τ1,τ2,τ3) ) (i/p)3 θ(τ1) θ(τ2) θ(τ3)∑
i)1

4

(Ri(τ1,τ2,τ3) -

Ri*(τ1,τ2,τ3)) (4)

R1(τ1,τ2,τ3) ) exp(-iωegτ1 - iωegτ3) exp(-g*(τ3) -
g(τ1) - g*(τ2) + g*(τ2+τ3) + g(τ1+τ2) - g(τ1+τ2+τ3))

(5a)

R2(τ1,τ2,τ3) ) exp(iωegτ1 - iωegτ3) exp(-g*(τ3) - g*(τ1) +
g(τ2) - g(τ2+τ3) - g*(τ1+τ2) + g*(τ1+τ2+τ3)) (5b)

R3(τ1,τ2,τ3) ) exp(iωegτ1 - iωegτ3) exp(-g(τ3) - g*(τ1) +
g*(τ2) - g*(τ2+τ3) - g*(τ1+τ2) + g*(τ1+τ2+τ3)) (5c)

R4(τ1,τ2,τ3) ) exp(-iωegτ1 - iωegτ3) exp(-g(τ3) - g(τ1) -
g(τ2) + g(τ2+τ3) + g(τ1+τ2) - g(τ1+τ2+τ3)) (5d)

g(t) ) (1/p2)∫0

t
dτ∫0

τ
dτ′ 〈V(τ′) V(0)〉 (6)

g(t) ) Γegt (7)

RPE
(3)(τ1,τ3) ) R2 + R3 )

exp(-iωeg(τ3 - τ1)) exp(-Γeg(τ1 + τ3)) (8)

RTG
(3)(τ1,τ3) ) R1 + R4 )

exp(-iωeg(τ1 + τ3)) exp(-Γeg(τ1 + τ3)) (9)

G(ωeg) ) (2πσ2)-1/2 exp(-(ωeg - ω0)
2/2σ2) (10)

R(3) ) ∫G(ωeg) R(3)(ωeg) dωeg (11)
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It is clear that this model does not address the dynamics of
population relaxation and spectral diffusion, which are observed
duringτ2. Observation of these dynamics can be measured with
3D experiments that observe the 2D spectrum as a function of
τ2, the population period in echo experiments and the mixing
period in NMR experiments. Traditional observation of time
domain third-order nonlinear signals makes an integrated
measurement of the third-order polarization radiated from the
sample

To construct the 2D experiments here using the two coherence
periodsτ1 and τ3, it is necessary to observe the electric field
during the final period. Both gated photon echoes7,8,31 and
heterodyne-detected photon echoes9,10 are designed for this
purpose. It should be noted that spectral interferometry32-34 is
effectively equivalent to the heterodyne-detected method since
both of these methods are capable of measuring the complex
3D polarization from third-order nonlinear measurements. For
the 2D line shapes discussed here, only observation of the time
envelope of the radiated polarization,|P(3)(τ1,τ3)|, during the
time τ3 as a function ofτ1 is required. This makes the gated
photon echo, which measures a signal proportional to
|P(3)(τ1,τ3)|2 the most direct route to these line shapes.

Figure 3 shows the time domain envelopes of the 2D response
for the PE and TG experiments from ensembles of varying
inhomogeneous widths. As the inhomogeneous distribution
becomes large compared to the homogeneous dephasing time,
the PE experiment (Figure 3a-c) changes from a symmetric to
a diagonally elongated signal. In the strongly inhomogeneous
limit, an echo ridge arising from the rephasing term in eq 12 is
observed. The decay along the diagonal is given byΓeg, while
the decay along the time axes (τ1 ) 0 or τ3 ) 0) is a product
of the exponential and Gaussian decays from the homogeneous
and inhomogeneous dephasing mechanisms.

For the TG experiment, the signal is temporally uniform; it
decays monotonically downward at the same rate in any
direction in the two time variables. The rate of this falloff is
governed by the fastest dephasing mechanism, whether homo-
geneous or inhomogeneous. Contours in the 2D plane are always
of slope-1. As suggested by the diagonal and antidiagonal
frequency variables (eqs 1 and 2), we can also define diagonal
and antidiagonal axes in the time domain

Rewriting the response functions for the PE and TG experiments

it becomes clear that the transient grating can be written in terms

of one independent time variable,τ+, and is thus functionally a
one-dimensional experiment.

With the observation of the amplitude of the third-order
polarization as a function of the two time variablesτ1 andτ3,
as in the gated echo, we can define a 2D spectrum for these
experiments through a two-dimensional Fourier transform

The sign of theω1 frequency argument in the complex
exponential is determined by the sign of these terms in the
frequency and wave-vector-matching condition for the experi-
ment, i.e.,-ω1 for the PE and+ω1 for the TG. The spectrum
is defined in this manner to show direct correspondence between
time and frequency domain experiments. The choice of sign is
otherwise arbitrary, since it only leads to rotation of the spectrum
by 90°. It should be noted that the Fourier transform relationship
in eq 19 can in principle be redefined in terms of the transform
pair ω+τ+ and ω-τ-, but the change of integration limits is
nontrivial.

The 2D line shapes obtained from the time domain response
in Figure 3 are shown in Figure 4. These are absolute value
spectra obtained from eq 19. As with the time domain response,
the 2D line shape is very revealing in the PE experiment, yet
hardly changes in profile for the TG experiment. In the
homogeneous limit (Figure 4a), the 2D line shape from the PE
is symmetric with the characteristic shape of a 2D Lorentzian.26

As the inhomogeneous width increases, the 2D line shape
broadens along the diagonal axis, while the antidiagonal is
unchanged. For large inhomogeneous broadening (Figure 4c),
the 2D line shape is strongly elongated, with the diagonal profile
given by the inhomogeneous width and the antidiagonal axis
still preserving the homogeneous line shape. In the Bloch model,
the 2D line shape from the PE experiment is similar to that
from the hole-burning experiment. Clearly in an inhomogeneous
system, the ellipticity of the 2D line shape can be related to the
degree of inhomogeneous broadening. This has been shown

RPE
(3)(τ1,τ3) ) exp(-Γeg(τ1 + τ3)) exp(-(τ3 - τ1)

2σ2/2) ×
exp(-iω0(τ3 - τ1)) (12)

RTG
(3)(τ1,τ3) ) exp(-Γeg(τ1 + τ3)) exp(-(τ3 + τ1)

2σ2/2) ×
exp(-iω0(τ1 + τ3)) (13)

S(3)(τ1,τ2) ∝ ∫0

∞|P(3)|2 dτ3 (14)

τ- ) τ3 - τ1 (15)

τ+ ) τ1 + τ3 (16)

RPE
(3)(τ+,τ-) ) exp(-Γegτ+) exp(-τ-

2σ2/2) exp(-iω0τ-)
(17)

RTG
(3)(τ+) ) exp(-Γegτ+) exp(-τ+

2σ2/2) exp(-iω0τ+) (18)

Figure 3. Two-dimensional contours of the time domain response,
|P(3)(τ1,τ3)|, for the PE (a-c) and TG (d-f) experiments from the
homogeneous to the inhomogeneous limit: (a, d)σ/Γeq ) 0.2; (b, e)
σ/Γeq ) 2; (c, f) σ/Γeq ) 20. Contours are shown in intervals of 14%
of the maximum amplitude.

S(ω1,ω3) ) ∫-∞

∞
dτ1∫-∞

∞
dτ3 |P(3)(τ1,τ3)| exp((iω1τ1 + iω3τ3)

(19)
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quantitatively elsewhere for the PE experiment.27 Since the
Bloch model for the photon echo experiment is effectively the
same as that used for spin-echo experiments, the 2D line shapes
derived here are similar to those described in the analysis of
2D NMR line shapes.26

Slices through the 2D spectra obtained from the PE experi-
ment are shown in Figure 5. In general, the diagonal slice
contains the information of the traditional 1D absorption
experiment, a convolution of the homogeneous and inhomoge-
neous dephasing dynamics. (More precisely, the diagonal slice
from the real part of the 2D line shape is the absorption

spectrum.) In the homogeneous limit, the diagonal is given by
the imaginary part of the Lorentzian line shape

In the inhomogeneous limit, it is a Gaussian with the profile of
the inhomogeneous distribution. The antidiagonal slice gives
information on the homogeneous line shape. In the homogeneous
limit (Γ . σ), the antidiagonal slice is identical to the diagonal
slice (eq 20). In the inhomogeneous limit (σ . Γ), the
antidiagonal slice is the modulus-squared Lorentzian

The projection of the 2D spectrum onto the antidiagonal for
any values ofσ andΓ is always given by eq 20 above. This is
a consequence of the projection theorem that states that the
Fourier transform of a time slice in the 2D planesin our case
the time diagonalsgives the projection onto that axis in the
frequency domainsin our case the antidiagonal due to the
definition used in eq 19.26

Within the simple model used above, the analysis of 2D
experiments based on the absolute value of the electric field is
essentially equivalent in the time or frequency domain. The
choice of representation is arbitrary. The choice of time or
frequency domain representation is less arbitrary in systems of
increasing complexity. In systems that are composed of multiple
distinct or superimposed components, the time domain response
does not have the same intuitive interpretation that the 2D line
shape has. As an illustration, consider an inhomogeneously
broadened system in which the dephasing dynamics for the
members of the ensemble is frequency dependent. This scenario
could be observed for any frequency-dependent relaxation
mechanism, such as relaxation through bath-mediated anhar-
monic coupling mechanisms. In this case, the homogeneous line
shape is broader on one side than the other. If the homogeneous
dephasing rate is linearly proportional to frequency

then the PE response of the ensemble integrated over a Gaussian
distribution function is given by

The 2D line shape observed for this system is shown in Figure
6a for σ/Γ ) 20 andR ) Γ/10. The line shape is pear shaped

Figure 4. Two-dimensional absolute value line shapes,|S(ω1,ω3)|,
obtained from the calculations in Figure 3 using eq 19. The labels a-f
correspond to those in Figure 3. Contours are shown in 17% of the
maximum intervals.

Figure 5. Diagonal (dashed line) and antidiagonal (solid line) slices
through the 2D line shapes obtained from the PE experiment in Figures
3 and 4. The labels a-c correspond to Figures 3 and 4. The light dotted
line illustrates the Gaussian inhomogeneous distribution in each case.

Figure 6. (a) 2D line shape,|S(ω1,ω3)|, obtained from a PE experiment
for an inhomogeneous ensemble in which the homogeneous dephasing
rate,Γeg, is frequency dependent (σ/Γ ) 20; R ) Γ/10). (b) Diagonal
(dashed line) and antidiagonal (solid line) slices through the 2D
spectrum in (a). The antidiagonal slices (ω+ ) ω3 + ω1 - 2ωeg) on
either side of the distribution center,ω0, are representative of the
homogeneous line width at that frequency. For comparison, a Lorentzian
line shape with widthΓeg(ωeg) is shown.

S-(ω-) ∝ Γ/((ω- - ωeg)
2 + Γ2) (20)

S+(ω+) ∝ 1/(ω+
2 + Γ2)1/2 (21)

Γeg ) Γ0 - R(ωeg - ω0) (22)

RPE
(3)(τ1,τ3) ) exp(-Γ0(τ1 + τ3)) exp((-σ2/2)(R2(τ1 + τ3)

2 +

(τ3 - τ1)
2 - 2iR(τ3

2 - τ1
2))) exp(-iω0(τ3 - τ1)) (23)
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and symmetric about the diagonal axis. This shape characterizes
the makeup of this ensemble effectively, as shown in Figure
6b. The diagonal axis again is representative of the 1D
spectrum: an asymmetric line shape that represents the con-
volution of the frequency-dependent homogeneous line widths
with the distribution function. The antidiagonal slice at any
detuning from the center of the distribution,ωeg - ω0, is
representative of the homogeneous line width of the members
of the ensemble at that detuning. This qualitative interpretation
is apparent from the 2D line shape, while the time domain
representation is not as intuitive. Yet, for quantitative modeling
the two representations contain the same information.

Frequency Domain Experiments.Next we consider 2D line
shapes derived from frequency domain third-order nonlinear
experiments. Three beams with wave vectors,k1, k2, and k3,
with frequenciesω1, ω2, and ω3, and of bandwidth much
narrower than the inverse of the dynamic time scales are used
to generate a third-order nonlinear signal. This could apply to
cw experiments or time-coincident pulses that are much longer
than the dynamics. We analyze the nonlinear signal scattered
in the same wave-vector-matching directions as before, the PE
(kPE ) -k1 + k2 + k3) and TG (kTG ) +k1 - k2 + k3)
geometries. As before, we will consider the line shape that is
proportional to the magnitude of the polarization,S(ω1,ω3) ∝
|P(3)(ω1,ω3)|; this would be equivalent to the square root of the
background free coherent signal observed by a photodetector.
The frequency of the emitted signal is given by the conditions
ωPE ) -ω1 + ω2 + ω3 and ωTG ) +ω1 - ω2 + ω3,
respectively. As a simple example of a 2D experiment, we
consider the case where one of the three independent frequencies
is set equal to one of the others, i.e.,ω1 ) ω2, ω2 ) ω3, or ω1

) ω3.
The frequency domain responses for these experiments have

been written by many others.35-39 From the standpoint of the
correlation functions, the frequency domain response function,
or susceptibilityø(3), can be obtained by a Fourier transform
relationship to the time domain response function:

Within the 2LS model described above, the nonlinear suscep-
tibility leading to the nonlinear signal with frequencyωs ) +ω1

- ω2 + ω3, scattered into the PE wave-vector-matching
direction, is described by a sum over all time-orderings

The expression for the susceptibility describing the scattering
into the TG wave-vector-matching direction is given by
ø(3)(-ωs;ω1,-ω2,ω3).

In addition, for the 2D line shapes we set one of the
frequencies equal to another as outlined in Table 1. For the six

possible permutations of two independent frequencies and two
wave-vector-matching conditions, there are two unique experi-
ments. This observation arises from the symmetries displayed
by eq 25. Forω1 ) ω2, the 2D signal is independent of the
wave-vector-matching geometry. This is readily seen from the
equivalence of the scattered signal atωPE ) -ω1 + ω2 + ω3

andωTG ) +ω1 - ω2 + ω3 on exchange of the variablesω1

andω2. The susceptibility for these experiments (cases IIIa and
IVa) is given by

One can also see that the susceptibility for the PE signal with
ω1 ) ω3 is equal to the TG response forω2 ) ω3. From eq 26
it is also apparent that the exchange ofω1 and ω3 in this
expression only leads to reflection of the 2D line shape about
the diagonal axis. Therefore, functionally, cases IIIa, IIIb, IIIc,
and IVb all lead to the same line shape.

The remaining cases are seen to be equal, since the PE signal
for ω2 ) ω3 is equal to the TG response forω1 ) ω3. For this
case the susceptibility can be written as

We analyze the line shapes from the two experiments
represented by cases IIIa and IVa, which are hereafter referred
to by the wave-vector-matching condition as the PE and TG
experiments, respectively. The 2D line shapes derived for these
experiments from eqs 27 and 26 are plotted in Figure 7 for ratios
of Γeg/Γeevarying from 1 to 10. For the PE experiment (Figure
7a-c), the line shape shows a clear signature of theΓeg/Γee

(Τ1/T2) ratio. When the vibrational dynamics are dominated by
the population lifetime (Τ1 ) 1/Γee), the contours of the line
shape are oval, with a long axis that appears to be rotated
clockwise by 15° from the diagonal axis. As the lifetime
lengthens and the dynamics are dominated by pure-dephasing,
the line shape becomes strongly elongated along the diagonal.

These observations are reflected in the slices through the 2D
line shape. For the PE experiment, the slice along the diagonal
axis has a width determined only byΓeg

The antidiagonal slice is given by

In the limit thatΓee, Γeg, the antidiagonal width is a Lorentzian
with a width proportional toΓee. These observations are
illustrated in Figure 8a-c, which shows the diagonal and
antidiagonal slices through the 2D line shapes in Figure 7a-c.

ø(3)(-ωs;ω1,ω2,ω3) ∝ ∑
i,j,k)1,2,3

∫0

∞
dτ3∫0

∞
dτ2 ×

∫0

∞
dτ1 R(3)(τ1,τ2,τ3) exp(-i(ωi + ωj + ωk)τ3 -

i(ωj + ωk)τ2 - iωkτ1) (24)

ø(3)(-ωs;-ω1,ω2,ω3) )
2

ωeg - (-ω1 + ω2 + ω3) - iΓeg
[ 1
(-ω2 + ω1) - iΓee

×

( 1
ωeg + ω1 - iΓeg

+ 1
-ωeg - ω2 - iΓeg

) +

1
(-ω2 - ω3) - iΓee

( 1
ωeg - ω3 - iΓeg

+

1
-ωeg - ω2 - iΓeg

)] (25)

øTG
(3)(ω1,ω3) ) 2

ω1 - ω3 - iΓee[( 1
ωeg - ω3 - iΓeg

)2
+

[ 1
ωeg - ω3 - iΓeg

+ 1
-ωeg + ω1 - iΓeg]] -

Γeg

Γee

4
ωeg - ω3 - iΓeg( 1

(ω1 - ωeg)
2 - Γeg

2) (26)

øPE
(3)(ω1,ω3) )

4
ωeg + ω1 - 2ω3 - iΓeg

1
ω1 - ω3 - iΓee[ 1

ωeg - ω3 - iΓeg
+

1
-ωeg + ω1 - iΓeg] (27)

S-(ω-) ) 2

((ω- - ωeg)
2 + Γeg

2)3/2

Γeg

Γee
(28)

S+(ω+) ) 4

[(9ω+
2 + Γeg

2)(ω+
2 + Γeg

2)(4ω+
2 + Γee

2)]1/2

(29)
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The line shapes obtained from the TG experiment for the
same ratios ofΓeg/Γeeare shown in Figure 7d-f. There are two
clear contributions to this line shape. As seen from eq 26, the
same line shape observed for the PE experiment exists in the
TG experiment, but superimposed on an invariant contri-
butionsthe third term in eq 26. This pedestal has a diamond
shapesan elongated 2D Lorentzian whose width inω1 is Γeg

and inω3 is 2Γeg. As the contribution of pure-dephasing to the

line width increases, a strong diagonal ridge is observed on the
diamond pedestal.

The dynamic information can also be obtained from slices
through the 2D line shape. These are shown in Figure 8d-f.
The diagonal slice for the TG is given by the same expression
as the PE (eq 28). The antidiagonal slice is given by

For a line shape that is dominated by population relaxation (Γee

≈ Γeg), the antidiagonal slice is a Lorentzian line shape with a
width of Γeg. As the contributions from pure-dephasing become
more significant, a second feature is observed on top of this
line shape, narrowing and growing in amplitude asΓee ap-
proaches zero. In the limitΓee , Γeg, this expression has two
contributions: the invariant pedestal with widthΓegand a narrow
spike of equal amplitude with width 2Γee.

Beyond these line shapes, it is of further importance to be
able to extract the values ofΓeeandΓeg from an inhomogeneous
distribution.36,40-42 The response for a system with inhomoge-
neous broadening is obtained by integration over a distribution
function

Just as the time domain response from an inhomogeneous
system can be written as the convolution of the homogeneous
line shape integrated along the frequency diagonal, the addition
of inhomogeneous broadening to the frequency domain calcula-
tions leads to integration over a distribution along the diagonal
axis. With increased inhomogeneous broadening, line shapes
for both experiments elongate along the diagonal. Yet for this
distribution, the interpretation of the line shapes for the PE
experiment becomes ambiguous. Slices along the diagonal or
antidiagonal axes can potentially have contributions fromΓee,
Γeg, andσ. This problem is not critical in the case of the TG
experiment. Integration over the distribution still allows the value
of Γeg and Γee to be determined from an antidiagonal slice,
whereas the diagonal slice is dictated by a convolution of the
homogeneous and inhomogeneous widths (the 1D spectrum).
What is observed for the coherent 2D line shapes is what is
well-known from practice: the 2D experiments that are selective
to inhomogeneous broadening are the PE in the time domain
and the hole-burning experiment in the frequency domain. This
statement is made recognizing that the TG experiment corre-
sponds to a coherent hole-burning experimentsone in which
coherent burning (ω1) and reading (ω3) beams are time
coincident. If these beams are separated in time, theΓeesensitive
contributions disappear, leaving only theΓeg contributions.

Discussion

An intuitive description of 2D line shapes is important with
increased complexity of the system. As the system to be
investigated contains more and varying contributions from either
spectroscopically distinct features or broadening of dynamic or
structural origin, the description of the correlations between
different frequency components will require models with a more
advanced description of the system. This is particularly the case
for vibrational spectroscopy, in which overlapping features from
distinct transitions or from unique structural environments are
standard. Examples of current interest include massive broaden-
ing of -OH stretch transitions in hydrogen-bonding liquids,43-45

inhomogeneous broadening in supercooled liquids and glasses,46

Figure 7. 2D line shapes,S(ω1,ω3) ∝ |ø(3)(ω1,ω3)|, for a single 2LS
from the frequency domain PE (a-c) and TG (d-f) experiments for
(a, d) Γeg/Γee ) 1, (b, e)Γeg/Γee ) 3, and (c, f)Γeg/Γee ) 10.

Figure 8. Diagonal (dashed line) and antidiagonal (solid line) slices
through the 2D line shapes in Figure 7.

S+(ω+) )
32(2Γeg - Γee)(ω+

2 + Γeg
2)1/2

[(4ω+
2 + Γeg

2)3/2(16ω+
2 + Γee

2)]1/2
(30)

ø(3) ) ∫G(ωeg) ø(3)(ωeg) dωeg (31)
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and structurally distinct amide I vibrations in polypeptides.22,24

2D line shape analysis offers a powerful tool for examining
such systems.

A traditional way of interpreting the observables from
nonlinear optical spectroscopy is to define a model, calculate
the form of the observable for certain parameters, and then make
adjustment to parameters by comparing the experiment and
model calculations. Particularly in the case of phenomenological
models, there is little flexibility in this approach to assessing
whether the model is appropriate for the system. A multidi-
mensional observable is one that allows a more direct visualiza-
tion of the dynamics of the system, and provides more direct
feedback into the description of the system. At a qualitative
level, a 2D spectrum can immediately distinguish between many
different types of scenarios in a system with complex dynamics,
and at a quantitative level, the full set of data in two time or
frequency dimensions forms a tight constraint on any param-
etrization.

While several types of nonlinear optical problems can be
interpreted within a 2LS model in which dynamics are described
by Gaussian47 or other48 statistics, the tremendous power of 2D
spectroscopy will be to unravel systems with an arbitrary number
of degrees of freedom. The example in Figure 6 is a simple
demonstration of how the 2D line shape can be used in
evaluating a model. The variation of the dynamics within the
ensemble as a function of frequency immediately suggests that
a model based on a 2LS which experiences dynamics that follow
Gaussian statistics would not truly represent this system. A
traditional description of such a line shape using a 2LS coupled
to a harmonic bath with arbitrary spectral density (i.e., a
Brownian oscillator picture) would lead to an interpretation of
a single transition coupled to a spectral density that includes
frequency components spanning all of the members of the
ensemble. The more appropriate picture is an ensemble of 2LSs
each coupled to a bath oscillator with a spectral density of
varying peak frequency. More precisely, recognizing that the
2D line shape is derived from a response that is a convolution
of the individual response with a distribution function (eq 11),
the 2D line shape can give insight into both the form of the
distribution function and the individual response. While inte-
grated time domain third-order nonlinear spectroscopies are not
sensitive to the composition of the spectral density, the 2D
versions of these experiments can reveal the presence of a
heterogeneous bath.

Ultimately, realistic models of the 2D line shape must
describe the dynamics of spectral diffusion and the manner in
which the spectral density for these fluctuations manifests itself
in these measurements. The measurement of spectral diffusion
follows naturally from the time domain 2D experiments
described above. The use of theτ2 time variable in echo
experiments will allow the dynamics of population relaxation
and spectral diffusion to be monitored. The time evolution of
the 2D line shape can be monitored as a function of the
intermediate time variable, in a manner analogous to that of
the spin diffusion experiment in NMR. Population relaxation
(theΓeeandΓgg terms) will lead to decreased spectral amplitude,
but no change in line shape. Spectral diffusion will lead to the
shift of spectral amplitude off of the diagonal. The 2D line shape
will vary from an inhomogeneously broadened line shape to
one that is symmetricsapparently homogeneoussfor values of
τ2 longer than those from the spectral diffusion dynamics.

Although related, this experiment should not be confused with
a three-pulse photon echo peak shift measurement, which is used
in the determination of a spectral density for the fluctuations

of transitions that lie within the excitation bandwidth.4,5,30 An
analysis of this three-dimensional (3D) experiment will show
that Fourier transform relationships involvingτ2 will lead to a
3D spectral density. This quantity will track the spectral density
function for the time dependence of fluctuations between any
two frequency components (ω1 and ω3) that lie within the
excitation bandwidth. This quantity will be particularly important
in describing strongly coupled multiple-state systems, whose
electronic or vibrational dynamics are being increasingly studied.

In the case of frequency domain experiments, the inclusion
of spectral diffusion complicates the analysis of the 2D line
shape. The lack of resolution in time means that the integrated
dynamics of spectral diffusion will be present in the 2D line
shape. While static inhomogeneous broadening can certainly
be discerned, the extraction of dynamics on multiple time scales
from a 2D line shape will presumably suffer from the same
difficulties as a 1D line shape analysis. Dynamics that appear
vastly different in a time domain measurement often manifest
themselves as subtle variations in the wings of a spectrum. The
other possibility for addressing this problem and extracting
frequency-resolved population dynamics is the judicious choice
of tunable pulses with modest time and frequency resolution.
This approach is being pursued in several forms, such as
frequency-resolved resonant pump-probe spectroscopy,22 fre-
quency-selective or frequency-resolved photon echoes,49,50two-
color photon echoes,51 and infrared-pump incoherent anti-Stokes
Raman probe experiments.52,53

In these calculations we have only addressed the absolute
value line shape to demonstrate that significant information on
the dynamics of the system can be obtained from 2D spec-
troscopies without the need for phase-sensitive detection. The
time domain PE experiments above can be performed without
the need for interferometric detection of the nonlinear signal.
Yet, phase-sensitive detection will offer an even deeper level
of characterization, in which both the information on amplitude
(discussed above) and the phase of electronic and nuclear
excitation are observed. This phase information can be shown
to distinguish different anharmonic coupling mechanisms and
interaction pathways in strongly coupled systems or chro-
mophore aggregates.15,20,54,55 In the case of phase-sensitive
experiments, time-gated heterodyne detection9,10 or spectral
interferometry33,34 are two approaches to this information.

Conclusions

Four types of 2D experiments based on time and frequency
domain third-order nonlinear spectroscopies have been inves-
tigated to compare the information content of their 2D line
shapes. The coherent signals scattered into two wave-vector-
matched directions (PE and TG) are studied in the limits of
high-time or high-frequency resolution.

The 2D line shape from the time domain PE measurement
captures a complete description of the homogeneous dynamics,
inhomogeneous broadening, and variation of the homogeneous
dynamics within the ensemble. The diagonal slice contains the
information of the traditional 1D absorption experiment, and
the antidiagonal slice for a frequencyΩ gives information on
the homogeneous line shape of the subensemble atΩ. Inspection
of 2D line shapes such as these is powerful for determining to
what extent the standard models will truly represent this system.

Since 2D spectroscopy measures observables in two inde-
pendent time or frequency variables, 2D techniques can always
be related to three-point (or two-time-variable) correlation
functions. On the other hand, it is clear from the time domain
TG experiments that the converse is not always true; measure-

4254 J. Phys. Chem. A, Vol. 104, No. 18, 2000 Tokmakoff



ment of a three-point correlation function does not necessarily
imply a 2D spectroscopy.

Frequency domain experiments are selective to the ratio of
rates for dephasing and population relaxation. In the case of
static inhomogeneous broadening, the frequency domain TG
experimentsa coherent hole-burning experimentsis sensitive
to all of these variables. The prospects for using frequency
domain experiments in complex systems will probably be
reduced when models that include arbitrary spectral diffusion
are included. Yet for time domain experiments, characterization
of spectral diffusion naturally leads to a 3D experiment that
probes the time evolution of the 2D line shape.

Acknowledgment. This work was started at the Technical
University in Munich, for which A.T. thanks Professor Alfred
Laubereau for his comments and helpful discussions, and the
Alexander von Humboldt Foundation for a Research Fellowship.
A.T. thanks Latham Boyle for assistance with the calculations
and figures in the manuscript. This work was supported by the
NSF (Grant CHE-9900342).

References and Notes

(1) Narasimhan, L. R.; Littau, K. A.; Pack, D. W.; Bai, Y. S.; Elschner,
A.; Fayer, M. D.Chem. ReV. 1990, 90, 439.

(2) Koedijk, J. M. A.; Wannemacher, R.; Silbey, R. J.; Vo¨lker, S.J.
Phys. Chem.1996, 100, 19945.

(3) Meijers, H. C.; Wiersma, D. A.Phys. ReV. Lett. 1992, 68, 381.
(4) Cho, M.; Yu, J.-Y.; Joo, T.; Nagasawa, Y.; Passino, S. A.; Fleming,

G. R. J. Phys. Chem.1996, 100, 11944-11953.
(5) Joo, T.; Jia, Y.; Yu, J.-Y.; Lang, M. J.; Fleming, G. R.J. Chem.

Phys.1996, 104, 6089-6107.
(6) de Boeij, W.; Pshenichnikov, M. S.; Wiersma, D. A.Chem. Phys.

Lett. 1996, 253, 53-60.
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