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Two-Dimensional Line Shapes Derived from Coherent Third-Order Nonlinear Spectroscopy
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Two-dimensional (2D) line shapes derived from four types of coherent third-order nonlinear spectroscopies
as a function of two independent time or frequency variables are compared. The signals scattered into two
wave-vector-matching directions in the limits of high-time or high-frequency resolution are calculated for an
inhomogeneously broadened ensemble of two-level systems with phenomenological dephasing and population
relaxation times. While one-dimensional (1D) line shape analysis for this model is ambiguous, the contours
of these 2D line shapes are shown to be characteristic of the relative time scales of the three relevant line-
broadening parameters. These broadening mechanisms are also apparent by comparing 2D spectral profiles
along the diagonal and antidiagonal frequency axes. For time domain experiments, in analogy with NMR
correlation spectroscopy, the radiated signal is observed as a function of the two coherence periods and is 2D
Fourier transformed to obtain a line shape. For experiments based on the photon echo, the ellipticity of the
absolute value 2D line shape is related to the ratio of the inhomogeneous width to the dephasing rate, whereas
experiments based on the transient grating method are shown to be functionally 1D. For frequency domain
experiments, the contours of the 2D line shape can yield information on static and both dynamic broadening
mechanisms. While the addition of spectral diffusion to such calculations will modify these results for frequency
domain experiments, characterizing these dynamics in the time domain naturally leads to a 3D experiment

analogous to the spin diffusion experiment in NMR.

Introduction These techniques are now being used as the template for the
o ) development of even more insightful two-dimensional (2D)
Describing the dynamics of amorphous condensed phasesiectronid®-15 and vibrationalf-25 spectroscopies. These 2D
requires sensitivity to molecular motions and interactions on spectroscopies are in many ways optical analogues of 2D
multiple time scales. Nonlinear spectroscopic methods are correlation spectroscopies used in nuclear magnetic resonance
proving to be unusually discriminating for separating and (NMR);?6 they attempt to observe microscopic interactions
quantifying the time scales of molecular and collective dynamics through macroscopic correlations between differing spectro-
in systems such as liquids and solutions, supercooled liquidsscopic features. What is particularly appealing is the time scale
and glasses, polymers, and proteins. Of these methods, the mo§yer which these measurements can be made: as short as a
selective to dynamics of differing nature or with variable time  few tens of femtoseconds.
scale are those that can peer beneath the ensemble average, such, spectroscopies are those observed as a function of two

as hole burning and the photon echo. independent time or frequency variables, and thereby they can
Although these are well-understood experiments, control of pe related to correlation functions in two time variables (three-
the multiple time variables inherent to these third-order spec- point correlation functions). Whether they are observed in time
troscopic methods is still elusive. Hole-burning measurements gr frequency, observables are most often presented as a 2D
are sensitive to the time scale of burning and the time betweenspectrum, which represents the correlation between spectro-
reading and burning? Control over these variables allows the scopic features. The 2D spectrum has an amplitude and phase
dynamics of spectral diffusion to be monitored. Although spectrum associated with it. The amplitude is a measure of the
selective to the fast dynamics in inhomogeneously broadeneddegree of correlation, which can refer to the strength of coupling
systems, the traditional two-pulse photon echo is not particularly of two modes or the extent of spectral diffusion between two
sensitive to the dynamics of systems with a broad distribution transition energies. The phase offers a new level of information
of time scales. This realization led to the use of multiple time on the correlation. It can be used to assist in distinguishing the
variables in the photon echo experiment to get at spectral mechanism of coupling, describing the momentum of electronic
diffusion. These experiments include stimulated photon echo and vibrational wave packets, and separating dynamics on the
experiments® and the three-pulse photon echo peak shift ground and excited electronic surfaces.
measuremerft:® It has been realized that observing the time  oyr aim in this paper is to illustrate how 2D line shape

evolution of the radiated polarization holds much of the analysis of features in a 2D spectrum has the ability to separate
information on the time scales and mechanism over which gifferent dynamic and static contributions to a molecular dipole
memory of an initial excitation is lost. This is the motivation transition. While one-dimensional (1D) line shapes based on

for experiments such as the gated photon eehioeterodyne-  gptical, infrared, or Raman spectroscopy cannot unambiguously

detected photon ectd? and fifth-order three-pulse echb!? separate fast and slow dynamics or dynamics of dephasing and
population relaxation, 2D line shapes éa@?2’Resonant third-

T E-mail: tokmakof@mit.edu. Fax: (617) 253-7030. order nonlinear spectroscopies can be related to correlation
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Opym TABLE 1: Resonant Third-Order Nonlinear Experiments
] on a Two-Level System with Two Independent Time or
Frequency Variables

independent wavevector frequency
P case variables matching condition conservation condition

| T1, T3 ka:—k1+ k2+K'«; a)pEZ—a)1+w2+w3
1l T1, T3 kTG:+k1_k2+K3 w1 = twi— w2+ w3
T III(a) w1 = W2, W3 kee=—ki+ ko + ks wpeg=—w1+ w4+ w3
(b) w1, W2 = W3

M 1.2 (©) 1= w302
- § IV(a) w1 = W2, W3 kTG:+k1_k2+K3 a)TG=+w1—a)2+a)3
b

l wblurn I (b) w1, w2= w3

EEETET T B
N

Oread

Dread

(C) w1 = W3, W2
Dread

Figure 1. Schematic of a two-dimensional experiment based on hole
burning. A narrow bandwidth burning pulse atun bleaches an
inhomogeneously broadened transition. The differential absorption
derived from a scan of the line shape before and after the bleach by
wreagyields a slice (b) from the 2D line shape. Tuning both frequencies . . . . .
allows a 2D line shape to be constructed. The diagonal slice (a) of this time scales of the dynamics. Time domain experiments are
spectrum reproduces the absorption line shape. The pictured line shapeelective to the influence of static (inhomogeneous) broadening,
is representative of a system with an invariant homogeneous width while frequency domain experiments are sensitive to the ratio
across the distribution. If it were frequency dependent, then shapes suctyf the rates of dephasing to population relaxation. To demon-
as those in Figure 6a would be expected. strate the sensitivity of 2D spectroscopies to the makeup of the
) ) ) ] ) ) ensemble beyond traditional means, a system with a frequency-

functions in three time variablé$.Time ordering of pulses,  gjependent dephasing time is investigated. These examples aiso
freque.ncy Sele,c,t'on of the interaction flelds,. Wave-vector- seryve to build intuitive analysis of 2D line shapes by demon-
matching conditions, and polarization conditions allow an strating how 2D line shapes allow a simplified representation
experiment to be designed that is selective to the form of these ¢ 1he dynamics of a complex system. By designing the
correlation functions. Here we use selectivity by wave Vector, gyneriment with varying degrees of time or frequency resolution
time-ordering, and frequency to illustrate which microscopic 5ng wave-vector selection, different types of information can
variables 2D I|r?e shz?lpes can k?e .sensmv'e to. be extracted from the system. Further, these calculations

The manner in which dynamic information can be extracted demonstrate the remarkable ability of 2D observables to lend

from 2D line shapes can be illustrated by the 2D representationtremendous qualitative and quantitative insight into the dynamics
of a traditional hole-burning experiment on an inhomogeneously of ensembles.

broadened absorption line. As shown in Figure 1, a subset of
the ensemble can be photobleached by an intense monochro-C
matic field with a frequencypum The induced change in the
absorption line shape is measured by a weak read-out beam at To illustrate the information content of various 2D line shapes
frequencywreas For a distribution of homogeneous line shapes based on coherent third-order resonant nonlinear spectroscopy,
masked by inhomogeneous broadening, the difference spectrunive calculate the 2D response from four types of experiments.
is representative of the homogeneous line shape of the subenThe description of the response from an ensemble of 2LSs in
semble absorbing at,um This experiment is a function of two  the limits of high-time or high-frequency resolution leads to
independent frequency variables, and is thus two-dimensional.the four 2D experiments outlined in Table 1. Two experiments
If we now allow bothwpun and wreadto be tuned through the  are measured in the time domain, and two are measured in the
inhomogeneous line shape, we can construct a 2D line shaperequency domain. For each domain, we consider two wave-
as a function of these two variables. This line shape will have vector-matching conditionsee = —k; + ks + ks, the photon
an elliptical line shape whose profile along the diagonal echo (PE) wave-vector-matching condition, dad = +k; —
frequency axis dpumn = wread reproduces the traditional 1Dk, + ks, the wave-vector-matching condition for transient grating
absorption spectrum. The width perpendicular to the diagonal (TG), pump-probe, or hole-burning experiments. For the time
represents the homogeneous line width. The ellipticity of the domain experiments we calculate an observable in the two time
line tells about the extent of inhomogeneous broadening. Thesevariablesr; andts, the first and last time variables associated
observations suggest that the 2D line shape, in addition to giving with the four-point correlation functions that describe third-order
a quantitative description of multiple time scales, allows nonlinear experiment8.For an optical 2LS, these time periods
tremendous intuitive iﬂSight into the nature of spectral broaden- are those during which the system evolves in coherences. Most
ing and the makeup of the ensemble. nonlinear experiments would not measure such an observable,
The following calculations aim to demonstrate the information since traditional detection integrates owgy yet heterodyne
content on spectral broadening mechanisms found in 2D line detection and gating of the signal are potential methods for
shapes, as derived from four types of coherent third-order such an observatioft1° For frequency domain 2D experiments,
nonlinear spectroscopies. Using a phenomenological Bloch we choose two independent frequency variables for the input
model for a two-level system (2LS), 2D line shapes are derived fields and set the third equal to one of the others. This constraint
for signals observed in two phase-matching conditions in the dictates that only two distinct experiments exist after consid-
limit of high-time or high-frequency resolution. These calcula- eration of the symmetry of the frequency variables. In this case,
tions show the complementary nature of these experiments inno time-ordering is retained, and the response is obtained by
extracting dynamic information on the system. In each case, assumming over all possible interaction pathways. We use an
with the example in Figure 1, the shapes of the contours that ensemble of 2LSs consisting of a ground stgiéand an excited
represent the 2D line shape are uniquely representative of thestate|eCsplit by a frequencyveg = we — wg. The damping of

a Of these, there are four independent experiments, when considering
the following symmetries: case Ik case |Va; case lllk= case IVc;
case llic = case IVb; case lllaSwi,ws) = case Vb, Swsw1)
(reflection symmetry).

alculations



2D Line Shapes Derived from Nonlinear Spectroscopy J. Phys. Chem. A, Vol. 104, No. 18, 2004249

., '} ©3 w_ R(g) o 3 :
Y R4 (T1,7273) = (iR)” 0(1y) 6(75) O(v3) ) (R(Ty,7073) —
\ 4 =
N s’ R*(7,7273) (4)
N with
“», ®o R Ri(71,72,79) = exp(iwegty — iwegts) eXpg*(7s) —
b R A AR o, 9(t1) — g*(7p) + g*(7,173) + 9(ry+7y) — O(T1H7,17))
P \ . (5a)
7 ’ o i . Ry(71,75,73) = explwegty — iwegts) €XPg*(Ty) — g*(7y) +
o ot o 0420, 0(ty) — o(rz+1) — G(r+1) + P +T+1)) (5)

Figure 2. Relationship between the frequency variables from Fourier Ry(7;,75,75) = eXplwegt; — iwegts) €XP(0(T3) — g*(7y) +

transformation of the response function time variables and the rotated " - ok %
axis frame of the diagonatu() and antidiagonald-) axes. g*(7) — g*(1t13) — g*(1y+7y) + g* (7 t+1,tT3) (5C)

the 2LS is governed by two phenomenological constants for Ru(71,72,75) = XP(Tiwegty — iwegry) €XPO(7y) — 9(7)
the dephasing ratBe; = I'ye and population relaxatiofee = 9(zo) + 9(ry 73 + 9(r,17,) — 9Ty t+7,t75) (5d)
Ty
"As illustrated by the example in Figure 1, the dimensions Hereo(t) is the unit step function. The response functions can
that most clearly describe a 2D spectrum are the diagonal andin turn be calculated from the line-broadening functig(t)
antidiagonal axes. The diagonal axis, in which the two frequency Which describes the dynamics of the spectroscopic energy gap
arguments are the samedad — ®pun = 0), IS usually

representative of the information in a 1D experiment. The . .

antidiagonal axis, which satisfies the relationstiad+ whumn g(t) = (LA?) [ode [ de’ V(r') V(0)O (6)

= 2wy, is perpendicular to the diagonal at the poiab,(o) in

the 2D plane. As a first level of characterization, the shape of The line-broadening function can be related to a spectral density,
the line can be described by comparing the width along these ;) for the fluctuations inV. A detailed description of the
two axes. More generally, these two primary axes represent agyaluation of P® in terms of g(t) and p(w) can be found
translation of the origin todo, wo) and rotation of the axis  elsewheré?-30 By assuming short, well-separated pulses, we
frame by 43. In the following, for an observable in two  replace the electric field functions in eq 3 with function
frequency variablesy, andws, the diagonal frequency variable  envelopes. Thus, the nonlinear polarization is proportional to

will be defined as R®). Also for these calculations; is set to zero, so tha®, =
R, and R, = Rs. For the first set of calculations, our simple
W_ =Wz~ Wy 1) model is equivalent to the traditional Bloch picture, with
and the antidiagonal as g(t) =T (7
W, =w;+ w;— 2w, 2 leading to

These axes are pi(it;Jred in Figure 2. These definitions, which RE(7,,75) = R, + Ry =
neglect a factor of 4/2 for rotation of the axes, are chosen to ;- _ -
retain a direct relationship between the shape and width of exp( Iweg(f?’ 7)) exp( Feg(rl+ ) ()
spectral features in the 2D plane, and their 1D counterparts. R(3)(‘L' 1) =R +R,=

Time Domain Experiments.We first consider two four-wave Tev ! .
mixing experiments in which three successive optical pulses eXp(_'(”eg(Tl + 73) eXp(—reg(Tl +173) (9)
are directed at the sample, in which the time variables for the ) )
separation between successive pulsesrawnd 7z, andzs is Here al! constant fac'gors_ that influence the overall magnitude
the time period after the final field interaction. The pulses are Of the signal, but not its time dependence, have been dropped.
considered short compared with the dynamics, yet long com- We also include a slow dynamic time scale through inhomo-
pared with the optical cycle. For the case of third-order nonlinear 98n€ous broadening, which is described as a Gaussian distribu-
experiments within the rotating wave approxiation, the signal tion of transition frequenciesyeg, with width o
radiated duringrs by the nonlinear polarizationP®), is a 1 )
convolution of the input fields over the third-order response G(weg = (2707 exp(—(weg — w()*120%)  (10)

function R®) 28 _ o . .
Here wq is the center of the distribution. The time domain

3) = o o 3) response for the ensemble is obtained by integrating the time
P(ry 7273 O ﬁ) dry f, qTZL dr, R ETPTZ’%) X domain response function over the inhomogeneous distribution
Es(t—13) Ex(t—15—1) Ey(t—15—7,—7) (3)
3 3
_ S RY= [G(we) R¥(wey) dweg (11)

where the third-order response function is given by a sum of

four time-ordered, frequency- and wave-vector-matched con- This leads to the well-known ensemble-averaged response
tributions function for the two time domain experime#it:
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RSY7,,75) = exp(-Tofr, + 75) exp(—(r5 — 71)°0°/2) x 20{ a 20! d
exp(-iwg(t; — 77)) (12) ®
3) 2 I:%’ 101 0
Rrc(71,75) = exp(-Tef7; + 73)) exp(— (75 + 7) o’12) x \ x
expiwg(t; + 7 13 o-p . : 0 . .
PCiog(r +73) (13) 0 10 20 0 10 20
It is clear that this model does not address the dynamics of 154 b 154 e
population relaxation and spectral diffusion, which are observed 10
during .. Observation of these dynamics can be measured with S 101
3D experiments that observe the 2D spectrum as a function of = 0.5 0.51
72, the population period in echo experiments and the mixing N N
oot . " . . 0 L 0 N
period in NMR experiments. Traditional observation of time 0 0510 15 0 05 1.0 15
domain third-order nonlinear signals makes an integrated
measurement of the third-order polarization radiated from the 104 ¢ 0.40 ¢
sample -
B 05 0.20
3 © (3)2
SN zyp) O [ 1P dry (14) i i
0 05 10 0 020 040
To construct the 2D experiments here using the two coherence r
. . o o T4 Ity
periodst; and s, it is necessary to observe the electric field
during the final period. Both gated photon echde® and Figure 3. Two-dimensional contours of the time domain response,

heterodyne-detected photon ectdésare designed for this ~ |P9(T3)l, for the PE (ac) and TG (d-f) experiments from the
homogeneous to the inhomogeneous limit: (agh)eq = 0.2; (b, €)

purpose. It should be noted that spectral interferoni&tt§ is 0lTeq = 2: (C, f) 0/Teq = 20. Contours are shown in intervals of 14%

effectively equivalent to the heterodyne-detected method since ¢ 1 maximum ar;qplitudé.

both of these methods are capable of measuring the complex

3D polarization from third-order nonlinear measurements. For of one independent time variable,, and is thus functionally a

the 2D line shapes discussed here, only observation of the timeone-dimensional experiment.

envelope of the radiated polarizatiofff®)(zr1,73)|, during the With the observation of the amplitude of the third-order

time 73 as a function ofr; is required. This makes the gated polarization as a function of the two time variablgsand zs,

photon echo, which measures a signal proportional to as in the gated echo, we can define a 2D spectrum for these

|PG)(z1,73)|2 the most direct route to these line shapes. experiments through a two-dimensional Fourier transform
Figure 3 shows the time domain envelopes of the 2D response

for the PE and TG experiments from ensembles of varying Swy,ws) = [~ dr, [ dry |P9(1,,79)| explio;r, +iwsry)

inhomogeneous widths. As the inhomogeneous distribution (19)

becomes large compared to the homogeneous dephasing time,

the PE experiment (Figure 3&) changes from a symmetricto  The sign of thew: frequency argument in the complex

a diagonally elongated signal. In the strongly inhomogeneous exponential is determined by the sign of these terms in the

limit, an echo ridge arising from the rephasing term in eq 12 is frequency and wave-vector-matching condition for the experi-

observed. The decay along the diagonal is gived Qywhile ment, i.e.,—w; for the PE andtw; for the TG. The spectrum

the decay along the time axes & 0 or 73 = 0) is a product  is defined in this manner to show direct correspondence between

of the exponential and Gaussian decays from the homogeneousime and frequency domain experiments. The choice of sign is

and inhomogeneous dephasing mechanisms. otherwise arbitrary, since it only leads to rotation of the spectrum
For the TG experiment, the signal is temporally uniform; it by 9¢°. It should be noted that the Fourier transform relationship

decays monotonically downward at the same rate in any in eq 19 can in principle be redefined in terms of the transform

direction in the two time variables. The rate of this falloff is pair w7+ andw_7—, but the change of integration limits is

governed by the fastest dephasing mechanism, whether homonontrivial.

geneous or inhomogeneous. Contours in the 2D plane are always The 2D line shapes obtained from the time domain response

of slope —1. As suggested by the diagonal and antidiagonal in Figure 3 are shown in Figure 4. These are absolute value

frequency variables (egs 1 and 2), we can also define diagonalspectra obtained from eq 19. As with the time domain response,

and antidiagonal axes in the time domain the 2D line shape is very revealing in the PE experiment, yet
hardly changes in profile for the TG experiment. In the
T =137 1 (15) homogeneous limit (Figure 4a), the 2D line shape from the PE
_ is symmetric with the characteristic shape of a 2D Lorent#fan.
T, =1, 14 (16)

As the inhomogeneous width increases, the 2D line shape
. . ) broadens along the diagonal axis, while the antidiagonal is
Rewriting the response functions for the PE and TG experlmentsunchanged_ For large inhomogeneous broadening (Figure 4c),

the 2D line shape is strongly elongated, with the diagonal profile

R,(f%(n,r_) =exp(-Tegy) exp(—1_%0°I2) expiwgr_) given by the inhomogeneous width and the antidiagonal axis
a7 still preserving the homogeneous line shape. In the Bloch model,

3 5 5 ] the 2D line shape from the PE experiment is similar to that
R(T,) = exp(-Tog,) exp(-,%0°12) exp(-imgr,) (18) from the hole-burning experiment. Clearly in an inhomogeneous

system, the ellipticity of the 2D line shape can be related to the
it becomes clear that the transient grating can be written in termsdegree of inhomogeneous broadening. This has been shown
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g I =
~ 10+ -10+ g %]
40 0 10 10 0 10 1001 . | ' VAN
-100 0 100 100 0 100
= 197 ® 201 € (=) Teg ©./Te
= ) . . .
S o 0 Figure 6. (a) 2D line shapgS(w1,w3)|, obtained from a PE experiment
I for an inhomogeneous ensemble in which the homogeneous dephasing
§ -107 -20 rate,I'eq is frequency dependent/{" = 20; oo = I'/10). (b) Diagonal
. ‘ . . ; . (dashed line) and antidiagonal (solid line) slices through the 2D
100 10 20 0 20 spectrum in (a). The antidiagonal slices.(= ws + w1 — 2weg) ON
50 200 either side of the distribution centedy,, are representative of the
> c f . . . .
s homogeneous line width at that frequency. For comparison, a Lorentzian
>8; ol o line shape with widtH eg(weg) is shown.
| . . L
g spectrum.) In the homogeneous limit, the diagonal is given by
-850 , 1200 ‘ ] the imaginary part of the Lorentzian line shape
50 0 50 200 0 200
(0—00)/ T (00T g S (w.) OT/((w_ — we)® +T?) (20)

Figure 4. Two-dimensional absolute value line shapg¥wi,ws)|,
obtained from the calculations in Figure 3 using eq 19. The labels a
correspond to those in Figure 3. Contours are shown in 17% of the
maximum intervals.

In the inhomogeneous limit, it is a Gaussian with the profile of
the inhomogeneous distribution. The antidiagonal slice gives
information on the homogeneous line shape. In the homogeneous
limit (I" > o), the antidiagonal slice is identical to the diagonal

02 a A slice (eq 20). In the inhomogeneous limit & T), the
’é:, 0.151 antidiagonal slice is the modulus-squared Lorentzian
g S(w,) O U(w,? + T (21)
| 0.05 i
v S — The projection of the 2D spectrum onto the antidiagonal for
15 10 5 0 5 10 15 any values oty andT is always given by eq 20 above. This is
0.1 a consequence of the projection theorem that states that the
— 0.08- Fourier transform of a time slice in the 2D plani@ our case
<l 0.061 the time diagonatgives the projection onto that axis in the
s frequency domairrin our case the antidiagonal due to the
8 oo0s definition used in eq 1%
&3 0021 Within the simple model used above, the analysis of 2D
0 ; experiments based on the absolute value of the electric field is
15 essentially equivalent in the time or frequency domain. The
0.3 choice of representation is arbitrary. The choice of time or
- 1€ frequency domain representation is less arbitrary in systems of
g: 0.27 increasing complexity. In systems that are composed of multiple
g ] distinct or superimposed components, the time domain response
a’ 0.17 does not have the same intuitive interpretation that the 2D line
1 shape has. As an illustration, consider an inhomogeneously
e T80 broadened system in which the dephasing dynamics for the

®JT o

members of the ensemble is frequency dependent. This scenario
could be observed for any frequency-dependent relaxation

Figure 5. Diagonal (dashed line) and antidiagonal (solid line) slices Mechanism, such as relaxation through bath-mediated anhar-
through the 2D line shapes obtained from the PE experiment in Figures monic coupling mechanisms. In this case, the homogeneous line

3 and 4. The labels-&c correspond to Figures 3 and 4. The light dotted  shape is broader on one side than the other. If the homogeneous
line illustrates the Gaussian inhomogeneous distribution in each case.dephasing rate is linearly proportional to frequency

quantitatively elsewhere for the PE experim&nBince the
Bloch model for the photon echo experiment is effectively the
same as that used for spiecho experiments, the 2D line shapes
derived here are similar to those described in the analysis of
2D NMR line shapeg®

Slices through the 2D spectra obtained from the PE experi- 3 _ 2 2
ment are ShO\?VI’I in Figurg 5. In general, the diagonal glice Rf"%(rl'%) = exp(-To(r, + 73)) exp((-02)( (r 79"+
contains the information of the traditional 1D absorption (r3— 7)? — 2i0.(132 - 7,%9)) exping(r; — 1)) (23)
experiment, a convolution of the homogeneous and inhomoge-
neous dephasing dynamics. (More precisely, the diagonal sliceThe 2D line shape observed for this system is shown in Figure
from the real part of the 2D line shape is the absorption 6a foro/I' = 20 ando. = I'/10. The line shape is pear shaped

Feg= Ty — t(weg— wp) (22)
then the PE response of the ensemble integrated over a Gaussian

distribution function is given by



4252 J. Phys. Chem. A, Vol. 104, No. 18, 2000 Tokmakoff

and symmetric about the diagonal axis. This shape characterizepossible permutations of two independent frequencies and two
the makeup of this ensemble effectively, as shown in Figure wave-vector-matching conditions, there are two unique experi-
6b. The diagonal axis again is representative of the 1D ments. This observation arises from the symmetries displayed
spectrum: an asymmetric line shape that represents the conby eq 25. Forw; = w,, the 2D signal is independent of the
volution of the frequency-dependent homogeneous line widths wave-vector-matching geometry. This is readily seen from the
with the distribution function. The antidiagonal slice at any equivalence of the scattered signaka = —w1 + w2 + w3
detuning from the center of the distributiomeg — wo, is andwte = +w1 — w2 + w3 on exchange of the variables;
representative of the homogeneous line width of the membersandw,. The susceptibility for these experiments (cases llla and
of the ensemble at that detuning. This qualitative interpretation 1Va) is given by

is apparent from the 2D line shape, while the time domain

representation is not as intuitive. Yet, for quantitative modeling 1 wy,05) = 2 i [( 1 : g)2 +
the two representations contain the same information. w; — w3~ iFed \Weg — w3 — il
Frequency Domain Experiments Next we consider 2D line 1 1

shapes derived from frequency domain third-order nonlinear o — =il o +w —i J] -

experiments. Three beams with wave vectdgs,k,, and ks, &g 3 €g €g 1 e

with frequencieswi, w,, and ws, and of bandwidth much Feg 4 / 1 5

narrower than the inverse of the dynamic time scales are used r_eeweg — Wy — ireg\(a)l —w 9)2 -T 2) (26)
e eg

to generate a third-order nonlinear signal. This could apply to
cw experiments or time-coincident pulses_that are much IongerOne can also see that the susceptibility for the PE signal with
than the dynamics. We analyze the nonlinear signal scattered

in the same wave-vector-matching directions as before, the PEL 93 's equal to the TG response fo = ws. From eq 26
. ) ' it is also apparent that the exchange «f and w3 in this
(kee = —ki + ko + k) and TG ke = +ki — ko + ko) PP g o3

. . : . ._expression only leads to reflection of the 2D line shape about
geometries. As before, we will consider the line shape that is b y b

. . o the diagonal axis. Therefore, functionally, cases llla, llib, llic,
proportional to the magnitude of the polarizati@(wi,w3) 0 and IVb all lead to the same line shape.
[P w1,03)]; this would be equivalent to the square root of the The remaining cases are seen to be equal, since the PE signal
background free coherent signal observed by a photodetectorfOr 0> = w3 is equal to the TG response fox = ws. For this
The frequency of the emitted signal is given by the conditions case the susceptibility can be written as
wpg = —w1 + wy + w3 and wte = tw; — w2 + ws3,
respectively. As a simple example of a 2D experiment, we
consider the case where one of the three independent frequenci

2ko0) =

is set equal to one of the others, i.@1, = w2, w2 = w3, Or w1 4 _ 1 _ r 1 4+
= ws. Wegt 01 — 203 — Ilgq; — w3 — IFeela)eg —wy— il

The frequency domain responses for these experiments have 1 @7)
been written by many othe?8-3° From the standpoint of the —Weyt 0y — T,

correlation functions, the frequency domain response function,
or susceptibilityy®), can be obtained by a Fourier transform We analyze the line shapes from the two experiments

relationship to the time domain response function: represented by cases llla and IVa, which are hereafter referred
. . to by the wave-vector-matching condition as the PE and TG
X(3)(—cos;w1,w2,w3) a z ﬁ) dr3f0 dr, x experiments, respectively. The 2D line shapes derived for these
i K=T,2,3 experiments from eqs 27 and 26 are plotted in Figure 7 for ratios
fowdfl R(s)(flyfzifs) exp(=i(w, + o+ )T — of I'egT'ee varying from 1 to 10. For the PE experiment (Figure

. . Ta—c), the line shape shows a clear signature of Fagl e
i(w; + 0, — iwyTy) (24) (T4/Ty) ratio. When the vibrational dynamics are dominated by

o . . the population lifetime T1 = 1/, the contours of the line
Within the 2L.S model described above, the nonlinear suscep-shape are oval, with a long axis that appears to be rotated

tibility leading to the nonlinear signal with frequen@¢ = +w1  ¢lockwise by 18 from the diagonal axis. As the lifetime
— 2 + ws scattered into the PE wave-vector-matching |engthens and the dynamics are dominated by pure-dephasing,
direction, is described by a sum over all time-orderings the line shape becomes strongly elongated along the diagonal.

These observations are reflected in the slices through the 2D
line shape. For the PE experiment, the slice along the diagonal
2 [ 1 % axis has a width determined only g
Wy~ (—wy + Wy + w3) — iI“egL(—w2 + o) — il

3 . _
X( )(_wsv_wl'wZ'wS) =

2 e
1 1 S (v)= = (28)
(weg+ 01— 1Ty | —trog— iFeg) * (0 — we)® + T Tee
1 ( 1 . L
- — + The antidiagonal slice is given by
(o, —wy) — IFee\weg — w3~ il
1 _ 4
. 25 Si(wy) =
—Weg— Wy — |reg)] (e3) T 00 24 T D@2+ T A)(dw,? + T A

The expression for the susceptibility describing the scattering (29)
into the TG wave-vector-matching direction is given by Inthe limit thatl'ee < I'eg the antidiagonal width is a Lorentzian
1O(—ws,w1,—w2,03). with a width proportional tol'ee These observations are
In addition, for the 2D line shapes we set one of the illustrated in Figure 8ac, which shows the diagonal and
frequencies equal to another as outlined in Table 1. For the six antidiagonal slices through the 2D line shapes in Figurec7a
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line width increases, a strong diagonal ridge is observed on the
diamond pedestal.

The dynamic information can also be obtained from slices
through the 2D line shape. These are shown in Figuref8d
The diagonal slice for the TG is given by the same expression
as the PE (eq 28). The antidiagonal slice is given by

41a

(0,~m,)/Teq
Q

S.(w,) 32(2Feg B ree)(erz + Iﬂegz)ll2
w ==
+|b e T (B0, + T AYH(16w, 2 + T A

(30)

For a line shape that is dominated by population relaxafi@g (
~ T'eg), the antidiagonal slice is a Lorentzian line shape with a
| width of I'eg. As the contributions from pure-dephasing become
more significant, a second feature is observed on top of this
l line shape, narrowing and growing in amplitude lag ap-
proaches zero. In the limlfee < I'eg this expression has two
4{c 1§ contributions: the invariant pedestal with widthyand a narrow
spike of equal amplitude with widthI2e

24

(0O~ ) Teg
N\
O

4

b‘” ] Beyond these line shapes, it is of further importance to be
”63 0 / ] @ able to extract the values bfeandI'egfrom an inhomogeneous
T, distribution36:40-42 The response for a system with inhomoge-
s 2] neous broadening is obtained by integration over a distribution
41 1 function
4 -2 0 2 4 4 2 0 2 4
(01=0)/Teq (00— 00,)/Teq 1P = [Clweg 1Py dwrgg (31)

Figure 7. 2D line shapesYw1,w3) O [y®(wiws)|, for asingle 2LS  Just as the time domain response from an inhomogeneous
from the frequency domain PE+&) and TG (¢-f) experiments for  system can be written as the convolution of the homogeneous
(@ d)Fedlee = 1, (b, €)l'egTee = 3, and (C, HlegTee = 10. line shape integrated along the frequency diagonal, the addition
of inhomogeneous broadening to the frequency domain calcula-

0.008

tions leads to integration over a distribution along the diagonal
~ 0.0067 axis. With increased inhomogeneous broadening, line shapes
8: 0.0041 for both experiments elongate along the diagonal. Yet for this
) distribution, the interpretation of the line shapes for the PE
3 0.0021 experiment becomes ambiguous. Slices along the diagonal or

antidiagonal axes can potentially have contributions fildu

I'eg ando. This problem is not critical in the case of the TG
experiment. Integration over the distribution still allows the value
of I'eg and I'ee to be determined from an antidiagonal slice,
whereas the diagonal slice is dictated by a convolution of the
homogeneous and inhomogeneous widths (the 1D spectrum).
What is observed for the coherent 2D line shapes is what is
well-known from practice: the 2D experiments that are selective
to inhomogeneous broadening are the PE in the time domain
and the hole-burning experiment in the frequency domain. This
statement is made recognizing that the TG experiment corre-
sponds to a coherent hole-burning experimestie in which
coherent burning ¢¢;) and reading ¢3) beams are time
coincident. If these beams are separated in timel {hgensitive
contributions disappear, leaving only thigy contributions.

Sk (w,,m,)

S (w,m,)

Discussion

(Joi/l"eg (”i/reg An intuitive description of 2D line shapes is important with
increased complexity of the system. As the system to be
investigated contains more and varying contributions from either
spectroscopically distinct features or broadening of dynamic or
The line shapes obtained from the TG experiment for the structural origin, the description of the correlations between
same ratios of ¢fT'eeare shown in Figure 7df. There are two different frequency components will require models with a more
clear contributions to this line shape. As seen from eq 26, the advanced description of the system. This is particularly the case
same line shape observed for the PE experiment exists in thefor vibrational spectroscopy, in which overlapping features from
TG experiment, but superimposed on an invariant contri- distinct transitions or from unique structural environments are
bution—the third term in eq 26. This pedestal has a diamond standard. Examples of current interest include massive broaden-
shape-an elongated 2D Lorentzian whose widthdn is Teg ing of —OH stretch transitions in hydrogen-bonding liquids?®
and inws is 2l'eq As the contribution of pure-dephasing to the inhomogeneous broadening in supercooled liquids and glésses,

Figure 8. Diagonal (dashed line) and antidiagonal (solid line) slices
through the 2D line shapes in Figure 7.
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and structurally distinct amide | vibrations in polypeptidé3? of transitions that lie within the excitation bandwidth30 An
2D line shape analysis offers a powerful tool for examining analysis of this three-dimensional (3D) experiment will show
such systems. that Fourier transform relationships involving will lead to a

A traditional way of interpreting the observables from 3D spectral density. This quantity will track the spectral density
nonlinear optical spectroscopy is to define a model, calculate function for the time dependence of fluctuations between any
the form of the observable for certain parameters, and then makefwo frequency componentsy{ and ws) that lie within the
adjustment to parameters by comparing the experiment and€Xcitation bandwidth. This quantity will be particularly important
model calculations. Particularly in the case of phenomenological in describing strongly coupled multiple-state systems, whose
models, there is little flexibility in this approach to assessing €lectronic or vibrational dynamics are being increasingly studied.
whether the model is appropriate for the system. A multidi-  In the case of frequency domain experiments, the inclusion
mensional observable is one that allows a more direct visualiza- of spectral diffusion complicates the analysis of the 2D line
tion of the dynamics of the system, and provides more direct shape. The lack of resolution in time means that the integrated
feedback into the description of the system. At a qualitative dynamics of spectral diffusion will be present in the 2D line
level, a 2D spectrum can immediately distinguish between many shape. While static inhomogeneous broadening can certainly
different types of scenarios in a system with Comp|ex dynamics' be discerned, the extraction of dynamics on multiple time scales
and at a quantitative level, the full set of data in two time or from a 2D line shape will presumably suffer from the same
frequency dimensions forms a tight constraint on any param- difficulties as a 1D line shape analysis. Dynamics that appear
etrization. vastly different in a time domain measurement often manifest

While several types of nonlinear optical problems can be themselve; as subtle variations in the wings ofaspectrum.'The
interpreted within a 2L'S model in which dynamics are described Other possibility for addressing this problem and extracting
by Gaussiaff or othef8 statistics, the tremendous power of 2D frequency-resolved populanon dynamlcs is the judicious chqlce
spectroscopy will be to unravel systems with an arbitrary number ©f tunable pulses with modest time and frequency resolution.

of degrees of freedom. The example in Figure 6 is a simple S @pproach is being pursued in several forms, such as
demonstration of how the 2D line shape can be used in ffequency-resolved resonant purrobe spectroscopy,fre-

evaluating a model. The variation of the dynamics within the quency-selective or frequ.ency-resolved _photon ecl"ﬁ)@{Wvo-
ensemble as a function of frequency immediately suggests thatcoIor photon echoers},gnd |nf£?red-pump incoherent anti-Stokes
amodel based on a 2LS which experiences dynamics that follow R&man probe experimerfs:

Gaussian statistics would not truly represent this system. A In these calculations we have only addressed the absolute
traditional description of such a line shape using a 2LS coupled value line s_hape to demonstrate that S|gn|f_|cant information on
to a harmonic bath with arbitrary spectral density (i.e., a the dynamics of the system can be obtained from 2D spec-
Brownian oscillator picture) would lead to an interpretation of {roscopies without the need for phase-sensitive detection. The
a single transition coupled to a spectral density that includes time domain PE experiments above can be performed without
frequency components spanning all of the members of the the need for mte_rlferometrlc. deteptlon of the nonlinear signal.
ensemble. The more appropriate picture is an ensemble of 2L.SsY €t Phase-sensitive detection will offer an even deeper level
each coupled to a bath oscillator with a spectral density of of characterization, in which both the information on amplitude

varying peak frequency. More precisely, recognizing that the (discussed above) and the phase of electronic and nuclear
2D line shape is derived from a response that is a convolution excitation are observed. This phase information can be shown

of the individual response with a distribution function (eq 11), t© distinguish different anharmonic coupling mechanisms and
the 2D line shape can give insight into both the form of the INtéraction pathways in strongly coupled systems or chro-
distribution function and the individual response. While inte- MoPhore aggregatédz0>4%5in the case of phase-sensitive
grated time domain third-order nonlinear spectroscopies are noteXPeriments, time-gated heterodyne deteétibror spectral
sensitive to the composition of the spectral density, the 2D interferometry*3¢are two approaches to this information.
versions of these experiments can reveal the presence of a .

heterogeneous bath. Conclusions

Ultimately, realistic models of the 2D line shape must Four types of 2D experiments based on time and frequency
describe the dynamics of spectral diffusion and the manner in domain third-order nonlinear spectroscopies have been inves-
which the spectral density for these fluctuations manifests itself tigated to compare the information content of their 2D line
in these measurements. The measurement of spectral diffusiorshapes. The coherent signals scattered into two wave-vector-
follows naturally from the time domain 2D experiments matched directions (PE and TG) are studied in the limits of
described above. The use of the time variable in echo  high-time or high-frequency resolution.
experiments will allow the dynamics of population relaxation  The 2D line shape from the time domain PE measurement
and spectral diffusion to be monitored. The time evolution of captures a complete description of the homogeneous dynamics,
the 2D line shape can be monitored as a function of the inhomogeneous broadening, and variation of the homogeneous
intermediate time variable, in a manner analogous to that of dynamics within the ensemble. The diagonal slice contains the
the spin diffusion experiment in NMR. Population relaxation information of the traditional 1D absorption experiment, and
(theTeeandl'yg terms) will lead to decreased spectral amplitude, the antidiagonal slice for a frequen€y gives information on
but no change in line shape. Spectral diffusion will lead to the the homogeneous line shape of the subensemiSle laspection
shift of spectral amplitude off of the diagonal. The 2D line shape of 2D line shapes such as these is powerful for determining to
will vary from an inhomogeneously broadened line shape to what extent the standard models will truly represent this system.
one that is symmetricapparently homogeneotior values of Since 2D spectroscopy measures observables in two inde-
72 longer than those from the spectral diffusion dynamics.  pendent time or frequency variables, 2D techniques can always

Although related, this experiment should not be confused with be related to three-point (or two-time-variable) correlation
a three-pulse photon echo peak shift measurement, which is usedunctions. On the other hand, it is clear from the time domain
in the determination of a spectral density for the fluctuations TG experiments that the converse is not always true; measure-
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ment of a three-point correlation function does not necessarily

imply a 2D spectroscopy.

Frequency domain experiments are selective to the ratio of
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