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We argue that for a large class of molecules, M, there exists an unexpectedly simple relationship among the
calculated values of bond lengths in M0 (its ground singlet state), MT (its first excited triplet state), M•- (the
ground-state doublet of its radical anion), and M•+ (the ground-state doublet of the related radical cation). An
estimate of the equilibrium bond lengthRh for given bond in MT may be obtained as follows:Rh(MT) )
Rh(M•-) + Rh(M•+) - Rh(M0). The accuracy of theR(MT) so calculated is usually 0.01-0.03 Å, less than 10%
of whole range of distances for the species considered. The error is usually larger for small basis sets and for
semiempirical parametrizations but is almost basis-set-independent for medium (D95, 3-21G) and large basis
sets (6-31G, 6-31G*, 6-31G**, 6-311G**). The above equation may be qualitatively understood recognizing
the “paired” properties of HOMO and LUMO in alternant hydrocarbons. We approach a quantitative
rationalization of the relation from a general perspective of one-electron operators. Any property that can be
represented by a one-electron operator should be subject to such a simple relationship. However, equilibrium
bond lengths are not represented by one-electron operators. Instead, upon introduction of the empirical notion
that equilibrium bond lengths are linear in bond order, the simple equation can be justified as an excellent
approximate form. Several other relationships, still reasonably rooted in the shape of potential energy surfaces,
do not fit as well. The simple relation applies exclusively to bonds constituting the chromophore part of a
molecule and works best for systems with conjugated double bonds.

I. Introduction

Consider a typical molecule M containing 2N electrons. Let
its ground singlet state be represented by a single ASMO
(antisymmetrized molecular orbital) configuration in which each
of the two spin orbitals ofN MOs is occupied. Then take the
two excited states built from the singly excited configuration
made by promoting an electron from the HOMO to the LUMO,
namely, M(S1) and MT. Join with these the related radical cation
containing 2N - 1 electrons (the HOMO is half-occupied) and
the radical anion with 2N + 1 electrons (the LUMO is half-
occupied). For any M we shall designate the five entities (states/
species){M0, MT, MS, M•-, M•+} an isomolecularfamily. The
electronic structure of each member of a family is defined at a
commonspecified set of nuclear coordinates using only these
single ASMO configurations, as shown in Figure 1.

The chemical and physical properties of the species in Figure
1 differ markedly, of course. M0 is usually a thermodynamically
stable entity. M•- and M•+ are commonly short-lived,1 not
because of thermodynamic reasons per se, but because of their
high chemical reactivity, a consequence of their characteristic
unpaired electron. The states and molecules of Figure 1 usually
differ significantly in geometry. Also, the charge distribution
in them varies, and this affects their chemical reactivity through
thermodynamics. For example, as Fo¨rster’s rule tells us,2 excited
states are both better electron donors and better electron
acceptors than the corresponding ground state.

In the literature these species, admittedly related, are often

treated separately, since interest in them is often derived from
very different areas of chemistry. We found only two papers
where simultaneously optimized geometries for M0, M•-, M•+,
and MT were reported.3,4 Most studies focus on the comparative
photochemical properties (considering M0, MT, MS, and higher
excited states),5-7 while others concentrate on properties of the
charged radicals8,9 or on comparison of the radicals with the
ground state of the neutral molecule.10

Might it be useful to examine a set of such five species
together as a group or a family? We think so. There are
experimental data suggesting that in some respects there is a
close relationship between M•- and M•+. In many cases it
appears that the electronic spectra of M•- and M•+ are strikingly
similar.11 This similarity is sometimes so pronounced that one
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Figure 1. HOMO and LUMO orbital occupation diagram for M0, M•-,
M•+, MT, and MS in the case when M0 is a closed-shell species.
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can almost overlap UV-vis spectra of M•- and M•+, as in the
case of naphthacene.12

Interestingly, the vibrational (IR) spectra of pentacene radical
anions and radical cations isolated in solid matrices are also
similar to each other,13 suggesting a similar geometry and force
field for both species. The same is true for the ESR spectra of
many M•- and M•+ species.14 In fact, computations within the
spirit of a classical Hu¨ckel method result in very similar
optimized geometries of M•- and M•+ for a large group of
alternant hydrocarbons.15 Interestingly, one may also find
examples when the electronic spectra of M•- and MT are similar
to each other.16 The same is true for M•+ and the corresponding
singlet dianions M2-, not considered here in more detail.11

Properties of One-Electron Operators. What might cause
such striking spectral and geometric similarities of M•- and M•+

and, as we shall see, of M0 and MT?
Let us examine how any desired propertyA, provided it is

expressible as a one-electron operator Aˆ , is given for each
member of the family. A universal relationship is sought for
any such property across any isomolecular family M.

Any one-electron operator is represented by a sum over all
electrons of individual operators each acting in the space of
only one of the electrons present in the system. Such operators
are ubiquitous. They represent all of the electric and magnetic
dipole and multipole properties of a system, inductive effects
due to substituents, and all vibronic effects to be encountered
including force fields. The electronic energy of the system,
because of the two-electron Coulomb terms in the Hamiltonian,
is not a one-electron operator. The diagonal and off-diagonal
matrix elements for any Aˆ in a basis of Slater spin orbital
determinants for any ground-state and singly excited configura-
tions may be written directly using the first-order density
operator.17

For any propertyA one immediately finds

and

in which A(HOMO) andA(LUMO) are the matrix elements of
property Â in the HOMO and LUMO orbitals, respectively.
These orbital properties may be eliminated among the three
equations to arrive at the sought for universal relationship for
any (one-electron) property across any isomolecular group of

species as defined above. Since any (one-electron) property must
have the same value in the S1 state as in the T1 state (eq 1), we
haveA(MS) ) A(MT) and we may define this simply asAST. In
a similarly simplified notation we writeA(M0) ≡ A0, A(M•-)
≡ A-, and A(M•+) ≡ A+. The general relationship may be
written in several entirely equivalent ways:

Each of these formulations has its distinct interpretative
advantages. In eq 4a the properties across the family must
algebraically sum to zero. In eqs 4b and 4c the “property gaps”
between specific pairs of species must be identical. In eq 4d
two specific pairwise summed properties must be identical. In
eq 4e the property in one species (in this case the first excited
singlet and triplet state) is determined by its values in the
remaining three species).

Importantly, these relationships are valid only for a nuclear
geometry that iscommonfor all five members of the family.
This is the geometry for which the electronic configurations
shown in Figure 1 are defined. It need not be the equilibrium
configuration of any one of them or it may be that of just one.
This issue becomes important to our discussion later.

In the absence of the two-electron operator in the Hamiltonian
(seen as Coulomb and exchange integrals in the energy) even
the energy operator of the system becomes “one-electron ” and
eq 4a for energy is then valid to give

This is clearly not an approximation of chemical and spectro-
scopic value. But for one-electron operators, expressions such
as eqs 4 and 5 are very useful.

Distances. Inspired by eq 5,18 one might take a big conceptual
jump from energies to distances. Could it be that a relationship
similar to eq 5 exists for the equilibrium bond lengthsR in these
species? Thus, might it be true that

This relationship makes qualitative sense in a simplistic one-
electron picture for diatomic molecules. The positive ion, which
has a hole in the HOMO (usually a bonding orbital), and the
negative ion, which has an electron in the LUMO (usually an
antibonding orbital typically paired with the HOMO), should
indeed have similar properties. Since the LUMO is more
antibonding than the HOMO is bonding (once overlap is
included), the given bond elongation in M•- (compared to that
in M0) should be slightly larger than for M•+. The elongation
should be magnified in the two singly excited states, M0 and
MT, both of which have a hole in the HOMO and an electron
in the LUMO. Toward the end of the paper this argument is
explored more formally, particularly with regard to a bond-
order-bond-length relationship.

Figure 2. Chemical formulas of 3 of the 14 isomolecular families
investigated in this paper. The bond numbering used is indicated.

AST + A0 - A+ - A- ) 0 (4a)

AST - A+ ) A- - A0 (4b)

AST - A- ) A+ - A0 (4c)

AST + A0 ) A+ + A- (4d)

AST ) A+ + A- - A0 (4e)

E(MS) ) E(MT) ) E(M•+) + E(M•-) - E(M0) (5)

Rh(MS,MT) ) {Rh(M•-) + Rh(M•+) - Rh(M0)} (6)

A(MS) ) A(MT) ) A(M0) - A(HOMO) + A(LUMO)
(1)

A(M•+) ) A(M0) - A(HOMO) (2)

A(M•-) ) A(M0) + A(LUMO) (3)
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A computational investigation of the validity of the simple
algebraic linear relationship of eq 6 for a large and diverse
number of isomolecular families is the main aim of this paper.

II. Methods of Calculations

We have performed calculations for the following families:
C2, acetylene (C2H2), ethylene (C2H4), ethane (C2H6), N2H2,
B2H2, CO, CN-, N2, NO+, butadiene, cyclobutadiene (CBDE),
and 1,4-cis-divinylbenzene (DVB). Published data for diphen-
ylacetylene (DPA)3 were also examined, giving a total of 14
families examined. The chemical formulas of CBDE, DVB, and
DPA together with a bond numbering convention used herein
are presented in Figure 2.

We have optimized molecular geometries for the MT, M•-,
M•+, and M0 at the UHF SCF level of theory. A 6-31G** basis
set for C2, C2H2, C2H4, C2H6, N2H2, B2H2, CO, CN-, N2, NO+,
and CBDE was employed. In addition, we used a broad range
of basis sets for N2H2 in order to determine the effect of the
basis set on the final result.

For CBDE and DVB we used the AM1 semiempirical
parametrization.19 In the literature are found data for DPA with
a 4-31G basis set and the ROHF SCF method.3

Equation 6 gives us in principle the freedom to choose which
of the excited states (MS or MT) is to be compared to the
“hybrid” of M •-, M•+, and M0. For simplicity we have decided
to choose the MT and not the MS state. Most of the simpler
quantum chemical programs available can easily optimize the
geometry of both MT and M0 but not of MS. Calculations for
MS (and higher excited singlet states Sn) require orthogonal-
ization to the M0 state20 and usually consume much computa-
tional time.

All calculations were performed with the HyperChem 5.0
package.

III. Results: Computations and Test of Eq 6

To test eq 6, we have optimized the geometries of M0, MT,
M•-, and M•+ species for 14 isomolecular families.

III.1. Geometries of M0, MT, M•-, and M•+ Forms of C2H4.
For an initial test of the validity of eq 6, we have chosen a
simple organic molecule: ethylene (C2H4). Table 1 shows the
calculated C-C bond lengths for the M0, MT, M•-, and M•+

forms of C2H4. We show also the value ofRhT computed
according to eq 6 (“calc” in Table 1) as well as the discrepancy
between this and theRhT obtained for MT in ab initio optimization
(“error” in Table 1 and in the rest of the tables). To display the
error in the predicted bond length within the context of the
available spread of bond lengths found within a given family,
we report the percentage error. This “relative error” (%) is
defined as “error” divided by the total range of the C-C bond
length among four species considered (the difference between
the longest and the shortest C-C bond in the entire series).
The same definitions are used in all tables hereafter.21

The data in Table 1 show that theRhC-C obtained for MT

according to eq 6 is in good agreement with that computed ab
initio (the error reaches ca. 0.01 Å, which is only 6% of total
bond length range).

Two further observations may be made from the calculations
for C2H4. First, as postulated in the Introduction,Rh(MT) >
Rh(M•-) > Rh(M•+) > Rh(M0), namely, 1.534> 1.435> 1.402>
1.316. As we will show below, a similar ordering rule for bond
lengths will be qualitatively fulfilled in most of the cases
investigated. Second, eq 6 is best applied22 to bonds associated
with the chromophoric part of a molecule. Thus, the relationship
is not reliable for C-H bonds, even in cases where the CC
bonds are well predicted (data not shown).

III.2. Geometries of M0, MT, M •-, and M•+ Forms of
CBDE and DVB. Ethylene is the simplest molecular system
containing a CdC double bond. Next we studied cyclobutadiene
(CBDE) with its two conjugated double bonds. Table 2 presents
computational data for CBDE.

As one can see from Table 2, the C-C bond lengths
calculated according to eq 6 agree quite well with the C-C
bond lengths computed for the MT state with a Hartree-Fock
SCF procedure. The error ise0.003 Å, this being only 2.6%
of the total variability of C-C bond lengths in the four species
examined. Moreover, the qualitative relationship observed above
for ethylene,Rh(MT) > Rh(M•-) > Rh(M•+) > Rh(M0), is now
fulfilled for bond 1 of CBDE. The “opposite” relation, i.e.,
Rh(MT) < Rh(M•-) < Rh(M•+) < Rh(M0), is found for bond 2 of
CBDE. These two relations are the consequence of the shape
of the HOMO and LUMO of CBDE (Figure 3). Frontier orbitals
ideas serve effectively in this case.

Another system with two conjugated double bondss
butadienesis much changed in geometry in its triplet state; it
is no longer planar. Results based on eq 6 now are substantially
in error, similar to the acetylene case (see section III.5).

To explore the applicability of eq 6 to bigger systems, we
carried out semiempirical (AM1) calculations for larger mol-
ecules, such as divinylbenzene (DVB, Figure 1). We also used
the existing data set for diphenylacetylene (DPA, Figure 1),
obtained with a small 4-31G basis set. We also performed AM1
calculations for CBDE, previously optimized with a HF method.
Table 3 shows computational data for these three molecules.

As may be seen from Table 3 (results for DVB), eq 6 is also
satisfied quite well when semiempirical calculations are used.

TABLE 1: Computed Values of C-C Bond Lengths
(Rh C-C/Å) for M 0, MT, M •-, and M•+ Forms of C2H4 (6-31G**
Basis Set Was Used)

RhT

computedRhC-C/Å

M0 M•- M•+ MT

calc
(eq 6)/Å

abs
error/Å range/Å

rel
error/%

1.316 1.435 1.402 1.534 1.521 -0.013 0.218 -6.0

TABLE 2: Computed C-C Bond Lengths (Rh C-C/Å) for M 0,
MT, M •-, and M•+ Forms of CBDE (6-31G** Basis Set Was
Applied)

RhT

computedRhC-C/Åbond
no. M0 M•- M•+ MT

calc
(eq 6)/Å

abs
error/Å range/Å

rel
error/%

1 1.318 1.378 1.363 1.426 1.423 0.003 0.108 2.6
2 1.565 1.501 1.489 1.426 1.425 0.001 0.139 0.7

Figure 3. Shape of HOMO and LUMO orbitals of CBDE together
with the bond numbering scheme (the relative bond lengths are
exaggerated in the drawing).
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The biggest error in evaluation of the C-C bond length for
DVB (MT) was 0.0034 Å, this being 6% of the total variability
of C-C bond lengths. Note also an interesting phenomenon:
the semiempirical method produced an evidently incorrect square
(and not rectangular) structure for CBDE in its M0 state. Even
in this case eq 6 worked properly. It is noteworthy that eq 6
produces reliable results also for DPA, although this system
contains a triple bond, albeit one built into a more extended
delocalizedπ system (compare results for acetylene from section
III.5).

III.3. Geometries of M0, MT, M•-, and M•+ Forms of N2H2.
To examine whether eq 6 also may apply toπ systems
containing main group atoms other than C, the nitrogen analogue
of ethylene, i.e., N2H2, has been studied. Calculations were done
with a variety of ab initio basis sets and semiempirical
parametrizations. A summary of the results is found in Table
4.

With the complete neglect of differential overlap (CNDO)
method and also for the smallest basis set used (3-21G), the
errors are significant and negative. The remaining calculations
report errors of similar magnitude but positive. In most cases
the eq 6 value forRhN-N of MT remains within 0.03 Å of that
obtained in quantum mechanical computations. Interestingly,
despite change in a typical order,Rh(MT) > Rh(M•-) > Rh(M•+)
> Rh(M0), reasonable results were nevertheless obtained. More-

over, the small values of percentage error point out the utility
of eq 6, regardless of the basis set used. It appears that eq 6
also may be applied to heteroatomicπ systems.

III.4. Geometries of M0, MT, M •-, and M•+ Forms of
Isoelectronic CO, CN-, N2, NO+ Isomolecular Families.We
next performed ab initio calculations for the isoelectronic
families C2

2-, CO, CN-, N2, NO+, and O2
2+. Table 5 sum-

marizes the results obtained.
The accuracy of eq 6 is evident for CO, CN-, and N2. Errors

reach typically 0.005 Å, corresponding to a relative error of
5% or less. Substantially higher relative errors are observed for
NO+, C2

2-, and O2
2+ (16-50%). It may be that electrostatic

effects in the highly charged C23- and O2
3+ radical species are

not properly accounted for.
III.5. Geometries of M0, MT, M •-, and M•+ Forms of

Isomolecular Families C2, C2H2, and C2H6. In an effort to
better understand why the simple linear relationship (eq 6) brings
us so easily to the geometry of MT for so many families, we
searched for exceptions from this rule. These already were
apparent among very simple isomolecular families based on C2,
C2H2, and C2H6. Table 6 shows the calculated C-C bond
lengths for the M0, MT, M•-, and M•+ members of the C2 and
C2H2 families.

Neither for C2H2 nor for C2 do we obtain the desired
agreement. For C2H6 (data not presented in Table 1) attempts
to obtain a MT geometry led to fragmentation to the ethyl radical
and H•. For acetylene the equilibrium geometry of M•- is not
linear but is a bent, trans-type structure. We do obtain 5%
agreement between calculated (eq 6) and computed values of
RhC-C for C2H2 but for a geometry of the radical anion that is
not stable, namely, that of the linear transition state between
two bent minima.

While eq 6 succeeds for C2H4 (section III.1), it basically fails
for this set of isomolecular families. These are circumstances
where it fails. (i) One circumstance is when thecalculated
ground state is not a singlet state, as assumed in our preliminary

TABLE 3: Computed C-C Bond Lengths (Rh C-C/Å) for the
M0, MT, M •-, and M•+ Members of the CBDE, DVB, and
DPA Isomolecular Familiesa

RhT

computedRhC-C/Å

M0 M•- M•+ MT

calc
(eq 6)/Å

abs
error/Å range/Å

rel
error/%

CBDE
1 1.449 1.440 1.450 1.440 1.440 0.000 0.010 1.2
2 1.449 1.440 1.450 1.440 1.440 0.000 0.010 1.2

DVB
1 1.335 1.358 1.354 1.377 1.377 0.000 0.042 0.7
2 1.458 1.427 1.427 1.398 1.396 0.002 0.06 3
3 1.405 1.430 1.429 1.456 1.454 0.003 0.05 6
4 1.404 1.429 1.429 1.456 1.454 0.003 0.05 6
5 1.390 1.373 1.368 1.349 1.352 0.002 0.04 5
6 1.392 1.374 1.370 1.350 1.352 0.002 0.04 5

DPA
1 1.384 1.394 1.394 1.402 1.404+0.002 0.020 +10
2 1.381 1.372 1.370 1.359 1.361+0.002 0.022 +9.0
3 1.392 1.424 1.413 1.443 1.445+0.002 0.051 +3.9
4 1.431 1.387 1.384 1.341 1.340-0.001 0.090 -1.1
5 1.194 1.224 1.224 1.257 1.254-0.003 0.063 -4.8

a Bond numbering according to Figure 1.

TABLE 4: Equilibrium N -N Bond Lengths (RN-N/Å) for
M0, MT, M •-, and M•+ Members of the trans-N2H2
Isomolecular Familya

RT

computedRN-N/Åmethod/
basis set M0 M•- M•+ MT

calc
(eq 6)/Å

abs
error/Å range/Å

rel
error/%

3-21G 1.3058 1.410 1.148 1.286 1.256-0.032 0.262 -12.3
6-31G* 1.216 1.354 1.141 1.254 1.279+0.025 0.213 11.7
6-31G** 1.216 1.354 1.141 1.253 1.279+0.026 0.213 12.2
6-311G** 1.212 1.354 1.136 1.251 1.278+0.027 0.217 12.4
D95V 1.221 1.360 1.145 1.259 1.284+0.024 0.215 11.4
CNDO 1.224 1.283 1.183 1.258 1.243-0.016 0.100 -15.8
INDO 1.230 1.292 1.186 1.241 1.249 0.008 0.106 7.2
AM1 1.212 1.279 1.154 1.214 1.221 0.007 0.125 5.6
PM3 1.219 1.308 1.165 1.245 1.254 0.010 0.144 6.7

a Results obtained with UHF SCF for ab initio calculations with a
variety of basis sets and for semiempirical calculations (CNDO, INDO,
AM1, PM3) using different parametrizations.

TABLE 5: a -b Bond Lengths (Rab/Å) for M 0, MT, M •-, and
M •+ Members of C2

2-, CO, CN-, N2, NO+, and O2
2+

Isomolecular Familiesa

RT

computedRab/Å

family M0 M•- M•+ MT

calc
(eq 6)/Å

abs
error/Å

range/
Å

rel
error/%

CC2- 1.266 1.278 1.253 1.270 1.265-0.005 0.026 -20.0
CO 1.114 1.217 1.098 1.196 1.201+0.004 0.119 +3.6
CN- 1.161 1.270 1.162 1.268 1.272+0.004 0.110 +3.3
N2 1.078 1.172 1.094 1.187 1.193+0.006 0.115 +5.1
NO+ 1.040 1.127 1.133 1.194 1.220+0.025 0.154 +16.4
OO2+ 0.990 1.062 1.117 1.123 1.188-0.065 0.133 -50

a Here, the simple state notation needs clarification. The net charge
on each member of a given family must be raised or lowered according
to the charge on the reference state, M0. Accordingly, net charge on
M0 is -2 for C2

2-, -1 for CN-, +1 for NO+, and+2 for O2
2+.

TABLE 6: Computed Values of C-C Bond Lengths
(Rh C-C/Å) for M 0, MT, M •-, and M•+ Members of the C2 and
C2H2 Isomolecular Families (6-31G** Basis Set Was Used)

RhT

computedRhC-C/Å

M0 M•- M•+ MT

calc
(eq 6)/Å

abs
error/Å range/Å

rel
error/%

C2 1.303 1.281 1.288 1.292 1.266-0.026 0.02 -100
C2H2 1.186 1.299a 1.230 1.322 1.342 +0.021 0.14 +14.8
C2H2 1.186 1.271b 1.230 1.322 1.315 -0.007 0.14 -5

a Corresponding to the bent structure at the energy minimum.
b Corresponding to a linear structure, a saddle point between two
equivalent bent minima.
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considerations. This happens for C2 (and also for B2H2; results
not shown here), where the ground state is calculated (errone-
ously23) to be a triplet state,24 as well as in two cases when the
geometry of one of the family members strongly differs in
structure from that of the others, as exemplified by (ii) C2H2

(the molecule bends when an electron is added to it) and (iii)
C2H6 (this system is unstable to fragmentation in the triplet state,
according to calculations).

It may be that the optimal preconditions for the application
of eq 6 to organic systems are likely to be found in systems
with double bonds. Families having cumulated double bonds
might have to be excluded as well, as we have found for
computations (not shown) on the allene and CO2 families, where
eq 6 fails badly.

Next, we briefly search for an explanation of why eq 6
succeeds as well as it does for such an impressive array of
isomolecular families.

IV. Can the Success of Eq 6 Be Rationalized?

IV.1. Why the Distance Formula, Eq 6, ShouldNot Work.
As we have seen in section III, eq 6 proves to be a remarkably
successful expression for linking equilibrium bond lengths
among the four members of a diverse set of what we have called
isomolecular families. Though in this presentation we have
focused on predicting the equilibrium bond lengths of the lowest
triplet state MT in each family, the targeted species could have
been any of the other members with the same outcome. In fact,
an alternative approach in the presentation would have been to
check the zero of eq 6 (i.e., whereRh(M•-) + Rh(M•+) - Rh(M0)
- Rh(MT) ) 0). The relative error for achieving the zero is
identical to that given in the tables.

Is it possible that the equilibrium bond length is somehow
representable by a one-electron operator? If so, then eq 6 would
follow directly from the general eqs 4a-4e (see Introduction).
According to one line of reasoning, the equilibrium bond length
changes across a family doesnot appear to be, ironically,
represented by a one-electron operator.

Let the equilibrium geometry of the members of any
isomolecular family be specified in the language of the complete
space of normal coordinates,Qh 0 for M0, Qh ST for MST, Qh + for
M•+, andQh - for M•-. One can show for a harmonic oscillator25

that for any statej (j ≡ M0, MT, MS, M•-, M•+),

Here, the derivative of the nuclear potential energy for statej
at Qh 0 is evaluated at the equilibrium nuclear structure of M0

(any other reference structure common to all members of the
family might have been used). It is just the component of force
alongQ (any one of 3N - 6/5) at Qh 0 on thejth potential energy
surface. Andkj is the force constant along a given normal mode
in statej. The latter is just

also a property of statej at the equilibrium position,Qh 0, of M0,
though in the harmonic approximation the force constant does
not depend on nuclear coordinates.

Now both the numerator (the force) and the denominator (the
force constant) in the second term on the right-hand side (RHS)
of eq 7, both being vibronic properties,are represented by one-
electron operators.17,26 Each should obey eqs 4a-4e to give
(with obvious simplified notation) for the forces

(the force in M0 vanishes atQ0) and for the force constants

These two applications of eqs 4a-4e together with eq 7 lead
to a universal expression relating the amplitudes of the equi-
librium geometries (in normal coordinates) of the five members
of any isomolecular family (provided the simple HOMO/LUMO
electronic structure is valid). We obtain

Since the equilibrium structure in terms of the normal
coordinates relates linearly to the equilibrium structure expressed
in terms of valence coordinates, such as the equilibrium bond
lengths, an equation like eq 11 for theRh j’s should follow.27 The
force constant scaling factors definitely vary withj, as found
in our calculations. This spoils any chance of recovering eq 6.

We also note that a relationship identical to eq 11 has been
recently derived by Ayers and Parr.28

To test eq 11, we calculate its prediction ofRhT for three
diatomic families CN-, N2, and CO. Also included is a test of
eq 10 for the force constant as a one-electron property. In these
diatomics the link between the one normal mode and the bond
length is unambiguous, having a mass weighting that must be
the same across the members of a given family.

As seen in Table 7, of the two routes toRT, eq 6 is
overwhelmingly favored over the “correct” eq 11. Furthermore,
eq 10 for the force constants is only modestly acceptable, if at
all. Thus, it is an empirical equation such as

(equivalent to eq 6 and not eq 11) that holds such promise.
Failure of the simple ASMO state description (no CI) for

the electronic states across any given family can be expected.
That alone would invalidate eqs 10 and 11. But why the simpler
substitute, eq 6 (or eq 12), might compensate for this to such a
remarkable degree is not apparent.

IV.2. Why the Distance Formula, Eq 6, Might Work, In
Fact. As hinted at in the case of ethylene (section III.1) and

TABLE 7: Testing Eqs 10 and 11 for Isomolecular Families CN-, N2, and CO (UHF, 6-31G** Basis Set)

M0 M•+ M•- MT RhT/Å kT/mdyn Å-1

family Rh/Å
k/

mdyn Å-1 Rh/Å
k/

mdyn Å-1 Rh/Å
k/

mdyn Å-1 Rh/Å
k/

mdyn Å-1 eq 6
error,
eq 6 eq 11

error,
eq 11 eq 10

error,
eq 10

CN- 1.161 42.18 1.1620 23.55 1.270 29.68 1.268 17.60 1.272 0.004 0.915-0.353 11.05 -6.55
N2 1.0781 62.91 1.094 54.26 1.172 38.70 1.193 32.49 1.187-0.006 1.135 -0.058 30.05 -2.44
CO 1.114 47.10 1.098 45.33 1.217 26.94 1.196 23.60 1.201 0.004 1.275 0.078 25.17+1.57

Qh j ) Qh 0 +
(∂Vj

∂Q)
0

kj
(7)

kj ) (∂2Vj

∂Q2)
0

(8)

(∂VST

∂Q )
0

) (∂V+

∂Q )
0

+ (∂V-

∂Q )
0

(9)

kST ) k+ + k- - k0 (10)

Qh ST )
k+

kST
Qh + +

k-

kST
Qh - -

k0

kST
Qh 0 (11)

Qh ST ≈ Qh + + Qh - - Qh 0 (12)
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cyclobutadiene (section III.2), thinking in the spirit of MO theory
points to a qualitative understanding of the relationship of eq
6. Even as we feel that a one-electron picture and the orbital-
bonding power paradigm make the relationship credible, the
reasons behind the quantitative success of the simple distance
relationship are simply not obvious. The force constants for the
four species under discussion are not even approximately equal.
Among other things, the bond orders change so much. From
our calculations we know that Koopmans’ theorem, which
inspired these findings, is not adequate for understanding the
electronic energies of the members of each family. Why then
should eq 6 work so well? Is it possible to rationalize the success
of eq 6 (or its analogue) by another approach?

To begin with, recall that eqs 4a-4e refer to one-electron
properties within the HOMO/LUMO configurational basis for
describing the electronic structures (at a common nuclear
configuration) for all members of any isomolecular family.
Should more elaborate electronic descriptions be necessary, then
eqs 4a-4e need not apply and simple relationships like eq 6
would appear to be all the more surprising. However, we have
just seen how the equilibrium bond distances are not represented
by one-electron operators. Therein lies the difficulty of rational-
izing eq 6.

By contrast, bond order is a prototypical one-electron
property. Empirical relationships between bond order and bond
length are known. Might this be a route for rationalizing eq 6?
We briefly examine this question.

Bond order (BO) is a prototypical one-electron property (see
Appendix A). It may be defined in a variety of ways from
classicalπ-electron bond orders through Pauling schemes to a
Mulliken population analysis.29 One way to set BO is just as a
three-dimensionalδ function in space for each electron summed
over all electrons (see Appendix A). And in the LCAO-ASMO
description the BO can be identified with individual bonds in a
molecule. Thus, across any isomolecular family, one can
immediately apply eqs 4a-4e and write, for example,

Now the literature has established empirical relationships
between the bond order of a given bond and its bond length.
And a particularly successful relationship is a linear one.30 Might
it be possible to transform eq 13 into an analogous expression
for equilibrium bond length after all? It is crucial to recall that
eqs 4a-4e refer to properties of members of an isomolecular
family at a common geometry. Equation 13 thus holds for any
nuclear configuration, but it is the same for all members of the
family. We use eq 13 and convert each BOj to one at the
equilibrium bond length, different for each family memberj.

In a relatively narrow region around the equilibrium bond
length, a reasonable assumption is the linear relationship for
eachj:

wherezj is the slope andR0
j is the intercept for memberj. For

the BO at any common bond lengthRj ) R, we have

and it is these BOj’s that should obey eq 13. At the same time
we are interested in the properties at equilibrium positionsRh j,
not atR. Thus, atRh j eq 14 becomes

and with eqs 15 and 16 we obtain

The above relationship describingRj vs BOj dependence during
“relaxation” of speciesj from a given (and common)R to their
equilibrium Rh j’s is illustrated in Figure 4.

Equation 13 now gives

which hardly appears to be useful. However, if we reasonably
ask (see Figure 4) that the same bonds share the same slope
with all members of the family, then withzj ) z, eq 18 is greatly
simplified to

Now since the present work has demonstrated that the left-hand
side (LHS) of eq 19 vanishes with fairly high accuracy, then so
must the right-hand side (RHS). Thus, empirically at least, eq
13 for the BO’s atR holds also for theBOj’s at the individual
Rh j’s. We have not calculated theBOj’s. Were these such as to
cause the RHS of eq 19 to (even nearly) vanish, then this could
be a novel route for supporting the linearRj/BOj relationship
(eq 14).

Perhaps eq 19 also offers a more direct basis for making an
argument because now the RHS of this equation might vanish.
Thus, let us rewrite the RHS of eq 19 to focus on the competition
between two BO “gaps”:

(BO0 - BO+) is the BO gap between a filled HOMO (atRh0)
and the half-filled HOMO (atRh+). The LUMO is vacant. (BO-
- BOST) is also the BO gap between the filled HOMO (now at
Rh-) and the half-filled HOMO (atRhST). Only now the LUMO
is occupied by one electron. To the extent that the effect on the
BO of the added HOMO electron is in each case (practically)
the same, we have reason to say that the RHS might vanish (or

Figure 4. Illustration of eq 17 [and eq A8 (Appendix A)] withzj ) z.

BOj ) BOj + (Rh j - R)/zj (17)

BOST + (RST - R)/zST ) BO+ + (R+ - R)/z+ + BO- +

(R- - R)/z- - BO0 + (R0 - R)/z0 (18)

RhST + Rh0 - Rh+ - Rh- ) z(BOST + BO0 - BO+ - BO-)
(19)

(BOST + BO0 - BO+ - BO-) )

(BO0 - BO+) - (BO- - BOST) (20)

BOST ) BO+ + BO- - BO0 (13)

Rj ) R0
j - zj BOj (14)

BOj ) (R0
j - R)/zj (15)

Rh j ) R0
j - zj BOj (16)
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nearly so), thus supporting eq 6. However, if the LUMO is
antibonding and the HOMO bonding, then the (BO- - BOST)
gap refers to bond lengths that are generally longer (weaker)
than for the (BO0 - BO+) gap. This suggests that (BO0 -
BO+) > (BO- - BOST), but the inequality may be slight.
Thus, the LHS of eq 19, whole small, should be on the positive
side of zero. In fact, we have found that the relative error of
the zero of eq 6 (measured forRh j’s, not BOj’s), small as it is,
is a positive one for 24 of the 31 bond lengths found in Tables
1-5.

In addition to the interesting regularities studied here, it is
possible to derive relationships ordering any one-electron
property across an isomolecular family. This is carried out in
Appendix B.

V. Conclusions

We have carried out electronic structure calculations for a
number of organic (C2, C2H2, C2H4, C2H6, allene, cyclobuta-
diene, 1,4-cis-divinylbenzene) and main group heteroatom
isomolecular families (N2H2, B2H2, C2

2-, O2
2+, CO, CN-, N2,

NO+, CO2). For each we have optimized the geometries of its
M0 (S0), M•-, M•+, and MT (T1) members at the UHF SCF level
of theory, using mainly a 6-31G** basis set and the AM1
semiempirical parametrization (the latter for larger molecules).

Our data document that there exists a remarkably simple
relationship between the computed equilibrium bond lengths
for the members of each family, namely,Rh(MT) ) Rh(M•-) +
Rh(M•+) - Rh(M0). This states that one may calculate the
equilibrium bond length for MT by adding the equilibrium bond
lengths for the radical ions M•- and M•+ and subtracting the
equilibrium bond length for M0. The absolute error of such a
simple, indeed simplistic, calculation is usually much less than
0.03 Å (typically 5-10% of total range of bond lengths found
across the members of one family).

The practical independence of this relationship on the
dimension of the basis set was demonstrated for N2H2. Semiem-
pirical quantum chemical methods may also be used, though
they usually produce bigger errors.

We have established the remarkable simple distance relation-
ship at a certain intermediate level of computational quantum
chemistry. It remains to be determined whether the highest level
of theorysor preferably experiment, though the data are often
lackingswill confirm this regularity. Ayers and Parr, in work
to be published,28 have recently provided a density functional
perspective on the conditions when the simple rule (eq 6) will
hold.

The relationship discussed has severe and yet comprehensible
limitations: it applies exclusively in cases when no qualitative
changes of molecular geometry (other than distances) occur upon
going from M0 to MT or upon ionization or electron attachment.
Molecular systems free of such limitations are those with double
and conjugated double bonds. For these the distance formula
(eq 6) appears to apply best. A second limitation is that eq 6 is
best applied to the chromophoric backbone of a molecule and
not to the bonds only slightly affected by electronic excitation,
ionization, or electron attachment (such as C-H bonds, for
example), if only because it cannot accurately deal with minor
changes in bond length.

Practical application of this simple relationship might be to
construct, or anticipate, a good approximate geometry for triplet
states prior to their exact optimization, thus effectively reducing
computational time. Of course, there is nothing special about
MT as the “target” state. One could just as easily focus on any
one of the four members (M0, MT, M•-, and M•+), provided

the geometries of the remaining three forms are known. One
might also look for detailed differences between the geometries
of MS and MT states (representatives of the “excited state” in
eq 6). Finally, the simple relationship may possibly be general-
ized to excited states not based simply on the HOMO and
LUMO orbital pair but include states built of more excited
configurations that involve other filled and unfilled MOs.
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Appendix A

Details of BO as a True One-Electron Property and the
Validity of Eq 13 for Every Bond. The electron density
operator is a true one-electron operator. It is given by

and the universal equation for its expectation values (electron
numbers) in each state must be of the form of eq 4, namely,

which says, trivially, that 2N ) (2N - 1) + (2N + 1) - 2N.
In fact, the matrix of the one-electron density operator in the

AO basis of the LCAO-MO’s is known as the charge/bond order
matrix. To expose these AO details, it is best to return to eqs
1-3 for the electron density operator to write

in which FHOMO and FLUMO are just the “partial” MO charge/
bond order matrix elements. We expose these in detail by writing

in which the normalization factors based on pure-real normalized
basis AOs{|k〉} with nonzero overlap are

and similarly,

According to eq A3, the total bond order for any pair of
atoms, say a and b, in each member of an isomolecular family

F1 ) ∑
j)1

all electrons

δ( rb- rbj) (A1)

FST ) F+ + F- - F0 (A2)

FST ) F0 - FHOMO + FLUMO (A3a)

F+ ) F0 - FHOMO (A3b)

F+ ) F0 + FLUMO (A3c)

|HOMO〉 )
1

NH
1/2

∑
k)1

AOs

hk|k〉 (A4a)

|LUMO〉 )
1

NL
1/2

∑
k)1

AOs

lk|k〉 (A4b)

NH ) {∑
k)1

|hk|2 + ∑
k*k′

Skk′(hkhk′
/+hk

/hk′)} (A5a)

NL ) {∑
k)1

|lk|2 + ∑
k*k′

Skk′(lklk′
/+lk

/lk′)} (A5b)
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can be given in terms of the total bond order in the M0 state
plus or minus the partial bond orders from the HOMO and the
LUMO.

The total BO for an a/b bond in M0 is called BO0
a/b. Let us

define the partial BO’s in the HOMO and LUMO orbitals31 as

and

Thus, the electron numbers (matrix elements of the charge
density operator) in eqs A3 are broken into charge densities on
atoms and bond orders between them. Each is separately given
by eq A3-like relationships, atom by atom and bond by bond.
Thus, for the a/b bond in an isomolecular family we write

or we recover the universal BO relationship for any given bond
across a family, namely,

(the a/b version of eq 13). All BO’s here are of course for an
a/b bond length. This is common to all members of the family.
They arenot equilibrium bond ordersBOa/b’s.

Appendix B

Inequalities for Any One-Electron Property across an
Isomolecular Family (“State Ordering Rules”). Let us try to
order with inequalities any general propertyA across any
isomolecular family by expressing the HOMO and LUMO as a
simple, normalized LCAO of two AOs,|a〉 and|b〉. The matrix
elements ofA in the AO basis shall be calledAaa, Abb, andAab.

We know that

in which the one-MO properties are just

Equations B1a-B1c in terms of the AO matrix elements are

We shall take 0< Sab < 1 and consider two cases: (I) diagonal
AO matrix elements dominate; (II) off-diagonal AO matrix
elements dominate. Depending on the balance amongAaa, Abb,
andAab (even with all positive), we can get different answers.

(I) If for the force constants (or anyQ-dependent property)
we declare that the single atom matrix elements cannot
contribute, then the general outcome is clear because now eqs
B3a-B3c reduce to

For Aab > 0 we can say that

(II) If we declare that only the diagonal components dominate
(and are relatively equal), then

For Aaa ≈ Abb > 0 we then find that

For oppositely signed diagonal elements the inequalities in eq
B8 would be reversed.

Let us analyze now the computational results from sections
III.1-III.5 in the spirit of eqs B5 and B8, though these are
strictly for one-electron properties. One may note that eq B5 is
indeed obeyed for ethylene, CBDE, DPA, DVB, and N2 while
eq B8 holds for CO, C22-, and N2H2. Equations B5 and B8 are
thus valid for most of the species investigated, pointing to the
respective dominance of nondiagonal and diagonal matrix
elements ofA in the AO basis. Interestingly, NO+, CN-, and
O2

2+ do not obey either of these two equations and probably
may be classified as an intermediate case, interplay of nondi-
agonal and diagonal matrix elements ofA being of similar order.
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