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Low Frequency Raman Active Vibrations in Fullerenes. 1. Monopolar Modes
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Raman measurements and PM3 calculations of low frequen6@ cnt) vibrational modes in a variety of
different fullerenes can be rationalized in terms of the multipolar “acoustic” oscillations of isotropic spherical
and spheroidal shells. In this first of a two part series, we show that all fullerene cages have monopolar-like
breathing vibrations. Within certain boundary conditions and in the absence of other data, the frequency of
these vibrations may be used for cage size determination.

Introduction The inference that fullerene; & has nanotubelet topology is
. o . . . also of interest from the point of view of single walled carbon

Since the first isolation of £, it has proven possible to  npanotubes (SWNT). Recent advances in the SWNT field include
generate, extract, and separate many other heavier members Qfjameter selective ablation syntheédess well as the develop-
the fullerene family (G,).> So far, all high fullerenes to be  ment of methods to cut and solubilize length and diameter
structually characterized have isolated pentagon ring structurescontrolled tubelet&? It may be anticipated that this approach
(IPR forms)? On the basis of mathematical arguments, it can il eventually yield soluble size selected tubelets which access
be shown that the smallest fullerene able to support an IPR formthe fullerene extraction size range. Given that there are already
is Coo. Ce2, Cea, Coe and Gg do not have IPR isomers. Thereafter el developed chemical routes to link fullerene catfesiich
all Czn have an IPR form. Starting atz&multiple IPR isomers  sjze overlap will greatly facilitate the controlled synthesis of
are possible. Within the IPR constraint, it has been argued thatfullerene/SWNT supramolecular assemblies. For this, it will be
there are two isolable classes of fullerenes differing in their necessary to characterize molecular topology of materials in the
electronic structuré: (A) fullerenes with moderate to large  C;o5—Caoo range, for extremely small sample sizes.
HOMO—-LUMO gaps and (B) those with small HOMO 13C NMR measurements on nonisotope enriched samples
LUMO gaps. The former class comprises practically all isolated require at least 10 mg of monodispersed material, even more if
and structurally characterized high fullerenes so far known. Its the sample comprises a wide distribution of different low
members are readily soluble in apolar solvents, are quite stablesymmetry isomers. Neutron and X-ray scattering probes at
under ambient conditions and usually are among the energeti-present technology typically make use of even larger samples.
cally most favorable IPR isomers for a given cage size. It has Given the rapidly decreasing abundance of class A fullerenes
recently been shown that class B fullerenes, such asdate in arc discharge soot together with their decreasing solubility
also generated in the Kisthmer-Huffman carbon arc source  as n increases, it is unrealistic to expect to be able to prepare
but that their enhanced reactivity (for which a marker may be size and isomer pure samples containing more than about 10
high electron affinity) relative to class A, generally precludes ug of a given G,, n > 50, at least without heroic effort or a
conventional extractioh Cy, is the only apparent exception to  dramatic improvement in production yield. A similar restriction
the two class picture: its calculated gap is large but it has not will undoubtedly apply to solubilized tubelets. How then to

yet been isolated. determine molecular structure or at least molecular topology
Notable isolated members of class A includg, 7o, Cre, for such extremely small samples? In this paper and its
and G (three isolated isomersCy,, Cz,', andDs), Cao (D2)2, companion we present an approach which makes use of

Cs2 (mixture of two C, forms®), and Gy (2 isolated isomers: (resonant) Ramqn spectroscopy. We argue that the characteristic
D, and D). For all of these not only the cage symmetry but !ow-freguency vibrational features of closo-carbon .networks,
also the molecular structure is known (a common complication in particular monopolar and quadrupolar acoustic modes,
for large Gy, is that several IPR isomers may have the same faC|I|tatt=T grapld cage size anql topology determination by means
13C NMR signature in terms of the number of spectral lines ©f acquiring Raman spectra in the-5600 cnt* range.

and their relative peak intensit®sBeyond these cages it has The series is structured as follows. In the first paper we
proven possible to isolate multiple, size monodispersed and provide a general discussion of experlmental and_ theoretical
sometimes isomer pure fractions of even larger fullerenes by Methods and concentrate on monopolar-like “breathl_ng"“modes.
“conventional” chromatographic meahsSo far the largest '€ second paper goes on to discuss quadrupolar-like “squash-
species to be so prepared is6%1°Here, while the underlying ~ INg" oscillations.

cage symmetries are in fact unknown in the absence of enough
isolated material to perforri3C NMR measurements, the 2. Methods

relatively simple solution absorption spectrum has been used 2.1. Materials. Cgo (I) and Go (Dsn) were obtained from

to argue for the presence of just one or at worst a few isomerscommercial sources (HoechsBold grade). Other fullerenes
and the prevalence of cylindrical tubelet form(s) versus more were prepared and extracted from raw soot as previously
spherical structure(s). described.Isomer pure samples 0f6(Dsn), Cz6 (D2), Crs (Cav,
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Cy,/, andD3) and G (D2)? were obtained by preparative scale C..
HPLC using separation protocols which have also been previ- “ m‘, \ ) /l ] A

ously described. & and G4 were obtained as isomer mixtures ' T T T T T T

. . . C
following separation on an Regis Buckyclutcher column (toluene/ WWM

hexane eluent). We assume these mixtures to be comprised of L L e s

Ca2 (Co(1)+Co(2) (unknown ratio and & (Da(22)+Das(23)/2: = Coo

1), based on'3C NMR measurements and comparison to '. )

literature®7:15 '; C,(C,)
Microcrystalline fullerene samples for Raman spectroscopy e e e e

were obtained from HPLC fractions in toluene solution as :' Crs (Cy)
follows. The solutions were dried and the resulting solids M\L—:&M&M
ultrasonically dispersed in methanol. These suspensions were | Crq (Dy)
subsequently filtered (0.48m pore size). The solids so obtained MMMA—

were then washed multiply with methanol and dried under C
vacuum for 12 h. For each fullerene, sample purity was checked
via analytical HPLC and LD-TOF-MS (laser desorption time- | c
of-flight mass spectrometry) as previously described. Materials M ! A A 7
were studied at purity levels of 99% relative to other cage . c
sizes and at-95% relative to other isomers of the same cage | J - | 60
size. 200 400 600 800 1000 1200 1400 1600
For Raman measurements two different sample preparation

techni d, dependi lati tability. Th Raman shift / cm
ec nlquet? W(taretugle ,f IFpen ng on refla{e;age;a ”'ty.d eFigure 1. Stokes shifted unpolarized Raman spectra (overview)
more ambient stable Tullerenes were studied as deposied Ofyyiqained at 693 nm laser excitation for the isomerically pure fullerenes

the microfilter (microcrystalline and optically thick films). The ¢, (It), Cro (Dsn), Cre (D2), Crs (Cauy Cai!, D3), Ceo (D2). Also shown

more sensitive higher fullerenes;d8Cz,'), Cgo (D2), and Gg are similar data for isomer mixtures of£and G, (see text for details).
were sealed under vacuund 1075 mbar) into a glass capillary
and studied therein (microcrystalline powders). with S/N ratios>2—3 were fitted with Lorentzians in order to

2.2. Raman Measurements Stokes shifted unpolarized obtain peak positions and intensities.
Raman spectra, nominally at room temperature, were recorded
in 180" backscattering geometry using four different laser 3. PM3 Calculations
excitation wavelengths. Measurements at 514, 693, and 794 nm
were obtained using a triple monochromator setup (Spex
TripleMate 1877D) and a CCD camera (Photometrics SDS
9000), as has been previously describfeBxcitation radiation
was provided by an Arpumped titanium sapphire laser (680
850 nm tunablility) as well as by the pump laser (514 nm).

Semiempirical PM3 calculations of electronic ground states
and vibrational frequencies were performed for all of the

fullerenes probed experimentally. This was done using one of
two computer systems (IBM Power PC (RISC 6000: AlX 4.21/

128 MB RAM) or a PC (AMD processor 200 MHz/128 MB

; RAM) running the software package HyperChem (version 4.5)).
Spectra were recorded at typical laser fluences of T3l mW The electronic ground-state structure of each fullerene was

mm 2..To reduce the broad-band Iumlnesgence of the titanium: optimized beginning from well-established literature connec-
sapphire laser we made use of a home-built premonochromatorﬁvities where available (§ (Ir), Cro (Dsr), Crs (D2), Crg (Can,
Measurements at 794 nm were generally performed by replacingczy,, Ds), Cso (D2), and Ga (D2 (22), Dzq (23)79). In the case

the first stage of the monochromator with an alkali vapor cell ¢ Cg> We have calculated all 9 possible IPR isomers and have
which allows for more efficient suppression of the Rayleigh ¢ome 1o the same conclusion as Zerbetto € abncerning
line, while transmitting more Raman light. A number of Raman e energetic ordering. On the basis of ref 15 we assume that

measurements were also performed using an FT-Raman spece two lowest energy forms, no. %&C,) and no. 3 G (Cy),
trometer (Bruker IFS FRA 106) equipped with a Nd:YAG e present in our sample in unknown ratio.

excitatior? Iaser(lO§4 nm, 140 mW defocused spot). Depending Additionally we have performed PM3 calculations on a
on effective scattering cross sections, spe.ctra recorded at 514, ber of larger fullerene cages which are hypothetical at
693, and 794 nm excitation were obtained at42cm™  ,esent in that they have not been isolated and/or structurally
resolution using a 1200 line/mm grating. Raman data obtained cparacterized. The focus in these calculations was to study the
at 1064 nm excitation were recorded with a spectral resolution ;i ational properties of cages with extreme topologies, i.e.,
of ~4 cnt. either near-spherical or (cylindrical) tubelet. For these, the
Raman spectra were obtained for the isomerically pure accessible fullerene size range was limited to about 140 atoms
fullerenes Go (In), Czo (Dsn), Cz6 (D2), Crs (Ca., C2.', D3), Cao by the computing time required for vibrational frequency
(D2) as well as for @ and Ga isomer mixtures (see above). analysis. PM3 calculations were performed fas Dsp, in terms
With the exception of 1064 nm measurements fgg &d Go, of the SWNT nomenclature a (5,0) tubelet with the same
all spectra correspond to resonance or preresonance Ramadiameter as ), Ci40 (Dsg, (5,0) tubelet) and Go (I, near-
conditions (see discussion below). Data were generally obtainedspherical). The corresponding starting geometries were obtained
in the Stokes shift range of approximately 30700 cnt? at in a two step procedure. First, the ring-spiral algorithm was used
all four laser excitation wavelengths (exceptions (Cz,, Cz,), to obtain rough atomic coordinat&sThis geometry was then
Cso (D2), Csp, and Gy, for which background luminescence or refined using an extended “ekel algorithm prior to PM3
other experimental difficulties prevented the acquisition of calculations.
satisfactory spectra at 514 nm excitation). Figure 1 shows the Within the HyperChem software package we used the
corresponding spectra for 693 nm excitation. Raman featuresrestricted HartreeFock method without configuration interac-
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TABLE 1: Fullerene Cage Moments of Inertia® Class| Class li(b) Class il(a)
fullerene/symmetry la lp le 1400/ 5 4
Codln 10032 10032 10032
C70/Dsp 12366 14374 14374 1200 5
C7¢D> 14398 16285 17880 3
Crg/D3 14712 18264 18264 10001 4
C7dCy, 15697 17331 17956
C7dCo) 15168 17654 18273 w/emt gq4l 3 2
Cso/D> 15577 18638 19639
Cs2 (n0. 1), 16727 19734 19984 6001 2 4
Cs2 (n0. 3)C; 17311 19038 19967 oS
Cgs/Dyg 19624 19660 19673 —_—
Ced/D> 19095 19222 20729 400
Coo/Dsqg 17093 26253 26261 ="
Cuadl 54307 54408 54689 200, T 120
C140Dsh 28681 82562 82566

a|n units of g cn? (x1079) based on optimized PM3 coordinates.

TABLE 2: Comparison of Scaled PM3 to Experimentally
Determined Monopolar-Like Breathing Mode Frequencies

scaled PM3
unscaled PM3 experiment/ frequency
fullerene  frequency/cm? cm? (factor 0.796)/cm?*
Cso 623 496 496
Crno 571 455 455
(7 542 436 431
CrsDs 538 430 428
CrsCyy 542 429 431
CrisCo)' 536 434 427
Cso 528 421 420
ng (no. l)Cg 530 422
Ce2(n0. 3)C, 529 420 421
Cga Doy 524 415 417
CesD> 524 415 417 Figure 2. Level diagram of Lamb theory oscillatory solutions for a

Csolike isotropic spherical shell (see text). Also shown are visualizations
tion (RHF) to obtain ground-state structures. Energy minimiza- of the (lowest energy) Raman activg &d $ solutions in comparison
tion was driven by the PolaekRibiere conjugategradient to PM3 derived representations of the corresponding Raman allowed
algorithm. In all cases self-consistence was achieved and theHs(1) and A(1) modes.
optimization terminated at root-mean square (rms) gradient of . . ) .
<0.01 kcal mot® A-L, Vibrational frequencies were calculated and radial motion (ll). Both classes of solution have eigenfunc-
in the harmonic approximation for each ground-state structure. fions which transform as the spherical harmonics and are
Table 2 of this paper and Table 1 of the following paper contain 9€nerally classified in terms of a descriptor 0, 1, ...). For

the calculated positions of monopolar and quadrupolar derived /2SS | there is only one solution pevalue, whereas class I
vibrations (see below). has two solutions (a and b) perexcept fod(Il) = 0 which has

only one solution. The corresponding eigenvalues depend on
the sphere radius, its first=(rigidity”) and second Lame
elasticity constants, the Poisson ratio, and the volume density.
4.1. Low-Frequency Acoustic Modes in G. 4.1.1. Lamb The Poisson ratio may be related to the Latasticity constants
Theory It was first pointed out by Ceulemans et'athat the which in turn depend on the volume density as well as the
low-frequency vibrations<€600 cnt?), of near spherical £, transverse ) and longitudinal ¢) sound velocities in the
may be quite well described in terms of the continuum isotropic shell materig#® Class | solutions become real and
mechanics of a vibrating hollow sphere. The eigenfunctions and nonzero forl > 1, whereas for class Il there are nonzero
eigenfrequencies describing the fundamental vibrations of both solutions froml = 0 on up. From symmetry arguments and for
the isotropic (filled) elastic sphefeas well as the spherical ~ allowed Poisson ratios (which can vary between 0 and 0.5), it
shell (infinitely thin):° were first derived by Lamb more than a  can be shown that the lowest frequency Raman active solutions
century ago. Lambs oscillatory solutions for the filled elastic correspond to class lI= 2 (a) and = 0 in order of increasing
sphere have been extensively applied to describing the particlefrequency. According to the usual nomenclature convention for
size dependence observed for low frequency (Raman allowed)spherical harmonics we label thesg &hd , respectively. In
monopolar breathing vibrations in near-spherical nanocrystallites addition to schematic representations of the corresponding
of various kindg® Time-dependent coupling of electronic oscillatory motions > eigenfunctions) for these two Raman
excitations to this kind of vibration is also of present intef&st. active quadrupolar and monopolar vibrations, Figure 2 contains
The application of “Lamb theory” to hollow nanoparticles a plot of all class | and Il eigenvalues below 1500 ¢msing
(=fullerenes) is not as extensive and a few words of explanation as input the radius of & (0.35 nn#%) as well as experimental
are in order. values for the longitudinal (21 km™%) and transverse (12.3
Under the assumption that there are no “flexural” contribu- km s™*) sound velocities of three-dimensional grapfife.
tions to the potential energy (i.e., contributions due to twisting  We concentrate in the following on the= 0 solution and
in the surface plane), Lamb finds two classes of solutions one return to the = 2 solution in the next paper of the series. The
involving purely tangential (I) and one involving both tangential corresponding vibrational motion is that of a fully symmetric

4. Results and Discussion
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radial breathing mode. From Ladfthe angular frequency of  3Nf (22/R?)dR2. At the same time, the kinetic energy of all atoms
this monopolar mode is given in terms of the longitudinal and moving in phase either away or toward the sphere center is given

transverse sound velocities by eq 1: by: T= NmdR?. Inserting into the Lagrangian as for the ring,
we obtain eq 3, which connects the spherical fullerene mo-
o =2(c3c? — 4cHIcHVIR (1) nopolar breathing mode to the force constant, interatomic

separation, atomic mass, and sphere radius.
Note first that this equation predicts that the corresponding
vibration should scale asR/We will return to this point below.
Note further, that if we insert into eq 1 the measured sound
velocities of 3-D graphite and the radius o§sGve obtain a

remarkably good prediction of the monopolar mode vibrational BOth €ds 2 and 3 have anRidependence. Interestingly, if the
frequency of 476 cmt compared to the experimental determi- S2M€ force constant and interatomic separation is used in both

nation from the Raman spectrum obtained for the molecular formulas, the one parameter spring model predicts that the slope
solid at room temperature, which lies at 496 GniThe reason  ©f @ VS LR should be exactly’(;)'/* times larger for spherical
that a classical model parametrized to the bulk does quite well €29€s than for rings. _ _
at describing a low frequency “acoustic’ vibration in this The analytic formula obtaln(_ad for spherical fullerenes may
molecule appears to be 2-fold. First, the distance sound travelsP® used to assess the underlying force constant by comparison
in graphite during the breathing mode period is comparable to 0 Ceo- If we insert the particle radius (350pm), the experimental
the circumference of the fullerene caggry—o = 1.5 vs 2.2  breathing mode frequency and an averagédbond length of
nm; i.e., the detailed atomic position is of secondary importance) 142-9 pm, we obtain an effective-&C stretching force constant
and second the vibrational properties af,dn particular the ~ ©f 7.@J A2 This compares with tabulated values of 4.50, 9.6,
average G-C stretching force constant, must be analogous to 19-99 aJ A2 for carbon-carbon single, double, and triple
planar graphene. We discuss this point in more detail below. Pondsz® Note that the corresponding value for 3-D graphite
4.1.2. Stretching Force Constant Moddlo obtain insight (obtained from the elastic constants of graphite) is 7.1 &1

(3f2m*? a/R (3)

Wsulierene —

into the magnitude of the €C stretching force constant ins& 4.1.3. Normal Coordinates from PMBM3 semiempirical
it is useful to consider a one parameter pseudo molecular modelduantum chemical calculations have generally been found to
of the fully symmetric vibration. be in good qualitative agreement with experiment for a variety

For clarity we begin with a simpler molecular system Of fullerene related solidk“:Apart from grognd state structures
comprising a carbon ring. For our purposes we define as a ring @nd energetics, PM3 routinely provides vibrational frequencies
a molecule withN-atoms lying on the vertexes of a regular and the porre_spo_ndlng normal coordinates. Figure 1 also contains
N-polygon with polygon center-to-atom distarReln a totally aPM3 ylsuallzatlon of the two Iqwest frequency Ram_an a]lowed
symmetric breathing vibration of such a species, all atoms move Modes in Go (Hy(1) and A(1)). Itis apparent that the vibrational
radially out from the center with the same phase and amplitude. Motion corresponds very closely to the Lamb theory expectation
There are no changes to relative bond angles, consequently wdor quadrupolar and monopolar oscillations in isotropic spherical
can attempt to describe the vibration purely in terms of a uniform Shells.

Stretching force constant. Princip|e geometric considerations For fullerenes and related molecules, PM3 derived vibrational
show that for a radial displacement from equilibriurR, dhe frequencies are generally predicted to lie somewhat higher than
component springs connecting two adjacent atoms are extended@bserved in experiment. Forsand Go, there are detailed
by da = 2(a/R) dR?, wherea is the G-C bond distance. spectral assignments, which can be used to gauge the exact PM3
Consequently the potential energy for thatoms (and therefore  scaling factors required to quantitatively describe experirtfent.
N springs) ring become¥ = 2Nf(a/R?) dR2, wheref is the Unfortunately, the theory is not uniformly off. Corrections to
stretching force constant. Similarly the total kinetic energy for PM3 prediction in fact depend on the frequency range and
the ring as it undergoes a breathing vibration is giveriTby vibration type in question (ranging from 0.76 to 1.01 fay.C
NmdR'2 where dRcorresponds to d@/dt. Then, using the ~ With an average of 0.883). Forgand Go breathing modes
Lagrange equation of motion (d(dT/3(dR)) + OV/OR = 0), which are of interest here one obtains a scaling factor of 0.796
inserting the expressions farandV and the general solution ~ and 0.797, respectively. We use the average (0.796) as the “PM3
dR = Ree“t we obtain eq 2 which provides a relationship scaling factor” in the remainder of this paper.
between the ring breathing mode angular frequency and the 4.2. Monopolar-Like Vibrations in High Fullerenes? 4.2.1.
atomic mass, stretching force constant, interatomic separation,Scaled PM3 Calculations o what extent can (larger) cages of
and radius. lower symmetry than £ (In) sustain monopolar-like vibrational
modes, i.e., vibrations which are characterized by the presence
Wjng = & (f/m)1’2/R @) of a nodal surface coinciding essentially with the equilibrium
cage? Inspection of visualized normal modes derived from PM3

For the fully symmetric breathing mode of a “spherical” calculations for all experimentally accessed cages, indicates that
fullerene the approach is analogous. However, in contrast tothere is always one such totally symmetric Raman allowed
rings, it is important to remember that there is no generally valid vibration at low frequency. There are no other similar vibrations.
way of positioningN-objects uniformly on the surface of a Figure 3 provides images of the corresponding “monopolar-
sphere. Nevertheless for computational simplicity, we assumelike” vibrational motions.
that the consequences of this topological problem become To investigate whether this is in fact a general feature of
negligible for largeN. Specifically we connect each atom to its  fullerenes we next consider PM3 calculations for hypothetical
three neighbors with the same spring (force condjeand the fullerenes Go (Dsn) and Gao (Dsq and 1). All three molecules
same equilibrium interatomic separation a. For an Euler also show a single monopolar-like vibration as evidenced in
polyhedron with (12) pentagons and hexagons there Wf2 3  Figure 3. Note, however, that the vector magnitudes and
springs Eedges). Again for a radial displacement from equi- orientations describing the breathing mode motion of the atoms
librium dR, the increase in potential energy is of the fovte in tubelet and near-sphericah4g are subtly different. In the
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C140 (Dsd)
330 cm?

Figure 3. Visualizations of monopolar-like “breathing-modes” in
several high fullerenes as determined from PM3 calculations. Also
shown are scaled frequencies. Note that the cage size is not to scale

more cylindrical isomer, the end-cap motion appears out of
phase with the periodic expansion/contraction of the tubelet cross

Eisler et al.
500 I exp. Raman frequencies -2
O scaled PM3 frequencies
-------- linear fit C70 CGO
450 c o
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84_p 1B
g Cgo ~”§Sm
~ 400 tel D' /nm’!
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Figure 4. Scaled PM3 “breathing-mode” frequenciesMs!2 where

M is the fullerene molar mass. Superimposed are experimental
determinations based on spectral assignment as discussed in the text.
The dashed line is a least-squares fit to the scaled breathing mode
frequencies for all fullerenes calculated, constrained to go through the
coordinate origin. The insert documents the fdéixis parameter range.
Here instead of usingyl=¥2 we plot 1D whereD corresponds to the
diameter of a spherical fullerene with the same surface Aréais
proportional toM). The second dashed line in the insert represents the
diameter dependence of the radial breathing mode of single walled
carbon nanotubes (SWNTSs).

-1/2

section. In fact already for tubularyg; the concept of a “single
nodal-surface monopolar-mode” is not strictly accurate in that
the end caps are patrtially drawn in while the rest of the molecule
expands.

Figure 4 contains a plot of scaled PM3 breathing mode
frequencies versudM~12 for all Cy, fullerene cages studied,
whereM corresponds to the fullerene molar massit@N\ay,
M; Nay = Avogadro number). Interestingly, the data points (even
those for Go(Dsn) and GadDsd)) generally fall very close to a
least-squares fit line with a slope of 13195 dmamu2
constrained to go through the coordinate origin. This manifests
a correlation coefficient oR? = 0.9911. We then infer that (i)
the frequency of monopolar-like modes goes approximately as
M~Y2 and (ii) for multiple isomers of a given cage size, the
frequency of the monopolar-like mode does not depend strongly
on shape. Among structurally characterized fullerenes, several
are known to be more spherical than others. This may be
quantified in terms of their moments of inertia, which are
tabulated in Table 1. Of those cages studied here, the most
spherical are g3, Cgs(D>) (to a lesser extentddD2g)) and G40
(). On the basis of the R/dependency predicted fepherical
shellsin 4.1.1 and 4.1.2 (assuming that sound velocities/average
stretching force constants are not strongly cage size dependent),
one might expect scaled PM3 breathing mode frequencies for
more spherical cages to be in better agreement witvah?2
dependence than the complete data set. This is not obviously
the case (least-squares fits: @)(Sy) = 349 [cnT! nm]/DO
andR2 = 0.9979 for just the spherical fullerenes with coordinate
origin constraint, (i)w1(Sy) = 344 [cm! nm)/M0and R? =
0.9911 for all fullerenes also with coordinate origin constraint,
where[DOcorresponds to the diameter of a spherical fullerene
in nanometers).

4.2.2. Comparison to Experimentsing the average of the
PM3 < experiment scaling factors found for the breathing
modes of Gy and G, PM3 predictions for the monopolar-like
modes of high fullerenes are expected to be quite accurate.
Unfortunately, PM3 does not allow the determination of the
associated Raman cross sections (in particular of resonant
Raman cross sections which are generally probed here).
Therefore comparison to experiment which typically shows a
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Cn (szl) C75 (CZV) Cn (Ds)
514 nm 5t4nm 514 nm
Cu(€,) CuC) Co (D)
693 nm 693 ni ; 693 nm
Figure 6. Schematic of radial breathing mode in single-walled carbon
nanotubes.
c,(c,) ¢, (C,) ¢, D) first_—order pertgrbatioq theory treatment applied to the L_amb
1064 nm 1064 nm 794 nm oscillatory solutions fofilled spheres subject to small spheroidal
distortion predicts that the= 0 modes should not shift as long
as volume is conserved in the distortion. This is in contrast to
oscillatory solutions of higher | for which a distortion dependent
splitting is predicted (we shall return to the latter in the context
of quadrupolar modes in the next paper). To our knowledge,
WML such a first-order perturbation theoretical treatment has not yet
200 4% 0|6 o w0 &0 6 2o 4 o b_een _applied to the_ spherical shell _subject to spheroidal
distortion. On the basis of our observations we would expect

Raman shift / cm™ the resulting expression to be of a form such that the monopolar
Figure 5. Low-frequency region Raman spectra obtained for thrge C  Mode remains invariant for spheroidal distortiarmsering
isomers at several different laser excitation wavelengths. Superimposedsurface arealt will be interesting to see if this prediction is
are scaled PM3 frequencies for Raman allowed vibrations. Assigned born out in future theoretical treatments.
breathing modes are indicated with dashed lines (see also Table 1). 4.3, Radial Breathing Modes in Single Walled Carbon
Nanotubes.Near infinite length single walled carbon nanotubes
high density of vibrational features in the relevant spectral region (SWNT) are known to manifest a Raman active radial breathing
is problematic. mode whose frequency scales inversely with the tube radius,
Nevertheless, breathing modes may generally be assigned byndependent of whether the specific tube is metallic, semicon-
comparing spectra obtained at several different excitation ducting or insulating. This vibration is in fact already used as
wavelengths. Figure 5 shows as an typical example the spectraa diagnostic for tube diameter (D) distributi#f132 Parametriza-
obtained for the three isomers ofgCat 514, 693, and 1064  tion against high resolution electron microscopic images allows
nm (794 nm in the case of th®; isomer) excitation. determination of the exact scaling factor. One finds that the
Superimposed are PM3 predictions scaleddg@Go experiment. radial breathing mode depends inversely on diameter according
Within the range predicted for the breathing mode, there is to 223 cnT! nm/D33 We have plotted this I dependence as
generally only one Raman spectral feature which manifests a dashed line in the insert of Figure 3. The insert also contains
moderate to strong Raman cross section over all excitationthe analogous representation for fullerenregaking D for a
wavelengths probed. This we assign as the breathing mode. Fogiven fullereneC,, as the diameter of a spherical cage with the
all other fullerenes experimentally probed here, the experiment/ same number of atoms2Note that atom count/molar mass
theory comparison is as good or better than shown for the C scale as surface area and therefigre!’201/D.
isomers. Table 2 lists scaled PM3 breathing mode frequencies The slope of the fullerene line is almost exactly 1.5 times
and experimental assignments. In future work, it will be of larger than that describing theDl.lependence of SWNT radial
interest to confirm this assignment by comparing to resonant breathing vibrations. Is this a straightforward consequence of
Raman cross sections calculated at an ab initio level of theory. dimensionality/topology much as th&:}'/2 ratio discussed in
The associated electronically excited states have already beent.1.2 for the breathing modes of rings and spheres?
assigned on the basis of predictive level time-dependent-density Applying the simple force constant model to SWNTs shows
functional calculationg? that the answer is no. We demonstrate this below for infinitely
4.2.3. Monopolar Modes and Spheroidal DistortioWe long zigzag tubes; however, similar considerations lead to the
return briefly to a discussion of the shape insensitivity observed same results for armchair tubes. Like a graphene sheet, SWNTs
for the monopolar mode frequencies of cage isomers. As anhave two symmetry inequivalent atoms connected by three
example, the three isomers ofdnanifest breathing modes at symmetry inequivalent bonds. It is convenient to use cylindrical
429, 434, and 430 cmi for Cy,, C,,’ andDz isomers, despite a  coordinates to describe the vibrational motion of the tube:
relatively large variation in topology. Even more pronounced describes the radial displacementhe displacement parallel
is the shape variation betweensg(Dsq ) and Gao (1) while to the tube axis, antdthe displacement perpendicular to both.
the associated monopolar modes at 414 and 420! cane So in principle six coordinates are needed to describe the
predicted to be almost identical in frequency. Interestingly, a periodic displacements of the two inequivalent atoms in a totally
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symmetric breathing mode. Fortunately, this number can be modes which however require the inclusion of flexural-motion

reduced to two. Reflection through a mirror-plane perpendicular
to thez-axis transforms one symmetry inequivalent atom to the

for their quantitative description.

other (see Figure 6). As a consequence, in a radial breathing Acknowledgment. This research was supported by the

vibration all atoms undergo the same motion with regardtto
while symmetry inequivalent atoms move in opposite directions
with regard toz (if both types of atom were to undergo the
same motion with respect toa translation would ensue). The
samet motion of all atoms in a zigzag tube means a rotation.
This is incompatible with a vibration—¢ t = 0) and therefore
only two coordinatesr(z) are sufficient to describe the totally
symmetric radial breathing vibration of a SWNT.

A closer look at the displacement of this vibration shows that
not only bond length changes but also a change in th€€C
angle occurs. So in contrast to our discussion for fullerenes,
the potential energy of the SWNT model must now comprise

two terms (for bond stretching and bending), dependent on two

force constantsf{ andfy/a?) and two coordinates.

Nf, 3ar
Vstretching: 751222 + (ﬁ - 2)2] (4)
Nf,a’ (Zx/ﬁz «/§r)2 (2«/1—32 x/i_%r)zl
bending= "2 |\"a ~ 2r) T\ a Tor)| ©

Putting this into the Lagrangian one gets two totally symmetric
modes, after solving the two coupled differential equations. The
one with the lower frequency is the breathing mode with mainly
r-motion. The second one has mairdynotion and a higher

frequency. The relatively complicated expressions for the

corresponding frequencies may be formulated in terms of a

Taylor series expansion &'R. Equation 6 gives the breathing
mode frequency to first order ia/R.

A3 \/2f52 + 216§, + 18,7 5
4

(f.+6fym R ©
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