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Raman measurements and PM3 calculations of low frequency (<600 cm-) vibrational modes in a variety of
different fullerenes can be rationalized in terms of the multipolar “acoustic” oscillations of isotropic spherical
and spheroidal shells. In this first of a two part series, we show that all fullerene cages have monopolar-like
breathing vibrations. Within certain boundary conditions and in the absence of other data, the frequency of
these vibrations may be used for cage size determination.

Introduction

Since the first isolation of C60,1 it has proven possible to
generate, extract, and separate many other heavier members of
the fullerene family (C2n).2 So far, all high fullerenes to be
structually characterized have isolated pentagon ring structures
(IPR forms).3 On the basis of mathematical arguments, it can
be shown that the smallest fullerene able to support an IPR form
is C60. C62, C64, C66, and C68 do not have IPR isomers. Thereafter
all C2n have an IPR form. Starting at C76 multiple IPR isomers
are possible. Within the IPR constraint, it has been argued that
there are two isolable classes of fullerenes differing in their
electronic structure:4 (A) fullerenes with moderate to large
HOMO-LUMO gaps and (B) those with small HOMO-
LUMO gaps. The former class comprises practically all isolated
and structurally characterized high fullerenes so far known. Its
members are readily soluble in apolar solvents, are quite stable
under ambient conditions and usually are among the energeti-
cally most favorable IPR isomers for a given cage size. It has
recently been shown that class B fullerenes, such as C74, are
also generated in the Kra¨tschmer-Huffman carbon arc source
but that their enhanced reactivity (for which a marker may be
high electron affinity5) relative to class A, generally precludes
conventional extraction.4 C72 is the only apparent exception to
the two class picture: its calculated gap is large but it has not
yet been isolated.5

Notable isolated members of class A include C60, C70, C76,
and C78 (three isolated isomers:C2V, C2V′, andD3), C80 (D2)2,
C82 (mixture of two C2 forms6), and C84 (2 isolated isomers:
D2 andD2d

7). For all of these not only the cage symmetry but
also the molecular structure is known (a common complication
for large C2n is that several IPR isomers may have the same
13C NMR signature in terms of the number of spectral lines
and their relative peak intensities8). Beyond these cages it has
proven possible to isolate multiple, size monodispersed and
sometimes isomer pure fractions of even larger fullerenes by
“conventional” chromatographic means.9 So far the largest
species to be so prepared is C120.6,10Here, while the underlying
cage symmetries are in fact unknown in the absence of enough
isolated material to perform13C NMR measurements, the
relatively simple solution absorption spectrum has been used
to argue for the presence of just one or at worst a few isomers
and the prevalence of cylindrical tubelet form(s) versus more
spherical structure(s).

The inference that fullerene C120 has nanotubelet topology is
also of interest from the point of view of single walled carbon
nanotubes (SWNT). Recent advances in the SWNT field include
diameter selective ablation syntheses11 as well as the develop-
ment of methods to cut and solubilize length and diameter
controlled tubelets.12 It may be anticipated that this approach
will eventually yield soluble size selected tubelets which access
the fullerene extraction size range. Given that there are already
well developed chemical routes to link fullerene cages,13 such
size overlap will greatly facilitate the controlled synthesis of
fullerene/SWNT supramolecular assemblies. For this, it will be
necessary to characterize molecular topology of materials in the
C100-C300 range, for extremely small sample sizes.

13C NMR measurements on nonisotope enriched samples
require at least 10 mg of monodispersed material, even more if
the sample comprises a wide distribution of different low
symmetry isomers. Neutron and X-ray scattering probes at
present technology typically make use of even larger samples.
Given the rapidly decreasing abundance of class A fullerenes
in arc discharge soot together with their decreasing solubility
as n increases, it is unrealistic to expect to be able to prepare
size and isomer pure samples containing more than about 10
µg of a given C2n, n > 50, at least without heroic effort or a
dramatic improvement in production yield. A similar restriction
will undoubtedly apply to solubilized tubelets. How then to
determine molecular structure or at least molecular topology
for such extremely small samples? In this paper and its
companion we present an approach which makes use of
(resonant) Raman spectroscopy. We argue that the characteristic
low-frequency vibrational features of closo-carbon networks,
in particular monopolar and quadrupolar acoustic modes,
facilitate a rapid cage size and topology determination by means
of acquiring Raman spectra in the 50-600 cm-1 range.

The series is structured as follows. In the first paper we
provide a general discussion of experimental and theoretical
methods and concentrate on monopolar-like “breathing” modes.
The second paper goes on to discuss quadrupolar-like “squash-
ing” oscillations.

2. Methods

2.1. Materials. C60 (Ih) and C70 (D5h) were obtained from
commercial sources (Hoechst-Gold grade). Other fullerenes
were prepared and extracted from raw soot as previously
described.2 Isomer pure samples of C70 (D5h), C76 (D2), C78 (C2V,
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C2V′, andD3) and C80 (D2)2 were obtained by preparative scale
HPLC using separation protocols which have also been previ-
ously described. C82 and C84 were obtained as isomer mixtures
following separation on an Regis Buckyclutcher column (toluene/
hexane eluent). We assume these mixtures to be comprised of
C82 (C2(1)+C2(2) (unknown ratio and C84 (D2(22)+D2d(23)/2:
1), based on13C NMR measurements and comparison to
literature.6,7,15

Microcrystalline fullerene samples for Raman spectroscopy
were obtained from HPLC fractions in toluene solution as
follows. The solutions were dried and the resulting solids
ultrasonically dispersed in methanol. These suspensions were
subsequently filtered (0.45µm pore size). The solids so obtained
were then washed multiply with methanol and dried under
vacuum for 12 h. For each fullerene, sample purity was checked
via analytical HPLC and LD-TOF-MS (laser desorption time-
of-flight mass spectrometry) as previously described. Materials
were studied at purity levels of> 99% relative to other cage
sizes and at>95% relative to other isomers of the same cage
size.

For Raman measurements two different sample preparation
techniques were used, depending on relative cage stability. The
more ambient stable fullerenes were studied as deposited on
the microfilter (microcrystalline and optically thick films). The
more sensitive higher fullerenes C78(C2V′), C80 (D2), and C82

were sealed under vacuum (<10-5 mbar) into a glass capillary
and studied therein (microcrystalline powders).

2.2. Raman Measurements. Stokes shifted unpolarized
Raman spectra, nominally at room temperature, were recorded
in 180° backscattering geometry using four different laser
excitation wavelengths. Measurements at 514, 693, and 794 nm
were obtained using a triple monochromator setup (Spex
TripleMate 1877D) and a CCD camera (Photometrics SDS
9000), as has been previously described.14 Excitation radiation
was provided by an Ar+-pumped titanium sapphire laser (680-
850 nm tunablility) as well as by the pump laser (514 nm).
Spectra were recorded at typical laser fluences of 150-200 mW
mm-2. To reduce the broad-band luminescence of the titanium:
sapphire laser we made use of a home-built premonochromator.
Measurements at 794 nm were generally performed by replacing
the first stage of the monochromator with an alkali vapor cell
which allows for more efficient suppression of the Rayleigh
line, while transmitting more Raman light. A number of Raman
measurements were also performed using an FT-Raman spec-
trometer (Bruker IFS FRA 106) equipped with a Nd:YAG
excitation laser (1064 nm, 140 mW defocused spot). Depending
on effective scattering cross sections, spectra recorded at 514,
693, and 794 nm excitation were obtained at 2-4 cm-1

resolution using a 1200 line/mm grating. Raman data obtained
at 1064 nm excitation were recorded with a spectral resolution
of ∼4 cm-1.

Raman spectra were obtained for the isomerically pure
fullerenes C60 (Ih), C70 (D5h), C76 (D2), C78 (C2V, C2V′, D3), C80

(D2) as well as for C82 and C84 isomer mixtures (see above).
With the exception of 1064 nm measurements for C60 and C70,
all spectra correspond to resonance or preresonance Raman
conditions (see discussion below). Data were generally obtained
in the Stokes shift range of approximately 100-1700 cm-1 at
all four laser excitation wavelengths (exceptions C78 (C2V, C2V′),
C80 (D2), C82, and C84, for which background luminescence or
other experimental difficulties prevented the acquisition of
satisfactory spectra at 514 nm excitation). Figure 1 shows the
corresponding spectra for 693 nm excitation. Raman features

with S/N ratios>2-3 were fitted with Lorentzians in order to
obtain peak positions and intensities.

3. PM3 Calculations

Semiempirical PM3 calculations of electronic ground states
and vibrational frequencies were performed for all of the
fullerenes probed experimentally. This was done using one of
two computer systems (IBM Power PC (RISC 6000: AIX 4.21/
128 MB RAM) or a PC (AMD processor 200 MHz/128 MB
RAM) running the software package HyperChem (version 4.5)).
The electronic ground-state structure of each fullerene was
optimized beginning from well-established literature connec-
tivities where available (C60 (Ih), C70 (D5h), C76 (D2), C78 (C2V,
C2V′, D3), C80 (D2), and C84 (D2 (22), D2d (23)7,8). In the case
of C82 we have calculated all 9 possible IPR isomers and have
come to the same conclusion as Zerbetto et al.15 concerning
their energetic ordering. On the basis of ref 15 we assume that
the two lowest energy forms, no. 1 C82 (C2) and no. 3 C82 (C2),
are present in our sample in unknown ratio.

Additionally we have performed PM3 calculations on a
number of larger fullerene cages which are hypothetical at
present in that they have not been isolated and/or structurally
characterized. The focus in these calculations was to study the
vibrational properties of cages with extreme topologies, i.e.,
either near-spherical or (cylindrical) tubelet. For these, the
accessible fullerene size range was limited to about 140 atoms
by the computing time required for vibrational frequency
analysis. PM3 calculations were performed for C90 (D5h, in terms
of the SWNT nomenclature a (5,0) tubelet with the same
diameter as C60), C140 (D5d, (5,0) tubelet) and C140 (I, near-
spherical). The corresponding starting geometries were obtained
in a two step procedure. First, the ring-spiral algorithm was used
to obtain rough atomic coordinates.16 This geometry was then
refined using an extended Hu¨ckel algorithm prior to PM3
calculations.

Within the HyperChem software package we used the
restricted Hartree-Fock method without configuration interac-

Figure 1. Stokes shifted unpolarized Raman spectra (overview)
obtained at 693 nm laser excitation for the isomerically pure fullerenes
C60 (Ih), C70 (D5h), C76 (D2), C78 (C2V, C2V′, D3), C80 (D2). Also shown
are similar data for isomer mixtures of C82 and C84 (see text for details).
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tion (RHF) to obtain ground-state structures. Energy minimiza-
tion was driven by the Polack-Ribiere conjugate-gradient
algorithm. In all cases self-consistence was achieved and the
optimization terminated at root-mean square (rms) gradient of
<0.01 kcal mol-1 Å-1. Vibrational frequencies were calculated
in the harmonic approximation for each ground-state structure.
Table 2 of this paper and Table 1 of the following paper contain
the calculated positions of monopolar and quadrupolar derived
vibrations (see below).

4. Results and Discussion

4.1. Low-Frequency Acoustic Modes in C60. 4.1.1. Lamb
Theory. It was first pointed out by Ceulemans et al.17 that the
low-frequency vibrations (<600 cm-1), of near spherical C60,
may be quite well described in terms of the continuum
mechanics of a vibrating hollow sphere. The eigenfunctions and
eigenfrequencies describing the fundamental vibrations of both
the isotropic (filled) elastic sphere18 as well as the spherical
shell (infinitely thin)19 were first derived by Lamb more than a
century ago. Lambs oscillatory solutions for the filled elastic
sphere have been extensively applied to describing the particle
size dependence observed for low frequency (Raman allowed)
monopolar breathing vibrations in near-spherical nanocrystallites
of various kinds.20 Time-dependent coupling of electronic
excitations to this kind of vibration is also of present interest.21,22

The application of “Lamb theory” to hollow nanoparticles
()fullerenes) is not as extensive and a few words of explanation
are in order.

Under the assumption that there are no “flexural” contribu-
tions to the potential energy (i.e., contributions due to twisting
in the surface plane), Lamb finds two classes of solutions one
involving purely tangential (I) and one involving both tangential

and radial motion (II). Both classes of solution have eigenfunc-
tions which transform as the spherical harmonics and are
generally classified in terms of a descriptor l () 0, 1, ...). For
class I there is only one solution perl value, whereas class II
has two solutions (a and b) perl, except forl(II) ) 0 which has
only one solution. The corresponding eigenvalues depend on
the sphere radius, its first ()“rigidity”) and second Lame´
elasticity constants, the Poisson ratio, and the volume density.
The Poisson ratio may be related to the Lame´ elasticity constants
which in turn depend on the volume density as well as the
transverse (ct) and longitudinal (cl) sound velocities in the
isotropic shell material.23 Class I solutions become real and
nonzero for l G 1, whereas for class II there are nonzero
solutions froml ) 0 on up. From symmetry arguments and for
allowed Poisson ratios (which can vary between 0 and 0.5), it
can be shown that the lowest frequency Raman active solutions
correspond to class IIl ) 2 (a) andl ) 0 in order of increasing
frequency. According to the usual nomenclature convention for
spherical harmonics we label these Dg and Sg, respectively. In
addition to schematic representations of the corresponding
oscillatory motions (f eigenfunctions) for these two Raman
active quadrupolar and monopolar vibrations, Figure 2 contains
a plot of all class I and II eigenvalues below 1500 cm-1 using
as input the radius of C60 (0.35 nm24) as well as experimental
values for the longitudinal (21 km s-1) and transverse (12.3
km s-1) sound velocities of three-dimensional graphite.25

We concentrate in the following on thel ) 0 solution and
return to thel ) 2 solution in the next paper of the series. The
corresponding vibrational motion is that of a fully symmetric

TABLE 1: Fullerene Cage Moments of Inertiaa

fullerene/symmetry Ia Ib Ic

C60/Ih 10032 10032 10032
C70/D5h 12366 14374 14374
C76/D2 14398 16285 17880
C78/D3 14712 18264 18264
C78/C2V 15697 17331 17956
C78/C2V′ 15168 17654 18273
C80/D2 15577 18638 19639
C82 (no. 1)/C2 16727 19734 19984
C82 (no. 3)/C2 17311 19038 19967
C84/D2d 19624 19660 19673
C84/D2 19095 19222 20729
C90/D5d 17093 26253 26261
C140/I 54307 54408 54689
C140/D5h 28681 82562 82566

a In units of g cm2 (×10-40) based on optimized PM3 coordinates.

TABLE 2: Comparison of Scaled PM3 to Experimentally
Determined Monopolar-Like Breathing Mode Frequencies

fullerene
unscaled PM3

frequency/cm-1
experiment/

cm-1

scaled PM3
frequency

(factor 0.796)/cm-1

C60 623 496 496
C70 571 455 455
C76 542 436 431
C78 D3 538 430 428
C78 C2V 542 429 431
C78 C2V′ 536 434 427
C80 528 421 420
C82(no. 1)C2 530 422
C82(no. 3)C2 529 420 421
C84 D2d 524 415 417
C84D2 524 415 417 Figure 2. Level diagram of Lamb theory oscillatory solutions for a

C60-like isotropic spherical shell (see text). Also shown are visualizations
of the (lowest energy) Raman active Dg and Sg solutions in comparison
to PM3 derived representations of the corresponding Raman allowed
Hg(1) and Ag(1) modes.
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radial breathing mode. From Lamb19 the angular frequency of
this monopolar mode is given in terms of the longitudinal and
transverse sound velocities by eq 1:

Note first that this equation predicts that the corresponding
vibration should scale as 1/R. We will return to this point below.
Note further, that if we insert into eq 1 the measured sound
velocities of 3-D graphite and the radius of C60 we obtain a
remarkably good prediction of the monopolar mode vibrational
frequency of 476 cm-1 compared to the experimental determi-
nation from the Raman spectrum obtained for the molecular
solid at room temperature, which lies at 496 cm-1. The reason
that a classical model parametrized to the bulk does quite well
at describing a low frequency “acoustic” vibration in this
molecule appears to be 2-fold. First, the distance sound travels
in graphite during the breathing mode period is comparable to
the circumference of the fullerene cage (clτl(II))0 ) 1.5 vs 2.2
nm; i.e., the detailed atomic position is of secondary importance)
and second the vibrational properties of C60, in particular the
average C-C stretching force constant, must be analogous to
planar graphene. We discuss this point in more detail below.

4.1.2. Stretching Force Constant Model. To obtain insight
into the magnitude of the C-C stretching force constant in C60

it is useful to consider a one parameter pseudo molecular model
of the fully symmetric vibration.

For clarity we begin with a simpler molecular system
comprising a carbon ring. For our purposes we define as a ring
a molecule withN-atoms lying on the vertexes of a regular
N-polygon with polygon center-to-atom distanceR. In a totally
symmetric breathing vibration of such a species, all atoms move
radially out from the center with the same phase and amplitude.
There are no changes to relative bond angles, consequently we
can attempt to describe the vibration purely in terms of a uniform
stretching force constant. Principle geometric considerations
show that for a radial displacement from equilibrium dR, the
component springs connecting two adjacent atoms are extended
by da ) 2(a/R) dR2, where a is the C-C bond distance.
Consequently the potential energy for theN atoms (and therefore
N springs) ring becomesV ) 2Nf(a2/R2) dR2, where f is the
stretching force constant. Similarly the total kinetic energy for
the ring as it undergoes a breathing vibration is given byT )
NmdR′2 where dR′corresponds to d(dR)/dt. Then, using the
Lagrange equation of motion (d/dt(δT/δ(dR′)) + δV/δR ) 0),
inserting the expressions forT andV and the general solution
dR ) R0eiωt we obtain eq 2 which provides a relationship
between the ring breathing mode angular frequency and the
atomic mass, stretching force constant, interatomic separation,
and radius.

For the fully symmetric breathing mode of a “spherical”
fullerene the approach is analogous. However, in contrast to
rings, it is important to remember that there is no generally valid
way of positioningN-objects uniformly on the surface of a
sphere. Nevertheless for computational simplicity, we assume
that the consequences of this topological problem become
negligible for largeN. Specifically we connect each atom to its
three neighbors with the same spring (force constantf) and the
same equilibrium interatomic separation a. For an Euler
polyhedron with (12) pentagons and hexagons there are 3N/2
springs ()edges). Again for a radial displacement from equi-
librium dR, the increase in potential energy is of the formV )

3Nf (a2/R2)dR2. At the same time, the kinetic energy of all atoms
moving in phase either away or toward the sphere center is given
by: T ) NmdR′2. Inserting into the Lagrangian as for the ring,
we obtain eq 3, which connects the spherical fullerene mo-
nopolar breathing mode to the force constant, interatomic
separation, atomic mass, and sphere radius.

Both eqs 2 and 3 have an 1/R dependence. Interestingly, if the
same force constant and interatomic separation is used in both
formulas, the one parameter spring model predicts that the slope
of ω vs 1/R should be exactly (3/2)1/2 times larger for spherical
cages than for rings.

The analytic formula obtained for spherical fullerenes may
be used to assess the underlying force constant by comparison
to C60. If we insert the particle radius (350pm), the experimental
breathing mode frequency and an average C-C bond length of
142.9 pm, we obtain an effective C-C stretching force constant
of 7 aJ Å-2. This compares with tabulated values of 4.50, 9.6,
15.59 aJ Å-2 for carbon-carbon single, double, and triple
bonds.26 Note that the corresponding value for 3-D graphite
(obtained from the elastic constants of graphite) is 7.1 aJ Å-2 .27

4.1.3. Normal Coordinates from PM3.PM3 semiempirical
quantum chemical calculations have generally been found to
be in good qualitative agreement with experiment for a variety
of fullerene related solids.14 Apart from ground state structures
and energetics, PM3 routinely provides vibrational frequencies
and the corresponding normal coordinates. Figure 1 also contains
a PM3 visualization of the two lowest frequency Raman allowed
modes in C60 (Hg(1) and Ag(1)). It is apparent that the vibrational
motion corresponds very closely to the Lamb theory expectation
for quadrupolar and monopolar oscillations in isotropic spherical
shells.

For fullerenes and related molecules, PM3 derived vibrational
frequencies are generally predicted to lie somewhat higher than
observed in experiment. For C60 and C70, there are detailed
spectral assignments, which can be used to gauge the exact PM3
scaling factors required to quantitatively describe experiment.28

Unfortunately, the theory is not uniformly off. Corrections to
PM3 prediction in fact depend on the frequency range and
vibration type in question (ranging from 0.76 to 1.01 for C60,
with an average of 0.883). For C60 and C70 breathing modes
which are of interest here one obtains a scaling factor of 0.796
and 0.797, respectively. We use the average (0.796) as the “PM3
scaling factor” in the remainder of this paper.

4.2. Monopolar-Like Vibrations in High Fullerenes? 4.2.1.
Scaled PM3 Calculations. To what extent can (larger) cages of
lower symmetry than C60 (Ih) sustain monopolar-like vibrational
modes, i.e., vibrations which are characterized by the presence
of a nodal surface coinciding essentially with the equilibrium
cage? Inspection of visualized normal modes derived from PM3
calculations for all experimentally accessed cages, indicates that
there is always one such totally symmetric Raman allowed
vibration at low frequency. There are no other similar vibrations.
Figure 3 provides images of the corresponding “monopolar-
like” vibrational motions.

To investigate whether this is in fact a general feature of
fullerenes we next consider PM3 calculations for hypothetical
fullerenes C90 (D5h) and C140 (D5d and I). All three molecules
also show a single monopolar-like vibration as evidenced in
Figure 3. Note, however, that the vector magnitudes and
orientations describing the breathing mode motion of the atoms
in tubelet and near-spherical C140 are subtly different. In the

ω ) 2(ct
2(3cl

2 - 4ct
2)/cl

2)1/2/R (1)

ωring ) a (f/m)1/2/R (2)

ωfullerene) (3f/2m)1/2 a/R (3)
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more cylindrical isomer, the end-cap motion appears out of
phase with the periodic expansion/contraction of the tubelet cross

section. In fact already for tubular C90, the concept of a “single
nodal-surface monopolar-mode” is not strictly accurate in that
the end caps are partially drawn in while the rest of the molecule
expands.

Figure 4 contains a plot of scaled PM3 breathing mode
frequencies versusM-1/2 for all C2n fullerene cages studied,
whereM corresponds to the fullerene molar mass (2nmNAv )
M; NAv ) Avogadro number). Interestingly, the data points (even
those for C90(D5h) and C140(D5d)) generally fall very close to a
least-squares fit line with a slope of 13195 cm-1 amu1/2,
constrained to go through the coordinate origin. This manifests
a correlation coefficient ofR2 ) 0.9911. We then infer that (i)
the frequency of monopolar-like modes goes approximately as
M-1/2 and (ii) for multiple isomers of a given cage size, the
frequency of the monopolar-like mode does not depend strongly
on shape. Among structurally characterized fullerenes, several
are known to be more spherical than others. This may be
quantified in terms of their moments of inertia, which are
tabulated in Table 1. Of those cages studied here, the most
spherical are C60, C84(D2) (to a lesser extent C84(D2d)) and C140-
(I). On the basis of the 1/R dependency predicted forspherical
shells in 4.1.1 and 4.1.2 (assuming that sound velocities/average
stretching force constants are not strongly cage size dependent),
one might expect scaled PM3 breathing mode frequencies for
more spherical cages to be in better agreement with anM-1/2

dependence than the complete data set. This is not obviously
the case (least-squares fits: (i)ω1(Sg) ) 349 [cm-1 nm]/〈D〉
andR2 ) 0.9979 for just the spherical fullerenes with coordinate
origin constraint, (ii)ω1(Sg) ) 344 [cm-1 nm]/〈D〉 and R2 )
0.9911 for all fullerenes also with coordinate origin constraint,
where〈D〉 corresponds to the diameter of a spherical fullerene
in nanometers).

4.2.2. Comparison to Experiment. Using the average of the
PM3 T experiment scaling factors found for the breathing
modes of C60 and C70, PM3 predictions for the monopolar-like
modes of high fullerenes are expected to be quite accurate.
Unfortunately, PM3 does not allow the determination of the
associated Raman cross sections (in particular of resonant
Raman cross sections which are generally probed here).
Therefore comparison to experiment which typically shows a

Figure 3. Visualizations of monopolar-like “breathing-modes” in
several high fullerenes as determined from PM3 calculations. Also
shown are scaled frequencies. Note that the cage size is not to scale.

Figure 4. Scaled PM3 “breathing-mode” frequencies vsM-1/2 where
M is the fullerene molar mass. Superimposed are experimental
determinations based on spectral assignment as discussed in the text.
The dashed line is a least-squares fit to the scaled breathing mode
frequencies for all fullerenes calculated, constrained to go through the
coordinate origin. The insert documents the fullx-axis parameter range.
Here instead of usingM-1/2 we plot 1/D whereD corresponds to the
diameter of a spherical fullerene with the same surface areaA (A is
proportional toM). The second dashed line in the insert represents the
diameter dependence of the radial breathing mode of single walled
carbon nanotubes (SWNTs).
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high density of vibrational features in the relevant spectral region
is problematic.

Nevertheless, breathing modes may generally be assigned by
comparing spectra obtained at several different excitation
wavelengths. Figure 5 shows as an typical example the spectra
obtained for the three isomers of C78, at 514, 693, and 1064
nm (794 nm in the case of theD3 isomer) excitation.
Superimposed are PM3 predictions scaled to C60/C70 experiment.
Within the range predicted for the breathing mode, there is
generally only one Raman spectral feature which manifests
moderate to strong Raman cross section over all excitation
wavelengths probed. This we assign as the breathing mode. For
all other fullerenes experimentally probed here, the experiment/
theory comparison is as good or better than shown for the C78

isomers. Table 2 lists scaled PM3 breathing mode frequencies
and experimental assignments. In future work, it will be of
interest to confirm this assignment by comparing to resonant
Raman cross sections calculated at an ab initio level of theory.
The associated electronically excited states have already been
assigned on the basis of predictive level time-dependent-density
functional calculations.29

4.2.3. Monopolar Modes and Spheroidal Distortions. We
return briefly to a discussion of the shape insensitivity observed
for the monopolar mode frequencies of cage isomers. As an
example, the three isomers of C78 manifest breathing modes at
429, 434, and 430 cm-1 for C2V, C2V′ andD3 isomers, despite a
relatively large variation in topology. Even more pronounced
is the shape variation between C140 (D5d ) and C140 (I) while
the associated monopolar modes at 414 and 420 cm-1 are
predicted to be almost identical in frequency. Interestingly, a

first-order perturbation theory treatment applied to the Lamb
oscillatory solutions forfilled spheres subject to small spheroidal
distortion predicts that thel ) 0 modes should not shift as long
as volume is conserved in the distortion. This is in contrast to
oscillatory solutions of higher l for which a distortion dependent
splitting is predicted (we shall return to the latter in the context
of quadrupolar modes in the next paper). To our knowledge,
such a first-order perturbation theoretical treatment has not yet
been applied to the spherical shell subject to spheroidal
distortion. On the basis of our observations we would expect
the resulting expression to be of a form such that the monopolar
mode remains invariant for spheroidal distortionsconserVing
surface area. It will be interesting to see if this prediction is
born out in future theoretical treatments.

4.3. Radial Breathing Modes in Single Walled Carbon
Nanotubes.Near infinite length single walled carbon nanotubes
(SWNT) are known to manifest a Raman active radial breathing
mode whose frequency scales inversely with the tube radius,
independent of whether the specific tube is metallic, semicon-
ducting or insulating. This vibration is in fact already used as
a diagnostic for tube diameter (D) distribution.30-32 Parametriza-
tion against high resolution electron microscopic images allows
determination of the exact scaling factor. One finds that the
radial breathing mode depends inversely on diameter according
to 223 cm-1 nm/D.33 We have plotted this 1/D dependence as
a dashed line in the insert of Figure 3. The insert also contains
the analogous representation for fullerenes- taking D for a
given fullereneC2n as the diameter of a spherical cage with the
same number of atoms 2n. Note that atom count/molar mass
scale as surface area and thereforeM-1/2R1/D.

The slope of the fullerene line is almost exactly 1.5 times
larger than that describing the 1/D dependence of SWNT radial
breathing vibrations. Is this a straightforward consequence of
dimensionality/topology much as the (3/2)1/2 ratio discussed in
4.1.2 for the breathing modes of rings and spheres?

Applying the simple force constant model to SWNTs shows
that the answer is no. We demonstrate this below for infinitely
long zigzag tubes; however, similar considerations lead to the
same results for armchair tubes. Like a graphene sheet, SWNTs
have two symmetry inequivalent atoms connected by three
symmetry inequivalent bonds. It is convenient to use cylindrical
coordinates to describe the vibrational motion of the tube:r
describes the radial displacement,z the displacement parallel
to the tube axis, andt the displacement perpendicular to both.
So in principle six coordinates are needed to describe the
periodic displacements of the two inequivalent atoms in a totally

Figure 5. Low-frequency region Raman spectra obtained for three C78

isomers at several different laser excitation wavelengths. Superimposed
are scaled PM3 frequencies for Raman allowed vibrations. Assigned
breathing modes are indicated with dashed lines (see also Table 1).

Figure 6. Schematic of radial breathing mode in single-walled carbon
nanotubes.
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symmetric breathing mode. Fortunately, this number can be
reduced to two. Reflection through a mirror-plane perpendicular
to thez-axis transforms one symmetry inequivalent atom to the
other (see Figure 6). As a consequence, in a radial breathing
vibration all atoms undergo the same motion with regard tor,t
while symmetry inequivalent atoms move in opposite directions
with regard toz (if both types of atom were to undergo the
same motion with respect toz a translation would ensue). The
samet motion of all atoms in a zigzag tube means a rotation.
This is incompatible with a vibration (f t ) 0) and therefore
only two coordinates (r,z) are sufficient to describe the totally
symmetric radial breathing vibration of a SWNT.

A closer look at the displacement of this vibration shows that
not only bond length changes but also a change in the C-C-C
angle occurs. So in contrast to our discussion for fullerenes,
the potential energy of the SWNT model must now comprise
two terms (for bond stretching and bending), dependent on two
force constants (fs and fb/a2) and two coordinates.

Putting this into the Lagrangian one gets two totally symmetric
modes, after solving the two coupled differential equations. The
one with the lower frequency is the breathing mode with mainly
r-motion. The second one has mainlyz-motion and a higher
frequency. The relatively complicated expressions for the
corresponding frequencies may be formulated in terms of a
Taylor series expansion ina/R. Equation 6 gives the breathing
mode frequency to first order ina/R.

We conclude that the breathing mode frequency depends on
two parameters. Inserting into equation the C-C stretching force
constant obtained from the spring model for fullerenes 7 aJ/Å2,
we have to use 1.7 aJ/Å2 for the C-C-C bending force constant
in order to obtain a slope of 223 cm-1 nm/DSWNT. Setting the
bending force constant to 0 aJ//Å2, fs ) 11.6 aJ/Å2 is needed to
describe the slope of 223 cm-1 nm/DSWNT. From the elastic
constants (equivalent to the Lame´ factors) of graphite one can
obtain the values 7.1 aJ/Å2 for the stretching and 0.67 aJ/Å2

for the bending force constant.27

5. Conclusions

High fullerenes are shown to have Raman active monopolar-
like breathing modes, much like the Ag(1) mode of C60. For
fullerenes ranging in size at least to C140, the frequency of the
monopolar-like mode scales inversely with the square root of
mass. For fullerene isomers of the same mass (and “surface
area”), the monopolar mode frequency is shape insensitive. The
breathing mode frequency and its size dependence can be
rationalized both in terms of the oscillatory Sg mode of an
isotropic spherical shell as well as in terms of an atomistic model
incorporating, 3-fold connectivity, a single C-C stretching force
constant and one average bond length. Near-infinite length
single-walled carbon nanotubes have analogous radial breathing

modes which however require the inclusion of flexural-motion
for their quantitative description.
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