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The analysis of unbiased, normally distributed (Gaussian) data by linear least-squares yields unbiased, normally
distributed parameter estimates, whose standard errors are known exactly if the error structure of the data is
known. By contrast, nonlinear models generally yield nonnormal, biased parameter estimates, for which the
standard errors depend on the parameter values, hence vary among statistically equivalent data sets. These
properties of least squares are examined through Monte Carlo calculations on three important models: the
straight-line linear relationship, the rectangular hyperbola of relevance to the analysis of equilibrium binding
constant and Michaelis-Menten kinetics data, and the declining exponential. Parameter distributions are
precisely characterized by processing 105 equivalent data sets in a typical Monte Carlo run. The main
conclusions are as follows. (1) “Exact” parameter errors can be obtained easily from the variance-covariance
matrix for a perfectly fitting data set having known data error. (2) The “normal” interpretation of these exact
standard errors yields parameter confidence limits that are reliable to better than 10% if the relative standard
error is<1/10. (3) Parameter bias scales with the data variance (σy

2) and is very nearly linear inn-1, wheren
is the number of data points. (4) With proportional error structures (σyi ∝ yi) and Poisson structures (σyi

2 ∝ yi),
there is an inherent and unavoidable ambiguity in assessing the weights; weights based on either observed or
calculatedyi lead to bias that persists asn f ∞, or inconsistency, in many of the nonlinear estimators. (5)
Certain key parameters such as the binding constant and the exponential decay rate are consistent. (6) A
common source of highly asymmetric parameter distributions is a parameter which is the reciprocal of a
relatively uncertain normal or near-normal parameter; such reciprocal parameters have infinite variance, so
when uncertain byJ20%, their signature in Monte Carlo calculations is unstable or divergent statistics.

Introduction

The method of least squares (LS) is the default data analysis
tool in most of physical science. The statistical properties of
linear least-squares estimators are well-known.1-3 These include,
importantly: If the data are distributed independently and
normally (i.e., with the Gaussian distribution) about their true
values, the estimators of the parameters will beunbiasedand
minimum-Varianceand will themselves be normally distributed
about their true values, with variances that can be calculated
directly from thematrix of the normal equations. The structure
of the latter quantity depends only upon the distribution of values
for the independent variable(s) and therefore can be calculated
at the outset, permitting its use inexperimental design.

More often than not, the theoretical expressions that predict
the relationships among the experimentally measured variables
are not linear in the desired parameters, necessitating analysis
by nonlinearleast squares. Included among these cases are most
of the situations in which the directly measured quantities are
transformed into the linear relation,y′ ) A + Bx′, wherey′ and
x′ are the transformed variables, and where the linear parameters
A andB may depend in various ways on the original parameters,
a andb. From a computational standpoint, the chief differences
between linear and nonlinear LS are the following: Linear LS
equations are, in principle, solvable in a single step and yield a
single, minimum-variance solution; nonlinear problems must
be solved iteratively and may converge on multiple solutions,
or may not converge at all.

Another important difference between linear and nonlinear
LS is that the guarantees of no bias, minimum variance, and
normal parameter distributions that reassure practitioners of
linear LS are absent from nonlinear LS.3,4 This has led many
to turn to Monte Carlo (MC) calculations for information about
these properties, especially the confidence intervals to be
expected for the parameter estimates. Among recent works of
this sort are studies of exponential decay,5-8 of the relationships
y ) a/(b + x) and y ) ax/(b + x),9-13 and of several more
specialized functions.14-16 Such studies have been facilitated
by the increasing availability in recent years of microcomputer
data analysis packages that include provision for fitting data to
“user-defined” functions.

As already noted, a very important aspect of the method of
least squares is that it provides for built-in estimation of the
statistical errors in the parameters. This holds for both linear
and nonlinear LS. Unfortunately the commercial data analysis
programs do not always treat parameter errors with as much
respect as they do the parameters themselves. A main purpose
of the present work is to review this feature of least squares
and, through examples, to suggest that the built-in estimates of
parameter error will usually suffice for the estimation of
confidence intervals. In fact, these “parametric” estimates may
be even more reliable than results obtained from the Monte
Carlo approach used in many recent studies, including most of
those in refs 8-16.

The question of bias in nonlinear LS is another topic that
has been addressed using Monte Carlo calculations. A statistical
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estimator is said to be biased if its expectation (or average) value
does not equal the true value of the quantity being estimated.
If the bias persists in the limitn f ∞, wheren is the number
of points in the data set, the estimator isinconsistent.1 For the
purpose of investigating bias and consistency, it does appear
that some form of MC approach is needed in most cases.
However, one must be careful in choosing whichform of the
parameter to study in this manner. In many of the cases of most
significant apparent bias, it turns out that the parameter under
study is actually thereciprocalof a normally or nearly normally
distributed parameter.5,17 The distribution function for such
reciprocals has Lorentzian tails; this means that theVariance is
not finite, which in turn means that the central limit theorem
does not apply and that, therefore, the parameter cannot be
estimated reliably by MC averaging. This can be a serious matter
any time the standard error in the parameter is greater than∼1/5
its value but will be of little practical concern when the relative
error is less than1/10.

In the following, I first review the formalism of linear and
nonlinear least squares. Using MC calculations of 105 equivalent
data sets, I then benchmark the computational procedures on a
simple linear model before examining in detail two nonlinear
models, the functiony ) ax/(b + x), of relevance for the analysis
of binding constant data, and the declining exponential, with
and without a background. For these nonlinear models, the
parameter distributions are fundamentally nonnormal; however,
this nonnormality is generally negligible for the estimation of
parameter confidence intervals, if the special problems of
reciprocal parameters are eliminated. Methods for recognizing
such reciprocal parameters are described. The nonlinear estima-
tors generally exhibit bias, and for some of the estimators in
cases of nonconstant data error the bias persists asn f ∞. This
inconsistency can be a more serious concern. Another potential
source of difficulty, nonnormality and bias in the data them-
selves, is treated elsewhere17 and will be considered only briefly
here. If the data are not normally distributed about their true
values, then many of the predictions of the least-squares method
no longer hold, even for linear LS.

Theoretical Background

Linear Least Squares. Matrix Formulation. The least-
squares equations are obtained by minimizing the sum of
weighted squared residualsS,

with respect to a set of adjustable parametersâ, whereδi is the
residual (observed-calculated mismatch) for theith point and
wi is its weight. For the purpose of the matrix notation that
follows, â is a column vector containingp elements, one for
each adjustable parameter. Thus, its transpose is a row vector:
âT ) (â1, â2, ...,âp). The problem is a linear one if the measured
values of the dependent variable (y) can be related to those of
the independent variable(s) (x, u, ...) and the adjustable
parameters through the matrix equation2,18

wherey andδ are column vectors containingn elements (for
then measured values) and thedesign matrixX hasn rows and
p columns, and depends only on the values of the independent
variable(s) (assumed to be error-free) and not on the parameters
â or dependent variablesy. For example, a fit toy ) ax + b/x2

+ c ln(3u) qualifies as a linear fit, with two independent
variables (x, u), three adjustable parameters (a, b, c), and X

elementsXi1 ) xi, Xi2 ) xi
-2, Xi3 ) ln(3ui). On the other hand,

the fit becomes nonlinear if, for example, the first term is
changed tox/a, or the third to 3 ln(cu). It also becomes nonlinear
if one or more of the “independent” variables is not error-free
and hence is treated (along withy) as a dependent variable.

The solution to the minimization problem in the linear case
is the set of equations

where the square weight matrixW is, in this case, diagonal,
with n elementsWii ) wi. (More generally, the measuredyi may
not be mutually independent, rather may show correlation; in
that case there are nonzero off-diagonal elements inW.2,18-20)
The matrixA is the previously mentionedmatrix of the normal
equations. Equations 3 are solved for the parametersâ, e.g.,

where A-1 represents the inverse ofA. Knowledge of the
parameters then permits calculation of the residualsδ from eq
2 and thence ofS, which in matrix form is

Importantly, the variances in the parameters are the diagonal
elements of theVariance-coVariance matrix V, which is
proportional toA-1 (see below).

For these equations to make sense, it is essential that the
measurementsyi be drawn from parent distributions of finite
variance.2 (This, for example, excludes Lorentzian parent
distributions.) If additionally they areunbiasedestimates of the
true means, then the LS equations will yield unbiased estimates
of the parametersâ. If the parent distributions are normal, then
the parameter estimates will also be normally distributed. For
these to beminimum-Varianceestimates as well, it is necessary
that the weights be taken as proportional to the inverse
variances,1,2

Under these conditions, least squares is also amaximum
likelihoodmethod, which is reassuring, since maximum likeli-
hood is the more fundamental statistical principle behind data
analysis in physical science. Note that it is possible to have LS
estimators that are unbiased but not minimum-variance, or
minimum-variance but not unbiased, or even unbiased and
minimum variance, but nonnormal.

If the parent distributions for the data are normal and the
proportionality constant in eq 6 is taken as 1.00, then the quantity
S is distributed as aø2 variate for ν ) n - p degrees of
freedom.1-3 Correspondingly, the quantityS/ν follows the
reduced chi-square(øν

2) distribution, given by

wherez ) øν
2 andC is a normalization constant. It is useful to

note that aø2 variate has a mean ofν and a variance of 2ν,21

which means thatøν
2 has a mean of unity and a variance of2/ν.

In the limit of largeν, P(z) becomes Gaussian.
A Priori and a Posteriori Weighting. If the proportionality

constant in eq 6 is taken as unity, then the proportionality
constant connectingV andA-1 is likewise unity, giving

If the parent data distributions are normal, the parameter

XTWXâ ≡ Aâ ) XTWy (3)

â ) A-1XTWy (4)

S) δTWδ (5)

wi ∝ σi
-2 (6)

P(z) dz ) Cz(ν-2)/2 exp(-νz/2) dz (7)

V ) A-1 (8)

S) Σ wiδi
2 (1)

y ) Xâ + δ (2)
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distributions are also normal, as already noted. Then, the
confidence intervals for the parameters can be evaluated
straightforwardly from the standard error function tables. For
example, the 95% confidence interval onâ1 is (1.96V11

1/2. Note
that this is always the case in MC calculations on linear fit
models with normally distributed errors, since theσyi are set
by the computationalist. Accordingly, in such calculations 95%
of the estimates ofâ1 are expected within(1.96V11

1/2 of the
true value. Conversely, a significant deviation from this predic-
tion indicates a flaw in the MC procedures.

There is some confusion in the literature regarding these
matters. In general, the off-diagonal elements inV (the
covariances) are nonzero, for both linear and nonlinear fits. This
means that the parametersâ arecorrelated. However, each of
the parameters in a linear fit is distributed normally about its
true value, withσâi ) Vii

1/2, irrespective of its correlation with
the other parameters; and this goes forall the parameters,
including, for example, all four parameters in a fit to a cubic
polynomial. The correlation comes into play only when we ask
for joint confidence intervals of two or more parameters, in
which case the confidence bands become ellipsoids in two or
more dimensions.4

The use of eq 8 implies prior knowledge of the statistics of
the yi. Accordingly, the weights obtained in this manner may
be designated as a priori weights.20 (The term “internal
consistency” was attached to this case by Birge22 and Deming.23)
Note that this a prioriV is also exact, not an estimate.
Unfortunately, from the experimental side we never have perfect
a priori information about the statistics of the data. However,
there are cases, especially with extensive computer logging of
data, where the a priori information may be good enough to
make eq 8 the proper choice and the resultingV Virtually exact.
A good example is data obtained using counting instruments,
which often follow Poisson statistics closely, so that the variance
in yi (σyi

2) can be taken asyi. (For largeyi Poisson data are also
very nearly Gaussian.)

At the other extreme, we have the situation where nothing is
known in advance about the statistics of theyi, except that we
believe the parent distributions all to have the same variance,
independent ofyi. In this case, the weightswi can all be taken
to be the same constant, which without loss of generality we
can take to be 1.00. This is the case of unweighted least squares.
The variance iny is then estimated from the fit itself as

which is recognized as the usual expression for estimating a
variance by sampling. The use of eq 9 represents an a posteriori
assessment of the variance inyi. (This was designated “external
consistency” by Birge22 and Deming.23) The variance-covari-
ance matrix now becomes

Under the same conditions as stated before eq 7,sy
2 is distributed

as a scaledø2 variate. This means, for example, if thesy
2 values

from a Monte Carlo treatment of unweighted LS are divided
by the true valueσy

2 used in the MC calculations, the resulting
ratios are distributed in accord with eq 7 forøν

2.
Inclusion of the factorS/ν in the definition ofV in the case

of a priori weighting would be equivalent to scalingV by øν
2.

While this does not affect the statistical average of the estimated
variances (since the average value oføν

2 is 1), it does introduce

a spread in the results that might be obtained in a given
experiment. But this is an unnecessary and improper spread if
the statistics of theyi are truly known at the outset, and eq 8 is
the correct expression forV in this case.20,24Then the value of
øν

2 ()S/ν) returned by the fit can be used to assess thegoodness
of fit.

In the case of a posteriori assessment, the uncertainty insy

does not greatly compromise the reliability of the parameter
standard error estimates when the data set is large. For example,
since the variance inøν

2 is 2/ν, the relative standard deviation
in sy

2 is 0.1 whenν ) 200. This translates into a 5% relative
standard deviation insy (x1/(2ν)) and hence also in all the
parameter standard error estimates (Vii

1/2).
What about the confidence limits on the parameters in the

case of a posteriori assessment? The need to rely upon the fit
itself to estimatesy means the parameter errors are no longer
exact but are uncertain estimates. Accordingly, we must employ
the t-distribution to assess the parameter confidence limits.
Under the same conditions that yield a normal distribution for
the parametersâ and scaledø2 distributions forsy

2 and for the
Vii from eq 10, the quantities (âi - âi,true)/Vii

1/2 belong to the
t-distribution forν degrees of freedom,1 which is given by

with C′ another normalizing constant. For smallν, the t-
distribution is narrower in the peak than the Gaussian distribu-
tion, with more extensive tails. However, thet-distribution
converges on the unit-variance normal distribution in the limit
of largeν, making the distinction between the two distributions
unimportant for large data sets (except in the prediction of
outliers in the far wings).

The distinction between the use of eq 8 forV and the normal
distribution for parameter confidence limits vs eq 10 and the
t-distribution is often blurred in the literature. For example, MC
calculations start with assumed values for the uncertainties in
the data; and if these errors are normally distributed and the
model is linear, the calculations will certainly yield normal
distributions for the parameters, if correctly done. Introduction
of a t-distribution-based enlarging factor for the confidence
limits on the parameters is thus a sort of “apples vs oranges”
procedure, in that it implicitly assumes that the data analyst
will be working with similar data but without the benefit of
any knowledge of the quality of those data.

The structure ofV is such that it scales withσy
2 and with

1/n. The latter, for example, means that the parameter standard
errors (Vii

1/2) do correctly go asn-1/2, all other things being
equal. This means that they are to be interpreted in the same
manner as the standard deviation in the mean in the case of a
simple average. (One can readily verify that, for a fit of data to
y ) a, the equations do yield forσa the usual expressions for
the standard deviation in the mean.)

Intermediate Situations. Sometimes one has a priori informa-
tion about therelatiVe variation of σyi with yi but not a good
handle on theabsoluteσyi. For example, data might be read
from a logarithmic scale, or transformed in some way to simplify
the LS analysis. As a specific example of the latter, data might
be fitted toy ) ax + bx2 by first dividing by x to yield y′ ≡
y/x, then fitting toy′ ) a + bx. If the originalyi have constant
standard deviationσy, then simple error propagation (withx still
treated as error-free) shows that the standard deviations in the
yi′ values areσy/xi, meaning the weightswi are∝ xi

2.
Clearly, a weighted fit is called for in the latter “straight-

line” analysis; neglect of the now-unequal weighting of the
dependent variable will fail to yield the desired minimum-

σy
2 ≈ sy

2 )
Σδi

2

n - p
) S

ν
(9)

V ) S
ν
A-1 (10)

f(t) dt ) C′(1 + t2/ν)-(ν+1)/2 dt (11)
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variance estimates of the parameters (though will still produce
unbiased estimates in this case). A check will show that the
weighted fit toy′ ) a + bx yields a set of equations (eqs 3)
identical to those for the unweighted fit toy ) ax + bx2. This
appears to be a general property of linear least-squares fits to
alternative forms relatable by linear variable transformations
(which preserve the normal structure of the original data). Also,
the results for bothâ andV (through eq 10) are independent of
arbitrary scale factors in the weights. If the latter are taken as
simply wi ) xi

2, thenS/ν (with Sgiven by eq 1 or 5) will be an
estimate ofσy

2. Since this is an a posteriori assessment, the
t-distribution should be used to obtain the confidence limits on
the parameters.

Another situation is the case where data come from two or
more parent distributions of differingσy, but again known in
only a relative sense. As before, the results of the calculations
are independent of an arbitrary scale factor in the weights.
However, to obtain meaningful estimates of the parent variances,
it is customary to designate one subset as reference and assign
wi ) 1 for these data, with all other weights taken assref

2/si
2

(hence the need for knowledge of the relative precisions). Then,
the quantityS/ν ()sref

2) obtained from the fit is more properly
referred to as the “estimated variance for data of unit weight,”
and the estimated variance for a general point in the data set is
thensref

2/wi.
A cautionary note is in order for users of commercial data

analysis programs. Those programs which do provide estimates
of the parameter errors do not always make clear which
equation, (8) or (10), is being used. For example, the program
KaleidaGraph (Synergy Software) uses (10) in unweighted fits
to user-defined functions, but (8) in all weighted fits. This means
that in cases such as those just discussed, where the weights
are known in only a relative sense, the user must scale the
parameter error estimates by the factor (S/ν)1/2 to obtain the
correct a posteriori values. (In the KaleidaGraph program the
quantityS is called “Chisq” in the output box but is a scaledø2

variate except in cases where the inputσi values are valid in an
absolute sense.)

Nonlinear Least Squares.In nonlinear fitting the quantity
minimized is againS, and the least-squares equations take a
form very similar to eq 3 but must be solved iteratively. The
search for the minimum inScan be carried out in a number of
different ways;3,4 but sufficiently near this minimum, the
corrections∆â to the current valuesâ0 of the parameters can
be evaluated from3,4,6,23

leading to improved values,

The quantitiesW andδ have the same meaning as before, but
the elements ofX areXij ) (∂Fi/∂âj), evaluated atxi using the
current valuesâ0 of the parameters. The functionF expresses
the relations among the variables and parameters in such a way
that a perfect fit yieldsFi ) 0 for all i. For the commonly
occurring case wherey can be expressed as an explicit function
of x, F takes the form

In the case of a linear fit, starting withâ0 ) 0, these relations
yield for â1 equations identical to eqs 3 and 4 forâ. In the
more general case wherey cannot be written explicitly in terms
of the other variables, these equations still hold, but withδ in

(12) replaced by-F0, where the subscript indicates that theFi

values are calculated using the current valuesâ0 of the
parameters.

Regardless of how convergence is achieved, the variance-
covariance matrix is again given by eq 8 in the case of a priori
weighting and eq 10 for a posteriori weighting, withX as
redefined just below eq 13. However, there is an important
distinction betweenV in the general nonlinear case vs the linear
case: The matrixA now contains a dependence on the
parameters. Also, in general there is no need to distinguish
between dependent and independent variables in nonlinear
fitting, as all variables may be taken to be uncertain.23 In that
caseA may also depend on the values of all the variables, not
just the (previously) independent variables. Thus, even in the
case of a priori weighting,V from eq 8 will vary from data set
to data set. However, one can extract estimates ofV from a
perfectly fitting theoretical curve and use thisV in the same
fashion as in the case of linear fitting.6 In discussions below, I
will refer to this V as the “exact” nonlinearV.

This ability to predict nonlinear parameter variances at the
outset appears not to be fully appreciated. While it is true that
the parameter distributions in nonlinear fitting are generally not
normal, in many situations they are close enough thereto to
permit estimation of confidence intervals in this a priori fashion
with a reliability that exceeds that achievable in typical Monte
Carlo calculations. This is because the MC variance estimates
are subject to the previously noted statistics of aø2 variate, which
means for a 1000-set MC calculation a relative standard
deviation of about 4.5% in the variances, or half that in the
standard errors. And many published studies have employed
far fewer than 1000 data sets, with concomitant loss in error
precision asN-1/2.

Error Propagation. One property of linear fitting is par-
ticularly appealing: Provided the adjustable parameters are truly
overdetermined by the data at hand, one is assured of a
numerical solution to the problem. This does not hold for
nonlinear fitting, in which a poor choice of initial parameter
estimatesâ0 can lead to divergence or slow convergence. Thus,
there are times when a transformation to a linear form is a
practical convenience. However, in such cases one must take
care in estimating the errors in the desired (nonlinear) param-
eters, because the simple rules for error propagation do not
apply.

For example, suppose the data are to be fitted toy ) 1/a +
bx/a. This is a nonlinear fit, and if pursued as such will yield
proper estimates ofσa

2 and σb
2 as the appropriate diagonal

elements ofV. Alternatively, one might choose to fit toy ) A
+ Bx, which is linear and with all the usual assumptions will
yield normally distributed estimates ofA andB. But A andB
are correlated parameters, so the calculation of the estimated
error in any functionf of A and B must employ the full
expression,2,18,23,25

in which the elements ofg are gi ) ∂f/∂âi, and V is the
variance-covariance matrix obtained from the linear fit toA
and B. In this case,a is a function ofA alone, and the usual
rules of error propagation apply. However,b is a function of
both A andB (b ) B/A), so the full expression must be used.
One can verify that the estimates ofσa

2 andσb
2 obtained from

σA
2 andσB

2 using eq 15 are identical to those obtained directly
from the nonlinearV. Also, for any given data set, the nonlinear
fit will yield a and b values identical to those obtained from
the linear estimates ofA andB. On the other hand, whereas the

sf
2 ) gTVg (15)

XTWX∆â ≡ A∆â ) XTWδ (12)

â1 ) â0 + ∆â (13)

Fi ) ycalc(xi) - yi ) -δi (14)
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a priori values ofσA
2 andσB

2 are constant (i.e., independent of
A andB), the a priori values ofσa

2 andσb
2 depend explicitly

on a andb. For example, in the present caseσa
2 ) a4σA

2, so in
MC calculations it will have the distribution ofa4 ) A-4 (see
below).

Derived Parameter Distributions. If we know the prob-
ability distribution functionP(x), we can obtain the distribution
functionQ(u) for a second variableu related tox by the function
u(x) using1

where the sum is over all pointsxi that solveu ) u(xi). In many
of the cases of interest in physical science, the mapping between
u and x is one-to-one, and the sum in (16) becomes a single
term. If P(x) is the normal distribution,Q(u) will not be normal
unlessu(x) is linear inx.

Returning to the example in the previous section, suppose
that data are fitted toy ) 1/a + bx/a. Under the usually
stipulated premises, we know thatA and B from a fit of the
same data toy ) A + Bx are normally distributed. Applying
the two fits to a given data set yieldsa ) 1/A, so the distribution
of a is that of 1/A. The mapping betweenA and a is one-to-
one, and eq 16 yields

whereA0 is the true value ofA andC is a normalizing constant.
This function has Lorentzian wings; therefore,the Variance of
a is infinite. (This may be seen also fromσa

2 ) 〈A-2〉 - 〈A-1〉2,
evaluated usingP(A).)

From a practical standpoint, the infinite variance ofa may
not be a problem ifσA/A is sufficiently small. Thena is
approximately normal abouta0 ) 1/A0, with σa ) a0

2σA, as
predicted from simple error propagation. For example, ifσA/A
) 1/5, the probability of a negative value ofA is <2 × 10-7.
Thus, in Monte Carlo calculations, the chances of hitting a value
of A near zero are sufficiently small for nominal sample sizes
that the sampling statistics fora might appear normal or near-
normal. On the other hand, whenσA/A J 1/3, the chances of
such hits are large enough to destroy the sampling statistics for
a, yielding large apparent biases in〈a〉 and poorly defined (and
nonconvergent) estimates ofσa

2. Correspondingly, the sampling
estimates of〈a〉 do not converge, since the central limit theorem
does not apply, even though〈a〉 is mathematically defined in
this case.

These considerations apply in similar fashion to datayi that
are normally distributed about their true values but are trans-
formed nonlinearly, e.g., by inversion or logarithmic conver-
sion.17 The transformed data are biased estimators of the original
quantities, so that even a properly weighted linear LS fit may
yield biased estimates of the parametersâ.

From an empirical standpoint, slightly nonnormal distributions
can often be represented adequately as skewed Gaussians,

where in simplest form the asymmetry functionf(x - x0) can
be taken as 1+ q(x - x0), with q an adjustable parameter. In
cases of more extreme distortion, an extra term in (x - x0)3

helps. With just the linear correction term the bias inx is

according to which the bias scales as the variance.

Computational Methods

The Monte Carlo calculations were carried out on a main-
frame computer (DEC AlphaServer 2100A 4/275) using pro-
grams coded in FORTRAN. The built-in random number
generator was used in most of the calculations, but with the
additional “shuffle” of the RAN0 routine of Press et al.4

incorporated at times. The uniform random deviates were
converted to Gaussian using the Box-Muller method.4 To
minimize postprocessing of the very large files that would
normally be produced in a run of 105 data sets, the distributional
information was obtained by binning “on the fly.” The statistical
averages and higher moments were similarly computed by
running accumulation. For the linear and near-linear models on
five-point data sets, a typical run of 105 sets required only∼1
s of CPU time; this increased to several minutes for 105 60-
point sets on some of the nonlinear models.

The statistics for the various quantities from the MC
calculations (including the Gaussian random deviates them-
selves) were calculated by accumulating the appropriate sums
and then dividing by the number of setsN at the conclusion.
The variances were then calculated as, e.g.,sa

2 ) 〈a2〉 - 〈a〉2.
For assessing the significance of bias, it is necessary to know
the precision of the MC parameter estimates, which (at the
68.3% or 1σ level, provided they are normal) is their estimated
standard error,sa/xN. On the other hand, the sampling esti-
mates of the parameter variances are subject to the previously
mentioned properties of theø2 distribution, for N degrees of
freedom in this case. Thus, their relative standard errors are
(2N)-1/2.

The histogrammed data were analyzed by fitting to the
appropriate models using the user-defined curve-fitting function
in the KaleidaGraph microcomputer program. The uncertainties
in the binned values were taken as their square roots, in keeping
with the Poisson nature of the binning process. Bins containing
fewer than eight counts were normally omitted. For the most
part, the values were fitted simply as sampled points. However,
technically the bin counts represent integrals over the specified
intervals. For theø2 distributions in particular, it was necessary
to approximate this integral more accurately by breaking each
binning interval into subintervals (usually 10) in the fitting
function.

Results and Discussion

A Linear Model. To check out the computational procedures,
I first conducted calculations for a straight-line linear model,y
) A + Bx, with A ) 1, B ) 5, and fivex values extending
from 1.1 to 12 (other values: 3.3, 5.5, 8.3). Some tests employed
constant uncertainty iny, but most used proportional uncertainty,
with σy ) 0.04y. These conditions were designed to make the
relative precision in the intercept much lower than that in the
slope, to facilitate comparisons that might relate to the relative
precision. The results of these tests verified expectations for
the case where all the usual assumptions are valid. (1) Unbiased,
finite-variance data, properly weighted, yielded unbiased pa-
rameter estimates, with variances given by the exactV (eq 8).
(2) Normally distributed data yielded normally distributed LS
parameter estimates. (3) The parameter residuals divided by the
corresponding a posteriori error estimates (from eq 10) were

〈x - x0〉 ) qσx
2 (19)

Q(u) ) Σ P[xi(u)]|dxi(u)

du | (16)

Q(a) ) C

a2
exp[- 1

2σA
2(1a - A0)2] (17)

P(x) ) Cf(x - x0) exp[-
(x - x0)

2

2σx
2 ] (18)
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t-distributed, and the quantitiesS/ν followed the reducedø2

distribution for the appropriate number of degrees of freedom
ν.

If the usual assumptions are not valid, some of these
predictions fail. Perhaps the most important such failure
concerns the neglect of weights for data which should properly
be weighted (heteroscedastic data). If unweighted regression is
applied to such data, the parametric error estimates from eqs 8
and 10 arecompletely unreliableand may be either optimistic
or pessimistic as compared with the “true” values, which can
only be obtained from the MC calculations in this case. Although
the parameter estimates remain unbiased, their errors are always
larger than the values obtained with proper weighting (the
minimum-variance values). Also, theS/ν values are no longer
ø2 distributed, nor are the a posteriori-assessed parameters
t-distributed.

As an application of these results, consider a study published
in this journal by Gonc¸alves et al.16 These authors fitted reported
experimental rate constants and their errors to lnk ) a1 + a2/T
+ a3 ln T, with T treated as error-free. While it is true that the
logarithmic conversion of the raw data introduces bias, the
effects of this on the parameters and their errors are nominal,
provided the data are properly weighted for the log transforma-
tion. The fit is a linear one, so with neglect of this data
transformation bias, the parameter estimates are normally
distributed, with errors given exactly by the a prioriV, eq 8.
MC calculations should validate this result and in fact do so,
whether one starts with a perfectly fitting theoretical set of ln
k values or with the reported experimental values (Table 1 in
ref 16). On the other hand, the latter yield aøν

2 value of 9.29,
which means that the a posteriori error estimates (eq 10) are a
factor of 3.05 larger than the a priori. This appears to be the
source of the factor of 3 discrepancy reported by these authors
for parametric and MC statistics.26 Incidentally, the very large
øν

2 value is an indicator of problems with the data or model or
both; inspection of a graphical display of the data suggests that
some of the low-T values may be erroneous.

Bias in Data and Weights.In the case of the linear model
with proportional uncertainty, being able to “play God” in the
MC calculations permitted proper weighting usingwi ) 1/σyi

2

) (0.04yi)-2, with yi being thetrue value ofy at xi. However,
in the real world we would not know the trueyi values so would
have to compute the weights either (1) using theobserVed yi
values or (2) using thecalculated yi at xi. In the latter case, the
weights become a part of the adjustment process and the fit
therefore becomes nonlinear. Both choices result in biased
estimates of the parameters. Moreover, as shown in Figure 1,
the biases are very nearly linear in 1/n and extrapolate to nonzero
values in the limitn f ∞, for both choices. Thus, the estimators
are inconsistent. Even with this bias and inconsistency, however,
the parameter distributions remain normal, at least for the
precision obtained from 105 equivalent data sets. Also, theS/ν
distributions are adequately fitted by the reducedø2 function
for ν ) 3; but interestingly, theδâi/sâi values do not follow the
t-distribution forA and are borderlinet-distributed for the slope
B. (Since the relative error inA is much larger than that inB,
it is reasonable to conclude that thet-distribution does not hold
for either.)

For a givenn, the bias scales asσy
2, as was alluded to

connection with eqs 18 and 19. This behavior is widely observed
for both linear and nonlinear fits and is illustrated further below.

As was noted earlier, if the data that are fitted are themselves
the nonlinear transforms of normally distributed quantities (e.g.,
reciprocals or logs), they become biased estimators of the true

data and yield nonnormal parameter estimates that are biased
for all n. Nevertheless, in the case of linear fits, the effect on
the error estimates is generally nominal (<3% for ∼10% data
error).17

A Nonlinear Model: Binding Constant Data. Monte Carlo
methods have been employed to estimate parameter errors in a
number of recent studies of rectangularly hyperbolic data, of
relevance to the analysis of Michaelis-Menten kinetics and
binding constant data.10-13 Such data can be expressed in various
ways, including (for binding constants)

whereK is the binding constant,x the prepared concentration
of ligand, anda a scaling parameter. This expression assumes
the ligand concentration is in great excess (although this is not
necessary, since an exact treatment can be handled easily in
nonlinear analysis). Equation 20 can be recast as a straight-line
relationship a number of ways,12 of which I will consider only

In both (20) and (21),x is customarily treated as error-free, and
I will assume so also. Note that while the fit toA and B via
(21) is linear (though inherently “data biased” if they data are
normal), the fit toa and K is not. However, for a given data
set, the values ofA and B returned by a linear fit will yield
exactly thea andK produced by a nonlinear fit, and the errors

Figure 1. Bias in linear LS estimates of interceptA (a) and slopeB
(b), as a function of 1/n. The linear modely ) A + Bx hadA ) 1 and
B ) 5, with thex-structure described in the text, and they values were
given proportional, normally distributed error (σy ) 0.04y). The open
points were obtained by evaluating the weights using the theoreticalyi

values, the solid circles using the “observed”yi, and the diamonds using
the calculatedyi (optimized individually in each fit). Each point is the
result of 105 fits; the error bars represent 1σ and are too small to appear
in the lower plot. For the theoretical weighting, neither the intercept
nor the slope is statistically significant at the 2σ level for eitherA or
B; the bias is significant for alln in the other two cases.

y ) aKx
1 + Kx

(20)

x
y

) 1
aK

+ x
a

≡ A + Bx (21)
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in a andK can be correctly evaluated from those inA andB
using eq 15. Thus, we anticipate that the not-quite-normal
(thanks to the inversion bias) distributions ofA andB should
translate into near-normal distributions fora andK, as long as
both of these are determined with∼20% or better precision.
Accordingly, the predictions from eqs 8 and 10 should suffice
for estimating the parameter errors, obviating MC calculations
for this purpose.

The only likely breakdown of the above predictions is the
situation where one or both parameters display grossly non-
normal behavior, such that knowledge of the variance alone does
not suffice to determine the confidence limits. In the mathemati-
cally similar case of vapor/solution equilibrium partitioning
data,9 the source of such failure is the occurrence of “reciprocal”
behavior.17 For example, sincea ) 1/B, a normally distributed
B leads to a significantly nonnormala if B (hencea) is relatively
imprecise (sayσB/B > 1/5). Similarly,K ) B/A, so if the intercept
A is relatively imprecise,K will display reciprocal behavior. In
this case, it may happen that its reciprocalKd (the dissociation
constant) is a statistically better defined quantity. Then it is
necessary thatB be relatively precise; however, imprecision in
B is relatively unimportant in its effect on the distribution of
K, as is imprecision inA for Kd.

To further illustrate these points, Figure 2 shows the exact
relative standard errors computed fora, K, andA from fits of
data to eqs 20 and 21, for two different error structures, constant
and proportional. For the purpose of these calculations, I adopted
the x-structure used in a recent MC study of this problem:12 x
) 0.005, 0.02375, 0.0425, 0.06125, and 0.08. The calculations
can be conducted easily using some microcomputer data analysis
programs; I used the KaleidaGraph program. The scaling
parametera was held at 1.00. It is easy to show thatσK remains
constant whena is scaled, as long asσy is similarly scaled, i.e.,
σK is independent ofa for fixed σy/a.

From Figure 2, we see that for a fixedx-structure the relative
error in K rises in the extremes of small and largeK, a well-
known result from many MC studies of this problem. At small
K, nonnormality ofK should never be a problem for proportional

error, becauseA is precisely determined in this regime. For
constant error,σA does increase with decreasingK; however,A
remains precise to a point whereK itself is so uncertain as to
render its nonnormality a secondary concern. At largeK, on
the other hand, the error inK is almost entirely due to the error
in A for both error structures. Thus, in this regime,Kd is the
statistically preferred quantity.

To clarify this last point, MC calculations were carried out
for 105 data sets havingσy ) 0.01,a ) 1, andK ) 3500 (for
which the exact calculations yieldσK ) 854.8). The statistics
on K from the MC calculations were so unstable as to be
worthless. (ForK ) 4000 they always crashed the program
through overflows, due to a few very largeK estimates.)
However,Kd was well-behaved, with statistically insignificant
bias and a relative error in full agreement with the exact
predictions. The distributions ofK and Kd are illustrated in
Figure 3. AlthoughKd is not normal, it is close enough thereto
to meet demands well beyond those of the proverbial “govern-
ment work”. The same cannot be said ofK, which clearly
demonstrates reciprocal behavior. The distribution ofa (not
shown), for whichσa/a ) 0.0059, is much closer to normal (ø2

) 41.6 for ν ) 29).
Next consider the behavior of the binding constant parameters

in the more suitable operating regime near the middle of Figure
2. WhenK ) 30, its exact relative standard error is 0.078 when
σy ) 0.01. Yet Figures 4 and 5 show that (1)K is clearly
nonnormal; (2) nor are its a posteriori-normalized residuals
t-distributed, though the agreement is closer in this case; and
(3) the deviations from both distributions increase with increas-
ing σy (and hence increasingσK and σa). Similar behavior is
observed fora (not shown). The reciprocalKd (also not shown)
exhibits behavior comparable to that forK. On the other hand,
S/ν does satisfactorily follow the reducedø2 distribution. Despite
the substantial deviations from normality, the practical implica-
tions for confidence limits remain minor. For example, consider
the results forσy ) 0.025, where the relative error inK is 0.20.
The statistics from the MC calculations giveσK ) 6.03, which
is ∼3% greater than the exact value from the a prioriV (eq 8).
(For comparison, the bias inK is +1.8%.) From the histo-
grammed data, the 90% range is 21.6-41.2, while the “exact”
treatment yields 30( 1.645 × 5.867, or 20.3-39.7, which
differs mainly by an asymmetry shift of∼1.4.

Given the asymmetry in the parameter distributions, it is not
surprising that the parameter estimates are also biased. Figure

Figure 2. Relative standard errors inK (open points),A (solid line),
anda (dashed), from fits of binding constant data (five points) to eqs
20 and 21 forσy ) 0.01 (a) andσy ) 0.04y (b). The calculations
employed eq 8 forV and perfectly fitting data havinga ) 1. Note that
for this choice ofa, σB ) σa.

Figure 3. Histogrammed results forK (filled points) andK-1 ) Kd

from 105 fits to eq 20 of five-point data sets having true valuesa ) 1,
K ) 3500, σy ) 0.01, and thex-structure given in text. The
histogrammed quantity isX ) (â - âtrue)/σâ, with the true values being
3500 and 3500-1, σK ) 855, andσKd ) 6.99× 10-5. The smooth curve
is a Gaussian fitted to theKd distribution; it yieldedø2 ) 86.1 (30
points,ν ) 29).
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6 illustrates the dependence of the bias in both parameters on
σy and on n. (For the latter it is important to preserve the
x-structure of the data, which is accomplished by simply
doubling, tripling, etc. the number of points at eachxi.). At the
precision of this study, the bias in both parameters vanishes as
n f ∞, meaning the estimators are consistent. If the error
structure is proportional rather than constant, we encounter the
same problems implementing the weighting as discussed earlier
in conjunction with Figure 1. Figure 7 illustrates the biases in
both parameters as functions of 1/n, for weighting using the
theoreticaly values, the “observed” and the “calculated”, with
the last of these being a part of the optimization process for
each fit. All threeK estimators appear to be consistent; however,
the twoa estimators that are actually available to the experi-
mentalist are both inconsistent.

The Declining Exponential. Background-Free. An expo-
nential decay without background can be linearized by loga-
rithmic transformation. Let the fit relationship be

Neglecting the data bias introduced through the (properly
weighted) log conversion, the fit to lny ) ln a - Γt should
yield normally distributed estimates of lna andΓ. Accordingly,
the distribution of the lifetimeτ should follow eq 17, and for

relatively uncertainΓ, Γ is the statistically preferred parameter.
This conclusion was reached also in a study of maximum
likelihood estimators for exponential decay.5

Monte Carlo calculations suggest that neithera nor Γ from
nonlinear fits to (22) is normal, thougha is quite close under
some circumstances. (Note that ifΓ is fixed rather than
adjustable, the fit is linear ina and it becomes rigorously
normal.) As an extreme example, MC calculations were done
for a model havinga ) Γ ) 1, with four evenly spacedt values

Figure 4. Histogrammed results forK from 105 fits to eq 20 of five-
point data sets having true valuesa ) 1, K ) 30, andσy ) 0.01 (open
points) orσy ) 0.025 (filled points). Thex-structure of the data is the
same as for Figure 3 (see text). The histogrammed quantity is X) (K
- 30)/σK, with σK ) 2.347 and 6.028, respectively. The smooth curve
is a Gaussian fitted to the open points. It yieldedø2 ) 6.6× 102, while
a fit to the filled points gaveø2 ) 4.1 × 103.

Figure 5. The same results as displayed in Figure 4, but histogrammed
as thet-variable, X ) (K - 30)/sK, with sK being the a posteriori
estimate obtained along withK from each fit. The fits to the
t-distribution (eq 11), shown for the open points, yieldedø2 ) 168 and
906.

y ) a exp(-Γt) ) a exp(-t/τ) (22)

Figure 6. Bias in binding constant parameter estimates, for a constant
y-error structure in the data: open points,a; filled points, K. Five-
point data sets were used to study theσy dependence; for then
dependence,σy was fixed at 0.025. Error bars represent 1σ, from 105

data sets for each displayed point. The curves illustrate LS fits toY )
cσy

2 (lower) andY ) c + d/n (upper). In the latter the intercept was
not statistically significant for either parameter.

Figure 7. Bias in binding constant parameter estimatesK (a) anda
(b), for an 8% proportionaly-error structure in the data: open points,
weights evaluated using theoreticaly values; filled circles, “observed”
y; filled squares, “calculated”y. Each displayed point represents the
results from 105 data sets. None of the intercepts in the upper plot is
statistically significant at the 2σ level.
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extending fromt ) 0 to 1.2. With constantσy ) 0.16 [cf.y(1.2)
) 0.301], the exact standard errors ina and Γ are 0.150 and
0.345, respectively. The histogrammed distributions resemble
those in Figures 3-5, with Γ being nonnormal beyond question
(ø2 ) 2.3× 103) andτ exhibiting reciprocal behavior, but with
a marginally normal (ø2 ) 42.5, ν ) 28). The a posteriori-
assessed residuals do satisfactorily obey thet-distribution (ν )
2) for a (ø2 ) 42.3, ν ) 44), but not forΓ (ø2 ) 520). As
before, theS/ν values areøν

2-distributed (ø2 ) 39.6,ν ) 46).
Both parameter estimates are biased, by+0.34(5)% for a,
+2.8(1)% forΓ.

Despite the sizable deviations from normality forΓ, the
implications for estimating confidence limits are nominal. The
standard error inΓ from the statistics of the MC calculations is
6.6% greater than the “exact” value. The 90% range from the
MC calculations is 0.48-1.67, while the “exact” treatment yields
1.0( 1.645× 0.3448, or 0.43-1.57. As was found for binding
constant fitting, the main difference is an asymmetry shift. Given
that both ranges exceed the parameter value, it seems unlikely
that any important decision will stand or fall based on these
differences.

To investigate the bias more thoroughly, a large number of
MC calculations were run for a basic five-point model, witha
) 1.5,Γ ) 1, andt values spaced evenly betweent ) 0 and 2.
Both constant (σy ) 0.10) and proportional (σy ) 4% ofy) error
structures were examined. For constant error, the results
resembled those already discussed, showing small but statisti-
cally significant bias in both estimators at finiten (e.g., forn )
5, +1.1(3)× 10-3 for a, +5.2(4)× 10-3 for Γ). However, both
biases were linear in 1/n and extrapolated to statistically
insignificant values at 1/n ) 0, meaning the estimators are
consistent. For proportional error, on the other hand, the problem
already encountered in the linear and binding constant models
arises again: For the purpose of calculating the weights,wi )
σyi

-2, the trueyi can never be known to the analyst, who must
choose between the observed and adjusted (calculated)yi for
this calculation. As Figure 8 illustrates, not only is there
significant bias in the pre-exponential estimator for both of these
choices, but it actually increases in magnitude with increasing
n. For theoretical weighting this bias is not significant at the
2σ level for anyn. Interestingly, forΓ (results not shown) none
of the three weighting choices for proportional error yields a
statistically significant bias for anyn.

Exponential Decay with Constant Background. When a
background is added to a declining exponential, the first
consequence is a reduction in the precision of the other two
parameters.6 For example, for the five-point model just dis-
cussed, with constantσy, addition of a background parameter
increases the errors ina and Γ by factors of 2.6 and 3.1,
respectively, independent of the actual magnitude of the
background. With proportional error, the magnitude of the
background matters: For no actual background in the data,σa

rises only slightly, butσΓ increases by a factor of 3.6, with a
constant background equalinga in magnitude, both errors
increase by another factor of∼4.

Other differences are revealed in the parameter distributions.
Figure 9 shows these for the same five-point model just
discussed, with addition of a background of magnitude 1.0, for
constant error,σy ) 0.04. None of the distributions comes close
to normal, butΓ is actually more nearly normal than for the
background-free case of comparableσΓ. The background
exhibits a negative skewness, a property not observed previously
in this study. Since the pre-exponential parameter shows the
opposite skewness, the distributions seem to be reflecting the
compensating nature of these parameters.

Parameter bias was investigated as a function ofn in the same
manner as before. Results are shown in Figure 10, the main
features of which can be summarized as follows. (1) Statistically
significant bias is present at alln in every case but onesΓ as
estimated using weights based on calculatedyi for proportional
error. (2) All Γ estimators are consistent. (3) All estimators are
consistent for constantσy and for proportional error with weights
based on the theoreticalyi. (4) The pre-exponential and
background estimators are inconsistent for proportional weight-
ing when the weights are assessed using either the observed or
the calculatedyi values.

The last of these results agrees with observations for all the
other models discussed earlier. For proportional error with
weights calculated using the theoreticalyi, the results initially
indicated inconsistency here too. With the inclusion of additional
MC results, the fits of bias as a function of 1/n supported the
addition of a quadratic term, and the intercepts then were within
1σ of zero. This treatment did not remove the apparent
inconsistency in the other two weightings for proportional error.
The nonzero intercepts for weights based on observedyi are
obvious in the plotted displays. Although not so obvious, the
same is true for weighting on the calculatedyi, where the

Figure 8. Bias in the pre-exponential factora (true value 1.5) as a
function of 1/n, from nonlinear LS fits to exponential decay data having
4% proportionaly-error and no background: open points, weights
evaluated using theoreticaly values; filled circles, “observed”y; filled
squares, “calculated”y. Each displayed point represents the results from
105 data sets. Error bars, where discernible, represent 1σ.

Figure 9. Histogrammed results from 105 fits of five-point data sets
for exponential decay with a background:y ) 1.5e-t + 1. The data
points were spread evenly over the ranget ) 0-2, with constant error,
σy ) 0.04. The quantityX ) (âi - âi,true)/σi, where the exact nonlinear
standard errors areσa ) 0.143 (points),σΓ ) 0.335 (solid curve), and
σb ) 0.149 (dashed curve).
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intercepts differ from zero by 6σ for the pre-exponential
parameter and 4.5σ for the background.

An error structure intermediate between the constant and
proportional errors is the Poisson structure,σyi

2 ∝ yi. This case
is of considerable practical importance, as many experimental
lifetime methods employ counters. Since the counts are usually
binned into time windows, the fit should employ an integral
model rather than a sampling one,6-8 i.e., the calculated value
for yi should be the integral of the exponential plus background
over the time window. However, in the large-n limit, this
distinction vanishes, and for consistency with the treatment of
constant and proportional errors, I have retained the same
sampling model. To achieve comparable parameter errors, I have
usedσyi ) 0.05xyi, which, for the same five-pointt-structure,
yields the exact errors,σa ) 0.1467,σΓ ) 0.2473,σb ) 0.1525.

The unavoidable ambiguity in assessing the weights that arose
for proportional error is present again for Poisson error. Not
surprisingly, the MC results for the bias and consistency of the
various estimators resemble the behaviors found for proportional
error. (1) For finiten, bias is present for all three ways of
assessing the weights, for all three parameters. (2) For smalln,
the bias is positive ina andΓ, negative in the backgroundb.
(3) All three estimators forΓ are consistent. (4) The infinite-n
bias (the inconsistency) inb is positive for weights based on
the calculatedyi (optimized within each fit), while that for
observedyi is negative and somewhat larger in magnitude. (5)

All three estimators give a bias of-4% for b at n ) 5; the
inconsistency for weights evaluated using observedyi is
-0.25(4)%. In one clear departure from the properties for
proportional error, all three estimators for the pre-exponential
parametera are statistically equivalent, exhibiting∼2.7% bias
for n ) 5 but no bias (hence consistency) in the infinite-n limit.

Conclusion

Using Monte Carlo calculations of typically 105 equivalent
data sets at a time, I have investigated the statistical properties
of the least-squares estimators for the parameters in three
important fit models: the straight-line linear fit, the rectangular
hyperbola used in binding constant determinations, and the
declining exponential. The results for the linear model confirm
expected behaviorsnormal, unbiased, minimum-variance esti-
mates when the data are normal and properly weighted. Under
these circumstances, thet-distribution also holds for the
parameter residuals divided by their a posteriori standard error
estimates, and the sum of weighted squared residuals (S) follows
theø2 distribution. If the data are not unbiased and normal, these
predictions fail, even for linear LS. For nonlinear LS, nonnormal
parameter distributions and bias are the rule rather than the
exception, even for unbiased, normal data. However, properly
weighted nonlinear fit models appear to yieldSvalues distrib-
uted asø2, and generally the a posteriori-assessed parameters
follow the t-distribution more closely than the a priori-assessed
parameters follow the Gaussian distribution.

For small data errorσy, the parameter bias scales with the
varianceσy

2. It is also very nearly linear in 1/n, wheren is the
number of points in the data set. This behavior permits
extrapolation to the infinite-n limit, where persistent bias
constitutes inconsistency. Using this empirical approach, I have
found that many of the estimators are inconsistent when the
data error structure isy-proportional or Poisson in nature. The
source of inconsistency is an inherent ambiguity in computing
the weights in these cases. No inconsistency is found when the
weights are assessed using the trueyi. But unfortunately the
experimentalist cannot know the true values so must use either
the observedyi or the adjusted values from the fit itself. Both
of these options yield inconsistency for many of the estimators
studied here. Fortunately, some of the most sought-after
parameters, the binding constantK and the decay rateΓ, are
consistent for both choices.

Monte Carlo calculations have been widely used in the past
to study bias in least squares. However, I am unaware of any
previous demonstration of inconsistency based on an MC
approach. It should be emphasized that my method is phenom-
enological, based as it is on the observed near-linear behavior
of the bias as a function of 1/n. However, the demonstration of
consistency via this approach in the cases where it is most
expected, for constant error structure, or when data having
proportional error are weighted using the theoreticalyi values,
lends credence to the findings of inconsistency in the other cases.
In the literature, there is at least one formal determination of
inconsistency in nonlinear LS; Bevington3 showed that in the
case of Poisson error structure there is a systematic difference
between the observed and calculated total signal count. From
his derivation, it can be seen that this bias will not vanish as
n f ∞. Technically, however, his demonstration was based on
a sampling fit model when it should have employed an integral
model. Still, based on the current results, his inconsistency is
expected to hold for the proper model as well.

It is worth emphasizing that the inconsistency here is truly
unavoidable from an experimental standpoint. In this respect it

Figure 10. Bias as a function of 1/n for nonlinear estimators of
exponential decay with a background,y ) ae-Γt + b. The data structure
was as described in Figure 9 and the text. Open circles,σy ) 0.04
(constant); others, proportional error, with weights calculated using
theoretical (open squares), observed (filled circles), and calculated (filled
squares)yi values. The proportional error was 4% in the first two cases
but was reduced to 2% for weighting on the calculatedyi values in
order to achieve 100% convergence in the MC calculations.
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differs from that which results from transforming the data via
inversion or logarithmic conversion,17 in which the transforma-
tion (1) produces “biased” data and (2) forces a change in the
weighting of the data, both of which can contribute to
inconsistency.27 The implications at largen are the same: At
some point the bias must exceed the parameter standard error.
For example, in the case of the simple linear fit discussed in
connection with Figure 1, for the slopeB with weights assessed
using the observedyi, that point comes atn ≈ 360 (see Figure
1b). Interestingly (and unique among the examples studied here),
for the intercept in this case there appears to be a sort of
“isobias” point for n ≈ 50, where further the bias appears to
vanish.

Many Monte Carlo studies have devoted attention to the
effects of improper weighting of the data, often in conjunction
with transformation to a “linear” (actually, straight-line) rela-
tionship. It has long been known that improper weighting, which
means any weighting other thanwi ∝ σi

-2 (eq 6), will fail to
yield minimum-variance estimates of the parameters.2,28,29It is
less recognized that in linear models with normal data, improper
weighting biases the error estimates butnot the parameter
estimates. In cases where the parameter estimates are inherently
biased, like nonlinear models or linear models with nonnormal
data, we can anticipate that improper weighting will exacerbate
the parameter bias in accord with the generalσy

2 dependence
of bias. In any event, it is to be emphasized that eqs 8 and 10
are completely unreliable for predicting parameter errors if the
data are not weighted in accord with eq 6.

The purpose for which MC calculations have been most
widely used in data analysis appears to be the one where they
are least needed. That is in experimental design, specifically
the study of the dependence of parameter error on the structure
of the data, and the estimation of parameter confidence limits.
For linear fit models with normal data, the parameter standard
errors are knownexactly from theory. For nonlinear models,
the errors do depend on the actual parameter values. However,
one can define an “exact” variance-covariance matrixV as
that obtained for a perfectly fitting function with known error
structure. In all the cases studied here, these exact standard errors
have agreed with the MC statistical estimates to within 10%,
even where the resulting errors were comparable in magnitude
to the parameters. Moreover, results such as those displayed in
Figure 2 for binding constant analysis can be routinely obtained
using packaged microcomputer programs (here, KaleidaGraph).
For example, most of the results in refs 8-16 can be obtained
this way. Of course the exact errors cannot predict asymmetry
in the parameter distributions. However, if the relative parameter
error is<10%, the analyst is probably safe in trusting the normal
approximation in assigning confidence limits. If>20% (and if
that is deemed acceptable), it is necessary to look more closely,
with an eye toward identifying especially nonnormal distribu-
tions, like those for parameters that are the reciprocals of normal
or near-normal quantities. In some such cases, MC calculations
may remain necessary for an adequate assessment, as they surely
will for estimating bias.

It follows from the foregoing that studies that claim gross
disparities between parametric (V-based) and MC estimates of

parameter errors are suspect. For the most part, MC practitioners
have not made such comparisons. However, in a few cases they
have. Notable in this regard are the studies of spectrophotometric
models of binding constants by Alper and Gelb,14,15which found
the MC confidence ranges to be 2-3 times narrower than
predicted by the parametricVs. Unlike all the cases examined
in the present work, their models involved error in bothx and
y. However, a Monte Carlo re-examination of these cases has
yielded much broader distributions for the parameters, with the
result that the parametric and MC error estimates agree within
the same∼10% guideline as found for all the cases treated in
the present paper.30
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