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The analysis of unbiased, normally distributed (Gaussian) data by linear least-squares yields unbiased, normally
distributed parameter estimates, whose standard errors are known exactly if the error structure of the data is
known. By contrast, nonlinear models generally yield nonnormal, biased parameter estimates, for which the
standard errors depend on the parameter values, hence vary among statistically equivalent data sets. These
properties of least squares are examined through Monte Carlo calculations on three important models: the
straight-line linear relationship, the rectangular hyperbola of relevance to the analysis of equilibrium binding
constant and MichaelisMenten kinetics data, and the declining exponential. Parameter distributions are
precisely characterized by processing® Hjuivalent data sets in a typical Monte Carlo run. The main
conclusions are as follows. (1) “Exact” parameter errors can be obtained easily from the vacievexeance

matrix for a perfectly fitting data set having known data error. (2) The “normal” interpretation of these exact
standard errors yields parameter confidence limits that are reliable to better than 10% if the relative standard
error is <%y, (3) Parameter bias scales with the data variaog@ &nd is very nearly linear in~%, wheren

is the number of data points. (4) With proportional error structusg${y;) and Poisson structures,f O y;),

there is an inherent and unavoidable ambiguity in assessing the weights; weights based on either observed or
calculatedy; lead to bias that persists as— o, or inconsistencyin many of the nonlinear estimators. (5)
Certain key parameters such as the binding constant and the exponential decay rate are consistent. (6) A
common source of highly asymmetric parameter distributions is a parameter which is the reciprocal of a
relatively uncertain normal or near-normal parameter; such reciprocal parameters have infinite variance, so
when uncertain byz20%, their signature in Monte Carlo calculations is unstable or divergent statistics.

Introduction Another important difference between linear and nonlinear
] _ LS is that the guarantees of no bias, minimum variance, and

The method of least squares (LS) is the default data analysisnormal parameter distributions that reassure practitioners of
tool in most of physical science. The statistical properties of |inear LS are absent from nonlinear B4 This has led many
linear least-squares estimators are well-kndwhThese include, {0 turn to Monte Carlo (MC) calculations for information about
importantly: If the data are distributed independently and these properties, especially the confidence intervals to be
normally (i.e., with the Gaussian distribution) about their true expected for the parameter estimates. Among recent works of
values, the estimators of the parameters willupbiasedand this sort are studies of exponential de€a¥pf the relationships
minimumearianceand will themselves be normally distributed y = a/(b + x) andy = ax/(b + x),° 3 and of several more
about their true values, with variances that can be calculatedspecialized function¥16 Such studies have been facilitated
directly from thematrix of the normal equationhe structure by the increasing availability in recent years of microcomputer
of the latter quantity depends only upon the distribution of values data analysis packages that include provision for fitting data to
for the independent variable(s) and therefore can be calculated‘user-defined” functions.

at the outset, permitting its use @xperimental design As already noted, a very important aspect of the method of
More often than not, the theoretical expressions that predict least squares is that it provides for built-in estimation of the
the relationships among the experimentally measured variablesstatistical errors in the parameters. This holds for both linear
are not linear in the desired parameters, necessitating analysieand nonlinear LS. Unfortunately the commercial data analysis
by nonlinearleast squares. Included among these cases are mosprograms do not always treat parameter errors with as much
of the situations in which the directly measured quantities are respect as they do the parameters themselves. A main purpose
transformed into the linear relatioyl,= A + BX, wherey' and of the present work is to review this feature of least squares
X are the transformed variables, and where the linear parametersind, through examples, to suggest that the built-in estimates of
A andB may depend in various ways on the original parameters, parameter error will usually suffice for the estimation of
aandb. From a computational standpoint, the chief differences confidence intervals. In fact, these “parametric” estimates may
between linear and nonlinear LS are the following: Linear LS be even more reliable than results obtained from the Monte
equations are, in principle, solvable in a single step and yield a Carlo approach used in many recent studies, including most of
single, minimum-variance solution; nonlinear problems must those in refs 816.
be solved iteratively and may converge on multiple solutions,  The question of bias in nonlinear LS is another topic that
or may not converge at all. has been addressed using Monte Carlo calculations. A statistical
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estimator is said to be biased if its expectation (or average) valueelementsXi; = x;, Xi> = X2, Xi3 = In(3u;). On the other hand,
does not equal the true value of the quantity being estimated.the fit becomes nonlinear if, for example, the first term is
If the bias persists in the limit — o, wheren is the number changed toda, or the third to 3 In€u). It also becomes nonlinear
of points in the data set, the estimatoirisonsistent For the if one or more of the “independent” variables is not error-free
purpose of investigating bias and consistency, it does appearand hence is treated (along wigh as a dependent variable.
that some form of MC approach is needed in most cases. The solution to the minimization problem in the linear case

However, one must be careful in choosing whfohm of the is the set of equations
parameter to study in this manner. In many of the cases of most . .
significant apparent bias, it turns out that the parameter under XWX =Ap=X"Wy 3)

study is actually theeciprocalof a normally or nearly normally
distributed parametért” The distribution function for such

reciprocals has Lorentzian tails; this means thattmance is b v ind d h h lation: |
not finite, which in turn means that the central limit theorem not be mutually independent, rat' er may show correlation; in
that case there are nonzero off-diagonal element #1820

does not apply and that, therefore, the parameter cannot be‘l’h HixA is th ious| tionedatrix of th |
estimated reliably by MC averaging. This can be a serious matter € matrixA 1S the previously mentionematrix of thé norma
equations Equations 3 are solved for the paramej@re.g.,

any time the standard error in the parameter is greatertf&n

its value but will be of little practical concern when the relative A 1uT
error is less tha/o. p=A"X Wy (4)

In the fOIlOWing, | first review the formalism of linear and where A1 represents the inverse . Know|edge of the

nonlinear least squares. Using MC calculations Sfelfuiivalent  parameters then permits calculation of the residddimm eq
data sets, | then benchmark the computational procedures on @ and thence o8, which in matrix form is

simple linear model before examining in detail two nonlinear
models, the functioy = ax/(b + X), of relevance for the analysis S=6"Wo (5)

of binding constant data, and the declining exponential, with

and without a background. For these nonlinear models, the Importantly, the variances in the parameters are the diagonal
parameter distributions are fundamentally nonnormal; however, elements of thevariance-covariance matrix V, which is

this nonnormality is generally negligible for the estimation of Proportional toA~* (see below).

parameter confidence intervals, if the special problems of For these equations to make sense, it is essential that the
reciprocal parameters are eliminated. Methods for recognizing measurementg; be drawn from parent distributions of finite
such reciprocal parameters are described. The nonlinear estimavariance. (This, for example, excludes Lorentzian parent
tors genera”y exhibit biasy and for some of the estimators in distributions.) If additionally they arenbiasedestimates of the
cases of nonconstant data error the bias persists—ag;l This true means, then the LS equations will y|6|d unbiased estimates
inconsistency can be a more serious concern. Another potentialof the parameters. If the parent distributions are normal, then
source of difficulty, nonnormality and bias in the data them- the parameter estimates will also be normally distributed. For
selves, is treated elsewh&rand will be considered only briefly ~ these to beninimumearianceestimates as well, it is necessary
here. If the data are not normally distributed about their true that the weights be taken as proportional to the inverse
values, then many of the predictions of the least-squares methodvariances,?
no longer hold, even for linear LS.

where the square weight matri%/ is, in this case, diagonal,
with n element3\; = w;. (More generally, the measurgdnay

w 0o 2 (6)

Theoretical Background N _ _
Under these conditions, least squares is alsaximum

Linear Least Squares. Matrix Formulation The least- |ikelihood method, which is reassuring, since maximum likeli-
squares equations are obtained by minimizing the sum of hood is the more fundamental statistical principle behind data
weighted squared residuass analysis in physical science. Note that it is possible to have LS

5 estimators that are unbiased but not minimum-variance, or
S=Zwy; (1) minimum-variance but not unbiased, or even unbiased and

] ) ] minimum variance, but nonnormal.

with respect to a set of adjustable paramegenshered; is the If the parent distributions for the data are normal and the

residual (observedcalculated mismatch) for thiéh point and proportionality constant in eq 6 is taken as 1.00, then the quantity
w; is its weight. For the purpose of the matrix notation that g is distributed as a2 variate forv = n — p degrees of

follows, § is a column vector containing elements, one for  freedomt 23 Correspondingly, the quantit@y follows the
each adjustable parameter. Thus, its transpose is a row vectoriequced chi-squaréy,? distribution, given by

BT = (b1, P2, ....Bp). The problem is a linear one if the measured

values of the dependent variablg ¢an be related to those of P(2) dz= oy exp(—vz/2) dz @
the independent variable(sk, (u, ...) and the adjustable
parameters through the matrix equafidh wherez = y,? andC is a normalization constant. It is useful to
note that ay? variate has a mean ofand a variance of13?!
y=Xp+9o 2 which means that,2 has a mean of unity and a variance?bf

h ds | i taininuel s (f In the limit of largev, P(z) becomes Gaussian.
wherey ando are column vectors containingelements (for A Priori and a Posteriori Weightinglf the proportionality

then measured values) and tdesign matrixX hasn rows and constant in eq 6 is taken as unity, then the proportionality

p C(_)Iumns, and depends only on the values of the independentmnstant connecting andA L is likewise unity, giving
variable(s) (assumed to be error-free) and not on the parameters

B or dependent variablgs For example, a fit toy = ax + b/x? vV =A1L (8)
+ ¢ In(3u) qualifies as a linear fit, with two independent
variables X, u), three adjustable parametegs b, ¢), and X If the parent data distributions are normal, the parameter
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distributions are also normal, as already noted. Then, thea spread in the results that might be obtained in a given
confidence intervals for the parameters can be evaluatedexperiment. But this is an unnecessary and improper spread if
straightforwardly from the standard error function tables. For the statistics of the; are truly known at the outset, and eq 8 is
example, the 95% confidence interval @nis £1.96V1,"2 Note the correct expression fof in this caseé%24 Then the value of
that this is always the case in MC calculations on linear fit x,2 (=Sv) returned by the fit can be used to assesgthainess
models with normally distributed errors, since thg are set of fit.

by the computationalist. Accordingly, in such calculations 95%  In the case of a posteriori assessment, the uncertairgy in

of the estimates oB; are expected withint1.96v1,12 of the does not greatly compromise the reliability of the parameter
true value. Conversely, a significant deviation from this predic- standard error estimates when the data set is large. For example,
tion indicates a flaw in the MC procedures. since the variance ig,? is 2/, the relative standard deviation

There is some confusion in the literature regarding these in s2 is 0.1 whenv = 200. This translates into a 5% relative

matters. In general, the off-diagonal elements \in (the  standard deviation irs, (v/1/(2v)) and hence also in all the
covariances) are nonzero, for both linear and nonlinear fits. This parameter standard error estimatesg).
means that the parametgtsare correlated However, each of What about the confidence limits on the parameters in the
the parameters in a linear fit is distributed normally about its case of a posteriori assessment? The need to rely upon the fit
true value, withoy = V;i'”, irrespective of its correlation with  jtself to estimates, means the parameter errors are no longer
the other parameters; and this goes &iir the parameters,  exact but are uncertain estimates. Accordingly, we must employ
including, for example, all four parameters in a fit to a cubic  the t-distribution to assess the parameter confidence limits.
polynomial. The correlation comes into play only when we ask yUnder the same conditions that yield a normal distribution for
for joint confidence intervals of two or more parameters, in the parameterf and scaleg,? distributions fors,2 and for the
which case the confidence bands become ellipsoids in two orv; from eq 10, the quantities3{ — i wue)/Vit2 belong to the
more dimensions. t-distribution forv degrees of freedorhwhich is given by

The use of eq 8 implies prior knowledge of the statistics of
they;. Accordingly, the weights obtained in this manner may f(t) dt = C'(1 + t¥) V2 gt (11)
be designated as a priori weights.(The term “internal
consistency” was attached to this case by Bfgad Deming?) with C' another normalizing constant. For smail the t-
Note that this a prioriV is also exact not an estimate. distribution is narrower in the peak than the Gaussian distribu-
Unfortunately, from the experimental side we never have perfect tion, with more extensive tails. However, thelistribution
a priori information about the statistics of the data. However, converges on the unit-variance normal distribution in the limit
there are cases, especially with extensive computer logging ofof largev, making the distinction between the two distributions
data, where the a priori information may be good enough to unimportant for large data sets (except in the prediction of
make eq 8 the proper choice and the resultingjrtually exact. outliers in the far wings).
A good example is data obtained using counting instruments, The distinction between the use of eq 8 Yoand the normal
which often follow Poisson statistics closely, so that the variance distribution for parameter confidence limits vs eq 10 and the
inyi (04,2 can be taken ag. (For largey; Poisson data are also  t-distribution is often blurred in the literature. For example, MC
very nearly Gaussian.) calculations start with assumed values for the uncertainties in

At the other extreme, we have the situation where nothing is the data; and if these errors are normally distributed and the
known in advance about the statistics of theexcept that we model is linear, the calculations will certainly yield normal
believe the parent distributions all to have the same variance, distributions for the parameters, if correctly done. Introduction
independent of;. In this case, the weights; can all be taken of a t-distribution-based enlarging factor for the confidence
to be the same constant, which without loss of generality we limits on the parameters is thus a sort of “apples vs oranges”
can take to be 1.00. This is the case of unweighted least squaresprocedure, in that it implicitly assumes that the data analyst

The variance iry is then estimated from the fit itself as will be working with similar data but without the benefit of
any knowledge of the quality of those data.
) ) zaiz S The structure o is such that it scales with,? and with
o ~§ = n=p = > 9) 1/n. The latter, for example, means that the parameter standard
errors /i do correctly go asi %2, all other things being

which is recognized as the usual expression for estimating a®dual- This means that they are to be interpreted in the same
variance by sampling. The use of eq 9 represents an a posterior’anner as the standard deviation in the mean in the case of a
assessment of the varianceyin(This was designated “external ~ Simple average. (One can readily verify that, for a fit of data to

consistency” by Birg® and Deming3) The variance-covari- y = &, the equations do yield fas, the usual expressions for
ance matrix now becomes the standard deviation in the mean.)

Intermediate SituationsSometimes one has a priori informa-
tion about therelative variation of oy, with y; but not a good
handle on theabsoluteoy,. For example, data might be read
from a logarithmic scale, or transformed in some way to simplify
Under the same conditions as stated before s i, distributed the LS analysis. As a specific example of the latter, data might
as a scalegi? variate. This means, for example, if tgé values be fitted toy = ax + bx? by first dividing by x to yieldy =
from a Monte Carlo treatment of unweighted LS are divided y/x, then fitting toy’ = a + bx. If the originaly; have constant
by the true values,? used in the MC calculations, the resulting  standard deviationy, then simple error propagation (wikrstill

v=-A" (10)

ratios are distributed in accord with eq 7 fgr. treated as error-free) shows that the standard deviations in the
Inclusion of the factoSv in the definition ofV in the case yi' values aresy/x;, meaning the weighte; are [ x2.
of a priori weighting would be equivalent to scalivgby y,2 Clearly, a weighted fit is called for in the latter “straight-

While this does not affect the statistical average of the estimatedline” analysis; neglect of the now-unequal weighting of the
variances (since the average valug gfis 1), it does introduce  dependent variable will fail to yield the desired minimum-
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variance estimates of the parameters (though will still produce (12) replaced by-Fo, where the subscript indicates that fhe
unbiased estimates in this case). A check will show that the values are calculated using the current valysof the
weighted fit toy’ = a + bx yields a set of equations (egs 3) parameters.
identical to those for the unweighted fit yo= ax + bx2. This Regardless of how convergence is achieved, the variance
appears to be a general property of linear least-squares fits tocovariance matrix is again given by eq 8 in the case of a priori
alternative forms relatable by linear variable transformations weighting and eq 10 for a posteriori weighting, wik as
(which preserve the normal structure of the original data). Also, redefined just below eq 13. However, there is an important
the results for botj# andV (through eq 10) are independent of distinction betweeW in the general nonlinear case vs the linear
arbitrary scale factors in the weights. If the latter are taken as case: The matrixA now contains a dependence on the
simply w; = x2, thenSv (with Sgiven by eq 1 or 5) willbe an  parameters. Also, in general there is no need to distinguish
estimate ofg,?. Since this is an a posteriori assessment, the between dependent and independent variables in nonlinear
t-distribution should be used to obtain the confidence limits on fitting, as all variables may be taken to be uncerfdim that
the parameters. caseA may also depend on the values of all the variables, not
Another situation is the case where data come from two or just the (previously) independent variables. Thus, even in the
more parent distributions of differingy, but again known in case of a priori weightingy from eq 8 will vary from data set
only a relative sense. As before, the results of the calculationsto data set. However, one can extract estimate¥ dfom a
are independent of an arbitrary scale factor in the weights. perfectly fitting theoretical curve and use thisin the same
However, to obtain meaningful estimates of the parent variances,fashion as in the case of linear fittifdn discussions below, |
it is customary to designate one subset as reference and assigwill refer to thisV as the “exact” nonlineay.
w; = 1 for these data, with all other weights takensag/s? This ability to predict nonlinear parameter variances at the
(hence the need for knowledge of the relative precisions). Then, outset appears not to be fully appreciated. While it is true that
the quantitySv (=s.f) obtained from the fit is more properly  the parameter distributions in nonlinear fitting are generally not
referred to as the “estimated variance for data of unit weight,” normal, in many situations they are close enough thereto to
and the estimated variance for a general point in the data set ispermit estimation of confidence intervals in this a priori fashion
then se/wi. with a reliability that exceeds that achievable in typical Monte
A cautionary note is in order for users of commercial data Carlo calculations. This is because the MC variance estimates
analysis programs. Those programs which do provide estimatesare subject to the previously noted statistics gf gariate, which
of the parameter errors do not always make clear which means for a 1000-set MC calculation a relative standard
equation, (8) or (10), is being used. For example, the program deviation of about 4.5% in the variances, or half that in the
KaleidaGraph (Synergy Software) uses (10) in unweighted fits standard errors. And many published studies have employed
to user-defined functions, but (8) in all weighted fits. This means far fewer than 1000 data sets, with concomitant loss in error
that in cases such as those just discussed, where the weightgrecision asN=1/2
are known in only a relative sense, the user must scale the Error Propagation. One property of linear fitting is par-
parameter error estimates by the factor}%7 to obtain the ticularly appealing: Provided the adjustable parameters are truly
correct a posteriori values. (In the KaleidaGraph program the overdetermined by the data at hand, one is assured of a
quantitySis called “Chisg” in the output box but is a scalgtl numerical solution to the problem. This does not hold for
variate except in cases where the inputalues are valid inan  nonlinear fitting, in which a poor choice of initial parameter
absolute sense.) estimateg@, can lead to divergence or slow convergence. Thus,
Nonlinear Least Squares.In nonlinear fitting the quantity  there are times when a transformation to a linear form is a
minimized is againS, and the least-squares equations take a practical convenience. However, in such cases one must take
form very similar to eq 3 but must be solved iteratively. The care in estimating the errors in the desired (nonlinear) param-
search for the minimum i§ can be carried out in a number of  eters, because the simple rules for error propagation do not
different ways3* but sufficiently near this minimum, the apply.

correctionsAp to the current valueg, of the parameters can For example, suppose the data are to be fittegtol/a +
be evaluated froft6.23 bx/a. This is a nonlinear fit, and if pursued as such will yield
proper estimates of,2 and 0,2 as the appropriate diagonal

XTWXAB = AAB = X"Wo (12) elements o. Alternatively, one might choose to fit tp= A

+ Bx, which is linear and with all the usual assumptions will
yield normally distributed estimates &f andB. But A andB
B.=PB,+ A (13) are correlated parameters, so the calculation of the estimated

error in any functionf of A and B must employ the full

The quantitiedV ando have the same meaning as before, but expressiors;!8:23:25

the elements oK are X; = (9Fi/dp;), evaluated ax using the 5 T

current valueg, of the parameters. The functidhexpresses §°=9Vg (15)

the relations among the variables and parameters in such a way . .

that a perfect fit yields; = 0 for all i. For the commonly N Which the elements of are gi = 4f/gfi, and V is the

occurring case whengcan be expressed as an explicit function Variance-covariance matrix obtained from the linear fit £o

leading to improved values,

of x. F takes the form and B. In this casea is a function ofA alone, and the usual
' rules of error propagation apply. Howevérjs a function of
Fi = YeadX) — ¥, = —96; (14) both A andB (b = B/A), so the full expression must be used.

One can verify that the estimates@f andoy? obtained from
In the case of a linear fit, starting wijy = 0, these relations  0a? andog? using eq 15 are identical to those obtained directly
yield for 81 equations identical to eqs 3 and 4 Br In the from the nonlineal . Also, for any given data set, the nonlinear
more general case wheyeannot be written explicitly in terms  fit will yield a andb values identical to those obtained from
of the other variables, these equations still hold, but \ith the linear estimates @& andB. On the other hand, whereas the
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a priori values ofo,_f .3_1ndo.32 are constant (i.e., independent of X — X,0= qo,2 (19)
A andB), the a priori values of,2 and o,? depend explicitly
onaandb. For example, in the present casg = a%oa?, so in
MC calculations it will have the distribution a* = A~ (see
below). .

Derived Parameter Distributions. If we know the prob- ~ Computational Methods
ability distribution functionP(x), we can obtain the distribution
functionQ(u) for a second variable related tax by the function
u(x) usingt

according to which the bias scales as the variance.

The Monte Carlo calculations were carried out on a main-
frame computer (DEC AlphaServer 2100A 4/275) using pro-
grams coded in FORTRAN. The built-in random number
generator was used in most of the calculations, but with the
(16) additional “shuffle” of the RANO routine of Press et “al.
incorporated at times. The uniform random deviates were
converted to Gaussian using the BeMuller method* To
minimize postprocessing of the very large files that would
r’hormally be produced in a run of 16ata sets, the distributional
information was obtained by binning “on the fly.” The statistical
averages and higher moments were similarly computed by
running accumulation. For the linear and near-linear models on
five-point data sets, a typical run of 18ets required only-1
s of CPU time; this increased to several minutes for 60
point sets on some of the nonlinear models.

The statistics for the various quantities from the MC
calculations (including the Gaussian random deviates them-
selves) were calculated by accumulating the appropriate sums
and then dividing by the number of sé¥sat the conclusion.
The variances were then calculated as, &f.= @20— [@X
(17) For assessing the significance of bias, it is necessary to know
the precision of the MC parameter estimates, which (at the
68.3% or b level, provided they are normal) is their estimated
standard errorsa/x/N. On the other hand, the sampling esti-
mates of the parameter variances are subject to the previously
mentioned properties of thg? distribution, forN degrees of
freedom in this case. Thus, their relative standard errors are

dx(u
Q) == Pix(]| )
where the sum is over all pointsthat solveu = u(x). In many
of the cases of interest in physical science, the mapping betwee
u andx is one-to-one, and the sum in (16) becomes a single
term. If P(X) is the normal distributionQ(u) will not be normal
unlessu(x) is linear inx.

Returning to the example in the previous section, suppose
that data are fitted toy = 1/a + bxa. Under the usually
stipulated premises, we know thatand B from a fit of the
same data ty = A + Bx are normally distributed. Applying
the two fits to a given data set yields= 1/A, so the distribution
of a is that of 1A. The mapping betweeA anda is one-to-
one, and eq 16 yields

whereAy is the true value oA andC is a normalizing constant.
This function has Lorentzian wings; therefotlee variance of
a is infinite. (This may be seen also from? = [A 21— [A 13
evaluated using(A).)

From a practical standpoint, the infinite varianceaofnay

—-1/2
not be a problem ifoa/A is sufficiently small. Thena is @N) . -
approximately normal abouy = 1/Aq, With 0 = a0%0a, as The histogrammed data were analyzed by fitting to the
predicted from simple error propagation. For exampleaiA appropriate models using the user-defined curve-fitting function
= 1/5, the probability of a negative value @ is <2 x 107 in the KaleidaGraph microcomputer program. The uncertainties

Thus, in Monte Carlo calculations, the chances of hitting a value I" the binned values were taken as their square roots, in keeping
of A near zero are sufficiently small for nominal sample sizes with the P0|s§0n nature of the binning process. Bins containing
that the sampling statistics farmight appear normal or near- fewer than eight counts were normally omitted. _For the most
normal. On the other hand, when/A = Y/, the chances of  Part, t_he values were fitted simply as_sampled points. However,
such hits are large enough to destroy the sampling statistics forFechnlcaIIy the bin counts represent ln.tegrals_ over the specified
a, yielding large apparent biases#and poorly defined (and intervals. For thqz' dl'strlbutlons in particular, it was necessary
nonconvergent) estimates @f. Correspondingly, the sampling {0 @pproximate thls |nteg|_ral more accurately by _breakm_g _each
estimates ofa o not converge, since the central limit theorem Pinning interval into subintervals (usually 10) in the fitting
does not apply, even thoughlis mathematically defined in ~ function.
this case.

These considerations apply in similar fashion to dathat Results and Discussion
are normally distributed about their true values but are trans- i .
formed nonlinearly, e.g., by inversion or logarithmic conver- A Linear Model. To check out the computational procedures,
sion2” The transformed data are biased estimators of the original ! firSt conducted calculations for a straight-line linear mogel,

quantities, so that even a properly weighted linear LS fit may — A T Bx with A=1, B =5, and fivex values extending
yield biased estimates of the parametgrs from 1.1 to 12 (other values: 3.3, 5.5, 8.3). Some tests employed

From an empirical standpoint, slightly nonnormal distributions Constant uncertainty i but most used proportional uncertainty,

can often be represented adequately as skewed Gaussians, With oy = 0.04. These conditions were designed to make the
relative precision in the intercept much lower than that in the

(x— Xo)2 slop(_-:-,_to facilitate comparisons that migh'g _relate to the _relative
P(X) = Cf(x — x,) exp — — (18) precision. The results of these tests verified expectations for
o the case where all the usual assumptions are valid. (1) Unbiased,
finite-variance data, properly weighted, yielded unbiased pa-
where in simplest form the asymmetry functiffx — Xg) can rameter estimates, with variances given by the eXatq 8).
be taken as # q(x — Xg), with g an adjustable parameter. In  (2) Normally distributed data yielded normally distributed LS
cases of more extreme distortion, an extra termxir-(Xo)3 parameter estimates. (3) The parameter residuals divided by the

helps. With just the linear correction term the biairs corresponding a posteriori error estimates (from eq 10) were
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t-distributed, and the quantitieSv followed the reduceg;? T | T T
distribution for the appropriate number of degrees of freedom

v 1.0
If the usual assumptions are not valid, some of these
predictions fail. Perhaps the most important such failure 0.5
concerns the neglect of weights for data which should properly Bias (%)
be weighted (heteroscedastic data). If unweighted regression is 0.0
applied to such data, the parametric error estimates from eqs 8
and 10 arecompletely unreliablend may be either optimistic 0.5
or pessimistic as compared with the “true” values, which can
only be obtained from the MC calculations in this case. Although 1ok ~
the parameter estimates remain unbiased, their errors are always ' | | | |
larger than the values obtained with proper weighting (the 02F b . -
minimum-variance values). Also, ti#v values are no longer MR ¢ ¢
x? distributed, nor are the a posteriori-assessed parameters 0.1 7

t-distributed.

As an application of these results, consider a study published
in this journal by Gonalves et alkf These authors fitted reported
experimental rate constants and their errors to#na; + a)/T
+ agIn T, with T treated as error-free. While it is true that the 0oL 4
logarithmic conversion of the raw data introduces bias, the

effects of this on the parameters and their errors are nominal,  .o3F . , e e

provided the data are properly weighted for the log transforma- L L L L

0.0 ———o—o—"°— -
Bias (%)
-0.1

T
1

tion. The fit is a linear one, so with neglect of this data 0.00 0.05 0.10 0.15 0.20
transformation bias, the parameter estimates are normally o _ 1/'_‘
distributed, with errors given exactly by the a pridtj eq 8. Figure 1. Bias in linear LS estimates of intercefait(a) and slopeB

; ; : : (b), as a function of X. The linear modey = A + BxhadA = 1 and
MC calculations should validate this result and in fact do so, B = 5, with thex-structure described in the text, and ghealues were

whether one starts with a perfectly _fitting theoretical set of I_n given proportional, normally distributed errar,(= 0.04y). The open

k values or with the reported experimental values (Table 1 in points were obtained by evaluating the weights using the theorgtical
ref 16). On the other hand, the latter yielg,& value of 9.29, values, the solid circles using the “observegg'and the diamonds using
which means that the a posteriori error estimates (eq 10) are athe calculated; (optimized individually in each fit). Each point is the
factor of 3.05 larger than the a priori. This appears to be the result of 16fits; the error bars represent ind are too small to appear
source of the factor of 3 discrepancy reported by these authors" the lower plot. For the theoretical weighting, neither the intercept
f tri d MC statisti Incidentally. th | nor the slope is statistically significant at the Rvel for eitherA or

Or parametric ana statistics.Incidentally, the very large B; the bias is significant for alh in the other two cases.

2,2 value is an indicator of problems with the data or model or

both; inspection of a graphical display of the data suggests that
some of the lowF values may be erroneous.

Bias in Data and Weights.In the case of the linear model
with proportional uncertainty, being able to “play God” in the
MC calculations permitted proper weighting usiwg= 1/o;?
= (0.04y))~2, with y; being thetrue value ofy at x.. However,
in the real world we would not know the tryevalues so would
have to compute the weights either (1) using thsewved y
values or (2) using thealculated yatx. In the latter case, the
weights become a part of the adjustment process and the fit
therefore becomes nonlinear. Both choices result in biased
estimates of the parameters. Moreover, as shown in Figure 1, _aKx
the biases are very nearly linear im &hd extrapolate to nonzero y= 1+ Kx
values in the limiin — o, for both choices. Thus, the estimators
are inconsistent. Even with this bias and inconsistency, however,whereK is the binding constank the prepared concentration
the parameter distributions remain normal, at least for the of ligand, anda a scaling parameter. This expression assumes
precision obtained from £Gequivalent data sets. Also, tis the ligand concentration is in great excess (although this is not
distributions are adequately fitted by the redug@dunction necessary, since an exact treatment can be handled easily in
for v = 3; but interestingly, thépi/s; values do not follow the nonlinear analysis). Equation 20 can be recast as a straight-line
t-distribution forA and are borderlinedistributed for the slope  relationship a number of ways,of which I will consider only
B. (Since the relative error iA is much larger than that iB,
it is reasonable to conclude that thdistribution does not hold ol X A+Bx (21)
for either.) y aK a

For a givenn, the bias scales as,? as was alluded t0  |n both (20) and (21)x is customarily treated as error-free, and
connection with egs 18 and 19. This behavior is widely observed | will assume so also. Note that while the fit foand B via

for both linear and nonlinear fits and is illustrated further below. (21) is linear (though inherently “data biased” if thelata are
As was noted earlier, if the data that are fitted are themselvesnormal), the fit toa andK is not. However, for a given data

the nonlinear transforms of normally distributed quantities (e.g., set, the values oA and B returned by a linear fit will yield

reciprocals or logs), they become biased estimators of the trueexactly thea andK produced by a nonlinear fit, and the errors

data and yield nonnormal parameter estimates that are biased
for all n. Nevertheless, in the case of linear fits, the effect on
the error estimates is generally nominal32 for ~10% data
error) 1’

A Nonlinear Model: Binding Constant Data. Monte Carlo
methods have been employed to estimate parameter errors in a
number of recent studies of rectangularly hyperbolic data, of
relevance to the analysis of Michaelislenten kinetics and
binding constant dat®13 Such data can be expressed in various
ways, including (for binding constants)

(20)
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Figure 2. Relative standard errors i (open points)A (solid line),
anda (dashed), from fits of binding constant data (five points) to eqs
20 and 21 foroy, = 0.01 (a) andoy, = 0.04y (b). The calculations
employed eq 8 foW and perfectly fitting data having= 1. Note that

for this choice ofa, og = 0a.

in a andK can be correctly evaluated from thoseArand B
using eq 15. Thus, we anticipate that the not-quite-normal
(thanks to the inversion bias) distributions Afand B should
translate into near-normal distributions fmandK, as long as
both of these are determined with20% or better precision.
Accordingly, the predictions from egs 8 and 10 should suffice
for estimating the parameter errors, obviating MC calculations
for this purpose.

The only likely breakdown of the above predictions is the

situation where one or both parameters display grossly non-

Tellinghuisen

12000 T T T T
10000
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4000
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Figure 3. Histogrammed results fdf (filled points) andK™ = Kq4
from 10 fits to eq 20 of five-point data sets having true valaes 1,
K = 3500, gy 0.01, and thex-structure given in text. The
histogrammed quantity & = (8 — Buwud/os, with the true values being
3500 and 3500, ok = 855, andok, = 6.99 x 10°5. The smooth curve
is a Gaussian fitted to thkg distribution; it yieldedy? = 86.1 (30
points,v = 29).

error, becausé\ is precisely determined in this regime. For
constant errorga does increase with decreasiighowever A
remains precise to a point whekeitself is so uncertain as to
render its nonnormality a secondary concern. At lakgeon
the other hand, the error K is almost entirely due to the error
in A for both error structures. Thus, in this reginig, is the
statistically preferred quantity.

To clarify this last point, MC calculations were carried out
for 10P data sets having, = 0.01,a = 1, andK = 3500 (for
which the exact calculations yielek = 854.8). The statistics
on K from the MC calculations were so unstable as to be
worthless. (ForK = 4000 they always crashed the program
through overflows, due to a few very large estimates.)
However,Kq was well-behaved, with statistically insignificant
bias and a relative error in full agreement with the exact
predictions. The distributions df and Ky are illustrated in

normal behavior, such that knowledge of the variance alone doesrigyre 3. AlthoughKg is not normal, it is close enough thereto

not suffice to determine the confidence limits. In the mathemati-
cally similar case of vapor/solution equilibrium partitioning
data? the source of such failure is the occurrence of “reciprocal”
behaviort” For example, sinca = 1/B, a normally distributed

B leads to a significantly nonnormalif B (hencea) is relatively
imprecise (says/B > 1/5). Similarly, K = B/A, so if the intercept
A'is relatively impreciseK will display reciprocal behavior. In
this case, it may happen that its reciprokgl(the dissociation
constant) is a statistically better defined quantity. Then it is
necessary tha be relatively precise; however, imprecision in
B is relatively unimportant in its effect on the distribution of
K, as is imprecision irA for Kg.

to meet demands well beyond those of the proverbial “govern-
ment work”. The same cannot be said f which clearly
demonstrates reciprocal behavior. The distributionagfnot
shown), for whichoa/a = 0.0059, is much closer to normaf¥(

= 41.6 forv = 29).

Next consider the behavior of the binding constant parameters
in the more suitable operating regime near the middle of Figure
2. WhenK = 30, its exact relative standard error is 0.078 when
oy = 0.01. Yet Figures 4 and 5 show that (K)is clearly
nonnormal; (2) nor are its a posteriori-normalized residuals
t-distributed, though the agreement is closer in this case; and
(3) the deviations from both distributions increase with increas-

To further illustrate these points, Figure 2 shows the exact ing ¢, (and hence increasing« and o,). Similar behavior is

relative standard errors computed frK, andA from fits of

observed foa (not shown). The reciproc#ly (also not shown)

data to egs 20 and 21, for two different error structures, constantexhibits behavior comparable to that #6r On the other hand,
and proportional. For the purpose of these calculations, | adoptedS’y does satisfactorily follow the reducgédistribution. Despite

the x-structure used in a recent MC study of this probfem:

the substantial deviations from normality, the practical implica-

= 0.005, 0.02375, 0.0425, 0.06125, and 0.08. The calculationstions for confidence limits remain minor. For example, consider
can be conducted easily using some microcomputer data analysishe results fory, = 0.025, where the relative error iis 0.20.
programs; | used the KaleidaGraph program. The scaling The statistics from the MC calculations givg = 6.03, which

parameteawas held at 1.00. It is easy to show tlaatremains
constant whef is scaled, as long as, is similarly scaled, i.e.,
ok is independent o for fixed oy/a.

From Figure 2, we see that for a fixaestructure the relative
error inK rises in the extremes of small and largea well-
known result from many MC studies of this problem. At small
K, nonnormality oK should never be a problem for proportional

is ~3% greater than the exact value from the a pribieq 8).
(For comparison, the bias iK is +1.8%.) From the histo-
grammed data, the 90% range is 214..2, while the “exact”
treatment yields 30t 1.645 x 5.867, or 20.3-39.7, which
differs mainly by an asymmetry shift of1.4.

Given the asymmetry in the parameter distributions, it is not
surprising that the parameter estimates are also biased. Figure
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Figure 4. Histogrammed results fdt from 1 fits to eq 20 of five- Bias (%
point data sets having true values= 1, K = 30, andoy, = 0.01 (open : )
points) orgy = 0.025 (filled points). Thecstructure of the data is the 1.0
same as for Figure 3 (see text). The histogrammed quantity=s(X
— 30)/ok, with ox = 2.347 and 6.028, respectively. The smooth curve 05
is a Gaussian fitted to the open points. It yielgéd= 6.6 x 1%, while
a fit to the filled points gave? = 4.1 x 1C° 0.0 . ) |
"o 0.005 0.01 0.015 0.2 0.025 0.03
10000 T - , r , oy
Figure 6. Bias in binding constant parameter estimates, for a constant
8000 - y-error structure in the data: open poings,filled points, K. Five-
point data sets were used to study e dependence; for the
6000 dependencey, was fixed at 0.025. Error bars represent from 16
Count data sets for each displayed point. The curves illustrate LS fits=to
2 — .
coy? (lower) andY = ¢ + d/n (upper). In the latter the intercept was
4000 - not statistically significant for either parameter.
2000 - a ' ! T '
2.0 ~
0
-6 -4 -2 0 2 4 6 Bias(%) T
X
Figure 5. The same results as displayed in Figure 4, but histogrammed 1.0 1
as thet-variable, X= (K — 30)k«, with s< being the a posteriori
estimate obtained along witik from each fit. The fits to the - T
t-distribution (eq 11), shown for the open points, yielgée= 168 and
906. 0.0 E I I I
b

6 illustrates the dependence of the bias in both parameters on 1.0 =

oy and onn. (For the latter it is important to preserve the  piag(9) E i
x-structure of the data, which is accomplished by simply 0.0 i
doubling, tripling, etc. the number of points at eagh. At the '
precision of this study, the bias in both parameters vanishes as

n — o, meaning the estimators are consistent. If the error -1.0 |- .
structure is proportional rather than constant, we encounter the L L L L
same problems implementing the weighting as discussed earlier 0.00 0.05 0.10 0.15 0.20
in conjunction with Figure 1. Figure 7 illustrates the biases in 1/n

both parameters as functions onlfor weighting using the Figure 7. Bias in binding constant parameter estimatega) anda

theoreticaly values, the “observed” and the “calculated”, with ~ (b), for an 8% proportiona-error structure in the data: open points,

the last of these being a part of the optimization process for Welghts evaluated using theoretigalalues, filled circles, “observed

each fit. All threeK estimators appear to be consistent; however y; filled squares, "calculatedy. Each displayed point represents the
. . ' ' results from 10 data sets. None of the intercepts in the upper plot is

the twoa estimators that are actually available to the experi- ggistically significant at the@level.

mentalist are both inconsistent.

The Declining Exponential. Background-Free An expo-
nential decay without background can be linearized by loga- relatively uncertail’, I' is the statistically preferred parameter.

rithmic transformation. Let the fit relationship be This conclusion was reached also in a study of maximum
likelihood estimators for exponential decay.
y =aexp(TIt) = aexp(t/r) (22) Monte Carlo calculations suggest that neitheror I' from

nonlinear fits to (22) is normal, thoughis quite close under
Neglecting the data bias introduced through the (properly some circumstances. (Note that If is fixed rather than
weighted) log conversion, the fit to = In a — I't should adjustable, the fit is linear im and it becomes rigorously
yield normally distributed estimates of énandI". Accordingly, normal.) As an extreme example, MC calculations were done
the distribution of the lifetimea should follow eq 17, and for ~ for a model havinga = T" = 1, with four evenly spacetivalues
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Figure 8. Bias in the pre-exponential facter (true value 1.5) as a
function of 1h, from nonlinear LS fits to exponential decay data having
4% proportionaly-error and no background: open points, weights
evaluated using theoreticalalues; filled circles, “observedy, filled
squares, “calculated). Each displayed point represents the results from
1 data sets. Error bars, where discernible, represent 1

extending front = 0 to 1.2. With constant, = 0.16 [cf.y(1.2)
= 0.301], the exact standard errorsarandI" are 0.150 and
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Figure 9. Histogrammed results from 1@its of five-point data sets

for exponential decay with a backgroungl:= 1.5et + 1. The data

points were spread evenly over the ramge0—2, with constant error,

oy = 0.04. The quantitX = (8i — Biweloi, Where the exact nonlinear
standard errors ar@, = 0.143 (points)or = 0.335 (solid curve), and
op = 0.149 (dashed curve).

Exponential Decay with Constant Background/hen a
background is added to a declining exponential, the first
consequence is a reduction in the precision of the other two

0.345, respectively. The histogrammed distributions resemble parameter§.For example, for the five-point model just dis-

those in Figures-35, with T being nonnormal beyond question
(%> = 2.3 x 10°) andrt exhibiting reciprocal behavior, but with
a marginally normal 2 = 42.5,v = 28). The a posteriori-
assessed residuals do satisfactorily obeytthistribution ¢ =
2) for a (y? = 42.3,v = 44), but not forT" (2> = 520). As
before, theSv values arey,?-distributed {2 = 39.6,v = 46).
Both parameter estimates are biased, £§.34(5)% for a,
+2.8(1)% forT".

Despite the sizable deviations from normality fbr the
implications for estimating confidence limits are nominal. The
standard error ifi° from the statistics of the MC calculations is

cussed, with constant,, addition of a background parameter
increases the errors ia and I' by factors of 2.6 and 3.1,
respectively, independent of the actual magnitude of the
background. With proportional error, the magnitude of the
background matters: For no actual background in the data,
rises only slightly, bubr increases by a factor of 3.6, with a
constant background equaling in magnitude, both errors
increase by another factor of4.

Other differences are revealed in the parameter distributions.
Figure 9 shows these for the same five-point model just
discussed, with addition of a background of magnitude 1.0, for

6.6% greater than the “exact” value. The 90% range from the constant errorg, = 0.04. None of the distributions comes close

MC calculations is 0.481.67, while the “exact” treatment yields
1.0+ 1.645x 0.3448, or 0.431.57. As was found for binding

to normal, butl’ is actually more nearly normal than for the
background-free case of comparable. The background

constant fitting, the main difference is an asymmetry shift. Given exhibits a negative skewness, a property not observed previously
that both ranges exceed the parameter value, it seems unlikelyin this study. Since the pre-exponential parameter shows the

that any important decision will stand or fall based on these opposite skewness, the distributions seem to be reflecting the
differences. compensating nature of these parameters.

To investigate the bias more thoroughly, a large number of ~ Parameter bias was investigated as a functioninfthe same

MC calculations were run for a basic five-point model, wéth
= 1.5, = 1, andt values spaced evenly betweers 0 and 2.
Both constantdy, = 0.10) and proportionabf, = 4% ofy) error

manner as before. Results are shown in Figure 10, the main
features of which can be summarized as follows. (1) Statistically
significant bias is present at ailin every case but ornel” as

structures were examined. For constant error, the resultsestimated using weights based on calculatédr proportional
resembled those already discussed, showing small but statisti-error. (2) AllT" estimators are consistent. (3) All estimators are

cally significant bias in both estimators at finitge.g., forn =
5,+1.1(3)x 1073for a, +5.2(4) x 10-3for I'). However, both
biases were linear in d/and extrapolated to statistically
insignificant values at & = 0, meaning the estimators are

consistent for constaiat, and for proportional error with weights
based on the theoreticat. (4) The pre-exponential and
background estimators are inconsistent for proportional weight-
ing when the weights are assessed using either the observed or

consistent. For proportional error, on the other hand, the problemthe calculated;; values.

already encountered in the linear and binding constant models The last of these results agrees with observations for all the
arises again: For the purpose of calculating the weights; other models discussed earlier. For proportional error with
0yi~2, the truey; can never be known to the analyst, who must weights calculated using the theoretigalthe results initially
choose between the observed and adjusted (calculgtéol) indicated inconsistency here too. With the inclusion of additional
this calculation. As Figure 8 illustrates, not only is there MC results, the fits of bias as a function ofnlgupported the
significant bias in the pre-exponential estimator for both of these addition of a quadratic term, and the intercepts then were within
choices, but it actually increases in magnitude with increasing 1o of zero. This treatment did not remove the apparent
n. For theoretical weighting this bias is not significant at the inconsistency in the other two weightings for proportional error.
20 level for anyn. Interestingly, fod” (results not shown) none  The nonzero intercepts for weights based on obsewede

of the three weighting choices for proportional error yields a obvious in the plotted displays. Although not so obvious, the
statistically significant bias for ans. same is true for weighting on the calculatggd where the
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Figure 10. Bias as a function of & for nonlinear estimators of
exponential decay with a backgrouryds ae™* + b. The data structure
was as described in Figure 9 and the text. Open cirelgss 0.04
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(constant); others, proportional error, with weights calculated using
theoretical (open squares), observed (filled circles), and calculated (filled
squaresy; values. The proportional error was 4% in the first two cases

but was reduced to 2% for weighting on the calculayestalues in
order to achieve 100% convergence in the MC calculations.

intercepts differ from zero by & for the pre-exponential
parameter and 4dbfor the background.
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All three estimators give a bias 6f4% for b at n = 5; the
inconsistency for weights evaluated using obserygdis
—0.25(4)%. In one clear departure from the properties for
proportional error, all three estimators for the pre-exponential
parameten are statistically equivalent, exhibiting2.7% bias

for n= 5 but no bias (hence consistency) in the infimtémit.

Conclusion

Using Monte Carlo calculations of typically 1@quivalent
data sets at a time, | have investigated the statistical properties
of the least-squares estimators for the parameters in three
important fit models: the straight-line linear fit, the rectangular
hyperbola used in binding constant determinations, and the
declining exponential. The results for the linear model confirm
expected behaviefrnormal, unbiased, minimum-variance esti-
mates when the data are normal and properly weighted. Under
these circumstances, thedistribution also holds for the
parameter residuals divided by their a posteriori standard error
estimates, and the sum of weighted squared resid8gfsliows
they? distribution. If the data are not unbiased and normal, these
predictions fail, even for linear LS. For nonlinear LS, nonnormal
parameter distributions and bias are the rule rather than the
exception, even for unbiased, normal data. However, properly
weighted nonlinear fit models appear to yi@dalues distrib-
uted asy?, and generally the a posteriori-assessed parameters
follow the t-distribution more closely than the a priori-assessed
parameters follow the Gaussian distribution.

For small data errovy, the parameter bias scales with the
varianceo,?. It is also very nearly linear in &/ wheren is the
number of points in the data set. This behavior permits
extrapolation to the infinitex limit, where persistent bias
constitutes inconsistency. Using this empirical approach, | have
found that many of the estimators are inconsistent when the
data error structure ig-proportional or Poisson in nature. The
source of inconsistency is an inherent ambiguity in computing
the weights in these cases. No inconsistency is found when the
weights are assessed using the tyueBut unfortunately the
experimentalist cannot know the true values so must use either
the observed; or the adjusted values from the fit itself. Both
of these options yield inconsistency for many of the estimators

An error structure intermediate between the constant and studied here. Fortunately, some of the most sought-after

proportional errors is the Poisson structurg? O yi. This case

parameters, the binding constattand the decay ratE, are

is of considerable practical importance, as many experimental consistent for both choices.

lifetime methods employ counters. Since the counts are usually  Monte Carlo calculations have been widely used in the past
binned into time windows, the fit should employ an integral to study bias in least squares. However, | am unaware of any
model rather than a sampling ofi€.i.e., the calculated value  previous demonstration of inconsistency based on an MC
foryi should be the integral of the exponential plus background approach. It should be emphasized that my method is phenom-
over the time window. However, in the largetimit, this enological, based as it is on the observed near-linear behavior
distinction vanishes, and for consistency with the treatment of of the bias as a function of i/However, the demonstration of

constant and proportional errors, | have retained the sameconsistency via this approach in the cases where it is most
sampling model. To achieve comparable parameter errors, | haveexpected, for constant error structure, or when data having

usedoy; = 0.05,/y;, which, for the same five-poiritstructure,
yields the exact errorg,, = 0.1467,0r = 0.2473,0,, = 0.1525.

proportional error are weighted using the theoretigaialues,
lends credence to the findings of inconsistency in the other cases.

The unavoidable ambiguity in assessing the weights that aroseln the literature, there is at least one formal determination of
for proportional error is present again for Poisson error. Not inconsistency in nonlinear LS; Bevingtbshowed that in the
surprisingly, the MC results for the bias and consistency of the case of Poisson error structure there is a systematic difference
various estimators resemble the behaviors found for proportional between the observed and calculated total signal count. From

error. (1) For finiten, bias is present for all three ways of
assessing the weights, for all three parameters. (2) For simall
the bias is positive ira andT’, negative in the backgrourtl
(3) All three estimators fof" are consistent. (4) The infinite-
bias (the inconsistency) ih is positive for weights based on
the calculatedy; (optimized within each fit), while that for

his derivation, it can be seen that this bias will not vanish as
n— co. Technically, however, his demonstration was based on
a sampling fit model when it should have employed an integral
model. Still, based on the current results, his inconsistency is
expected to hold for the proper model as well.

It is worth emphasizing that the inconsistency here is truly

observedy; is negative and somewhat larger in magnitude. (5) unavoidable from an experimental standpoint. In this respect it
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differs from that which results from transforming the data via parameter errors are suspect. For the most part, MC practitioners
inversion or logarithmic conversidr,in which the transforma- have not made such comparisons. However, in a few cases they
tion (1) produces “biased” data and (2) forces a change in the have. Notable in this regard are the studies of spectrophotometric
weighting of the data, both of which can contribute to models of binding constants by Alper and GEB>which found
inconsistency’ The implications at large are the same: At  the MC confidence ranges to be-2 times narrower than
some point the bias must exceed the parameter standard errompredicted by the parametri¢s. Unlike all the cases examined
For example, in the case of the simple linear fit discussed in in the present work, their models involved error in batand
connection with Figure 1, for the slofewith weights assessed y. However, a Monte Carlo re-examination of these cases has
using the observey, that point comes at ~ 360 (see Figure  yielded much broader distributions for the parameters, with the
1b). Interestingly (and unique among the examples studied here)result that the parametric and MC error estimates agree within
for the intercept in this case there appears to be a sort ofthe same~10% guideline as found for all the cases treated in
“isobias” point forn ~ 50, where further the bias appears to the present papé?.

vanish.
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