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We present quantum mechanical and semiclassical calculations of Feshbach funnel resonances that correspond
to long-lived exciplexes in the A˜ 2B2 state of NaH2. These exciplexes decay to the ground state, X˜ 2A1, by
a surface crossing inC2V geometry. The quantum mechanical lifetimes and the branching probabilities for
competing decay mechanisms are computed for two different NaH2 potential energy matrices, and we explain
the results in terms of features of the potential energy matrices. We compare the quantum mechanical
calculations of the lifetimes and the average vibrational and rotational quantum numbers of the decay product,
H2, to two kinds of semiclassical trajectory calculations: the trajectory surface hopping method and the Ehrenfest
self-consistent potential method (also called the time-dependent self-consistent field method). The trajectory
surface hopping calculations use Tully’s fewest switches algorithm and two different prescriptions for adjusting
the momentum during a hop. Both the adiabatic and the diabatic representations are used for the trajectory
surface hopping calculations. We show that the diabatic surface hopping calculations agree better with the
quantum mechanical calculations than the adiabatic surface hopping calculations or the Ehrenfest calculations
do for one potential energy matrix, and the adiabatic surface hopping calculations agree best with the quantum
mechanical calculations for the other potential energy matrix. We test three criteria for predicting which
representation is most accurate for surface hopping calculations. We compare the ability of the semiclassical
methods to accurately reproduce the quantum mechanical trends between the two potential matrices, and we
review other recent comparisons of semiclassical and quantum mechanical calculations for a variety of potential
matrices. On the basis of the evidence so far accumulated, we conclude that for general three-dimensional
two-state systems, Tully’s fewest switches method is the most accurate semiclassical method currently available
if (i) one uses the nonadiabatic coupling vector as the hopping vector and (ii) one propagates the trajectories
in the representation that minimizes the number of surface hops.

1. Introduction

The radiationless decay of electronically excited molecules
is a very important process in photoexcited systems.1-5 It is
widely appreciated that radiationless transitions are promoted
by conical interactions and by the dynamical accessibility of
low-energy pathways leading to such intersections.6-8 In the
present paper we consider the decay of a very simple electroni-
cally excited system, namely the A˜ 2B2 state of NaH2, and the
effect of the accessibility of a conical intersection on its rate of
decay and the accompanying internal conversion of electronic
to vibrational-rotational-translational energy. In particular, we
consider two different approximate potential energy matrices
for this system, one9 of which has a conical intersection near
the minimum energy point of the A˜ 2B2 surface, and the other10

of which has a conical intersection that is 0.4 eV above the
minimum energy point. Although the latter potential energy
matrix is believed to be more accurate for this system, that is
not the most important issue for the present study. Rather, we
are interested in the effect that varying the potential energy
matrix has on the observables calculated by semiclassical

trajectory methods and on accurate quantal dynamics calcula-
tions. We ask, (1) What is the predicted effect of the variation
in potential matrices on the lifetime and energy disposal? (2)
Are the semiclassical predictions accurate for this effect? (3)
Independent of their ability to predict the trends, how accurate
are the semiclassical methods on an absolute basis for the
radiationless decay lifetime and the amount of vibrational,
rotational, and translational energy in the products?

We study two different semiclassical methods, trajectory
surface hopping11 and the Ehrenfest self-consistent-potential
method;12 the latter method is also called time-dependent self-
consistent field theory. We compare the predictions of these
semiclassical methods to accurate quantum results calculated
by the outgoing wave variational principle. This study comple-
ments four earlier studies13-16 of the accuracy (or inaccuracy)
of these semiclassical methods. The first two studies13,14 were
concerned with electronic to vibrational-rotational energy
transfer and bimolecular electronically nonadiabatic reactions
in three-dimensional atom-diatom collisions. The first study13

considered three systems involving conical intersections, includ-
ing the NaH2 system with the first of the potential energy
matrices studied here. The second study14 considered a system
without a conical intersection in which the gap between the
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ground and excited electronic states is 0.46 eV or greater for
all accessible geometries. The third study15 was concerned with
lifetimes and reactive branching ratios in unimolecular decay
of a collinear triatomic system with an even larger gap,∼1 eV.
The fourth study16 considered the unimolecular decay of a three-
dimensional triatomic system10 with a conical intersection that
is energetically inaccessible to many states in the exciplex well.
The first potential energy matrix of ref 11 and the potential
energy matrix of refs 10 and 16, both of which are approxima-
tions to the NaH2 system, are the ones we consider in the present
study. The current study extends the unimolecular decay
calculations to a system with a conical intersection that is
energetically accessible to all quasi-bound exciplex states, and
it allows us to examine the dependence of the dynamical results
on qualitative features of the potential energy matrices. The five
studies (refs 13-16 and the present work) still do not span all
qualitatively different varieties of systems with conical intersec-
tions, but they begin the process required to assemble a test set
wide enough to question the generality of one’s inferences. For
example, if a semiclassical method underestimates the lifetimes
for radiationless decay in a collinear system with a∼1 eV gap,
does it show the same deficiency for three-dimensional systems
with no gap?

Both the Ehrenfest method and Tully’s fewest switches
method have been applied to bound-state model systems17 for
which accurate quantum mechanical data were available. Both
types of trajectory methods were found to agree qualitatively
with the accurate quantum mechanical calculations. The system
under investigation here differs from these model surfaces,
however, in that the system is not fully bound (it can dissociate)
and in that the ground and excited-state potential surfaces we
consider have very different topologies from each other, as
discussed in section 2. In particular, whereas the excited state
has a potential energy well, the ground potential surface we
consider is repulsive in every coordinate except the H2

coordinate. The energy transfer process we consider is closer
to the O(1D) + N2(V,j) f O(3P) + N2(V′,j′) reaction studied
recently,18 in which the ground state is bound but in which the
excited state is repulsive. Surface hopping calculations were
reported for the NO2 system, but no accurate quantum dynamics
were available for comparison.

A general criterion for the accuracy of nonadiabatic trajectory
methods such as the Ehrenfest method and Tully’s fewest
switches method is that trajectories should follow similar paths
on either potential surface in regions where the coupling is
nonnegligible.19 In the current work, this criterion is not satisfied,
and it remains to be seen which, if either, of the two trajectory
methods works best in this case. Another general criterion for
the relative validity of the two semiclassical approaches is that
self-consistent potential methods such as the Ehrenfest method
work best for high-probability pathways and that trajectory
methods work best for smaller-probability pathways.20 One of
the two potential matrices we investigate has small electronic
couplings, while the other has a coupling that is much larger.
In some sense then, the quenching products that we are
examining are the dominant pathway for one potential matrix
but represent a smaller-probability pathway for the other. This
paper will test the Ehrenfest method and compare it to trajectory
surface hopping for these cases.

A central issue in this paper, which has not been studied as
much as it deserves, is a comparison of the relative accuracy of
the adiabatic and diabatic representations for trajectory surface
hopping calculations. In both representations the potential energy
surfaces are given by the diagonal elements of the potential

matrix. In the adiabatic approximation the potential matrix is
diagonal, and the surfaces are coupled by the nuclear momentum
(from the kinetic energy operator), whereas in the diabatic
representation the potential matrix is nondiagonal and the
coupling is provided by the off-diagonal potential. In an exact
treatment there would also be momentum coupling in a diabatic
representation, but the present paper is based on the invariant-
space approximation21 in which momentum coupling is zero in
a diabatic representation.

We test three different criteria for predicting which repre-
sentation is most accurate for trajectory surface hopping
calculations. The first criterion requires trajectory surface
hopping calculations in both representations. The second
criterion that we test requires only the potential energy matrix
and does not require any dynamical information. The third
criterion requires accurate quantum mechanical results for both
the fully coupled potential matrix and the uncoupled diabatic
potential surfaces and uncoupled adiabatic potential surfaces.
These three criteria will be presented in section 4.

Section 2 compares some characteristics of the potential
energy matrices, such as energies and geometries at the
asymptotes and the exciplex minimum and the seam of conical
intersections. The semiclassical methods11,12 under study are
briefly summarized in section 3, along with the methods22-24

used for accurate quantum calculations. Section 4 presents
criteria for deciding which representation is best for surface
hopping. Results are presented in section 5 and are discussed
in section 6. Conclusions are summarized in section 7.

2. System

The process we consider is electronic predissociation, i.e.,
the unimolecular decay of an electronically excited-state
complex to ground-electronic-state fragments, in particular

where the left-hand side describes an exciplex,κ is the initial
electronic state (κ ) 1 is the electronic ground state, X˜ , and
κ ) 2 is the first excited state, A˜ , of 2B2 symmetry forC2V
geometries and2A′ symmetry forCs geometries),Vm (m ) 1,
2, or 3) are the vibrational quantum numbers for the exciplex,
and V′ and j′ are the final vibrational and rotational quantum
numbers of H2. The Ã state corresponds formally to Na(3p)
complexed to H2, whereas the repulsive X˜ state corresponds to
Na(3s)+ H2. Note thatV1 andV2 are vibrations of a1 symmetry,
andV3 is a vibration of b2 symmetry. Thus,V1 is an H2 stretch
(which may also be thought of as a symmetric stretch of
H-Na-H), V2 is a stretch of the coordinate from Na to H2

(which may also be though of as a bend of H-Na-H), andV3

is an angular motion in the Jacobi coordinateø between the
H-H axis and the Na-to-H2 vector (which may also be thought
of as an asymmetric stretch of H-Na-H). We consider only
states with zero total angular momentum. In this work, we
consistently neglect spin-orbit coupling and electronic angular
momentum in both quantum and semiclassical dynamics
calculations, and the form of the off-diagonal potential is chosen
accordingly.10

We use two qualitatively different potential energy matrices
for our calculations. The first potential energy matrix we
consider is called potential matrix 5F.9 The minimum potential
energy point on the A˜ 2B2 surface is located at an H2 bond length
of about 2.0a0. The depth of the well,De, relative to the Na-
(3p)+ H2 asymptote is 0.44 eV. Adding zero point energy yields
a ground-state dissociation energy,D0, of 0.48 eV. The conical
intersection occurs very near the location of the minimum energy

NaH2(κ)2,V1,V2,V3) f Na(3s)+ H2(V′,j′) (1)

218 J. Phys. Chem. A, Vol. 104, No. 2, 2000 Hack et al.



point of the exciplex. The second potential energy matrix we
consider is called potential matrix 6.10 This potential matrix has
De ) 0.40 eV andD0 ) 0.34 eV. The minimum potential energy
point on the Ã2B2 surface of this potential matrix is located at
values of the H2 bond length only slightly larger than the
equilibrium value of separated H2. In this case, the conical
intersection occurs at higher energies; the minimum energy
along the conical intersection is roughly equal to the energy of
the Na(3p)+ H2 asymptote. A more detailed comparison is
provided in Table 1.

Contour plots of the upper diabatic surfaces of the two
potential energy matrices are shown in Figures 1 and 2. In these
figures and elsewhere in this paper,RNaH2 is the distance between
Na and the center of mass of H2 andrH2 is the H2 bond length.
It can be seen that the geometry of the equilibrium structure of
the exciplex provides the single largest difference between the
two diabatic surfaces. The location of the line of conical
intersections is similar for both surfaces, but it occurs at higher
energies for potential matrix 6 than for potential matrix 5F
because of the difference in the geometry and shape of the
exciplex.

The vibrational quantum numbers of each of the three
exciplex modes, listed together, are used as a shorthand notation
throughout this paper. For example, 000 refers to lowest energy
exciplex state, and 100 refers to the state that has one quanta
of energy in the H2 vibrational mode.

3. Methods

3.1. Quantum Dynamics.We carried out accurate quantum
scattering calculations in six dimensions (three vibrational
internal coordinates and three rotational coordinates). Details

of the quantum mechanical scattering algorithm have been
presented elsewhere.22,23 Note that the fully coupled quantum
mechanical results are independent of whether they are per-
formed in an adiabatic or diabatic representation. (In general,
one might expect differences due to approximations in the
transformations or couplings; however, our coupled surfaces are
both defined in the diabatic representation andsfor the con-
verged calculationssused in the diabatic representation, so there
are no approximations, and the two representations are truly
equivalent.)

We used the scattering calculations to locate and characterize
predissociating states, which show up as Feshbach reso-
nances.24,25 A complete description of the procedure used to
obtain the quantum mechanical observables has been presented
recently,16 and details have been presented in other places as
well.22,24

We also performed variational bound-state calculations. Such
calculations were performed for the uncoupled upper adiabatic
and the upper diabatic potential energy surfaces of NaH2

potential matrix 5F and of NaH2 potential matrix 6. These
calculations included all potential energy couplings between the
nuclear coordinates, and they used the exact kinetic energy
operator. The program used is described elsewhere.26

3.2. Semiclassical Methods.The semiclassical trajectory
methods considered here are both trajectory-based methods
including the full dimensionality of the system. In particular,
we consider Tully’s fewest switches11 (TFS) version of trajectory
surface hopping, and we consider the Ehrenfest self-consistent
potential12 (ESCP) method. The latter is also called the time-
dependent self-consistent field (TDSCF) method. In this section
we review the essentials of both kinds of methods and compare
them.

Since motion of the overall center of mass is irrelevant, all
trajectories are six-dimensional. In both of the semiclassical
trajectory methods that we consider, a distinction is made
between quantum variables,r , and classical variables,R, where
R is the six-dimensional vector of nuclear coordinates. The
classical variables are assumed to be described by an ensemble
of trajectoriesR(t), and the time-dependent Schro¨dinger equation
is written

TABLE 1: Comparison of Potential Matrix 6 to Potential
Matrix 5F a

potential matrix 5F potential matrix 6

minimum energy RNa-H2 3.72 3.92
point on the Ã2B2 rH2 1.98 1.50
surface E 1.667 (-0.437)b 1.700 (-0.404)b

minimum energy RNa-H2 3.70 3.59
point of the conical rH2 2.01 2.17
intersection E 1.668 (-0.436)b 2.064 (-0.040)b

a Zero of energy corresponds to Na infinitely far from H2 on the X̃
2A1surface. All distances are ina0; all energies are in eV. The Na
excitation energy is 2.104 eV.b Values in parentheses are relative to
the Ã 2B2 asymptote, whereasE is relative to the X˜ 2A1 asymptote.

Figure 1. Potential energy contours of the upper diabatic surface in
potential matrix 5F forC2V geometries. The contours shown are 2.0,
2.5, ..., 5.0 eV. The dashed line shows the line of conical intersections.
The “X” shows the location of the lowest energy point on this surface.

Figure 2. Potential energy contours of the upper diabatic surface in
potential matrix 6 forC2V geometries. The dashed line shows the line
of conical intersections. The “X” shows the location of the lowest
energy point on this surface.

Hel(r ;R(t)) Φ(R(t);r ) ) ip
∂

∂t
Φ(R(t);r ) (2)
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where Hel is the electronic Hamiltonian andΦ is the wave
function for the quantum variabler and depends ont through
the trajectoryR(t). The electronic wave functionΦ is expanded
in terms of basis functions{φj}:

where the coefficients{cj} are complex, the phase factorsη1(t)
andη2(t) are given by

and

and we have limited our discussion to two-state systems.
Equation 5 defines a potential energy matrix. Substituting eq 3
into eq 2, multiplying from the left byφ1 or φ2, and integrating
give

and

where

and∇R is the gradient with respect to the nuclear coordinates.
Note that adiabatic basis functions are only coupled by off-
diagonal derivative matrix elements, defined in eq 8, while true
diabatic basis functions would only be coupled by off-diagonal
potential matrix elements. The calculation of thed matrix from
the potentials defined in eq 8 was described previously.16

Equations 6 and 7 describe the evolution of the electronic
wave functionΦ along a trajectoryR(t). The coefficientsc1(t)
andc2(t) are the probability amplitudes for finding the system
in stateφ1 or φ2, respectively, if a measurement is made at time
t. In both the TFS and ESCP methods, the system is assumed
to be described by an ensemble of trajectories generated by
averaging over quasiclassical27,28 initial conditions. Both meth-
ods make the independent trajectory assumption; i.e., the
trajectories constituting the ensemble are decoupled from one
another. The essential difference between the ESCP method and
trajectory surface hopping methods such as the TFS method is
the way in which the trajectoryR(t) depends on the quantal
wave functionΦ.

In the ESCP method, the trajectoryR(t) is propagated on a
potential energy surface given by

Thus, as the basis function coefficients evolve with time, the
potential changes accordingly. If eitherc1(t) or c2(t) is equal to
zero, then the potential energy given by eq 9 is identical to one
of the diagonal potential energy matrix elements. In general,
however, the potential energy experienced by an Ehrenfest
trajectory will include contributions from the diagonal and off-

diagonal matrix elements. The meaning and physicality of this
surface have been discussed elsewhere.11,29

In the TFS method, trajectories are propagated on the diagonal
potential matrix elements. The number of trajectories that
propagate on a given surface is proportional to the probability
for finding the system in stateφ1 or stateφ2. As the probabilities
change over time, the correct surface populations are maintained
by allowing some trajectories to switch surfaces. The hopping
scheme in which the smallest number of trajectories switch
surfaces over a time interval while satisfying the constraint that
the correct surface populations be maintained is called Tully’s
fewest switches algorithm.11

A critical element in trajectory surface hopping calculations
is the choice of hopping vector, which is a unit vector along
whose direction the nuclear momentum is incremented or
decremented whenever a hop occurs. In this paper, we performed
the TFS calculations with two different hopping vectors. These
vectors have been described in a recent paper,16 they are the
nonadiabatic coupling vector (d)30,31and the rotatedd vector.16

In that work we discussed the use of two additional vectors,
the gradient of the difference of the adiabatic energy (g)32,33

and the rotatedg vector.16 We found, using potential matrix 6,
that thed vector calculations agreed with the accurate quantum
calculations better than theg vector calculations did both in
the trends of final product distributions as functions of the energy
and in the absolute errors of the final product distributions. We
also mention that earlier calculations for potential matrix 5F
showed no notable difference between theg and thed vectors.13

For these reasons, we omit calculations with theg and rotated
g vectors in the present work, and we present results for thed
and rotatedd vectors only.

Traditionally, trajectory surface hopping calculations are
carried out in the adiabatic representation, but in this study we
performed the TFS calculations in both the diabatic and the
adiabatic representations. We note that use of the nonadiabatic
coupling vectord may seem more natural for calculations in
the adiabatic representation, but it may be calculated uniquely
from diabatic information,16 and there is no inconsistency in
using it for the hopping vector in either representation. Whereas
the surface hopping calculations depend on the choice of
electronic representation (adiabatic or diabatic), the ESCP
method is invariant to this choice.12

In all of our TFS calculations, we employ the adaptive
numerical integration scheme discussed in a recent paper16 to
ensure that our TFS calculations are adequately converged with
respect to the integration step size.

The methods used for final state analysis have been described
elsewhere,13,16and so we only briefly review them here. In the
histogram method,13,28 the final continuous classical quantities
(such as the vibrational and rotational quantum numbers) are
rounded to the nearest discrete quantum mechanical values. In
the linear smooth sampling (LSS)13,28,34-36 and quadratic smooth
sampling (QSS)13,37methods, the classical quantity contributes
to the two nearest quantum numbers that bracket it. In the LSS
method the farther quantum number is weighted by the distance
of the classical value from the nearest quantum number, and
the nearest quantum number is weighted by the distance of the
classical value from the farther quantum number. In the QSS
method, the weight of the farther quantum number is given by
the square of the distance of the classical value from the nearest
quantum number, and the weight of the nearest quantum number
is chosen such that the two weights sum to unity (in the case
where the quantum numbers are restricted to even or odd values,
the weights in both the LSS and QSS methods are appropriately

Φ(R(t);r ) ) c1(t) η1(t) φ1(r ;R(t)) + c2(t) η2(t) φ2(r ;R(t))
(3)

ηi(t) ) exp(- i
p
∫tVii(R(t)) dt) (4)

Vkj(R) ) 〈φk(r ;R)|Hel(r ;R(t))|φj(r;R)〉 (5)

c̆1(t) ) -c2(t)[ i
p
V12(R(t)) + R4 ‚d12(R(t))]η1(t)

η2(t)
(6)

c̆2(t) ) c1(t)[ i
p
V21(R(t)) + R4 ‚d21(R(t))]η2(t)

η1(t)
(7)

dkj(R) ) 〈φk(r ;R)|∇Rφj(r ;R)〉 (8)

V(R) ) 〈Φ(r ;R)|Hel(r ;R)|Φ(r ;R)〉 (9)
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normalized). Note that in the Ehrenfest method the electronic
quantum number is in general noninteger and must be assigned
according to one of these three schemes along with the rotational
and vibrational quantum numbers. Probably for this reason, the
results of the Ehrenfest method depend significantly on whether
histograming, LSS, or QSS is used to analyze the final state.
The TFS methods, on the other hand, give very similar results
with all three analysis methods for the present system. Therefore,
we present only the histogram results for the TFS methods, and
we present results from all these methods for the Ehrenfest
calculations.

Analytical derivatives for NaH2 potential matrix 6 were
calculated using theADIFOR38 program, while analytical deriva-
tives for NaH2 potential matrix 5F were derived by hand.

4. Criteria for Surface Hopping

We consider three possible criteria for deciding which
representation is best for surface hopping calculations.

4.1. Hop Minimization. Our first criterion for which
representation should be used for the surface hopping calcula-
tions is that it is the representation that leads to the smallest
number of surface hops. This criterion has been suggested by
Tully.39 We label the representation in which the fewest number
of surface hops occurs “hm” or the hop-minimizing representa-
tion.

4.2. Volume of Surface Coupling. We calculated the
nonadiabatic coupling and the diabatic coupling at a wide range
of geometries in order to compare the two potential matrices to
one another. In particular, we define the following phase space
volumes for each potential matrix:

and

whereE is the total energy,V21(R) is derived from eq 5 by
using diabatic basis functions,d21(R) is derived from eq 8 by
using adiabatic basis functions,P is the 6-dimensional nuclear
momentum, andv is the 6-dimensional nuclear velocity. In eq
10 we integrate over all phase points where the upper diabatic
potential energy surface is energetically accessible, and in eq
11 we integrate over all phase points where the upper adiabatic
potential surface is energetically accessible. The motivation for
limiting the integration to these regions of phase space is that
classical transitions between potential surfaces can only occur
in these regions. Additional constraints on the integrals in eqs
10 and 11 are that for a particularR andP, the total energyE
must be conserved. We define

where

Finally, we require that the total angular momentum be zero.
Further details about these calculations are provided in Appendix
A.

Our second criterion for the selection of the representation
for the trajectory surface hopping calculations is that they should
be performed in the representation that has the smallest volume
of coupling.

Note that we have not included the energy gap between
potential surfaces in eqs 10 and 11, as might be expected from
a first-order time-dependent perturbation treatment of the
coupled equations (6) and (7). One of the approximations
typically invoked in such a treatment40 is that the energy gap
between unperturbed states is constant with time. In our case,
where the ground-state potential energy surface has a very
different topology from the excited-state potential energy
surface, this approximation is invalid. It is especially poor near
crossings of the potential surfaces, which occur along a one-
dimensional seam in the adiabatic representation and which
occur along a two-dimensional surface in the diabatic repre-
sentation. This illustrates a second problem with including such
an energy gap term in our integrals, namely that the two
representations are no longer treated equivalently. This is
because the approximation is worse for the diabatic representa-
tion than for the adiabatic representation due to the larger
dimensionality of the surface crossing for the diabatic case.

Tully has shown11 that the rates of change in the electronic
probabilities for a two-state system are given by

where

Note that the electronic coherencea*12(t) contributes to the rate
that the probabilities change with time, but the coherence is
not a local property of the potential matrix. A first-order time-
dependent perturbation theory treatment of eq 14 reveals that
the electronic coherence depends on the potential energy gap
and that only by assuming the energy gap is constant with time
can this gap be factored out of the resulting time integral. The
only accurate way to treat the electronic coherence is to integrate
it over time, i.e., to calculate a trajectory. We may still obtain
insight into the nature of the coupling without calculating
trajectories, however, by simply neglecting the coherence terms
altogether and considering the quantitiesV21(R) andR4 ‚d12(R)
as the only sources of coupling, as we have done in eqs 10 and
11. The drawback from this procedure is that the coupling at
large-gap regions of phase space contributes to the integrals
(10) and (11) with as much weight as the coupling at small-
gap regions of phase space does.

4.3. Quantum Mechanical Calculations.Taken together, the
single-surface bound-state calculations and the fully coupled
quantum mechanical calculations allow us to determine which
representation provides a better uncoupled model of the system.
In particular, we compare the single-surface bound-state energies
for both the upper adiabatic potential energy surface and the
upper diabatic potential energy surface to the energies of the
quantum mechanical resonances as determined from the fully
coupled calculations. Our third criterion for the selection of the
representation for the trajectory surface hopping calculations is
that the representation of the single-surface bound-state calcula-
tion that best agrees with the fully coupled calculations should
be used for the surface hopping calculations.

Wdia(E) ) ∫R∫P
d3N-3R d3N-3P [V21(R)

p ] (10)

Wadi(E) ) ∫R∫P
d3N-3R d3N-3P [v(P)‚d21(R)] (11)

1/2P
2 ) T ) E - Vav(R) (12)

Vav(R) ) 1/2(V11(R) + V22(R)) (13)

Ṗ1 ) 2Im[a*12(t)]
V12(R(t))

p
- 2Re[a*12(t)]R4 ‚d12(R(t)) (14)

Ṗ2(t) ) -Ṗ1(t) (15)

a*12(t) ) c*1(t) η*1(t) c2(t) η2(t) (16)
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5. Results

Tables 2 and 3 show the energies and widths of the quantum
mechanical resonances, the energies of bound states in the
adiabatic approximation, and the energies of bound states in
the diabatic approximation for each potential energy matrix.

In all figures, we use the following notation for the TSH
methods: solid lines represent adiabatic calculations, and dashed
lines represent diabatic calculations; open squares represent the
rotated TFS-d method, and filled squares represent the non-
rotated TFS-d method. The Ehrenfest method is shown with
circles linked by solid lines. Open circles represent Ehrenfest
trajectories analyzed with histogram methods, black circles
represent Ehrenfest trajectories analyzed with linear smooth
sampling, and circles with plus signs inside represent Ehrenfest
trajectories analyzed with quadratic smooth sampling. Quantum
mechanical results are indicated with thick black lines.

We use the following notation for clarity in discussing the
four TFS methods. The vector used for hopping is indicated
after the “TFS” abbreviation in bold. Rotation is indicated by
“rot” before the hopping vector, and nonrotated methods are
indicated by “nr”. Adiabatic methods are labeled with “adia-
batic” preceding the abbreviation, and diabatic methods are
labeled with “diabatic” preceding the abbreviation. Thus,
diabatic-TFS-rot-d refers to the diabatic rotated-d TFS method,
while adiabatic-TFS-nr-d refers to the adiabatic nonrotated-d
TFS method. When a method is mentioned without such a label,
the reference is assumed to apply to all variants of that method,
independent of the missing label. For example, diabatic-TFS-d
refers to both rotated and nonrotated methods, and TFS-nr-d
refers to both adiabatic and diabatic representations of the
nonrotated-d TFS method.

The notation used for the ESCP method is Ehrenfest-Hist,
Ehrenfest-LSS, and Ehrenfest-QSS for the histogrammed Ehren-
fest results, the linear smooth sampling Ehrenfest results, and
the quadratic smooth sampling Ehrenfest results, respectively.

Figures 3-6 show plots of the lifetime, the average final
vibrational quantum number, the average final rotational
quantum number, and the average final relative translational
energy for semiclassical trajectory calculations for NaH2

potential energy matrix 5F. Figures 7-10 show plots of the
same quantities for semiclassical trajectory calculations on NaH2

potential energy matrix 6; in these plots, we present the
trajectories in three groups, according to which mode is excited.
We include the 000 resonance in each of the three groups, to
make clear the trends of the quantities with energy and quantum
numbers. Average overall errors are shown in Tables 4 and 5
for each potential energy matrix.

TABLE 2: Comparison of Bound-State Quantum Mechanical Calculations and Fully Coupled Quantum Mechanical
Calculations for Potential Energy Matrix 5Fa

fully coupled adiabatic bound state diabatic bound state

R stateb ER ER - E0 ΓR 〈V′〉 〈j′〉 ER ER - E0 ER ER - E0

0 000 1.890 0.000 1.960 1.64 1.36 1.944 0.000 1.881 0.000
1 010 1.977 0.087 4.697 1.92 2.02 2.030 0.086 1.968 0.088
2 020 2.053 0.163 5.741 2.17 2.49 2.119 0.175 2.047 0.166
3 002 2.080 0.190 wide 2.085 0.141 2.069 0.188
4 100 2.105 0.215 2.474 2.14 2.83 2.240 0.296 2.007 0.216

a Energies (ER andER - E0) are in eV, and widths (ΓR) are in meV.R labels the resonance, andER is the energy of resonanceR. b Vibrational
quantum numbersV1, V2, andV3 as defined in section 2.

TABLE 3: Comparison of Bound-State Quantum Mechanical Calculations and Fully Coupled Quantum Mechanical
Calculations for Potential Energy Matrix 6a

fully coupled adiabatic bound state diabatic bound state

R stateb ER ER - E0 ΓR 〈V′〉 〈j′〉 ER ER - E0 ER ER - E0

0 000 2.030 0.000 1.442 0.82 8.34 2.030 0.000 2.024 0.000
1 010 2.093 0.063 1.279 0.74 7.69 2.094 0.064 2.087 0.063
2 020 2.147 0.117 1.385 0.84 7.25 2.148 0.118 2.141 0.117
3 001 2.184 0.154 0.608 1.85 5.67 2.184 0.154 2.170 0.146
4 030 2.193 0.163 1.222 1.09 5.67 2.194 0.164 2.188 0.164
5 040 2.232 0.202 1.116 1.20 4.85 2.233 0.203 2.229 0.205
6 050 2.267 0.237 1.020 1.30 4.32 2.268 0.238 2.264 0.240
7 002 2.273 0.243 0.522 1.35 8.82 2.273 0.243 2.259 0.235
8 060 2.296 0.266 0.848 1.34 3.73 2.297 0.267 2.291 0.267
9 100 2.302 0.272 2.871 2.41 2.98 2.304 0.274 2.294 0.270

a Energies (ER andER - E0) are in eV, and widths (ΓR) are in meV.R labels the resonance, andER is the energy of resonanceR. b Vibrational
quantum numbersV1, V2, andV3.

Figure 3. Mean decay lifetime versus total energy for the resonances
of potential matrix 5F. Solid squares represent TFS-nr-d methods, and
open squares represent TFS-rot-d methods; solid lines represent
calculations employing the adiabatic representation, and dotted lines
represent calculations employing the diabatic representation. The circles
represent Ehrenfest calculations. The degree of filling of the circles
indicates the method used to analyze the Ehrenfest method: black
indicates LSS, pluses indicate QSS, and no filling indicates histogram-
ming. The thick black line with no symbols indicates the converged
quantum mechanics calculations, which are independent of the choice
of electronic representation.
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We gathered statistics on the surface hops of the TFS
calculations. In particular, for each method and for each potential
matrix, we calculated the number of successful surface hops,
the number of hops that failed due to insufficient energy, and
the number of hops that failed due to insufficient linear
momentum along the hopping vector. Note that the rotated
vector methods have no linear momentum prohibited hops. It
is possible for a rotated vector method to have angular
momentum prohibited hops.16 These occur when there is
sufficient kinetic energy to hop, but a large portion of the energy
is contained in rotational motion of the system as a whole. In
this case angular momentum conservation limits the momentum
adjustment that is allowed. If the energy associated with the
internal vibrational motion of the system is smaller than the
potential energy gap, then hops are not allowed. For nonrotated
vector methods, this class of hopping failure falls into the more

general case of momentum prohibited hops. In our present
calculations, the total angular momentum is extremely small,
and we observed no angular momentum prohibited hops. Table
6 shows the hopping statistics. According to our first criterion,
semiclassical trajectory surface hopping should be performed
in the representation in which the fewest number of hops occurs.
From Table 6 it is apparent that for potential matrix 5F, the
hop-minimizing (hm) representation is the diabatic representa-
tion, and for potential matrix 6 it is the adiabatic representation.

In addition to looking at the number of successful and
attempted hops, we looked at average potential energy changes
during hopping, as well as the kinetic energy prior to hopping.
Figure 11 shows a plot of the average potential energy change
for both potential matrices, and Figure 12 shows ratios of the
average kinetic energy to the average potential energy gap for
each potential matrix.

Figure 13 shows a plot of the volume of diabatic and
nonadiabatic coupling for each potential matrix as a function

Figure 4. Average final vibrational quantum number versus the total
energy for resonances for potential matrix 5F. Solid squares represent
TFS-nr-d methods, and open squares represent TFS-rot-d methods; solid
lines represent calculations employing the adiabatic representation, and
dotted lines represent calculations employing the diabatic representation.
The circles represent Ehrenfest calculations. The degree of filling of
the circles indicates the method used to analyze the Ehrenfest method:
black indicates LSS, pluses indicate QSS, and no filling indicates
histogramming. The thick black line with no symbols indicates the
converged quantum mechanics calculations, which are independent of
the choice of electronic representation.

Figure 5. Average final rotational quantum number versus the total
energy for resonances for potential matrix 5F. Solid squares represent
TFS-nr-d methods, and open squares represent TFS-rot-d methods; solid
lines represent calculations employing the adiabatic representation, and
dotted lines represent calculations employing the diabatic representation.
The circles represent Ehrenfest calculations. The degree of filling of
the circles indicates the method used to analyze the Ehrenfest method:
black indicates LSS, pluses indicate QSS, and no filling indicates
histogramming. The thick black line with no symbols indicates the
converged quantum mechanics calculations, which are independent of
the choice of electronic representation.

Figure 6. Final relative energy versus the total energy for resonances
for potential matrix 5F. Solid squares represent TFS-nr-d methods, and
open squares represent TFS-rot-d methods; solid lines represent
calculations employing the adiabatic representation, and dotted lines
represent calculations employing the diabatic representation. The circles
represent Ehrenfest calculations. The degree of filling of the circles
indicates the method used to analyze the Ehrenfest method: black
indicates LSS, pluses indicate QSS, and no filling indicates histogram-
ming. The thick black line with no symbols indicates the converged
quantum mechanics calculations, which are independent of the choice
of electronic representation.

TABLE 4: Semiclassical RMS Errors in the Mean Lifetime,
in the Final Average Vibrational Quantum Number, in the
Final Average Rotational Quantum Number, and in the
Average Final Relative Energy for Potential Matrix 5Fa

Absolute RMS Errors

nr-d rot-d Ehrenfest

ad-TFSb di-TFSc ad-TFSb di-TFSc Hist LSS QSS

τ (ps) 0.14 0.04 0.11 0.04 0.07 0.09 0.09
〈V′〉 0.36 0.11 0.28 0.14 0.24 0.31 0.40
〈j′〉 0.17 0.63 0.37 0.84 0.66 0.62 0.63
〈Erel〉 (eV) 0.14 0.03 0.13 0.03 0.13 0.18 0.14

Relative RMS Errors (%)

nr-d rot-d Ehrenfest

ad-TFSb di-TFSc ad-TFSb di-TFSc Hist LSS QSS

τ (ps) 45 29 48 29 33 33 33
〈V′〉 18 6 14 7 12 15 20
〈j′〉 8 31 17 41 25 24 24
〈Erel〉 (eV) 22 5 19 5 20 27 21

a Bold numbers indicate the lowest error for each of the four
quantities.b Adiabatic Tully’s fewest switches algorithm.c Diabatic
Tully’s fewest switches algorithm.
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of energy. For potential matrix 5F, the diabatic coupling volume
is much larger than the nonadiabatic coupling volume. For
potential matrix 6, the opposite is true. Our second criterion
suggests that the diabatic representation should be used for
trajectory surface hopping calculations for potential matrix 5F
and that the adiabatic representation should be used for potential
matrix 6.

6. Discussion

6.1. Comparison of Quantum Mechanical Calculations for
Potential Matrix 5F and Potential Matrix 6. We compare
six quantities between the quantum mechanical calculations for

potential matrix 5F and those for potential matrix 6. The six
trends to be compared are the spacings of the resonance levels,
the lifetimes of the resonances, the average vibrational quantum
number of the decay products, the average rotational number
of the decay products, the average translational energy of the
products, and the superiority of a particular electronic repre-
sentation in the single-surface bound-state calculations.

For both potential matrices, the energy spacings of the
resonances are closely related to the shape of the exciplex
potential energy well. For example, the zero point energy and
100 resonance energy of the exciplex for potential matrix 6 are
slightly larger than they are for potential matrix 5F. This is

Figure 7. Decay lifetimes versus total energy for resonances for
potential matrix 6: (a) 0n0 series; (b) 00n series; (c)n00 series. Solid
squares represent TFS-nr-d methods, and open squares represent TFS-
rot-d methods; solid lines represent adiabatic calculations, and dotted
lines represent diabatic calculations. The circles represent Ehrenfest
calculations. The degree of filling of the circles indicates the method
used to analyze the Ehrenfest method: black indicates LSS, pluses
indicate QSS, and no filling indicates histogramming. The thick black
line with no symbols indicates the quantum mechanics calculations.

Figure 8. Final average vibrational quantum number versus the total
energy for resonances for potential matrix 6: (a) 0n0 series; (b) 00n
series; (c)n00 series. Solid squares represent TFS-nr-d methods, and
open squares represent TFS-rot-d methods; solid lines represent
adiabatic calculations, and dotted lines represent diabatic calculations.
The circles represent Ehrenfest calculations. The degree of filling of
the circles indicates the method used to analyze the Ehrenfest method:
black indicates LSS, pluses indicate QSS, and no filling indicates
histogramming. The thick black line with no symbols indicates the
quantum mechanics calculations.
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consistent with the shape of the well for potential matrix 6,
which is narrower in therH2 direction than that for potential
matrix 5F. This is shown in Figures 1 and 2. On the other hand,
it can be seen that the energies of the 010 and 020 states for
potential matrix 5F are slightly higher than those for potential
matrix 6. This again is consistent with the geometry of the well
for potential matrix 6, which is wider in theRNaH2 coordinate
than it is for potential matrix 5F, as shown in Figures 1 and 2.

The total resonance widths tend to be larger for potential
matrix 5F than they are for potential matrix 6, indicating that
the exciplexes for potential matrix 5F have shorter lifetimes
than they do for potential matrix 6. This also indicates that the

electronic states for potential matrix 5F are more strongly
coupled than the electronic states for potential matrix 6. This is
correlated with the relative magnitudes of the diabatic and
nonadiabatic coupling for each potential matrix. The nonadia-
batic coupling is strongest near the line of conical intersections.
For potential matrix 5F, the conical intersection passes close to
the bottom of the exciplex, where the vibrational wave function
density is highest. For potential matrix 6 the conical intersection
passes farther from the bottom of the well, where the vibrational
wave function density is lower. The nonadiabatic coupling will
thus more strongly couple the states in potential matrix 5F than
the states in potential matrix 6. For both potential matrices the

Figure 9. Final average rotational quantum number versus the total
energy for resonances for potential matrix 6: (a) 0n0 series; (b) 00n
series; (c)n00 series. Solid squares represent TFS-nr-d methods, and
open squares represent TFS-rot-d methods; solid lines represent
adiabatic calculations, and dotted lines represent diabatic calculations.
The circles represent Ehrenfest calculations. The degree of filling of
the circles indicates the method used to analyze the Ehrenfest method:
black indicates LSS, pluses indicate QSS, and no filling indicates
histogramming. The thick black line with no symbols indicates the
quantum mechanics calculations.

Figure 10. Final relative energy versus the total energy for resonances
for potential matrix 6: (a) 0n0 series; (b) 00n series; (c)n00 series.
Solid squares represent TFS-nr-d methods, and open squares represent
TFS-rot-d methods; solid lines represent adiabatic calculations, and
dotted lines represent diabatic calculations. The circles represent
Ehrenfest calculations. The degree of filling of the circles indicates
the method used to analyze the Ehrenfest method: black indicates LSS,
pluses indicate QSS, and no filling indicates histogramming. The thick
black line with no symbols indicates the quantum mechanics calcula-
tions.
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diabatic coupling vanishes atC2V geometries, where the bottom
of the exciplex well is located.

An analysis of the final decay products of the resonances for
potential matrix 5F and potential matrix 6 reveals three more
trends between matrices. A comparison of Figure 4 to Figure
8a-c shows that in general the average vibrational quantum
number of the decay products increases as the total energy is
increased for both potential matrices. On the other hand, a
comparison of Figure 5 to Figure 9a-c shows that the average
rotational quantum number of the decay products tends to
increase with the total energy for potential matrix 5F and it
tends to decrease with total energy for potential matrix 6. A
comparison of Figure 6 to Figure 10a-c shows that the final
relative energy of the decay products tends to decrease with
total energy for potential matrix 5F, and it tends to increase
with total energy for potential matrix 6. These three trends of
quantities of the decay products to change with energy are less
well explained by changes in the potential energy matrix.

The extent of agreement of the single-surface bound-state
calculations with the fully coupled calculations depends on the
choice of representation of the single surface. Table 2 shows a
very strong dependence for potential matrix 5F, and Table 3
shows a weaker dependence for potential matrix 6. For potential

matrix 5F, the diabatic single-surface calculations agree best
with the fully coupled problem, while for potential matrix 6 it
is the adiabatic single-surface calculations that agree best with
the fully coupled problem. The dependence of the single-surface
calculations on the representation is probably related to the
coupling between electronic states. The single-surface calcula-
tions may be thought of as approximations to the fully coupled
calculations arrived at by setting the coupling between surfaces
to zero. The error of this approximation will thus be the smallest
when the single surface is in the representation that has the
smallest interstate coupling. The diabatic coupling vanishes at
C2V geometries and is small at non-C2V geometries near the
exciplex well for both potential matrices. On the other hand,
potential matrix 5F has much larger nonadiabatic coupling than
potential matrix 6 does in energetically accessible regions, as
described above. This large nonadiabatic coupling for potential
matrix 5F explains why the diabatic representation of the single
surface best agrees with the fully coupled calculation. For
potential matrix 6, the difference in the two representations is
not as important as evidenced by the slight differences in
representation shown in Table 3. However, the inaccessibility
of the line of conical intersections is evidently a more important
factor than the nonzero diabatic coupling at non-C2V geometries.

Our third criterion thus predicts that the adiabatic representa-

TABLE 5: Semiclassical RMS Errors in the Mean Lifetime,
in the Final Average Vibrational Quantum Number, in the
Final Average Rotational Quantum Number, and in the
Average Final Relative Energy for Potential Matrix 6a

Absolute RMS Errors

nr-d rot-d Ehrenfest

ad-TFSb di-TFSc ad-TFSb di-TFSc Hist LSS QSS

τ (ps) 0.41 0.60 0.37 0.44 1.36 0.51 0.56
〈V′〉 0.32 0.53 0.45 0.99 0.50 0.76 0.85
〈j′〉 1.71 2.27 2.22 2.05 4.65 4.71 4.72
〈Erel〉 (eV) 0.15 0.24 0.20 0.43 0.29 0.88 0.60

Relative RMS Errors (%)

nr-d rot-d Ehrenfest

ad-TFSb di-TFSc ad-TFSb di-TFSc Hist LSS QSS

τ (ps) 47 79 51 48 286 75 90
〈V′〉 30 58 35 103 51 63 70
〈j′〉 43 59 51 49 73 72 72
〈Erel〉 (eV) 18 28 22 47 52 128 91

a Bold numbers indicate the lowest error for each of the four
quantities a Adiabatic Tully’s fewest switches algorithm.b Diabatic
Tully’s fewest switches algorithm.

TABLE 6: Average Number of Successful Hops, Linear
Momentum Prohibited Hops, and Energy Prohibited Hops
Per Trajectory, Averaged Over All Energies

Potential Matrix 5F

nr-d rot-d

ad-TFSa di-TFSb ad-TFSa di-TFSb

successful hops 7.5 1.1 8.9 1.1
momentum failures 0.5 0.3 0.0 0.0
energy failures 0.7 1.8 0.8 1.7

Potential Matrix 6

nr-d rot-d

ad-TFSa di-TFSb ad-TFSa di-TFSb

successful hops 1.0 1.4 1.3 4.8
momentum failures 0.5 4.0 0.0 0.0
energy failures 1.6 17.3 1.3 21.6

a Adiabatic Tully’s fewest switches algorithm.b Diabatic Tully’s
fewest switches algorithm.

Figure 11. Average absolute value of the energy gap at surface hops
for potential matrix 5F and potential matrix 6 versus energy. The solid
squares represent the hm-TFS-nr-d method; the open squares represent
the hm-TFS-rot-d method. The dashed lines represent values for
potential matrix 5F; the solid lines represent values for potential matrix
6. For potential matrix 6, only the 0n0 resonances have been shown
for clarity.

Figure 12. Ratio of the average kinetic energy to the average absolute
value of the energy gap at surface hops for potential matrix 5F and
potential matrix 6. The solid squares represent the hm-TFS-nr-d method;
the open squares represent the hm-TFS-rot-d method. The dashed lines
represent values for potential matrix 5F; the solid lines represent values
for potential matrix 6.
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tion will be the best for trajectory surface hopping methods for
potential matrix 6, while the diabatic representation will be the
best for potential matrix 5F.

In summary, differences in three of the six trends are
explainable in terms of differences in the potential matrices,
but differences in the other three are less well explained. One
goal of our comparisons of semiclassical calculations to quantum
mechanical calculations is to be able to further explain the
quantum mechanical results with a semiclassical interpretation.
For instance, although the trends in the final vibrational and
rotational quantum numbers and the final relative energy were
not easily explainable in terms of features of the potential energy
matrix, we may be able to describe them semiclassically.
However, the semiclassical explanations are valid only to the
extent that they reproduce the accurate quantum calculations
for each potential matrix. We examine this issue next.

6.2. Comparison of Semiclassical Trajectory Surface
Hopping Calculations to Quantum Mechanical Calculations
for Each Potential Energy Matrix. Of the six trends described
in the previous section, the semiclassical methods make predic-
tions for all except the resonance energies (since we carried
out our semiclassical calculations at the quantum mechanical
resonance energies, the semiclassical calculations reproduce the
energy spacings by construction). The errors in the semiclassical
methods for the quantities, averaged over all of the resonances,
are shown in Tables 4 and 5. We first discuss the accuracy of
the semiclassical trajectories for potential matrix 5F, and then
we discuss the accuracy of the trajectories for potential matrix
6. Finally, we examine two criteria for predicting the accuracy
of a semiclassical calculation from trajectory calculations.

6.2.1. Potential Matrix 5F.Figure 3 shows that the lifetimes
predicted by the diabatic-TFS-d methods and the Ehrenfest
methods agree qualitatively with the accurate quantum mechan-
ical lifetimes much better than the lifetimes predicted by
adiabatic-TFS-d methods do. The diabatic-TFS-d methods are
the hop-minimizing methods for this potential matrix, and they
have the lowest error of all of the semiclassical methods. It is
interesting to note that both the rotated and nonrotated variants
in the diabatic representation give nearly identical results (Figure
3). The rotated and nonrotated variants of the adiabatic-TFS-d
method, however, predict different lifetimes.

In the calculations of the average final vibrational quantum
number, all of the semiclassical methods correctly predict that
〈V′〉 will be higher for higher-energy initial states (Figure 4).
The diabatic-TFS-d methods have the smallest error; the

adiabatic trajectory surface hopping method and the Ehrenfest
method predict an average final vibrational quantum number
that is too low.

In the calculations of the average final rotational quantum
number, on the other hand, the adiabatic-TFS-nr-d method
shows the lowest error. All of the semiclassical methods predict
a similar trend of〈j′〉 to increase as the energy of the initial
state is increased (Figure 5).

All of the trajectory surface hopping methods predict that
the relative energy of the products decreases as the energy of
the initial state is increased (Figure 6). However, the diabatic-
TFS-d methods have a much smaller error than the adiabatic-
TFS-d methods do. The Ehrenfest methods not only have a large
error, but they also predict that the relative energy increases as
the energy of the initial state is increased, except for the 100
state.

Overall, the diabatic-TFS-d trajectory calculations show the
best agreement with the quantum mechanical calculations, and
the rotation of the hopping vector has little effect on the final
results for this method. The adiabatic calculations are much
poorer (except for〈j′〉). The surface hopping trajectories thus
agree with the quantum mechanical single-surface bound-state
calculations in showing that the diabatic representation is
superior for potential matrix 5F. All three of our criteria thus
predict correctly which choice of representation is most ap-
propriate for surface hopping calculations with potential matrix
5F. The Ehrenfest method usually has intermediate accuracy
between the adiabatic and the diabatic surface hopping methods.
Unlike the surface hopping methods, however, the Ehrenfest
method is independent of electronic representation, and thus,
as pointed out in section 3.2, there are no electronic representa-
tion issues with this method.

6.2.2. Potential Matrix 6.For potential matrix 6, the lifetimes
predicted by the adiabatic surface hopping methods typically
agree with the accurate quantum mechanical lifetimes better than
the those predicted by the diabatic ones. Note that for potential
matrix 6, the adiabatic representation is the hop-minimizing
representation. It can be seen in Figure 7a-c that the diabatic
surface hopping methods all underestimate the mean lifetime.
Another trend that is evident in Figure 7a-c is that the rotated
vector methods predict a lifetime that is longer than the
predictions of the corresponding nonrotated vector methods. All
of the adiabatic surface hopping methods and the Ehrenfest
methods show a tendency for the calculated lifetime to decrease
as the energy of the initial state is increased, as can be seen in
Figure 7a-c. The accurate quantum mechanical lifetimes,
however, do not systematically decrease as energy is increased.
Instead, in the 0n0 and 00n series the accurate lifetime increases
with energy, while in the going from the 000 state to the 100
state the accurate lifetime decreases. In an earlier paper,16 we
noted a correlation between a trend of the surface hopping
lifetimes to decrease with initial energy and a trend in the
quenching probability to decrease with increasing energy of the
initial state. In that paper we were concerned only with the 0n0
series, whose initial momentum is largely directed along the
RNa-H2 coordinate. Some trajectories starting in 0n0 states with
energies larger than 2.104 eV (the classical asymptotic energy)
dissociated on the excited potential energy surface rather than
quench, although this violates zero-point energy conservation.
We hypothesized that preventing the trajectories from violating
zero-point energy conservation would increase the mean life-
time.

In comparing the results for the 100 state to those for the
000 state, the adiabatic surface hopping methods and the

Figure 13. Diabatic and nonadiabatic coupling volume for potential
matrix 5F and potential matrix 6 versus the total energy. The squares
represent diabatic coupling volume, and the circles represent adiabatic
coupling volume. The open symbols linked by dashed lines represent
values for potential matrix 5F; the filled symbols linked by solid lines
represent values for potential matrix 6.
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Ehrenfest method agree with the accurate quantum mechanical
calculations in that they predict a decrease in the lifetime for
100. One may wonder whether this agreement is accidental and
if the nonconservation of zero point energy by the semiclassical
methods is responsible for the short lifetime of the 100 state.
However, there is evidence that suggests that zero point energy
conservation is not as important a factor in the semiclassical
lifetime calculations for the 100 state as it is for the 0n0 series.
In the 100 state, most of the momentum is directed along the
rH2 coordinate instead of toward the Na(3p)+ H2 asymptote.
The rH2 coordinate is roughly perpendicular to the line of
avoided crossings, where the nonadiabatic coupling is the
strongest. Thus, trajectories are more likely to quench before
their momentum can be redistributed and before they dissociate
on the upper surface. The quenching probability for the 100
resonance calculated by the adiabatic-TFS-nr-d method is 0.71,
while the quenching probability for the 060 resonance calculated
by the adiabatic-TFS-nr-d method is 0.40. Therefore, when the
conservation of zero-point energy is not a strong factor, the
adiabatic TFS methods do give qualitative agreement with the
accurate quantum mechanical lifetimes. Similar arguments may
be applied to the Ehrenfest method, except that in this case
quenching is less well defined. Instead of occurring at a single
location, the process of quenching in the Ehrenfest method
occurs more gradually, as can be seen in eqs 3 and 9. We still
expect that the motion of an Ehrenfest trajectory across the line
of avoided crossings will be more effective at transforming the
self-consistent potential of eq 9 into a potential similar to the
ground state than motion along theRNa-H2 coordinate will.

All of the TFS methods and the Ehrenfest variants predict a
final average vibrational quantum number that increases with
an increase in energy of the initial states. In Figure 8a-c it can
be seen that the accurate quantum mechanical vibrational
numbers also increase with the energy of the initial state, except
for the 002 state. As we discussed in an earlier paper,16 lower-
energy trajectories are energetically unable to cross the conical
intersection for this potential matrix. As energy is increased, a
larger region of the potential surface becomes energetically
accessible to trajectories, and at 2.06 eV the conical intersection
itself becomes accessible. The component of the nonadiabatic
coupling vector along the H2 vibrational mode is largest near
the conical intersection, and since thed vector (or a rotated
variant) is used to adjust the momentum of trajectories during
surface hops, high-energy trajectories form products with higher
vibrational excitation. The trend of the accurate quantum
mechanical vibrational quantum numbers to increase with
increasing energy is therefore qualitatively described by trajec-
tories hopping near the conical intersection using thed vector.
This explanation also applies to the Ehrenfest method; the self-
consistent potential changes more rapidly as Ehrenfest methods
approach the conical intersection. However, the surface hopping
model provides a clearer picture of the nonadiabatic process
than does the Ehrenfest method.

The adiabatic-TFS-d methods best reproduce the accurate
quantum mechanical trend of the final average rotational
quantum number to decrease as the energies of the initial states
are increased (Figure 9a-c). The component of the nonadiabatic
coupling vector along the bending coordinate is smallest near
the conical intersection, and so high energy trajectories will form
products that have smaller rotational quantum numbers. All three
Ehrenfest methods underestimate the final average rotational
quantum number.

The Ehrenfest method overestimates the amount of relative
energy of the products. The other semiclassical methods all agree

well with the quantum mechanical relative energies by com-
parison (Figure 10a-c). For example, the adiabatic-TFS-d
method has a relative error of 18%, the diabatic-TFS-d method
has a relative error of 28%, and the Ehrenfest-Hist has a relative
error of 52%. More detailed comparisons are shown in Table
5.

The adiabatic trajectories have good agreement with the
quantum mechanical calculations for the trends in the average
final quantum numbers of the decay products. Note that diabatic
trajectories do not necessarily hop near the conical intersection,
since the diabatic surfaces are coupled by the off-diagonal
coupling element, which is very small near the conical intersec-
tion. Thus, diabatic TFS trajectories do not predict final
vibrational and rotational quantum numbers that have the same
dependence on the energy of the initial state that the adiabatic
TFS trajectories do. The extent that the adiabatic TFS methods
describe the final average rotational and vibrational quantum
numbers better than the diabatic TFS methods do implies that
the adiabatic representation is more appropriate for trajectory
surface hopping calculations for potential matrix 6. Further
evidence of the superiority of the adiabatic representation for
potential matrix 6 is that surface hopping calculations in the
adiabatic representation have smaller overall errors than calcula-
tions in the diabatic representation do. For this potential matrix,
all three criteria for the selection of the best trajectory
representation are successful.

6.2.3. Criteria for Determining the OVerall Accuracy of a
Semiclassical Calculation.Beyond determining which repre-
sentation will be the most accurate for semiclassical calculations,
it would be useful to be able to predict the size of the absolute
error in the semiclassical methods from dynamical information.
Note, for example, that the overall error in the hm-TFS-nr-d
method for potential matrix 5F is much smaller than the overall
error in the hm-TFS-nr-d method for potential matrix 6. We
checked two different criteria for the absolute accuracy of the
semiclassical methods. The first is the size of the average energy
gap during surface hops. The average gap is illustrated in Figure
11 for potential matrices 5F and 6. The average energy gap of
trajectories for potential matrix 5F is much smaller than the
average energy gap of trajectories for potential matrix 6. The
correlation between the size of the hopping gap and the size of
the error of the hm-TFS-nr-d method suggests that the direction
of the hopping vector may be crucial to an accurate description
of reaction dynamics, especially for systems with large energy
gaps. This is because large energy gaps require large adjustments
to the kinetic energy, and the final energy distributions are
determined largely by the redistribution of momentum during
a hop. The present calculations confirm our earlier observa-
tions13,16 that for potential matrix 5F, both the hm-TFS-rot-d
method and the hm-TFS-nr-d method produced similar energy
distributions in the final trajectory states, while for potential
matrix 6 the difference in the two methods is larger (Tables 4
and 5).

Another criterion that has been suggested19 for assessing the
accuracy of trajectory calculations is the ratio of the kinetic
energy to the size of the energy gap during hopping events.
This ratio is generally larger for the hm-TFS-nr-d method for
potential matrix 5F than it is for the hm-TFS-nr-d method for
potential matrix 6 (Figure 12). This confirms that a greater
fraction of the final kinetic energy is partitioned during surface
hopping for potential matrix 6 than for potential matrix 5F.

6.3. Which Semiclassical Trajectory Method, the Surface
Hopping Method or the Self-Consistent Potential Method,
Best Describes Each Potential Matrix?For potential matrix

228 J. Phys. Chem. A, Vol. 104, No. 2, 2000 Hack et al.



5F, the Ehrenfest calculations have intermediate accuracy
between the diabatic and the adiabatic surface hopping calcula-
tions, typically slightly better than the adiabatic calculations and
worse than the diabatic calculations. The only exception to this
is the average final rotational quantum number, for which the
adiabatic surface hopping method is the best, followed by the
Ehrenfest and then by the diabatic method. All three kinds of
trajectory methods reproduce trends of the lifetimes, average
final rotational quantum numbers, and average final vibrational
quantum numbers to change with a change in the total energy.
However, the Ehrenfest method does not reproduce the trend
of the average final relative energy as a function of total energy,
while both representations of the trajectory surface hopping
method do. Overall, Table 4 shows that the diabatic trajectory
surface hopping calculations are the most accurate, while the
adiabatic trajectory surface hopping calculations and the Ehren-
fest method have larger errors.

These findings are consistent with earlier work13 that showed
that the Ehrenfest method typically worked as well as the
adiabatic trajectory surface hopping method.

The Ehrenfest calculations have higher overall errors than
either of the surface hopping calculations do for potential matrix
6. The Ehrenfest method far underestimates the amount of final
rotational excitation in the products and overestimates the
amount of relative energy in the products. It does, however,
correctly predict the trend of the average final vibrational
number to increase with energy, and the error of the Hist-
Ehrenfest method for the vibrational quantum number is slightly
smaller than the diabatic surface hopping method.

One reason that the Ehrenfest methods may do better for
potential matrix 5F than they do for potential matrix 6 is that
the states are more strongly coupled in potential matrix 5F. The
conical intersection in potential matrix 5F, for instance, is
energetically accessible at low energies. During the calculation
of Ehrenfest trajectories, the self-consistent potential rapidly
changes from resembling an excited-state potential surface to
resembling a ground-state potential surface in regions of strong
coupling. For potential matrix 5F, the average squared final
excited-state coefficient for the self-consistent potential for
trajectories starting in the 000 state is 0.31. On the other hand,
for potential matrix 6, the state coupling is much weaker. The
self-consistent potential only gradually changes for this potential
matrix, and once the asymptotic region of the average potential
becomes energetically accessible, the exciplexes dissociate. The
average squared excited-state coefficient is 0.85 for trajectories
starting in the 000 state for potential matrix 6. Thus, it may not
be too surprising that for potential matrix 6 the Ehrenfest method
does not accurately describe the ground-state decay products.

Overall, the surface hopping calculations describe the quan-
tum mechanics more closely than the Ehrenfest method does
for either potential matrix.

6.4. Do the Semiclassical Methods Reproduce the Trends
Shown by the Quantum Mechanical Calculations between
the Two Potential Matrices? By construction, the trajectory
calculations all reproduce the quantum mechanical resonance
energy spacings for both potential matrices.

The adiabatic trajectory surface hopping calculations and the
Ehrenfest calculations both show an increase in the calculated
lifetimes in going from potential matrix 5F to potential matrix
6, in agreement with the quantum calculations (Figures 3 and
7a-c). The diabatic trajectory surface hopping calculations,
however, do not show this trend. An examination of Figures 3
and 7a-c shows that the diabatic trajectory lifetimes for
potential matrix 5F agree well with the quantum mechanical

calculations, but the diabatic trajectories for potential matrix 6
are much too short.

For both potential matrices, the quantum mechanical calcula-
tions show that the average final vibrational quantum number
increases as the total energy is increased. All of the semiclassical
trajectory calculations reproduce this trend.

In potential matrix 5F, the quantum mechanical calculations
show that the average final rotational quantum number increases
as the total energy is increased. On the other hand, in potential
matrix 6 the quantum mechanical prediction of the average final
rotational number decreases as the total energy is increased.
The only semiclassical calculation to reproduce this behavior
of the average final rotational quantum number is the adiabatic
trajectory surface hopping method.

In potential matrix 5F, the quantum mechanical calculations
show that the final relative translational energy decreases with
total energy, whereas in potential matrix 6 the quantum
mechanical calculations show that the relative energy increases
with total energy. Both the adiabatic and the diabatic trajectory
surface hopping methods reproduce this trend, but the Ehrenfest
method does not.

When one uses the hop-minimizing representation, the
semiclassical surface hopping calculations correctly reflect the
trend of the change in lifetimes, the change in average final
quantum numbers, and the change in relative energy between
potential matrices. Furthermore, the hm-TFS calculations have
the smallest overall error of all of the semiclassical methods
for both potential matrices.

The last trend we examine between potential matrix 5F and
potential matrix 6 is the superiority of a particular electronic
representation. The surface hopping trajectories reproduce the
quantum mechanical preference for resonances on potential
matrix 6 to be best described by an adiabatic representation and
for resonances on potential matrix 5F to be described by a
diabatic representation. All three of our criteria correctly predict
the best representation for the trajectory surface hopping
calculations.

7. Conclusions

We have presented quantum mechanical calculations for the
Feshbach funnel resonances of two different NaH2 potential
energy matrices called 5F and 6. These calculations provide
accurate decay lifetimes and branching probabilities for each
of the given potential matrices. Some of the differences in the
results of the coupled quantum mechanical calculations for these
potential matrices have been correlated with features of the
potential matrices. For example, the spacings of the resonance
energies are correlated with the shape of the exciplex well. The
lifetimes of the resonances are correlated with the magnitude
of the nonadiabatic coupling in regions of high wave function
density.

The extent of agreement of single-surface bound state
quantum mechanical calculations with the fully coupled quantum
mechanical calculations depends on the choice of representation
of the single surface. For NaH2 potential matrix 5F, diabatic
single-surface calculations agree best with the fully coupled
calculations, while for NaH2 potential matrix 6 it is the adiabatic
single-surface calculations that agree best. The dependency of
the agreement on the representation is correlated with the
location of the line of conical intersections relative to the
exciplex well.

We performed semiclassical trajectory methods both with the
surface hopping method and with the Ehrenfest method. The
surface hopping calculations used Tully’s fewest switches (TFS)
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method and were carried out in both the adiabatic and the
diabatic representation. The semiclassical trajectory calculations
show some of the same trends that the quantum mechanical
calculations show with respect to changing potential energy
matrices. For example, the lifetimes of the trajectories are much
shorter for potential matrix 5F than they are for potential matrix
6.

The trajectory surface hopping calculations may be performed
in either the adiabatic or diabatic representation. We tested three
criteria for predicting which representation will be most accurate.
According to our first criterion, we calculate trajectories in both
representations and accept the results of the representation that
has the fewest average number of surface hops. A drawback of
this criterion is that two sets of dynamics calculations must be
performed, increasing the computational expense. Our second
criterion requires no dynamical information but only requires
the evaluation of two integrals over the energetically accessible
regions of phase space. The representation that has the smallest
coupling volume (defined in section 3.3) is the appropriate
representation to perform trajectory surface hopping calculations.
The third criterion is to compare fully coupled quantum
mechanical calculations with single-surface quantum mechanical
calculations. The representation of the single surface that agrees
best with the fully coupled calculations should be used in surface
hopping calculations. For large systems, this criterion is not very
useful because it requires converged quantal calculations, which
are only practical for small systems. We note that all three
criteria gave identical predictions for the best representation.

When we used the representation for each potential energy
matrix that minimizes the number of hops, we found that the
trajectory surface hopping calculations show qualitative agree-
ment with the quantum mechanical calculations for potential
matrix 6, and they show even better agreement with the quantum
mechanical calculations for potential matrix 5F. The average
energy gap at hopping is correlated with this agreement.
Semiclassical calculations in the hop-minimizing representation
for potential matrix 5F predict a smaller average energy gap
for hopping events than calculations in the hop-minimizing
representation for potential matrix 6 do.

We examined the accuracy of the trajectory surface hopping
calculations with two different choices for the vector along
which the momentum of the trajectories was adjusted during
surface hops. These two choices are the nonadiabatic coupling
vector and another vector that is derived by allowing the
nonadiabatic coupling vector to rotate to reduce the number of
momentum-prohibited surface hops. We found that in general
the nonadiabatic vector is the best vector to use for hopping
events and that using the rotated hopping vector led to
trajectories that had slightly larger errors in the final calculated
quantities.

The Ehrenfest calculations have higher overall errors than
the surface hopping calculations do. For potential matrix 6 the
Ehrenfest calculations tend to be worse than the surface hopping
calculations in either representation, while for potential matrix
5F the Ehrenfest calculations tend to be more accurate than the
adiabatic surface hopping calculations but less accurate than
the diabatic surface hopping calculations. For both potential
matrices, the Ehrenfest calculations tend to be worse than the
surface hopping calculations if the latter are based on the
representation that minimizes the number of surface hops. We
note that for potential matrix 5F, all three methods of analyzing
the Ehrenfest results (histogramming, linear smooth sampling,
and quadratic smooth sampling) gave similar results. For
potential matrix 6, on the other hand, the histogram method

tends to have the smallest errors except in the calculation of
the lifetime, for which the linear smooth sampling method has
the smallest error.

For NaH2 potential matrix 5F, the best overall semiclassical
method is Tully’s fewest switches method in the diabatic
representation using the nonadiabatic coupling vector for
hopping, while for NaH2 potential matrix 6 the best overall
semiclassical method is Tully’s fewest switches method in the
adiabatic representation using the nonadiabatic coupling vector
for hopping. These calculations provide clear evidence that the
adiabatic representation is not always superior to the diabatic
representation and that similar systems may differ in which
representation is better.

It is instructive to review recent calculations comparing
semiclassical and quantum mechanical calculations. Except in
recent work on the collinear NaFH system,15 all of our earlier
semiclassical calculations on a variety of systems13-16 have
qualitatively agreed with accurate quantum mechanical calcula-
tions. This agreement occurs in bimolecular collisions on
systems with strong coupling and with energetically accessible
conical intersections,13 in bimolecular collisions for a system
with very weak coupling,14 and in the current unimolecular
decay calculations on potential matrices of with conical intersec-
tions of varying energetic accessibility.16 This last mentioned
example is especially encouraging, since it models an essentially
quantum mechanical phenomenon.

Our results here and in refs 13, 14, and 16 show that among
the semiclassical methods we have examined, Tully’s fewest
switches method is the best on average. For the weakly coupled
BrH2 system,14 Tully’s fewest switches method was found to
have the smallest error, and the Ehrenfest method was slightly
less accurate. For the earlier study of bimolecular collisions for
model MH2 systems,13 Tully’s fewest switches method in the
adiabatic representation and the Ehrenfest methods had similar
accuracy. The line of conical intersections is energetically
accessible in both of these model systems, and the nonadiabatic
coupling vector is very large near the conical intersection. The
current work suggests that fewer surface hops would occur in
the diabatic representation for the model MH2 systems and that
therefore diabatic-TFS calculations would be the most accurate
for these systems; this prediction remains untested. For the
systems studied in the current work, Tully’s fewest switches
method in the representation that minimizes the number of
surface hops is more accurate than the Ehrenfest method.
Although we have not exhausted all of the possible types of
potential energy surfaces, the evidence that we have so far
examined suggests that for general three-dimensional two-state
systems, Tully’s fewest switches method is the most accurate
semiclassical method currently available if one uses the non-
rotated nonadiabatic coupling vector as the hopping vector and
propagates the trajectories in the representation that minimizes
the number of surface hops.

Finally, we close by considering the question in the title of
this paper. The average relative RMS error of the seven
semiclassical methods studied here for the four final observables
(lifetimes, vibrational and rotational quantum numbers of
fragments, and relative translational energy of fragments) of
two systems is 45%, which is an average of 23% for the more
strongly coupled system 5F (which has an average lifetime of
0.2 ps) and 68% for the less strongly coupled system 6 (which
has an average lifetime of 0.7 ps). However, choosing the
representation for the trajectory surface hopping calculations
as the one that minimizes the number of hops yields a method
with an average relative RMS error of only 18% for system 5F
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and 35% for system 6 for an overall average of 26%. Especially
when one considers that the errors in lifetimes are potentially
unbounded (unlike the other three observables, lifetimes are not
constrained to finite ranges by conservation of energy or angular
momentum), one would have to conclude that the accuracy is
reasonable, and the answer to the title question is a guarded
“yes”.
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Appendix A

The evaluation of the integrals in eqs 10 and 11 is ac-
complished through Monte Carlo integration techniques. Since
we are using Jacobi coordinates, the integrals in eqs 10 and 11
are 12-dimensional. We write the vectorR as a combination of
s, the vector pointing from atom B to atom C, andS, a vector
pointing from atom A to the center of mass of BC. We further
define two mass-weighted vectors

whereµs and µS are the masses associated with the vectorss
andS. The momenta conjugate to these mass-weighted vectors
are

so that

Working in mass-scaled coordinates simplifies the calculations.
We note that the integrands of eqs 10 and 11 depend only

on the internal coordinates and not on the orientation of the
system in fixed space. This suggests that by a suitable coordinate
transform we may remove three dimensions from the calculation.

We first consider the integral in eq 10, noting that much of
the following simplification will also apply to eq 11. We may
express the coordinates in eq 10 in spherical polar Jacobi
coordinates as follows:

where we have defined the anglesθQ andφQ with respect to an
arbitrary axisz in space, and we have defined the angelsθq and
φq with respect to the vectorQ. With these definitions,θq is
equal toø, the angle betweenq andQ, and the anglesθQ, φQ,
and φq orient the ABC system in space. Since the integrand
does not depend on this orientation, these three angles can be
factored out and eq A-7 can be written

We then define three new coordinates:

in terms of which eq A-10 may be written

The integral over the momenta may also be simplified. In
particular, at any geometry R, the total momenta may be
partitioned into internal-vibrational motion as well as external-
rotational motion.16 By considering cases where the total angular
momenta is zero, we may reduce the dimension of the integral
(A-14) by 3 and integrate over only the three internal-vibrational
degrees of freedom. We then write

wherePint refers to the three internal vibrational modes of the
system. One final dimension may be removed by recognizing
that in order for total energy to be conserved, the kinetic energy
at any given geometryX, Y, η must be given by

where we have definedV(X,Y,η)

We transform to spherical polar coordinates in the momenta:

whereP1, P2, andP3 are the internal mass-weighted vibrational
momenta.

We reduce the dimension of eq A-15 by not integrating over
the coordinate dPmax (in order to conserve total energy). This
gives

Q ) xµSS (A-1)

q ) xµSs (A-2)

PQ )
PS

xµS

(A-3)

Pq )
Ps

xµs

(A-4)

Q4 ) PQ (A-5)

q3 ) Pq (A-6)

Wdia(E) ) ∫Q∫q∫PQ
∫Pq

|V21(Q,q,ø)/p| dQ dq dPQ dPq (A-7)

dQ dq ) q2 dq sin θq dθq dφq Q2 dQ sinθQ dθQ dφQ (A-8)

Wdia(E) ) ∫θQφQ
sin θQ dθQ dφQ∫φq

dφq∫Q∫q∫ø∫PQ
∫Pq

|V21(Q,q,ø)/p| sin ø dø q2 dq Q2 dQ dPQ dPq (A-9)

Wdia(E) ) 8π2∫Q∫q∫ø∫PQ
∫Pq

|U21(Q,q,ø)/p| sin ø dø q2 dq Q2 dQ dPQ dPq (A-10)

X ) 1/3Q
3 (A-11)

Y ) 1/3q
3 (A-12)

η ) -cosø (A-13)

Wdia(E) ) 8π2∫X∫Y∫η∫PQ
∫Pq

|U21(X,Y,η)/p| dX dY dη dPQ dPq (A-14)

Wdia(E) ) 8π2∫X∫Y∫η∫Pint
|V21(X,Y,η)/p| dPint dX dY dη

(A-15)

T(X,Y,η) ) E - V(X,Y,η) (A-16)

V(X,Y,η) ) 1/2 (V11(X,Y,η) + V22(X,Y,η)) (A-17)

P1 ) Pmaxsin θp cosφp (A-18)

P2 ) Pmaxsin θp sinφp (A-19)

P3 ) Pmaxcosθp (A-20)

T ) 1
2
P1

2 + 1
2
P2

2 + 1
2
P3

2 (A-21)

T ) 1
2
Pmax

2 (A-21)

dP1 dP2 dP3 ) Pmax
2 dPmax sin θp dθp dφp (A-23)
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We define

Giving finally

The quantitiyWdia(E) has units of

since we have integrated inverse time over all six coordinates
and two momenta.

A similar simplification may be performed on eq 11. The
final integral becomes

wherev is the internal velocity vector. The units of eq A-28
are also given by eq A-27.
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Wdia(E) ) 8π2∫X∫Y∫η∫θp
∫

φp

|V21(X,Y,η)/p|2T sin θp dθp dφp dX dY dη (A-24)

ηp ) -cosθp (A-25)

Wdia(E) ) 16π2

p
∫X∫Y∫η∫ηp

∫
φp
|U21(X,Y,η)

|(E - V(X,Y,η)) dηp dφp dX dY dη (A-26)

(a0xµ)6(p/(a0xµ))2(p/Eh)
-1 ) a0

4pEhµ
2 (A-27)

Wadi(E) ) 16π2∫X∫Y∫η∫ηp
∫

φp
|d21(X,Y,η)‚v(ηp,φp)

|T(X,Y,η) dηp dφp dX dY dη (A-28)
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