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We present quantum mechanical and semiclassical calculations of Feshbach funnel resonances that correspond
to long-lived exciplexes in the AB, state of NaH. These exciplexes decay to the ground stat@AX by

a surface crossing i€;, geometry. The quantum mechanical lifetimes and the branching probabilities for
competing decay mechanisms are computed for two differentldaténtial energy matrices, and we explain

the results in terms of features of the potential energy matrices. We compare the quantum mechanical
calculations of the lifetimes and the average vibrational and rotational quantum numbers of the decay product,
Ho, to two kinds of semiclassical trajectory calculations: the trajectory surface hopping method and the Ehrenfest
self-consistent potential method (also called the time-dependent self-consistent field method). The trajectory
surface hopping calculations use Tully’s fewest switches algorithm and two different prescriptions for adjusting
the momentum during a hop. Both the adiabatic and the diabatic representations are used for the trajectory
surface hopping calculations. We show that the diabatic surface hopping calculations agree better with the
quantum mechanical calculations than the adiabatic surface hopping calculations or the Ehrenfest calculations
do for one potential energy matrix, and the adiabatic surface hopping calculations agree best with the quantum
mechanical calculations for the other potential energy matrix. We test three criteria for predicting which
representation is most accurate for surface hopping calculations. We compare the ability of the semiclassical
methods to accurately reproduce the quantum mechanical trends between the two potential matrices, and we
review other recent comparisons of semiclassical and quantum mechanical calculations for a variety of potential
matrices. On the basis of the evidence so far accumulated, we conclude that for general three-dimensional
two-state systems, Tully’s fewest switches method is the most accurate semiclassical method currently available
if (i) one uses the nonadiabatic coupling vector as the hopping vector and (ii) one propagates the trajectories
in the representation that minimizes the number of surface hops.

1. Introduction trajectory methods and on accurate quantal dynamics calcula-

The radiationless decay of electronically excited molecules iONS- We ask, (1) What is the predicted effect of the variation

is a very important process in photoexcited systérdt is in potential n_"latric_es on the_ Ii_fetime and energy (_jisposal? (2)
widely appreciated that radiationless transitions are promotedA'® the semiclassical predictions accurate for this effect? (3)
by conical interactions and by the dynamical accessibility of Independent _of the_|r ability to predict the trends, how gccurate
low-energy pathways leading to such intersectiorisin the are the semmlassma[ methods on an absolute ba}3|s ]‘or the
present paper we consider the decay of a very simple e|ectr0ni_r(’:1d|a.t|onless decay I|f¢t|me and the amount of vibrational,
cally excited system, namely the 38, state of NaH, and the rotational, and translational energy in the products?
effect of the accessibility of a conical intersection on its rate of ~ We study two different semiclassical methods, trajectory
decay and the accompanying internal conversion of electronic surface hopping and the Ehrenfest self-consistent-potential
to vibrational-rotationat-translational energy. In particular, we  method?!? the latter method is also called time-dependent self-
consider two different approximate potential energy matrices consistent field theory. We compare the predictions of these
for this system, orfeof which has a conical intersection near semiclassical methods to accurate quantum results calculated
the minimum energy point of the 8, surface, and the oth€r by the outgoing wave variational principle. This study comple-
of which has a conical intersection that is 0.4 eV above the ments four earlier studié® 1 of the accuracy (or inaccuracy)
minimum energy point. Although the latter potential energy of these semiclassical methods. The first two studisvere
matrix is believed to be more accurate for this system, that is concerned with electronic to vibratioralotational energy
not the most important issue for the present study. Rather, wetransfer and bimolecular electronically nonadiabatic reactions
are interested in the effect that varying the potential energy in three-dimensional atordiatom collisions. The first study
matrix has on the observables calculated by semiclassicalconsidered three systems involving conical intersections, includ-
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ground and excited electronic states is 0.46 eV or greater for matrix. In the adiabatic approximation the potential matrix is
all accessible geometries. The third sttidyas concerned with  diagonal, and the surfaces are coupled by the nuclear momentum
lifetimes and reactive branching ratios in unimolecular decay (from the kinetic energy operator), whereas in the diabatic
of a collinear triatomic system with an even larger gaf,eV. representation the potential matrix is nondiagonal and the
The fourth studif considered the unimolecular decay of a three- coupling is provided by the off-diagonal potential. In an exact
dimensional triatomic systefhwith a conical intersection that  treatment there would also be momentum coupling in a diabatic
is energetically inaccessible to many states in the exciplex well. representation, but the present paper is based on the invariant-
The first potential energy matrix of ref 11 and the potential space approximatidhin which momentum coupling is zero in
energy matrix of refs 10 and 16, both of which are approxima- a diabatic representation.

tions to the Nakisystem, are the ones we consider in the present  We test three different criteria for predicting which repre-
study. The current study extends the unimolecular decay sentation is most accurate for trajectory surface hopping
calculations to a system with a conical intersection that is calculations. The first criterion requires trajectory surface
energetically accessible to all quasi-bound exciplex states, andhopping calculations in both representations. The second
it allows us to examine the dependence of the dynamical resultscriterion that we test requires only the potential energy matrix
on qualitative features of the potential energy matrices. The five and does not require any dynamical information. The third
studies (refs 1316 and the present work) still do not span all ~ criterion requires accurate quantum mechanical results for both
qualitatively different varieties of systems with conical intersec- the fully coupled potential matrix and the uncoupled diabatic
tions, but they begin the process required to assemble a test sgpotential surfaces and uncoupled adiabatic potential surfaces.
wide enough to question the generality of one’s inferences. For These three criteria will be presented in section 4.

example, if a semiclassical method underestimates the lifetimes Section 2 compares some characteristics of the potential

for radiationless decay in a collinear system witkheV gap, energy matrices, such as energies and geometries at the
does it show the same deficiency for three-dimensional systemsasymptotes and the exciplex minimum and the seam of conical
with no gap? intersections. The semiclassical methiéddunder study are

Both the Ehrenfest method and Tully's fewest switches Priefly summarized in section 3, along with the metrfd%'
method have been applied to bound-state model sytdors us.ed. for accurate quantum calculatlo_ns. .Sectlon 4 presents
which accurate quantum mechanical data were available. BothCriteria for deciding which representation is best for surface
types of trajectory methods were found to agree qualitatively NOPPINg. Results are presented in section 5 and are discussed
with the accurate quantum mechanical calculations. The system!" S€ction 6. Conclusions are summarized in section 7.
under investigation here differs from these model surfaces
however, in that the system is not fully bound (it can dissociate)
and in that the ground and excited-state potential surfaces we The process we consider is electronic predissociation, i.e.,
consider have very different topologies from each other, as the unimolecular decay of an electronically excited-state
discussed in section 2. In particular, whereas the excited statecomplex to ground-electronic-state fragments, in particular
has a potential energy well, the ground potential surface we L
considepr is repulsiv?ay in every gz:oordinzte except the H NaH,(k=2,01,0,5) = Na(3s)+ Hy('.J') @)

coordinate. The energy transfer process we consider is closer . . - .
to the OFD) + Na(v,j) — OCP) + Nao(r/ ) reaction studied where the left-hand side describes an excipkeis the initial

recently®in which the ground state is bound but in which the electronic state(= 1 is the electronic ground state, nd

= 1 1 I " 2
excited state is repulsive. Surface hopping calculations were 2 is the first excited state, of *B, symmetry forCz,

reported for the N@system, but no accurate quantum dynamics geometries anaA_ symmetry forCs geometries)yin (m = 1.’
. . 2, or 3) are the vibrational quantum numbers for the exciplex,
were available for comparison.

o . . . and ¢’ andj' are the final vibrational and rotational quantum

A general criterion for the accuracy of nonadiabatic trajectory numpers of H. The A state corresponds formally to Na(3p)
methods such as the Ehrenfest method and Tully's fewest complexed to H, whereas the repulsive 3tate corresponds to
switches method is that trajectories should follow similar paths Na(3s)+ H,. Note thats; andu, are vibrations of asymmetry,
on either potential surface in regions where the coupling is gnq v3 is a vibration of b symmetry. Thusyy is an H stretch
nonnegligible!® In the current work, this criterion is not satisfied, (which may also be thought of as a symmetric stretch of
and it remains to be seen which, if either, of the two trajectory H—Na—H), v, is a stretch of the coordinate from Na to H
methods works best in this case. Another general criterion for (which may also be though of as a bend of Na—H), andvs
the relative validity of the two semiclassical approaches is that g gn angular motion in the Jacobi coordingtéetween the
self-consistent potential methods such as the Ehrenfest methody—H axis and the Na-to-kvector (which may also be thought
work best for high-probability pathways and that trajectory of a5 an asymmetric stretch of-HNa—H). We consider only
methods work best for smaller-probability pathway€ne of states with zero total angular momentum. In this work, we
the two potential matrices we investigate has small electronic consistently neglect spirorbit coupling and electronic angular
couplings, while the other has a coupling that is much larger. momentum in both quantum and semiclassical dynamics
In some sense then, the quenching products that we arecaiculations, and the form of the off-diagonal potential is chosen
examining are the dominant pathway for one potential matrix accordinglyl©
but represent a smaller-probability pathway for the other. This e use two qualitatively different potential energy matrices
paper will test the Ehrenfest method and compare it to trajectory for our calculations. The first potential energy matrix we
surface hopping for these cases. consider is called potential matrix $Fhe minimum potential

A central issue in this paper, which has not been studied asenergy point on the AB, surface is located at anpt#ond length
much as it deserves, is a comparison of the relative accuracy ofof about 2.0ay,. The depth of the wellDe, relative to the Na-
the adiabatic and diabatic representations for trajectory surface(3p) + H, asymptote is 0.44 eV. Adding zero point energy yields
hopping calculations. In both representations the potential energya ground-state dissociation ener@y, of 0.48 eV. The conical
surfaces are given by the diagonal elements of the potentialintersection occurs very near the location of the minimum energy

' 2. System
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TABLE 1: Comparison of Potential Matrix 6 to Potential 8
Matrix 5F @
potential matrix 5F potential matrix 6 7
minimum energy Rya—t, 3.72 3.92 6
point on the A’B,  ry, 1.98 1.50 —
surface E 1.667 (-0.4379  1.700 (-0.404p < 5
minimum energy ~ Ruan, 3.70 3.59 2 ‘
point of the conicalry, 2.01 2.17 ~ 4
intersection E 1.668 (-0.4369 2.064 0.040% o 3
aZero of energy corresponds to Na infinitely far from éh the X = [
2A;surface. All distances are iao; all energies are in eV. The Na 2F
excitation energy is 2.104 eV Values in parentheses are relative to -
the A 2B, asymptote, whereds is relative to the X?A; asymptote. 1
8 :lllllxr|11|||\||\|>|ux||\\|\H
n 02 3 4 5 6 7 8 9 10
U=
SE Ryan , (bohr)
o - Figure 2. Potential energy contours of the upper diabatic surface in
5 5 P potential matrix 6 forC,, geometries. The dashed line shows the line
L plis of conical intersections. The “X” shows the location of the lowest
~ energy point on this surface.
T3
A of the quantum mechanical scattering algorithm have been
- presented elsewhefé?3 Note that the fully coupled quantum
F mechanical results are independent of whether they are per-
o) SN N RETN SNNE FEEE FETE BT formed in an adiabatic or diabatic representation. (In general,
2 3 4 5 6 7 8 9 10 one might expect differences due to approximations in the
R yont, (bohr) transformations or couplings; however, our coupled surfaces are

both defined in the diabatic representation -afat the con-
Figure 1. Potential energy contours of the upper diabatic surface in verged calculationsused in the diabatic representation, so there
potential matrix 5F forCz, geometries. The contours shown are 2.0, 5re pno approximations, and the two representations are truly
25,..,5.0eV.The dashed line shows the line of cqnlcal intersections. equivalent.)
The “X” shows the location of the lowest energy point on this surface. . . .
We used the scattering calculations to locate and characterize
predissociating states, which show up as Feshbach reso-
nance$*25 A complete description of the procedure used to
obtain the quantum mechanical observables has been presented
recentlyl® and details have been presented in other places as
We||.22'24
We also performed variational bound-state calculations. Such
calculations were performed for the uncoupled upper adiabatic
and the upper diabatic potential energy surfaces of NaH
potential matrix 5F and of NaHpotential matrix 6. These
provided in Table 1. calculations ingluded all potential energy couplings.bet\./veen the
nuclear coordinates, and they used the exact kinetic energy

Contour plots of the upper diabatic surfaces of the two . . WS
otential energy matrices are shown in Figures 1 and 2. In theseoperator. The program used is descrlbe_d elsg ere.
b ) 3.2. Semiclassical MethodsThe semiclassical trajectory

ng; ;sda;ﬂiils(natvgrl%rfer;natshslsoz?dpfg?w I;ttr;]eedgtsgﬁg Ibee:gtien methods considered here are both trajectory-based methods
It can be seen that the geometry of tzhe equilibrium structure of mcludmg the full dlmenS|on§I|ty of the system. In p?‘”'cu'af’
the exciplex provides the single largest difference between the V® consider Tully s fewest SW'tC.hés(TFS) version of trajectory
two diabatic surfaces. The location of the line of conical surfacg }hzopplng, and we consider the .Ehrenfest self-congstent
intersections is similar for both surfaces, but it occurs at higher potential® (ESCP) m_ethod._ The latter is also called the t|m_e-
energies for potential matrix 6 than for potential matrix 5F depenqlent self-con3|§tent field (TDSCF) method. In this section
because of the difference in the geometry and shape of the Ve review the essentials of both kinds of methods and compare
exciplex. ther_n. . .

Since motion of the overall center of mass is irrelevant, all

T_he V|brat|ona_l quantum numbers of each of the thfe? frajectories are six-dimensional. In both of the semiclassical
exciplex modes, listed together, are used as a shorthand nOtat'O?rajectory methods that we consider. a distinction is made

thro_ughout this paper. For example, 000 refers to lowest energyp veen quantum variablas,and classical variableR, where
exciplex state, and .100 _refers o the state that has one quant% is the six-dimensional vector of nuclear coordinates. The
of energy in the I vibrational mode. classical variables are assumed to be described by an ensemble
of trajectoriesR(t), and the time-dependent Sc¢Hiager equation

is written

point of the exciplex. The second potential energy matrix we
consider is called potential matrix}8 This potential matrix has
De=0.40 eV andp = 0.34 eV. The minimum potential energy
point on the ‘A?B; surface of this potential matrix is located at
values of the K bond length only slightly larger than the
equilibrium value of separated,HIn this case, the conical
intersection occurs at higher energies; the minimum energy
along the conical intersection is roughly equal to the energy of
the Na(3p)+ H, asymptote. A more detailed comparison is

3. Methods

3.1. Quantum Dynamics.We carried out accurate quantum
scattering calculations in six dimensions (three vibrational . oy — w0 .
internal coordinates and three rotational coordinates). Details He(TiR() P(R()r) |h3tCI>(R(t),r) )
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where Hg is the electronic Hamiltonian an® is the wave
function for the quantum variableand depends otthrough
the trajectoryR(t). The electronic wave functio® is expanded
in terms of basis functiong;}:

D(R(1);r) = cy(t) 74(t) d1(r;R()) + cx(1) 75(t) Po(1;R(Y))
3
where the coefficient§c} are complex, the phase factorgt)
andn(t) are given by

10 =ex{~ 1 /Vi(RO) o) (4)

and

Vii(R) = [ (r;R)[Hg(rR(1) 9 (r:R)T ®)

and we have limited our discussion to two-state systems.

Hack et al.

diagonal matrix elements. The meaning and physicality of this
surface have been discussed elsewhete.

In the TFS method, trajectories are propagated on the diagonal
potential matrix elements. The number of trajectories that
propagate on a given surface is proportional to the probability
for finding the system in staig; or statep,. As the probabilities
change over time, the correct surface populations are maintained
by allowing some trajectories to switch surfaces. The hopping
scheme in which the smallest number of trajectories switch
surfaces over a time interval while satisfying the constraint that
the correct surface populations be maintained is called Tully’s
fewest switches algorithrH.

A critical element in trajectory surface hopping calculations
is the choice of hopping vector, which is a unit vector along
whose direction the nuclear momentum is incremented or
decremented whenever a hop occurs. In this paper, we performed
the TFS calculations with two different hopping vectors. These
vectors have been described in a recent péptrey are the

Equation 5 defines a potential energy matrix. Substituting eq 3 nonadiabatic coupling vectod)®*3*and the rotated vector'®

into eq 2, multiplying from the left by or ¢, and integrating
give

. . t
¢,(t) = —Cz(t)[%Vlz(R(t)) + R'dlz(R(t))lzz_Et; ®)
and
B | . 772(1:)
() = Cl(t)[ﬁVﬂ(R(t)) + R-dzl(R(t))]m )
where
d4(R) = By(rR) Ve, R)D ®)

and VR is the gradient with respect to the nuclear coordinates.
Note that adiabatic basis functions are only coupled by off-
diagonal derivative matrix elements, defined in eq 8, while true
diabatic basis functions would only be coupled by off-diagonal
potential matrix elements. The calculation of thenatrix from
the potentials defined in eq 8 was described previotfsly.
Equations 6 and 7 describe the evolution of the electronic
wave function® along a trajectonR(t). The coefficients(t)
andcy(t) are the probability amplitudes for finding the system
in stateg, or ¢, respectively, if a measurement is made at time

In that work we discussed the use of two additional vectors,
the gradient of the difference of the adiabatic energy?C3
and the rotated vector® We found, using potential matrix 6,
that thed vector calculations agreed with the accurate quantum
calculations better than thg vector calculations did both in
the trends of final product distributions as functions of the energy
and in the absolute errors of the final product distributions. We
also mention that earlier calculations for potential matrix 5F
showed no notable difference betweendgrand thed vectors!?

For these reasons, we omit calculations with ¢ghend rotated

g vectors in the present work, and we present results fodthe
and rotatedd vectors only.

Traditionally, trajectory surface hopping calculations are
carried out in the adiabatic representation, but in this study we
performed the TFS calculations in both the diabatic and the
adiabatic representations. We note that use of the nonadiabatic
coupling vectord may seem more natural for calculations in
the adiabatic representation, but it may be calculated uniquely
from diabatic informatiort® and there is no inconsistency in
using it for the hopping vector in either representation. Whereas
the surface hopping calculations depend on the choice of
electronic representation (adiabatic or diabatic), the ESCP
method is invariant to this choidg.

In all of our TFS calculations, we employ the adaptive
numerical integration scheme discussed in a recent Hafmer

t. In both the TFS and ESCP methods, the system is assumednSure that our TFS calculations are adequately converged with
to be described by an ensemble of trajectories generated by'€SPect to the integration step size.

averaging over quasiclassi€ad®initial conditions. Both meth-

The methods used for final state analysis have been described

ods make the independent trajectory assumption; i.e., theelsewheré3%and so we only briefly review them here. In the
trajectories constituting the ensemble are decoupled from onehistogram methoéf-?8the final continuous classical quantities
another. The essential difference between the ESCP method andsuch as the vibrational and rotational quantum numbers) are
trajectory surface hopping methods such as the TFS method isrounded to the nearest discrete quantum mechanical values. In

the way in which the trajectorir(t) depends on the quantal
wave function®.
In the ESCP method, the trajectdR(t) is propagated on a
potential energy surface given by
V(R) = [(r;R)|H(r;R)|®(r;R)T 9)
Thus, as the basis function coefficients evolve with time, the
potential changes accordingly. If eith&(t) or cx(t) is equal to

the linear smooth sampling (LS$¥83436 and quadratic smooth
sampling (QSSF3"methods, the classical quantity contributes
to the two nearest quantum numbers that bracket it. In the LSS
method the farther quantum number is weighted by the distance
of the classical value from the nearest quantum number, and
the nearest quantum number is weighted by the distance of the
classical value from the farther quantum number. In the QSS
method, the weight of the farther quantum number is given by
the square of the distance of the classical value from the nearest

zero, then the potential energy given by eq 9 is identical to one quantum number, and the weight of the nearest quantum number
of the diagonal potential energy matrix elements. In general, is chosen such that the two weights sum to unity (in the case

however, the potential energy experienced by an Ehrenfestwhere the quantum numbers are restricted to even or odd values,
trajectory will include contributions from the diagonal and off- the weights in both the LSS and QSS methods are appropriately
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normalized). Note that in the Ehrenfest method the electronic  Our second criterion for the selection of the representation
guantum number is in general noninteger and must be assignedor the trajectory surface hopping calculations is that they should
according to one of these three schemes along with the rotationalbe performed in the representation that has the smallest volume
and vibrational quantum numbers. Probably for this reason, the of coupling.
results of the Ehrenfest method depend significantly on whether  Note that we have not included the energy gap between
histograming, LSS, or QSS is used to analyze the final state. potential surfaces in eqs 10 and 11, as might be expected from
The TFS methods, on the other hand, give very similar results a first-order time-dependent perturbation treatment of the
with all three analysis methods for the present system. Therefore,coupled equations (6) and (7). One of the approximations
we present only the histogram results for the TFS methods, andtypically invoked in such a treatméfitis that the energy gap
we present results from all these methods for the Ehrenfestbetween unperturbed states is constant with time. In our case,
calculations. where the ground-state potential energy surface has a very
Analytical derivatives for Nakl potential matrix 6 were different topology from the excited-state potential energy
calculated using thepiFor3® program, while analytical deriva-  surface, this approximation is invalid. It is especially poor near

tives for NaH potential matrix 5F were derived by hand. crossings of the potential surfaces, which occur along a one-
dimensional seam in the adiabatic representation and which
4. Criteria for Surface Hopping occur along a two-dimensional surface in the diabatic repre-

sentation. This illustrates a second problem with including such

We consider three possible criteria for deciding which an energy gap term in our integrals, namely that the two
representation is best for surface hopping calculations. representations are no longer treated equivalently. This is

4.1. Hop Minimization. Our first criterion for which because the approximation is worse for the diabatic representa-
representation should be used for the surface hopping calculation than for the adiabatic representation due to the larger
tions is that it is the representation that leads to the smallestdimensionality of the surface crossing for the diabatic case.
number of surface hops. This criterion has been suggested by Tully has show#! that the rates of change in the electronic
Tully.3° We label the representation in which the fewest number probabilities for a two-state system are given by
of surface hops occurs “hm” or the hop-minimizing representa-

tion. . . V(R(1)) -
4.2. Volume of Surface Coupling. We calculated the P, = 2Im[ag()]——F—— — 2Refi,()]R-d1(R()) (14)
nonadiabatic coupling and the diabatic coupling at a wide range . .
of geometries in order to compare the two potential matrices to Py(t) = —Py(t) (15)
one another. In particular, we define the following phase space
volumes for each potential matrix: where
V(R ar,(t) = ci(t) n3(t) c(t) n,(t 16
Weu®) = [ [, PR [ %] (10) (1) = ci®) mA(D) cot) ma) (16)
Note that the electronic coherena®(t) contributes to the rate
and that the probabilities change with time, but the coherence is

not a local property of the potential matrix. A first-order time-
_ 3N-3 3N—3 dependent perturbation theory treatment of eq 14 reveals that
Waa(E) = L/:?jl; d™ R AP [V(P)dy(R)] (A1) the electronic coherence depends on the potential energy gap
and that only by assuming the energy gap is constant with time
whereE is the total energyV»i1(R) is derived from eq 5 by can this gap be factored out of the resulting time integral. The
using diabatic basis functiondp1(R) is derived from eq 8 by  only accurate way to treat the electronic coherence is to integrate
using adiabatic basis functior,is the 6-dimensional nuclear it over time, i.e., to calculate a trajectory. We may still obtain
momentum, and is the 6-dimensional nuclear velocity. In eq insight into the nature of the coupling without calculating
10 we integrate over all phase points where the upper diabatictrajectories, however, by simply neglecting the coherence terms
potential energy surface is energetically accessible, and in eqaltogether and considering the quantitiés(R) and R-d1x(R)
11 we integrate over all phase points where the upper adiabaticas the only sources of coupling, as we have done in egqs 10 and
potential surface is energetically accessible. The motivation for 11. The drawback from this procedure is that the coupling at
limiting the integration to these regions of phase space is thatlarge-gap regions of phase space contributes to the integrals
classical transitions between potential surfaces can only occur(10) and (11) with as much weight as the coupling at small-
in these regions. Additional constraints on the integrals in eqs gap regions of phase space does.

10 and 11 are that for a particulRrandP, the total energye 4.3. Quantum Mechanical CalculationsTaken together, the
must be conserved. We define single-surface bound-state calculations and the fully coupled
guantum mechanical calculations allow us to determine which
l/Zp2 =T=E-V,R) (12) representation provides a better uncoupled model of the system.

In particular, we compare the single-surface bound-state energies
for both the upper adiabatic potential energy surface and the
upper diabatic potential energy surface to the energies of the
1 guantum mechanical resonances as determined from the fully
VadR) = T5(V14(R) + V5(R)) (13) coupled calculations. Our third criterion for the selection of the
representation for the trajectory surface hopping calculations is
Finally, we require that the total angular momentum be zero. that the representation of the single-surface bound-state calcula-
Further details about these calculations are provided in Appendixtion that best agrees with the fully coupled calculations should
A. be used for the surface hopping calculations.

where
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TABLE 2: Comparison of Bound-State Quantum Mechanical Calculations and Fully Coupled Quantum Mechanical
Calculations for Potential Energy Matrix 5F2

fully coupled adiabatic bound state diabatic bound state
a staté Ea E.— Eo Ty @'a oo Eq E,— Eo Eq E.— Eo
0 000 1.890 0.000 1.960 1.64 1.36 1.944 0.000 1.881 0.000
1 010 1.977 0.087 4.697 1.92 2.02 2.030 0.086 1.968 0.088
2 020 2.053 0.163 5.741 2.17 2.49 2.119 0.175 2.047 0.166
3 002 2.080 0.190 wide 2.085 0.141 2.069 0.188
4 100 2.105 0.215 2.474 2.14 2.83 2.240 0.296 2.007 0.216

2 Energies E, andE, — Eg) are in eV, and widthslI{,) are in meV.a labels the resonance, afy is the energy of resonanee ° Vibrational
guantum numbers;, v,, andvz as defined in section 2.

TABLE 3: Comparison of Bound-State Quantum Mechanical Calculations and Fully Coupled Quantum Mechanical
Calculations for Potential Energy Matrix 62

fully coupled adiabatic bound state diabatic bound state

o staté Eq E.— Eo Ty @'0 yo Eq Es— Eo Eq Es.— Eo

0 000 2.030 0.000 1.442 0.82 8.34 2.030 0.000 2.024 0.000
1 010 2.093 0.063 1.279 0.74 7.69 2.094 0.064 2.087 0.063
2 020 2.147 0.117 1.385 0.84 7.25 2.148 0.118 2.141 0.117
3 001 2.184 0.154 0.608 1.85 5.67 2.184 0.154 2.170 0.146
4 030 2.193 0.163 1.222 1.09 5.67 2.194 0.164 2.188 0.164
5 040 2.232 0.202 1.116 1.20 4.85 2.233 0.203 2.229 0.205
6 050 2.267 0.237 1.020 1.30 4.32 2.268 0.238 2.264 0.240
7 002 2.273 0.243 0.522 1.35 8.82 2.273 0.243 2.259 0.235
8 060 2.296 0.266 0.848 1.34 3.73 2.297 0.267 2.291 0.267
9 100 2.302 0.272 2.871 2.41 2.98 2.304 0.274 2.294 0.270

aEnergies E, andE, — Eo) are in eV, and widthsI{,) are in meV.a labels the resonance, aid is the energy of resonanee ° Vibrational
guantum numbers;, v,, andvs.

5. Results 040
_ ) 0.35 [
Tables 2 and 3 show the energies and widths of the quantum 0.30 g

mechanical resonances, the energies of bound states in the E
adiabatic approximation, and the energies of bound states in 0.25 f
the diabatic approximation for each potential energy matrix. g 020 F

In all figures, we use the following notation for the TSH  * '
methods: solid lines represent adiabatic calculations, and dashed
lines represent diabatic calculations; open squares representthe 010

015 [

rotated TFSd method, and filled squares represent the non- 0.05 [
rotated TFSd method. The Ehrenfest method is shown with 0.00 g . , . , , L
circles linked by solid lines. Open circles represent Ehrenfest 18 190 195 200 205 210 215

trajectories analyzed with histogram methods, black circles
represent Ehrenfest trajectories analyzed with linear smooth -
sampling, and circles with plus signs inside represent EhrenfestFigure 3. Mean decay lifetime versus total energy for the resonances

- - . - - of potential matrix 5F. Solid squares represent TF8Fmmethods, and
trajectories analyzed with quadratic smooth sampling. Quantumopen squares represent TFS-dotmethods; solid lines represent

mechanical results are indicated with thick black lines. calculations employing the adiabatic representation, and dotted lines
We use the following notation for clarity in discussing the represent calculations employing the diabatic representation. The circles

four TFS methods. The vector used for hopping is indicated represent Ehrenfest calculations. The degree of filling of the circles

after the “TFS” abbreviation in bold. Rotation is indicated by indicates the method used to analyze the Ehrenfest method: black

. . indicates LSS, pluses indicate QSS, and no filling indicates histogram-
rot” before the hopping vector, and nonrotated methods are ming. The thick black line with no symbols indicates the converged

indicated by “nr”. Adiabatic methods are labeled with “adia- gyantum mechanics calculations, which are independent of the choice
batic” preceding the abbreviation, and diabatic methods are of electronic representation.

labeled with “diabatic” preceding the abbreviation. Thus,
diabatic-TFS-rod refers to the diabatic rotatedlTFS method, Figures 3-6 show plots of the lifetime, the average final
while adiabatic-TFS-nd refers to the adiabatic nonrotatdd-  vibrational quantum number, the average final rotational
TFS method. When a method is mentioned without such a label, quantum number, and the average final relative translational
the reference is assumed to apply to all variants of that method,energy for semiclassical trajectory calculations for NaH
independent of the missing label. For example, diabatic-@FS- potential energy matrix 5F. Figures-10 show plots of the
refers to both rotated and nonrotated methods, and TRB-nr- same quantities for semiclassical trajectory calculations or,NaH
refers to both adiabatic and diabatic representations of thepotential energy matrix 6; in these plots, we present the
nonrotatedd TFS method. trajectories in three groups, according to which mode is excited.
The notation used for the ESCP method is Ehrenfest-Hist, We include the 000 resonance in each of the three groups, to
Ehrenfest-LSS, and Ehrenfest-QSS for the histogrammed Ehren-make clear the trends of the quantities with energy and quantum
fest results, the linear smooth sampling Ehrenfest results, andnumbers. Average overall errors are shown in Tables 4 and 5
the quadratic smooth sampling Ehrenfest results, respectively.for each potential energy matrix.

Energy (eV)
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Figure 4. Average final vibrational quantum number versus the total Figure 6. Final relative energy versus the total energy for resonances
energy for resonances for potential matrix 5F. Solid squares representfor potential matrix 5F. Solid squares represent TF$-methods, and
TFS-nrd methods, and open squares represent TF8-no¢thods; solid open squares represent TFS-totmethods; solid lines represent
lines represent calculations employing the adiabatic representation, andcalculations employing the adiabatic representation, and dotted lines
dotted lines represent calculations employing the diabatic representationrepresent calculations employing the diabatic representation. The circles
The circles represent Ehrenfest calculations. The degree of filling of represent Ehrenfest calculations. The degree of filling of the circles
the circles indicates the method used to analyze the Ehrenfest methodindicates the method used to analyze the Ehrenfest method: black
black indicates LSS, pluses indicate QSS, and no filling indicates indicates LSS, pluses indicate QSS, and no filling indicates histogram-
histogramming. The thick black line with no symbols indicates the ming. The thick black line with no symbols indicates the converged
converged quantum mechanics calculations, which are independent ofquantum mechanics calculations, which are independent of the choice

the choice of electronic representation. of electronic representation.
3.0 r TABLE 4: Semiclassical RMS Errors in the Mean Lifetime,
o in the Final Average Vibrational Quantum Number, in the
25 | Final Average Rotational Quantum Number, and in the
b Average Final Relative Energy for Potential Matrix 5F2
20 f Absolute RMS Errors
T nr-d rot-d Ehrenfest
Y g ad-TFS® di-TFS ad-TFS$ di-TFS Hist LSS QSS
tor 7 7 (ps) 014 004 011 004 0.7 0.09 0.09
N E, @'0 0.36 0.11 0.28 0.14 0.24 0.31 0.40
05 ] o 0.17 0.63 0.37 0.84 0.66 0.62 0.63
L EeaeV) 0.14 0.03 0.13 0.03 0.13 0.18 0.14
0.0 IR TR S T AN TN SN SHN TN NN TR SR N NUR Nl T N Y N TR T S N NN S N 1
185 190 195 200 205 210 215 Relative RMS Errors (%)
Energy (eV) nr-d rot-d Ehrenfest
Figure 5. Average final rotational quantum number versus the total ad-TFS di-TFS ad-TFY di-TFS Hist LSS QSS
energy for resonances for potential matrix 5F. Solid squares represent 4 2 4 2
TFS-nrd methods, and open squares represent TF8-noethods; solid ! gps) lg g 1?1 3 3132 31% 32?(’)
lines represent calculations employing the adiabatic representation, andg 3 31 17 41 25 24 24
dotted lines represent calculations employing the diabatic representation.[EreﬂeV) 22 5 19 5 20 27 21

The circles represent Ehrenfest calculations. The degree of filling of

the circles indicates the method used to analyze the Ehrenfest method: 2Bold numbers indicate the lowest error for each of the four
black indicates LSS, pluses indicate QSS, and no filling indicates quantities.” Adiabatic Tully’s fewest switches algorithriDiabatic
histogramming. The thick black line with no symbols indicates the Tully’s fewest switches algorithm.

converged quantum mechanics calculations, which are independent of

the choice of electronic representation. general case of momentum prohibited hops. In our present

calculations, the total angular momentum is extremely small,

We gathered statistics on the surface hops of the TFS and we observed no angular momentum prohibited hops. Table
calculations. In particular, for each method and for each potential 6 shows the hopping statistics. According to our first criterion,
matrix, we calculated the number of successful surface hops,semiclassical trajectory surface hopping should be performed
the number of hops that failed due to insufficient energy, and in the representation in which the fewest number of hops occurs.
the number of hops that failed due to insufficient linear From Table 6 it is apparent that for potential matrix 5F, the
momentum along the hopping vector. Note that the rotated hop-minimizing (hm) representation is the diabatic representa-
vector methods have no linear momentum prohibited hops. It tion, and for potential matrix 6 it is the adiabatic representation.
is possible for a rotated vector method to have angular In addition to looking at the number of successful and
momentum prohibited hop$. These occur when there is attempted hops, we looked at average potential energy changes
sufficient kinetic energy to hop, but a large portion of the energy during hopping, as well as the kinetic energy prior to hopping.
is contained in rotational motion of the system as a whole. In Figure 11 shows a plot of the average potential energy change
this case angular momentum conservation limits the momentumfor both potential matrices, and Figure 12 shows ratios of the
adjustment that is allowed. If the energy associated with the average kinetic energy to the average potential energy gap for
internal vibrational motion of the system is smaller than the each potential matrix.
potential energy gap, then hops are not allowed. For nonrotated Figure 13 shows a plot of the volume of diabatic and
vector methods, this class of hopping failure falls into the more nonadiabatic coupling for each potential matrix as a function
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Figure 7. Decay lifetimes versus total energy for resonances for Figure 8. Final average vibrational quantum number versus the total
potential matrix 6: (a) A0 series; (b) 00 series; ()OO series. Solid energy for resonances for potential matrix 6: (ap Geries; (b) 00
squares represent TFS-imethods, and open squares represent TFS- series; (c)n00 series. Solid squares represent TF$-mnethods, and
rot-d methods; solid lines represent adiabatic calculations, and dotted open squares represent TFS-otmethods; solid lines represent
lines represent diabatic calculations. The circles represent Ehrenfestadiabatic calculations, and dotted lines represent diabatic calculations.
calculations. The degree of filling of the circles indicates the method The circles represent Ehrenfest calculations. The degree of filling of
used to analyze the Ehrenfest method: black indicates LSS, plusesthe circles indicates the method used to analyze the Ehrenfest method:
indicate QSS, and no filling indicates histogramming. The thick black black indicates LSS, pluses indicate QSS, and no filling indicates
line with no symbols indicates the quantum mechanics calculations. histogramming. The thick black line with no symbols indicates the
quantum mechanics calculations.

of energy. For potential matrix 5F, the diabatic coupling volume
is much larger than the nonadiabatic coupling volume. For potential matrix 5F and those for potential matrix 6. The six
potential matrix 6, the opposite is true. Our second criterion trends to be compared are the spacings of the resonance levels,
suggests that the diabatic representation should be used fothe lifetimes of the resonances, the average vibrational quantum
trajectory surface hopping calculations for potential matrix 5F nhumber of the decay products, the average rotational number
and that the adiabatic representation should be used for potentiaPf the decay products, the average translational energy of the
matrix 6. products, and the superiority of a particular electronic repre-
sentation in the single-surface bound-state calculations.

For both potential matrices, the energy spacings of the
resonances are closely related to the shape of the exciplex

6.1. Comparison of Quantum Mechanical Calculations for potential energy well. For example, the zero point energy and
Potential Matrix 5F and Potential Matrix 6. We compare 100 resonance energy of the exciplex for potential matrix 6 are
six quantities between the quantum mechanical calculations forslightly larger than they are for potential matrix 5F. This is

6. Discussion
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Figure 10. Final relative energy versus the total energy for resonances
for potential matrix 6: (a) 00 series; (b) 00 series; (c)n00 series.

Solid squares represent TFS#hmethods, and open squares represent
TFS-rotd methods; solid lines represent adiabatic calculations, and

adiabatic calculations, and dotted lines represent diabatic calculations.dotted lines represent diabatic calculations. The circles represent
The circles represent Ehrenfest calculations. The degree of filling of Ehrenfest calculations. The degree of filling of the circles indicates
the circles indicates the method used to analyze the Ehrenfest methodthe method used to analyze the Ehrenfest method: black indicates LSS,

black indicates LSS, pluses indicate QSS, and no filling indicates
histogramming. The thick black line with no symbols indicates the
guantum mechanics calculations.

consistent with the shape of the well for potential matrix 6,
which is narrower in the, direction than that for potential

matrix 5F. This is shown in Figures 1 and 2. On the other hand,

pluses indicate QSS, and no filling indicates histogramming. The thick
black line with no symbols indicates the quantum mechanics calcula-
tions.

electronic states for potential matrix 5F are more strongly
coupled than the electronic states for potential matrix 6. This is
correlated with the relative magnitudes of the diabatic and

it can be seen that the energies of the 010 and 020 states fomonadiabatic coupling for each potential matrix. The nonadia-

potential matrix 5F are slightly higher than those for potential
matrix 6. This again is consistent with the geometry of the well
for potential matrix 6, which is wider in thBya, coordinate
than it is for potential matrix 5F, as shown in Figures 1 and 2.
The total resonance widths tend to be larger for potential
matrix 5F than they are for potential matrix 6, indicating that
the exciplexes for potential matrix 5F have shorter lifetimes
than they do for potential matrix 6. This also indicates that the

batic coupling is strongest near the line of conical intersections.
For potential matrix 5F, the conical intersection passes close to
the bottom of the exciplex, where the vibrational wave function

density is highest. For potential matrix 6 the conical intersection
passes farther from the bottom of the well, where the vibrational
wave function density is lower. The nonadiabatic coupling will

thus more strongly couple the states in potential matrix 5F than
the states in potential matrix 6. For both potential matrices the
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TABLE 5: Semiclassical RMS Errors in the Mean Lifetime, 15 ———
in the Final Average Vibrational Quantum Number, in the -
Final Average Rotational Quantum Number, and in the '
Average Final Relative Energy for Potential Matrix 62 | Matrix 6 ]
Absolute RMS Errors 10 ]
nr-d rot-d Ehrenfest 12_,1
ad-TF$ di-TFS ad-TF$ di-TFS Hist LSS QSS v »
7 (ps) 041 060 037 044 136 051 0.56 05T Matrix 5F
@'0 0.32 0.53 0.45 0.99 0.50 0.76 0.85 b P i |
oo 1.71 2.27 2.22 2.05 465 4.71 472 Lo
Eoev) 015 024 020 043 029 0.88 0.60 N
Relative RMS Errors (%) 1.85 1.95 2.05 2.15 2.25 2.35
nr-d rot-d Ehrenfest Energy (eV)
ad-TF® di-TFS ad-TF$ di-TFS Hist LSS QSS Figure 11. Average absolute value of the energy gap at surface hops
for potential matrix 5F and potential matrix 6 versus energy. The solid
f@%s) gg gg gé 132 22613 gg 38 squares represent the hm-TFSdnmethod; the open squares represent
o0 13 59 51 49 73 7 7 the hm-TFS-rod method. The dashed lines represent values for
Ee(eV) 18 o8 > 47 50 128 01 potential matrix 5F; the solid lines represent values for potential matrix
rel 6. For potential matrix 6, only thenD resonances have been shown
2Bold numbers indicate the lowest error for each of the four for clarity.
quantities 2 Adiabatic Tully’s fewest switches algorithri Diabatic
Tully’s fewest switches algorithm. L '
[ ||
TABLE 6: Average Number of Successful Hops, Linear 06 ¢ B ]
Momentum Prohibited Hops, and Energy Prohibited Hops 05 F ) ]
Per Trajectory, Averaged Over All Energies L [ m. Matix5F ]
Potential Matrix 5F Uél 04 ¢ . B
nr-d rot-d Z 0.3
ad-TFS diTF® ad-TFS  diTFS Yok
Tor Matrix 6
successful hops 7.5 1.1 8.9 1.1 F
momentum failures 0.5 0.3 0.0 0.0 0.1 ¢
energy failures 0.7 1.8 0.8 17 00 F L L
Potential Matrix 6 1.85 1.95 2.05 215 2.25 2.35
nrd rot-d Energy (eV)
ad-TFS di-TF® ad-TFS di-TFS Figure 12. Ratio of the average kinetic energy to the average absolute
value of the energy gap at surface hops for potential matrix 5F and
successful hops 10 1.4 13 4.8 potential matrix 6. The solid squares represent the hm-TFRSamethod;
momentum failures 0.5 4.0 0.0 0.0 the open squares represent the hm-TFSdnotethod. The dashed lines
energy failures 1.6 17.3 13 216 represent values for potential matrix 5F; the solid lines represent values

a Adiabatic Tully's fewest switches algorithrhDiabatic Tully’s for potential matrix 6.

fewest switches algorithm.
matrix 5F, the diabatic single-surface calculations agree best

diabatic coupling vanishes @b, geometries, where the bottom  with the fully coupled problem, while for potential matrix 6 it
of the exciplex well is located. is the adiabatic single-surface calculations that agree best with

An analysis of the final decay products of the resonances for the fully coupled problem. The dependence of the single-surface
potential matrix 5F and potential matrix 6 reveals three more calculations on the representation is probably related to the
trends between matrices. A comparison of Figure 4 to Figure coupling between electronic states. The single-surface calcula-
8a—c shows that in general the average vibrational quantum tions may be thought of as approximations to the fully coupled
number of the decay products increases as the total energy iscalculations arrived at by setting the coupling between surfaces
increased for both potential matrices. On the other hand, ato zero. The error of this approximation will thus be the smallest
comparison of Figure 5 to Figure 9& shows that the average  when the single surface is in the representation that has the
rotational quantum number of the decay products tends to smallest interstate coupling. The diabatic coupling vanishes at
increase with the total energy for potential matrix 5F and it C, geometries and is small at n@, geometries near the
tends to decrease with total energy for potential matrix 6. A exciplex well for both potential matrices. On the other hand,
comparison of Figure 6 to Figure 18a shows that the final potential matrix 5F has much larger nonadiabatic coupling than
relative energy of the decay products tends to decrease withpotential matrix 6 does in energetically accessible regions, as
total energy for potential matrix 5F, and it tends to increase described above. This large nonadiabatic coupling for potential
with total energy for potential matrix 6. These three trends of matrix 5F explains why the diabatic representation of the single
guantities of the decay products to change with energy are lesssurface best agrees with the fully coupled calculation. For
well explained by changes in the potential energy matrix. potential matrix 6, the difference in the two representations is

The extent of agreement of the single-surface bound-statenot as important as evidenced by the slight differences in
calculations with the fully coupled calculations depends on the representation shown in Table 3. However, the inaccessibility
choice of representation of the single surface. Table 2 shows aof the line of conical intersections is evidently a more important
very strong dependence for potential matrix 5F, and Table 3 factor than the nonzero diabatic coupling at r@n-geometries.
shows a weaker dependence for potential matrix 6. For potential  Our third criterion thus predicts that the adiabatic representa-
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1000000 —— ‘ — — — adiabatic trajectory surface hopping method and the Ehrenfest
] method predict an average final vibrational quantum number
that is too low.

In the calculations of the average final rotational quantum
number, on the other hand, the adiabatic-TF$tmmethod
. shows the lowest error. All of the semiclassical methods predict
] a similar trend offjf Jto increase as the energy of the initial
state is increased (Figure 5).

All of the trajectory surface hopping methods predict that
i ] the relative energy of the products decreases as the energy of
100 Lo vy e L the initial state is increased (Figure 6). However, the diabatic-

18 19 20 2.1 29 23 2.4 TFS-d methods have a much smaller error than the adiabatic-
TFS-d methods do. The Ehrenfest methods not only have a large
Figure 13. Diabatic a_md non_adiabatic coupling volume for potential ;ahrror, but the%/tilsq ptr.etldlctt ttha.t the relatlv((ja energytl?cr?ﬁsefogs
matrix 5F and potential matrix 6 versus the total energy. The squares € energy ot the initial state IS Increased, except for the
represent diabatic coupling volume, and the circles represent adiabaticState.
coupling volume. The open symbols linked by dashed lines represent  Overall, the diabatic-TF$-trajectory calculations show the
values for potential matrix 5_F; the fi_IIed symbols linked by solid lines  pest agreement with the quantum mechanical calculations, and
represent values for potential matrix 6. the rotation of the hopping vector has little effect on the final
results for this method. The adiabatic calculations are much
poorer (except foff[J. The surface hopping trajectories thus
agree with the quantum mechanical single-surface bound-state
calculations in showing that the diabatic representation is

explainable in terms of differences in the potential matrices, SUPErior for potential matrix SF. All three of our criteria thus
but differences in the other three are less well explained. One Predict correctly which choice of representation is most ap-

goal of our comparisons of semiclassical calculations to quantum ProPriate for surface hopping calculations with potential matrix
mechanical calculations is to be able to further explain the 9F- The Ehrenfest method usually has intermediate accuracy
quantum mechanical results with a semiclassical interpretation, Petween the adiabatic and the diabatic surface hopping methods.

For instance, although the trends in the final vibrational and UNlike the surface hopping methods, however, the Ehrenfest

rotational quantum numbers and the final relative energy were Method is independent of electronic representation, and thus,
not easily explainable in terms of features of the potential energy &S Pointed out in section 3.2, there are no electronic representa-
matrix, we may be able to describe them semiclassically. fion issues with this method.
However, the semiclassical exp|anations are valid only to the 6.2.2. Potential Matrix 6For potential matrix 6, the lifetimes
extent that they reproduce the accurate quantum calculationsPredicted by the adiabatic surface hopping methods typically
for each potential matrix. We examine this issue next. agree with the accurate quantum mechanical lifetimes better than
6.2. Comparison of Semiclassical Trajectory Surface  the those predicted by the diabatic ones. Note that for potential
Hopping Calculations to Quantum Mechanical Calculations matrix 6, the adiabatic representation is the hop-minimizing
for Each Potential Energy Matrix. Of the six trends described ~ representation. It can be seen in Figure-gdhat the diabatic
in the previous section, the semiclassical methods make predic-surface hopping methods all underestimate the mean lifetime.
tions for all excep[ the resonance energies (since we CarriedAnOther trend that is evident in Figure—?a is that the rotated
out our semiclassical calculations at the quantum mechanicalvector methods predict a lifetime that is longer than the
resonance energies, the semiclassical calculations reproduce theredictions of the corresponding nonrotated vector methods. All
energy spacings by construction). The errors in the semiclassicalof the adiabatic surface hopping methods and the Ehrenfest
methods for the quantities, averaged over all of the resonancegmethOdS show a tendency for the calculated lifetime to decrease
are shown in Tables 4 and 5. We first discuss the accuracy ofas the energy of the initial state is increased, as can be seen in
the semiclassical trajectories for potential matrix 5F, and then Figure 7a-c. The accurate quantum mechanical lifetimes,
we discuss the accuracy of the trajectories for potential matrix however, do not systematically decrease as energy is increased.
6. Finally, we examine two criteria for predicting the accuracy Instead, in the B0 and O series the accurate lifetime increases
of a semiclassical calculation from trajectory calculations. ~ With energy, while in the going from the 000 state to the 100
6.2.1. Potential Matrix 5FFigure 3 shows that the lifetimes ~ State the accurate lifetime decreases. In an earlier péapes,
predicted by the diabatic-TF&-methods and the Ehrenfest noted a correlation between a trend of the surface hopping
methods agree qualitatively with the accurate quantum mechan-lifetimes to decrease with initial energy and a trend in the
ical lifetimes much better than the lifetimes predicted by gquenching probability to decrease with increasing energy of the
adiabatic-TFSd methods do. The diabatic-TFBmethods are  initial state. In that paper we were concerned only with thé 0
the hop-minimizing methods for this potential matrix, and they Series, whose initial momentum is largely directed along the
have the lowest error of all of the semiclassical methods. It is Ra-+, coordinate. Some trajectories starting mdGtates with
interesting to note that both the rotated and nonrotated variantsenergies larger than 2.104 eV (the classical asymptotic energy)
in the diabatic representation give nearly identical results (Figure dissociated on the excited potential energy surface rather than
3). The rotated and nonrotated variants of the adiabatic-dFS- quench, although this violates zero-point energy conservation.
method, however, predict different lifetimes. We hypothesized that preventing the trajectories from violating
In the calculations of the average final vibrational quantum Zero-point energy conservation would increase the mean life-
number, all of the semiclassical methods correctly predict that time.
@' Owill be higher for higher-energy initial states (Figure 4). In comparing the results for the 100 state to those for the
The diabatic-TFS} methods have the smallest error; the 000 state, the adiabatic surface hopping methods and the

T

100000 |

10000 |

Volume

1000 |

Energy (eV)

tion will be the best for trajectory surface hopping methods for
potential matrix 6, while the diabatic representation will be the
best for potential matrix 5F.

In summary, differences in three of the six trends are
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Ehrenfest method agree with the accurate quantum mechanicalvell with the quantum mechanical relative energies by com-
calculations in that they predict a decrease in the lifetime for parison (Figure 10ac). For example, the adiabatic-THFS-
100. One may wonder whether this agreement is accidental andmethod has a relative error of 18%, the diabatic-TtHaethod

if the nonconservation of zero point energy by the semiclassical has a relative error of 28%, and the Ehrenfest-Hist has a relative
methods is responsible for the short lifetime of the 100 state. error of 52%. More detailed comparisons are shown in Table
However, there is evidence that suggests that zero point energyb.

conservation is not as important a factor in the semiclassical The adiabatic trajectories have good agreement with the

lifetime calculations for the 100 state as it is for th@Geries. quantum mechanical calculations for the trends in the average
In the 100 state, most of the momentum is directed along the final quantum numbers of the decay products. Note that diabatic
ru, coordinate instead of toward the Na(3p)H, asymptote. trajectories do not necessarily hop near the conical intersection,

The ry, coordinate is roughly perpendicular to the line of since the diabatic surfaces are coupled by the off-diagonal
avoided crossings, where the nonadiabatic coupling is the coupling element, which is very small near the conical intersec-
strongest. Thus, trajectories are more likely to quench beforetion. Thus, diabatic TFS trajectories do not predict final
their momentum can be redistributed and before they dissociatevibrational and rotational quantum numbers that have the same
on the upper surface. The quenching probability for the 100 dependence on the energy of the initial state that the adiabatic
resonance calculated by the adiabatic-TF$Fntethod is 0.71,  TFS trajectories do. The extent that the adiabatic TFS methods
while the quenching probability for the 060 resonance calculated describe the final average rotational and vibrational quantum
by the adiabatic-TFS-ni-method is 0.40. Therefore, when the  numbers better than the diabatic TFS methods do implies that
conservation of zero-point energy is not a strong factor, the the adiabatic representation is more appropriate for trajectory
adiabatic TFS methods do give qualitative agreement with the surface hopping calculations for potential matrix 6. Further
accurate quantum mechanical lifetimes. Similar arguments mayevidence of the superiority of the adiabatic representation for
be applied to the Ehrenfest method, except that in this casepotential matrix 6 is that surface hopping calculations in the
quenching is less well defined. Instead of occurring at a single adiabatic representation have smaller overall errors than calcula-
location, the process of quenching in the Ehrenfest method tions in the diabatic representation do. For this potential matrix,
occurs more gradually, as can be seen in eqs 3 and 9. We stillall three criteria for the selection of the best trajectory
expect that the motion of an Ehrenfest trajectory across the line representation are successful.

of avoided crossings will be more effective at transforming the g 2 3. Criteria for Determining the @rall Accuracy of a

self-consistent potentigl of eq 9into a potentigl similgr to the gemiclassical CalculatiorBeyond determining which repre-
ground state than motion along tRRa-, coordinate will. sentation will be the most accurate for semiclassical calculations,
All of the TFS methods and the Ehrenfest variants predict a it would be useful to be able to predict the size of the absolute
final average vibrational quantum number that increases with error in the semiclassical methods from dynamical information.
an increase in energy of the initial states. In Figure-8é can Note, for example, that the overall error in the hm-TFSdnr-
be seen that the accurate quantum mechanical vibrationalmethod for potential matrix 5F is much smaller than the overall
numbers also increase with the energy of the initial state, excepterror in the hm-TFS-nd method for potential matrix 6. We
for the 002 state. As we discussed in an earlier p&plenver- checked two different criteria for the absolute accuracy of the
energy trajectories are energetically unable to cross the conicalsemiclassical methods. The first is the size of the average energy
intersection for this potential matrix. As energy is increased, a gap during surface hops. The average gap is illustrated in Figure
larger region of the potential surface becomes energetically 11 for potential matrices 5F and 6. The average energy gap of
accessible to trajectories, and at 2.06 eV the conical intersectiontrajectories for potential matrix 5F is much smaller than the
itself becomes accessible. The component of the nonadiabaticaverage energy gap of trajectories for potential matrix 6. The
coupling vector along the Hvibrational mode is largest near  correlation between the size of the hopping gap and the size of
the conical intersection, and since tHevector (or a rotated  the error of the hm-TFS-ni-method suggests that the direction
variant) is used to adjust the momentum of trajectories during of the hopping vector may be crucial to an accurate description
surface hops, high-energy trajectories form products with higher of reaction dynamics, especially for systems with large energy
vibrational excitation. The trend of the accurate quantum gaps. This is because large energy gaps require large adjustments
mechanical vibrational quantum numbers to increase with to the kinetic energy, and the final energy distributions are
increasing energy is therefore qualitatively described by trajec- determined largely by the redistribution of momentum during
tories hopping near the conical intersection usingdhector. a hop. The present calculations confirm our earlier observa-
This explanation also applies to the Ehrenfest method; the self-tions'316 that for potential matrix 5F, both the hm-TFS-ebt-
consistent potential changes more rapidly as Ehrenfest methodsnethod and the hm-TFS-mrmethod produced similar energy
approach the conical intersection. However, the surface hoppingdistributions in the final trajectory states, while for potential
model provides a clearer picture of the nonadiabatic processmatrix 6 the difference in the two methods is larger (Tables 4
than does the Ehrenfest method. and 5).

The adiabatic-TF$ methods best reproduce the accurate  Another criterion that has been sugge$tddr assessing the
qguantum mechanical trend of the final average rotational accuracy of trajectory calculations is the ratio of the kinetic
quantum number to decrease as the energies of the initial stategnergy to the size of the energy gap during hopping events.
are increased (Figure 9&). The component of the nonadiabatic  This ratio is generally larger for the hm-TFS-ttmethod for
coupling vector along the bending coordinate is smallest near potential matrix 5F than it is for the hm-TFS-drmethod for
the conical intersection, and so high energy trajectories will form potential matrix 6 (Figure 12). This confirms that a greater
products that have smaller rotational quantum numbers. All three fraction of the final kinetic energy is partitioned during surface
Ehrenfest methods underestimate the final average rotationalhopping for potential matrix 6 than for potential matrix 5F.
quantum number. 6.3. Which Semiclassical Trajectory Method, the Surface

The Ehrenfest method overestimates the amount of relative Hopping Method or the Self-Consistent Potential Method,
energy of the products. The other semiclassical methods all agreeBest Describes Each Potential Matrix?For potential matrix
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5F, the Ehrenfest calculations have intermediate accuracycalculations, but the diabatic trajectories for potential matrix 6
between the diabatic and the adiabatic surface hopping calcula-are much too short.

tions, typically slightly better than the adiabatic calculations and  For both potential matrices, the quantum mechanical calcula-
worse than the diabatic calculations. The only exception to this tions show that the average final vibrational quantum number
is the average final rotational quantum number, for which the increases as the total energy is increased. All of the semiclassical
adiabatic surface hopping method is the best, followed by the trajectory calculations reproduce this trend.

Ehrenfest and then by the diabatic method. All three kinds of  In potential matrix 5F, the quantum mechanical calculations
trajectory methods reproduce trends of the lifetimes, averageshow that the average final rotational quantum number increases
final rotational quantum numbers, and average final vibrational as the total energy is increased. On the other hand, in potential
quantum numbers to change with a change in the total energy.matrix 6 the quantum mechanical prediction of the average final
However, the Ehrenfest method does not reproduce the trendrotational number decreases as the total energy is increased.
of the average final relative energy as a function of total energy, The only semiclassical calculation to reproduce this behavior
while both representations of the trajectory surface hopping of the average final rotational quantum number is the adiabatic
method do. Overall, Table 4 shows that the diabatic trajectory trajectory surface hopping method.

surface hopping calculations are the most accurate, while the |n potential matrix 5F, the quantum mechanical calculations
adiabatic trajectory surface hopping calculations and the Ehren-show that the final relative translational energy decreases with
fest method have larger errors. total energy, whereas in potential matrix 6 the quantum

These findings are consistent with earlier widithat showed mechanical calculations show that the relative energy increases
that the Ehrenfest method typically worked as well as the with total energy. Both the adiabatic and the diabatic trajectory
adiabatic trajectory surface hopping method. surface hopping methods reproduce this trend, but the Ehrenfest

The Ehrenfest calculations have higher overall errors than method does not.
either of the surface hopping calculations do for potential matrix ~ When one uses the hop-minimizing representation, the
6. The Ehrenfest method far underestimates the amount of finalsemiclassical surface hopping calculations correctly reflect the
rotational excitation in the products and overestimates the trend of the change in lifetimes, the change in average final
amount of relative energy in the products. It does, however, quantum numbers, and the change in relative energy between
correctly predict the trend of the average final vibrational potential matrices. Furthermore, the hm-TFS calculations have
number to increase with energy, and the error of the Hist- the smallest overall error of all of the semiclassical methods
Ehrenfest method for the vibrational quantum number is slightly for both potential matrices.
smaller than the diabatic surface hopping method. The last trend we examine between potential matrix 5F and

One reason that the Ehrenfest methods may do better forPotential matrix 6 is the superiority of a particular electronic
potential matrix 5F than they do for potential matrix 6 is that representation. The surface hopping trajectories reproduce the
the states are more strongly coupled in potential matrix 5F. The quantum mechanical preference for resonances on potential
conical intersection in potential matrix 5F, for instance, is Matrix 6 to be best described by an adiabatic representation and
energetically accessible at low energies. During the calculation for resonances on potential matrix 5F to be described by a
of Ehrenfest trajectoriesy the self-consistent potentia| rap|d|y diabatic representation. All three of our criteria COFreCtly pFEdiCt
changes from resembling an excited-state potential surface tothe best representation for the trajectory surface hopping
resembling a ground-state potential surface in regions of strongcalculations.
coupling. For potential matrix 5F, the average squared final
excited-state coefficient for the self-consistent potential for 7. Conclusions
trajectorie.s starting in the 000 state i§ 0.3_’1. On the other hand, \ye have presented quantum mechanical calculations for the
for poten.tlal matrix 61 the state coupling is much wgaker. The Feshbach funnel resonances of two different Madtential
self-gon3|stent potential only gr_adual_ly changes for this potentlgl energy matrices called 5F and 6. These calculations provide
matrix, and once the asymptotic region of the average potential ¢ rate decay lifetimes and branching probabilities for each
becomes energetically accessible, the exciplexes dissociate. Thet the given potential matrices. Some of the differences in the
average squared excited-state coefficient is 0.85 for trajectories,ggjts of the coupled quantum mechanical calculations for these
starting in the 000 state for potential matrix 6. Thus, it may not ,qential matrices have been correlated with features of the
be too surprising that for poj[entlal matrix 6 the Ehrenfest method potential matrices. For example, the spacings of the resonance
does not accurately describe the ground-state decay productSenergies are correlated with the shape of the exciplex well. The

Overall, the surface hopping calculations describe the quan- jifetimes of the resonances are correlated with the magnitude
tum mechanics more closely than the Ehrenfest method doesof the nonadiabatic coupling in regions of high wave function
for either potential matrix. density.

6.4. Do the Semiclassical Methods Reproduce the Trends The extent of agreement of single-surface bound state
Shown by the Quantum Mechanical Calculations between  quantum mechanical calculations with the fully coupled quantum
the Two Potential Matrices? By construction, the trajectory  mechanical calculations depends on the choice of representation
calculations all reproduce the quantum mechanical resonanceof the single surface. For NaHbotential matrix 5F, diabatic
energy spacings for both potential matrices. single-surface calculations agree best with the fully coupled

The adiabatic trajectory surface hopping calculations and the calculations, while for Nakipotential matrix 6 it is the adiabatic
Ehrenfest calculations both show an increase in the calculatedsingle-surface calculations that agree best. The dependency of
lifetimes in going from potential matrix 5F to potential matrix the agreement on the representation is correlated with the
6, in agreement with the quantum calculations (Figures 3 and location of the line of conical intersections relative to the
7a—c). The diabatic trajectory surface hopping calculations, exciplex well.
however, do not show this trend. An examination of Figures 3  We performed semiclassical trajectory methods both with the
and 7a-c shows that the diabatic trajectory lifetimes for surface hopping method and with the Ehrenfest method. The
potential matrix 5F agree well with the quantum mechanical surface hopping calculations used Tully’s fewest switches (TFS)
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method and were carried out in both the adiabatic and the tends to have the smallest errors except in the calculation of
diabatic representation. The semiclassical trajectory calculationsthe lifetime, for which the linear smooth sampling method has
show some of the same trends that the quantum mechanicathe smallest error.
calculations show with respect to changing potential energy  For Nat potential matrix 5F, the best overall semiclassical
matrices. For example, the lifetimes of the trajectories are muchmethod is Tully’s fewest switches method in the diabatic
shorter for potential matrix 5F than they are for potential matrix representation using the nonadiabatic coupling vector for
6. hopping, while for NaH potential matrix 6 the best overall
The trajectory surface hopping calculations may be performed semiclassical method is Tully’s fewest switches method in the
in either the adiabatic or diabatic representation. We tested threeadiabatic representation using the nonadiabatic coupling vector
criteria for predicting which representation will be most accurate. for hopping. These calculations provide clear evidence that the
According to our first criterion, we calculate trajectories in both adiabatic representation is not always superior to the diabatic
representations and accept the results of the representation thatepresentation and that similar systems may differ in which
has the fewest average number of surface hops. A drawback ofrepresentation is better.
this criterion is that two sets of dynamics calculations must be |t is instructive to review recent calculations comparing
performed, increasing the computational expense. Our secondsemiclassical and quantum mechanical calculations. Except in
criterion requires no dynamical information but only requires recent work on the collinear NaFH systéfrall of our earlier
the evaluation of two integrals over the energetically accessible semiclassical calculations on a variety of syst&m§ have
regions of phase space. The representation that has the smallegjualitatively agreed with accurate quantum mechanical calcula-
coupling volume (defined in section 3.3) is the appropriate tions. This agreement occurs in bimolecular collisions on
representation to perform trajectory surface hopping calculations. systems with strong coupling and with energetically accessible
The third criterion is to compare fully coupled quantum conical intersection& in bimolecular collisions for a system
mechanical calculations with single-surface quantum mechanicalwith very weak coupling? and in the current unimolecular
calculations. The representation of the single surface that agreegjecay calculations on potential matrices of with conical intersec-
best with the fully coupled calculations should be used in surface tions of varying energetic accessibil#§ This last mentioned
hopping calculations. For large systems, this criterion is not very example is especially encouraging, since it models an essentially
useful because it requires converged quantal calculations, whichquantum mechanical phenomenon.
are only practical for small systems. We note that all three 5, rasults here and in refs 13, 14, and 16 show that among
criteria gave identical predictions for the best representation. i« semiclassical methods we have examined, Tully's fewest
When we used the representation for each potential energyswitches method is the best on average. For the weakly coupled
matrix that minimizes the number of hops, we found that the BrH, systemt4 Tully’s fewest switches method was found to
trajectory surface hopping calculations show qualitative agree- have the smallest error, and the Ehrenfest method was slightly
ment with the quantum mechanical calculations for potential |ess accurate. For the earlier study of bimolecular collisions for
matrix 6, and they show even better agreement with the quantummodel MH, systemd3 Tully’s fewest switches method in the
mechanical calculations for potential matrix 5F. The average adiabatic representation and the Ehrenfest methods had similar
energy gap at hopping is correlated with this agreement. gccuracy. The line of conical intersections is energetically
Semiclassical calculations in the hop-minimizing representation accessible in both of these model systems, and the nonadiabatic
for potential matrix 5F predict a smaller average energy gap coupling vector is very large near the conical intersection. The
for hopping events than calculations in the hop-minimizing current work suggests that fewer surface hops would occur in
representation for potential matrix 6 do. the diabatic representation for the model Mdystems and that
We examined the accuracy of the trajectory surface hopping therefore diabatic-TFS calculations would be the most accurate
calculations with two different choices for the vector along for these systems; this prediction remains untested. For the
which the momentum of the trajectories was adjusted during systems studied in the current work, Tully’s fewest switches
surface hops. These two choices are the nonadiabatic couplingnethod in the representation that minimizes the number of
vector and another vector that is derived by allowing the surface hops is more accurate than the Ehrenfest method.
nonadiabatic coupling vector to rotate to reduce the number of Although we have not exhausted all of the possible types of
momentum-prohibited surface hops. We found that in general potential energy surfaces, the evidence that we have so far
the nonadiabatic vector is the best vector to use for hopping examined suggests that for general three-dimensional two-state
events and that using the rotated hopping vector led to systems, Tully’s fewest switches method is the most accurate
trajectories that had slightly larger errors in the final calculated semiclassical method currently available if one uses the non-
quantities. rotated nonadiabatic coupling vector as the hopping vector and
The Ehrenfest calculations have higher overall errors than Propagates the trajectories in the representation that minimizes
the surface hopping calculations do. For potential matrix 6 the the number of surface hops.
Ehrenfest calculations tend to be worse than the surface hopping Finally, we close by considering the question in the title of
calculations in either representation, while for potential matrix this paper. The average relative RMS error of the seven
5F the Ehrenfest calculations tend to be more accurate than thesemiclassical methods studied here for the four final observables
adiabatic surface hopping calculations but less accurate than(lifetimes, vibrational and rotational quantum numbers of
the diabatic surface hopping calculations. For both potential fragments, and relative translational energy of fragments) of
matrices, the Ehrenfest calculations tend to be worse than thetwo systems is 45%, which is an average of 23% for the more
surface hopping calculations if the latter are based on the strongly coupled system 5F (which has an average lifetime of
representation that minimizes the number of surface hops. We0.2 ps) and 68% for the less strongly coupled system 6 (which
note that for potential matrix 5F, all three methods of analyzing has an average lifetime of 0.7 ps). However, choosing the
the Ehrenfest results (histogramming, linear smooth sampling, representation for the trajectory surface hopping calculations
and quadratic smooth sampling) gave similar results. For as the one that minimizes the number of hops yields a method
potential matrix 6, on the other hand, the histogram method with an average relative RMS error of only 18% for system 5F
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and 35% for system 6 for an overall average of 26%. Especially \,, _ .
when one considers that the errors in lifetimes are potentially Wi E) L@bosm % dHQ d¢Qf¢qd¢QI Q'/;J:C'/;’Q'/';q

unboun.ded (un!ike the other three obseryables, lifetimes are not IV,.(Q,a,%)/A| siny dy q2 dq deQ dP,, dP, (A-9)

constrained to finite ranges by conservation of energy or angular

momentum), one would have to conclude that the accuracy is\y. (E) = 852

reasonable, and the answer to the title question is a guarded 6e(E) fQﬁ‘f%ﬁ’Q‘/';q )

“yes”. 1U,4(Q.a )/l siny dy of dq @ dQ dPg dP,, (A-10)
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X="1Q° (A-11)
Appendix A
PP Y=",° (A-12)
The evaluation of the integrals in eqs 10 and 11 is ac- _
complished through Monte Carlo integration techniques. Since n = —cosy (A-13)

we are using Jacobi coordinates, the integrals in eqs 10 and 11 ¢ f which eq A-10 b it
are 12-dimensional. We write the vecRras a combination of "' '€7MS 0T wWhich €q A-10 may be whtten
s, the vector pointing from atom B to atom C, aBda vector )

pointing from atom A to the center of mass of BC. We further Wg(E) = 87 foprprq

define two mass-weighted vectors U, (X,Y,)/h] dX dY dy dP,dP, (A-14)
Q = usS (A-1) The integral over the momenta may also be simplified. In
_ particular, at any geometry R, the total momenta may be
q= \/ﬂ_ss (A-2) partitioned into internal-vibrational motion as well as external-

. . rotational motiori8 By considering cases where the total angular
whereus andus are the masses associated with the vectors  momenta is zero, we may reduce the dimension of the integral
andS. The momenta conjugate to these mass-weighted vectors(A-14) by 3 and integrate over only the three internal-vibrational

are degrees of freedom. We then write
Po= E (A-3) Wyia(E) = 8ﬂ2j;<j}t/:7‘/;ilezl(X,Yn7)/hl dP;, dX dY dy
JlTS (A-15)
P = E (A-4) wherePy, refers to the three internal vibrational modes of the
4 \//73 system. One final dimension may be removed by recognizing

that in order for total energy to be conserved, the kinetic energy

so that at any given geometr¥, Y, » must be given by

o= Po (A-5) TXY,n) = E—V(X,Y,n) (A-16)

q="P (A-6) where we have defined(X,Y,,)

1 }
Working in mass-scaled coordinates simplifies the calculations. V(XYop) = 1o (Via(XYon) + Voo X Yoy)) - (A-LT)

We note that the integrands of eqs 10 and 11 depend only

: . : : We transform herical polar rdin in the momenta:
on the internal coordinates and not on the orientation of the e transform to spherical polar coordinates in the momenta

system in fixed space. This suggests that by a suitable coordinate P,=P__sinf cose (A-18)
transform we may remove three dimensions from the calculation. 1o max P P
We first consider the integral in eq 10, noting that much of P, = PpaxSin 0, sin b (A-19)

the following simplification will also apply to eq 11. We may
express the coordinates in eq 10 in spherical polar Jacobi
coordinates as follows:

P,=P,.,C0SO A-20
3 max p

whereP;, P,, andPs are the internal mass-weighted vibrational

momenta.
WeelB) = o fo oo Jo Vo Q)] dQ da dPg dPy (A7) L
_—_ip2 ip 2 ip2 _
dQ dq = q?dq sin 0,06, A, @ dQ sind A, dp, (A-8) TP o (A-21)
_1 2

where we have defined the anglésandg with respect to an T = SPrmax (A-21)
arbitrary axiszin space, and we have defined the angigland 5 .
#q With respect to the vecta®. With these definitionsy is dP,dP,dP; = P, dP, ., sin6,d6, dp, (A-23)

equal toy, the angle betweeq andQ, and the angle8q, ¢q,

and ¢q orient the ABC system in space. Since the integrand We reduce the dimension of eq A-15 by not integrating over
does not depend on this orientation, these three angles can béhe coordinate Bmax (in order to conserve total energy). This
factored out and eq A-7 can be written gives
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W,ia(E) = 8”2j;<¢/;j;7ﬁ)p j;p

Vo (XY n)/I2T sin 6,d6, dg, dX dY dyy (A-24)
We define
1, = —Ccosb, (A-25)
Giving finally
W€ = 871 [ [ U0
I(E — V(X,Y7)) dp, dp, dX dY dyp (A-26)
The quantitiyWyis(E) has units of

(apV0) (Wl (agV i) AHIE) ™ = ag'hEw®  (A-27)

since we have integrated inverse time over all six coordinates

and two momenta.
A similar simplification may be performed on eq 11. The
final integral becomes

Woo(B) = 167" [ [ [ [, [, 1 dai(XYor) V()
IT(X,Y,7) dig, dgp, dX dY dyy (A-28)

wherev is the internal velocity vector. The units of eq A-28
are also given by eq A-27.
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