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The effect of solvent electrostatics and solute torsional modes on the absorption spectrum of betaine-30 in
acetonitrile is examined. Combined quantum/classical molecular dynamics ground state simulations are used
to calculate the electronic absorption spectrum in acetonitrile. The model for betaine-30 includes the electronic
degrees of freedom of theπ system of the molecule and their interactions with the electric field of the solvent,
treating the electronic wave function at the level of Pariser-Parr-Pople semiempirical electronic structure
theory. The absorption intensity, width, and maximum of the S0 to S1 band are well reproduced by the model.
In solution, the S0 molecular dipole moment is found to be strongly enhanced due to solvent-induced electronic
reorganization. The width of the absorption band in acetonitrile is found to be a function of solvent orientational
fluctuations and is not correlated with conformational changes caused by torsional motion in the molecule.
This fact, combined with the good agreement between the classical reorganization energies inferred from the
simulated and experimental spectra indicates that, at least in acetonitrile, the classical component of the
reorganization energy is fully determined by solvent orientational polarization. The spectral band maximum
of the lowest energy transition is found to be blue shifted over 7000 cm-1, compared to a calculation in
which the coupling of the betaine-30 electronic structure to the solvent molecules is eliminated, in agreement
with the shift found experimentally for betaine-30 in acetonitrile compared to alkanes. However, in contrast
to the result found in acetonitrile, the transition energy in the absence of solvent interactions is found to be
strongly correlated with the central phenolate-pyridinium dihedral ring angle. This contrasting behavior implies
that in nonpolar solvents, the classical reorganization energy does have a contribution from that torsional
mode. Correspondingly, this difference in behavior with solvent indicates that the assumption of a solvent
independent intramolecular contribution to the reorganization energy is questionable.

1. Introduction

The influence of solvent on the electronic absorption spectrum
of a molecule can result in changes in peak position, line shape,
and intensity, an effect that has been termed “solvato-
chromism”.1 Correspondingly, the solvatochromic shifts that
arise in different solvents can serve as a useful empirical
measure of solvent polarity. A number of scales exist,2 one of
the more popular being the ET(30) scale. The ET(30) scale makes
use of the lowest energy transition of theN-pyridinium-
phenolate, betaine-30. The ET(30) values, which are simply the
energies of the absorption maxima in kcal/mol, have been
measured for over 200 solvents.3 The S0 to S1 transition in
betaine-30 is particularly well suited for use as a measure of
solvent polarity. The band, which is aπ to π* transition, is
well separated from the other electronic transitions making its
identification and maximum unambiguous. Further, it is enor-
mously sensitive to solvent polarity shifting over 10 000 cm-1

from 11 470 cm-1 in diphenyl ether to 22 080 cm-1 in water.2

The transition corresponds to an intramolecular electron transfer
from the phenolate ring of the molecule to the pyridinium ring
as shown schematically in Figure 1. The extreme sensitivity of
the solvatochromic shift is due to the large dipole moment
change between ground and lowest excited state. The band is
blue shifted as a function of increasing polarity due to the much
larger dipole moment in the ground state. In fact, betaine-30 is
a member of a large group of compounds where the degree and
direction of the solvatochromic shift depends on whether the

charge separated zwitterionic state is predominate in the ground
or the excited state.2 For later consideration, we note a number
of distinct characteristics of the spectrum of betaine-30. Not
only is the peak position of the band sensitive to the nature of
the solvent, but also its shape and width. The band shape is
markedly asymmetric, having increased absorption on the high-
frequency side.4 The degree of solvent broadening increases as

Figure 1. Schematic of the ground to first excited state electronic
transition in betaine-30. The reference frame for calculating the
Cartesian components of the transition and permanent dipoles is as
follows: thex axis is along the principal axis of the molecule, they
axis is perpendicular to thex axis and is confined to the plane of the
pyridinium ring, and thez axis is perpendicular to the plane of the
pyridinium ring.
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a function of solvent polarity,4,5 although at low solvent
polarities the absorption width is largely independent of solvent
type. A band shape analysis for betaine-305 and the related
compound betaine-264 in the context of electron transfer (ET)
formalism6-8 links this increasing broadening with solvent
polarity to the increasing solvent reorganization energy associ-
ated with electron transfer. According to the analysis, the
asymmetry results from the vibronic substructure of the
electronic transition. In the case of polar and nonpolar aprotic
solvents, the band is well fit with a single effective molecular
mode of approximately 1600 cm-1, taken to be indicative of a
vibrational mode within the molecule involving C-C, C-N,
or C-O character.4

Empirical scales, such as the ET(30) scale, and continuum-
based theories, such as the ET theory cited above, lack
information about the precise molecular interactions that give
rise to the solvatochromic shift and broadening and therefore
provide motivation for a theoretical molecular-based model to
analyze these effects. One approach is an integral equation
formulation recently applied for a simplified molecular solvent
to analyzing the ET(30) scale in terms of component solvation
forces.9 Alternatively, a molecular dynamics (MD) simulation
approach can be taken, using empirical solvent solute potentials.
Such an approach to the solvatochromism has been taken very
recently by Maroncelli and co-workers in a study of betaine-30
in a wide range of solvents.10 To provide a more complete
description of the absorption band, including line shape, MD
simulation combined with a suitable electronic structure formal-
ism can be used to provide a deeper analysis.11 Such an approach
is taken here, using combined classical/quantum MD simulations
of betaine-30 in a polar solvent, acetonitrile. An atomistic model
of the betaine-30 is used with the inclusion of an appropriate
subset of both the electronic and solute nuclear degrees of
freedom in the MD simulation. This is done in order to capture
the critical effects due to the solvent, as well as conformational
changes of the betaine-30. The goal is to ascertain the detailed
roles of the solvent and intramolecular degrees of freedom in
establishing the spectral behavior.

In section 2, we present the methods used in the calculation,
including electronic structure, simulation, and spectral elements.
Section 3 describes the results, including an analysis of the
molecular contributions to spectral line shapes. The conclusions
are presented in section 4. An appendix providing further details
of the algorithm development is provided in the form of
Supporting Information.

2. Methods

Potential Energy Functions.The approach here is different
from conventional MD simulations where molecular interactions
are modeled solely through the use of effective potential energy
functions. Direct inclusion of the key electronic degrees of
freedom of the solute necessitates the recalculation of the solute
wave function at every MD time step. This task can be
computationally very demanding, even for relatively small
molecular systems. Nevertheless, so-called ab initio MD12,13has
been applied to relatively large systems for relatively short time
simulations. Here, an alternative approach is taken: we limit
the electronic degrees of freedom to theπ system of the betaine-
30 solute. The three lowest energy bands in the UV/visible
solution spectrum of betaine-30 areπ to π* transitions,14 and
accordingly only the electrons of theπ subsystem are critical
to the present model. Theσ electrons, lone pair electrons, inner
shell electrons and nuclei are combined and treated as classical
effective nuclear cores. Each nuclear core has a formal integer

positive charge equal to the number of 2p electrons it donates
to theπ system. A semiempirical electronic structure method
is used to treat theπ electrons that interact with themselves
and with the nuclear cores of the betaine-30 and solvent
molecules. The electronic structure method used here is the
Pariser-Parr-Pople (PPP) method.15-17 The method has proved
to be quite accurate in reproducing ground state properties as
well as transition energies of aromatic and conjugated systems.18

There are, of course, several methods which make use of
combined quantum mechanical and classical molecular empirical
potentials. In particular, we note at the outset that our approach
is very similar to the pioneering QCFF/PI method,19,20although
it differs in detail. All valence electron treatments, such as the
QM/MM method of Field et al.,21 incorporate the same elements.

In addition to the electron-core, electron-solvent, and
electron-electron interactions, there are several other interac-
tions that must be specified in order to complete the model.
The remaining interactions are the nuclear core interactions with
themselves and with the solvent molecules as well as the
solvent-solvent interactions. These interactions are treated using
conventional molecular mechanics interaction terms. Including
all the interactions that must be part of the model, the total
potential,VTOT, is written

whereVπ is the electronic part of the potential, which includes
the electron-electron, electron-core, and electron-solvent
interactions. The termsVC-C, VS-S, andVC-S denote the core-
core interactions of the betaine-30, the solvent-solvent, and
core-solvent interactions, respectively. The electronic energy
portion of the potential is written as22

where the summation is over the atomic sites that contribute to
the π system. The termsPµν, Fµν, andHµν are the bond-order
matrix, Fock, and one-electron core matrix elements, respec-
tively. The bond-order matrix elements are given by

where the product of molecular orbital coefficientscµ
i andcν

i at
sitesµ andν is summed over occupied molecular orbitals (in
this casen ) 22). The Fock matrix elements are given in the
PPP method by18

whereγµν are the two-electron repulsion matrix elements.
The parameterizations and functional forms for the PPP

matrix elements are, of course, not uniquely defined. The
particular functional form and parameterization that are given
below are those that have been successful in reproducing
transition energies and intensities in aromatic heterocycles.23

An approximate form for the two-electron repulsion integral
γµν that has been particularly successful in reproducing molec-
ular spectra in general18 is the Mataga-Nishimoto relationship,24

given by

VTOT ) Vπ + VC-C + VS-S + VC-S (1)

Vπ ) 1/2∑
µν

Pµν(Hµν + Fµν) (2)

Pµν ) 2∑
i

n

cµ
i cν

i (3)

Fµν ) Hµν - 1/2Pµνγµν (µ*ν)

Fµµ ) Hµµ + 1/2Pµµγµµ + ∑
F*µ

PFFγµF (4)
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where e is the magnitude of the electron charge,Rµν is the
distance between atomsµ and ν, and γνν is the one-center
repulsion parameter. The values for theγ parameters used here,
based on the analysis of Hinze and Jaffe´,18,25are listed in Table
1. The off-diagonal elements,Hµν, of the one-electron core
matrix are treated at the same level of approximation as Hu¨ckel
theory, in that a nearest neighbor approximation is used. That
is,

Once again, a number of alternative approximations have been
used in the PPP method for the resonance parameterâ.18 The
Linderberg approximation,26 notable for the fact that it can be
calculated a priori, has been used successfully in the calculation
of the spectra of heteronuclear aromatic systems as stated
above23 and is given by

wherep is Planck’s constant over 2π, me is the electron mass,
andSµν is the overlap integral between atomic orbitalsµ andν.
Slater orbitals with exponents determined from the usual
screening rules27 were used to determine the gradient term in
eq 7. The resulting values are listed in Table 1. The diagonal
elements,Hµµ

0 , of the one-electron core matrix are approxi-
mated in the PPP method as

The first term of eq 8 is the energy of the orbitalµ in vacuo in
its appropriate valence state. WhileR is not strictly a spectro-
scopic value, the valence state ionization data of Hinze and
Jaffé25 has been the most popular18 and the corresponding atomic
values are included in Table 1. The second term is the interaction
of the electron at siteµ with the nuclear core at siteF, which
has formal chargeZF (equal to the number of 2p electrons the
atom donates to theπ system). The functional form of the
interaction is made the same as the two-electron repulsion term
for consistency.

Having specified the electron-electron interactions and core-
electron interactions in the PPP Hamiltonian, it still remains to
specify the important element that describes how the solvent
interacts with theπ electron system. The PPP method is
modified here to include the solvent-electron interactions by
adding a third term to eq 8

The additional term is the matrix element due to the electron-
solvent charge interaction where the electron is in the atomic
orbital centered atµ andRjµ is the distance between the nuclear
core µ and the jth solvent site with partial chargeqj. The
inclusion of a distance cutoff for interactions in the MD

simulation is accomplished by multiplying the solvent-electron
Coulomb terms in eq 9 by a suitable cutoff function. In the
present calculation, we neglect potential contributions to the
solute-solvent interactions associated with differences in po-
larizability and dispersion interactions between the ground and
excited states.

The core-core interactionVC-C is made up of two terms:

The first term is the core-core repulsion, which is typically
estimated using a Coulombic model with an integer charge of
Zµ at each nuclear siteµ. However, as pointed by Chung and
Dewar,28 this is inconsistent with the functional form assigned
previously to the electron-electron and core-electron interac-
tions. Accordingly, the interaction is written as above using the
same form asγµν for the two-electron repulsion matrix element.
The second term accounts for the steric effects within the
molecule that arise from the so-called nonbonded interactions.
These interactions have been found to be critical in correctly
estimating barriers to torsional motion in systems modeled using
the PPP method.18 The empirical functions of Bartell29 have
been found to be adequate to reproduce the gas phase conforma-
tion of diphenyl;30 they are used here without further modifica-
tion. They are:

wherer is the distance between two nonbonded atoms in the
betaine-30 molecule. The parameters used in the above equations
are listed in Table 2. In the present model, the interactions are
needed only between nonbonded pairs of atoms for which
relative motion can occur as a result of ring torsion (see below).

Torsional motion of the rings modifies theπ electronic energy
due to the variation in conjugation across the bonds’ connecting
rings. This has been accounted for by assuming that the
resonance integral between the sitesµ andν that connect two
rings has the following parametric form as a function of the
torsional angleθ:

where âµν
0 is the resonance integral for the planar system.

Apart from rigid ring rotations around the six dihedral angles

γµν ) e2

(Rµν + aµν)

aµν ) 2e2

(γµµ + γνν)
(5)

Hµν ) âµν µ, ν covalently bonded

Hµν ) 0 otherwise (µ * ν) (6)

âµν ) (p2/me)Rµν
-1

dSµν

dRµν
(7)

Hµµ
0 ) Rµ - ∑

F*µ

ZFγµF (8)

Hµµ ) Hµµ
0 - ∑

j

eqj

Rjµ

(9)

TABLE 1: PPP Parameters and Bond Lengths

site Rµ (eV) âCµ (eV) γµµ (eV) C-X bond length (Å)

C -11.17 -2.2595 11.13 1.395
N -25.73 -2.0166 16.76 1.395
O -17.70 -2.6000 15.23 1.23
H 1.08

TABLE 2: Nonbonded Interaction Parameters for
Betaine-30 (eq 1)

atom pair Aa R (Å-1) B (kcal/mol Å6)

HH 0.659× 104 4.082 0.492× 102

CH 4.474× 104 2.041 1.2496× 102

CC 2.994× 105 3.253× 102

a Units for HH are kcal/mol, CH are kcal/mol Å6, and CC are kcal/
mol Å12.

VC-C ) ∑
µν

γµνZµZν + Vnb (10)

VHH ) AHH exp(-RHHr) - BHHr-6

VCH ) ACHr-6 exp(-RCHr) - BCHr-6

(11)

VCC ) ACCr-12 - BCCr-6

âµν ) âµν
0 cosθ (12)
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identified in Figure 1, all other internal degrees of freedom in
betaine-30 were frozen through the use of constraint dynamics
in the simulations. This constraint can be viewed as resulting
from an adiabatic separation of intramolecular vibrations from
the ring torsional motion and solvent fluctuations. As long as
the high frequency vibrational modes are weakly solvent
configuration dependent, the vibronic substructure from these
modes is an effect that could be added a posteriori to the
simulation results presented in this paper. Since the primary
goal of the present study is to examine the effect of solvent
and conformation on the absorption spectrum, the inclusion of
higher frequency vibrational modes in the potential is not
pursued here. The various fixed bond lengths of the molecular
geometry used are given in Table 1.

The solvent-solvent interactions (VS-S) were modeled with
the rigid three site model for acetonitrile of Edwards, Madden,
and McDonald.31 The solvent intermolecular potential consists
of Coulombic and Lennard-Jones functions with the interaction
sites at the atomic positions of the methyl carbon, carbon, and
nitrogen. The core-solvent interaction,VC-S, consists of two
terms: The first term comprises the Coulombic interactions

between the partial charges of the solvent and the charged cores
of the betaine-30 molecule. The second term includes Lennard-
Jones (LJ) interactions between all the betaine-30 atoms
(including the hydrogens) and solvent sites. The LJ parameters
used for betaine-30 are listed in Table 3. The solvent LJ
parameters and partial charges were the same as those used for
the solvent-solvent potential. The usual Lorentz-Berthelot
mixing rules32 were used to calculate the appropriate Lennard-
Jones interaction parametersεjµ andσjµ between the betaine-30
atoms and solvent sites.

We note that, in the present work, we do not treat solvent
electronic polarizability explicitly. However, the effective pair
potential model for the solvent exhibits an enhanced polarity
(dipole and higher moments) compared to the gas-phase
molecule, accounting for the average polarization of each
molecule by the liquid environment. It has been argued that
the inclusion of explicit solvent polarizability and of the
difference in solute polarizability between the ground and
excited states are important factors in the correct evaluation of
spectral shifts.33 The latter factor would result in a difference
in dispersion forces for the two electronic states, with the excited
state expected to be more strongly interacting with the solvent.
For a quantitative reproduction of experimental spectral posi-
tions, these effects are no doubt significant, particularly for
solvents lacking a permanent dipole moment. However, it is
important to note that the quantitative error associated with the
use of effective pair potential models34 is not yet established.
Calculations that do not account explicitly for polarizability

effects have successfully reproduced experimental results in
many cases,10,34-36 while other reports suggest that these effects
are critical.33 In the most detailed fully molecular study
available,37 the effect of explicit solvent polarizability on spectral
position and line shape was found to be quite small, as long as
the total (electronic plus orientational) polarizability of the
solvent molecular models were the same. Hence, it is clear that
further research aimed at developing accurate schemes for
treating explicit polarizability effects on spectra is desirable.

Here, our goal is not to predict the solvatochromic shift per
se. Rather, for a simulation that reasonably reproduces the
measured shift and line shape, we wish to dissect the elements
contributing to these characteristics. Considering this goal and
the discussion above, we believe that a model lacking explicit
treatment of polarizability is completely sufficient for the present
purposes, and we proceed on that basis.

Simulation Details. With the exception of the electronic
potentialVπ (see eq 2), all of the terms in the total potential are
simple analytic functions of the nuclear coordinates. On the other
hand, derivatives of elements of the bond-order matrix in eq 2
are problematic given the lack of analytic expressions for the
coordinate dependence of the molecular orbital coefficients.
However, for the same reason that analytic derivative methods
in conventional quantum chemistry are efficient, evaluation of
the forces for the propagation of MD trajectories can also be
readily carried out. This is because the molecular orbital
coefficients are found by variational minimization of the total
electronic energy to give the resulting ground state SCF energy
that isVπ. Correspondingly, the derivatives of the bond order
matrix elements in eq 3 do not appear in evaluation of the
derivative of eq 2 with respect to a nuclear coordinate22,38 (an
explicit proof for the ground state energy is given in ref 39).

The equations of motion were integrated using the velocity
Verlet algorithm32 and a time step of 10 fs. The simulations
were run at 298 K at a solvent density of 0.7867 g/cm3. A total
of 1200 acetonitrile molecules were used to determine the size
of the simulation box. After the solvent was equilibrated the
betaine-30 molecule was inserted into the simulation box. Any
solvent molecule that had overlapping LJ radii with the betaine-
30 was removed from the simulation cell. A total of 1172 solvent
molecules were retained for simulation with the betaine-30, and
then the system was equilibrated. The simulation was run with
the Nose´ equilibration technique.40-42 All Coulombic interac-
tions were truncated with a smooth cutoff of half the box
length.43

As stated previously, constraint dynamics were used to
maintain the rigidity of the acetonitrile and the betaine-30. A
conventional method for maintaining constraints in the velocity
Verlet algorithm has been the RATTLE method.44 However,
due to their reduced dimensionality, both linear triatomics and
molecules containing planar rings are problematic for iterative
constraint methods such as RATTLE and SHAKE as they were
originally outlined.44,45 To circumvent this problem the con-
straint method of Cicotti, Ferrario, and Ryckaert was used46 for
the propagation of the equations of motion. The method as
described in ref 46 is for the Verlet integrator and uses an
iterative constraint algorithm similar to SHAKE for the numer-
ical implementation of constraint dynamics. The method can
be modified for the velocity Verlet integrator using an algorithm
similar to RATTLE. Details for this generalized RATTLE-type
method have recently appeared47 and will not be repeated here.
A single Nose´-Hoover oscillator was attached to the Cartesian
degrees of freedom of the acetonitrile molecules. The use of a
Nosé-Hoover oscillator requires that the velocity Verlet

TABLE 3: Lennard-Jones Parameters for Betaine-30

site σ (Å) ε (kcal/mol)

Oa 2.96 0.21
Nb 3.25 0.17
Cc 3.55 0.07
Hc 2.42 0.03

a Values are taken from the OPLS potential function parameters for
O in R-CdOR groups.54 b Values are taken from the OPLS potential
function parameters for N in pyridine.54 c Values are taken from an
all-atom model of benzene.55

VC-S ) ∑
jµ

Zµqj

Rjµ

+ 4εjµ((σjµ

Rjµ
)12

- (σjµ

Rjµ
)6) (13)
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algorithm be modified to account for the coupling of the Nose´-
Hoover oscillator to the solvent particle velocities. The implicit
iterative algorithm of Tuckerman et al.48 was used for the
velocity Verlet integrator. The algorithm must be modified due
to the fact that holonomic constraints were used to maintain
the rigidity of the acetonitrile molecules. Details of how the
velocity Verlet integrator algorithm was coupled to the constraint
method are given in an appendix, provided as Supporting
Information.

Transition Energies and Intensities.Solute excited states
were calculated using configuration interaction with single
excitations. Spectra were calculated with all possible single
excitations. Transition energies calculated at this level of theory
have been shown to be adequate to reproduce experimental
absorption spectra values for a large variety of conjugated
heterocycles.23 Intensities were calculated using the dipole length
expression and assuming zero-differential overlap (ZDO) be-
tween atomic orbitals.

3. Results and Discussion

Molecular Conformation. Previously published electronic
structure calculations using the AM1 model Hamiltonian on
betaine-3049 have found two minimum energy conformations
(which are referred to hereafter as A and B) that differ
energetically by 0.1 kcal/mol in the gas phase and an estimated
1 kcal/mol in solution. The conformations differ by rotation of
one of the phenyl rings attached to the phenolate by an angle
of 2ê (see Figure 1) through the plane of the phenolate ring
(see also Figures 2 and 3 in ref 49). Both conformations were
also identified in this calculation, with gas phase energies within
0.5 kcal/mol using the present PPP description. The ring angles
of both gas phase conformations were also in good agreement
(within 7°) with those found from the AM1 Hamiltonian.49 Here,
each conformation was used as an initial starting point for a
separate 100 ps MD run. In both cases, the conformation of the
molecules fluctuated locally around their initial gas phase
minimum energy conformations over the course of the MD
trajectory in solution and did not interconvert. The distribution
of angles sampled by the molecule for conformation B is shown
in Figure 2. The angle distributions and lack of interconversion
indicate that rotational well depths are considerably larger than
thermal energies. The most probable values for the present
angular distributions are in good agreement with the reported
values for the minimum energy conformation calculated using
the AM1 Hamiltonian using a dielectric continuum49 model for
the solvent.

It is important to note that the central angle between the
pyridinium and phenolate rings (θ in Figure 1) takes on a
strongly nonplanar value, as is evident in Figure 2. This
important result is not noted in some earlier work49 but has been
noted by others.50 The twist from planar is a result of significant
steric interactions between the pendant phenyl groups. The
presence of a comparable ground state twist using the AM1
Hamiltonian has been verified by our own calculations, so that
this is not a figment of the model used here. A very recent report
from the Maroncelli lab10 has also identified such a distortion,
with a twist angle for the minimum energy conformer of 48°,
close to the present average value of 53°.

Moments and Absorption Spectrum.The calculated spectra
for conformations A and B were found to be statistically
indistinguishable. The calculated spectrum for conformation B,
accumulated over the 100 ps run, is shown in Figure 3. The
result is displayed as the extinction coefficient, derived directly
from transition dipole matrix elements.51 The spectral calculation
included the five lowest energies; the total spectrum in Figure
3 is shown as a dashed line while the gray lines indicate the
individual calculated subbands for each transition. The calculated
intensity and absorption maximum of the lowest energy transi-
tion is in reasonably good agreement with the experimental peak,
as can be seen from the experimental spectrum which has also
been included in Figure 3. The simulated S0 f S1 maximum
yields an ET(30) value of 50.6, while experimentally2 one finds
an ET(30) value of 46.0.

The Cartesian components of the transition dipoles were
averaged over the trajectory using the internal reference frame
shown in Figure 1. The permanent dipole moments of the ground
state and three lowest energy excited states were also calculated
using the ZDO approximation and Mulliken charge estimates
at the atomic sites of the betaine-30. The average dipole
moments and their components are listed in Table 4. The average
transition dipole from the ground to the first excited state is
oriented along the principal axis of the molecule with very small
components along the remaining two axes, indicating that the
first excited state is a charge transfer state. The concomitant
reduction of the permanent dipole moment of the first excited
state confirms a characterization of the transition as a charge
transfer from the phenolate to the pyridinium ring.

The energies of the second and third peaks are also

Figure 2. Distribution of ring angles of betaine-30 in solution for the
B conformation of pendant rings (see text). Notation for each ring angle
is given in Figure 1.

Figure 3. Simulated (dashed line) and experimental3 (solid line)
electronic absorption spectrum of betaine-30 in acetonitrile. The
individual transitions in the simulated spectrum are shown as gray lines.
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comparable to those in the observed solution spectra, although
the intensity of the calculated S2 transition (just below 25 000
cm-1) is clearly far too large too contribute only a shoulder,
while that for S3 (at about 26 000 cm-1) is correspondingly too
small. The solution spectrum is evidently congested with
multiple overlapping states at higher energy, so comparison is
not productive. Analysis shows that the transition dipole for
the calculated second excited state has only a very small
component along the principal axis and a large dipole compa-
rable to that of the ground state, indicating that it is a localized
excitation rather than one characterized as charge transfer. The
third excited state S3 found here corresponds to a charge transfer
excitation (although weaker than that to S1, as is evident from
the subband intensity), judging from the reduction of the
permanent dipole moment compared to the lowest energy state
and an appreciable transition dipole moment component along
the principal axis. The results calculated for the second and third
excited states and their characterization as localized and charge
transfer states, respectively, are not in agreement with the
analysis of the solvent dependence of the static absorption
spectrum by Barbara and co-workers.14 Experimentally, variation
of transition energy with solvent polarity shows that the shoulder
in Figure 3 at about 25 000 cm-1 is a charge transfer excitation
to S2, while the more intense peak at about 27 000 cm-1 is
apparently a weak localized excitation to S3. Thus, the relative
energy of the closely spaced second and third excited states
(calculated to lie at 25 000-26 000 cm-1) is evidently reversed
in the present calculations. We attribute this difficulty to the
limitations of the very simplified single CI model used here in
describing the higher excited states accurately, although the
primary excitation to S1 appears to be described well.

Before proceeding, it is worth noting that the gas phase
permanent dipole moment values computed for the S0 state are
comparable to those obtained with semiempirical quantum
chemistry49,50 and are also close to the value inferred experi-
mentally in relatively nonpolar solvent.2 However, it is important
to note the very large enhancement in the dipole moment that
we find in acetonitrile solution (see Table 4). This enhancement
effect is also seen in a dielectric continuum solvent description
using AM1,49 although the effect is somewhat smaller, and a
comparable increase has been noted in earlier semiempirical
CI calculations.50 Inclusion of such enhancement seems likely
to be important in the modeling of solutions when the electronic
structure is not treated explicitly. In any case, the use of the
experimentally quoted or gas phase value in such models34,10

adds an additional uncertainty to the comparison of models and
experiment.

The electronic transitions are inhomogeneously broadened by
the fluctuations in the transition energy and intensities over the
MD trajectory. The evident inhomogeneous broadening has two
possible sources. First, broadening may be due to the distribution
of solvent configurations that are sampled. The resulting
fluctuations in the solvent reaction field would then give rise
to a band. Broadening may also be due to fluctuations in the
intramolecular degrees of freedom of the betaine-30, which, in
the case of this study, are the torsional motions of the rings of
the molecule. We now consider the important issue of the
relative contribution of each source in detail, for the transition
to S1. Multiphonon band theory6-8 has been used to analyze
the solvent bandwidth dependence and asymmetry features of
the charge transfer transition of betaine-264 and betaine-30.5

The line shape theory in the form applied to betaine-26 and
betaine-30 models the line shape as a set of Gaussians in a
vibronic manifold. The Gaussian profile arises from the continu-
ous dispersive media and the vibronic substructure from
effective discrete local modes. Since the simulation carried out
here does not include skeletal intramolecular vibrations of the
solvent or betaine-30, the line shape should be well fit by a
single Gaussian and, as can be seen from Figure 3, it does not
exhibit the pronounced asymmetry on the high frequency side
that results from such vibrational transitions. The form of the
line shape function as a function of frequencyν, in the absence
of discrete quantum modes, is given by

whereλcl is the classical, typically outersphere, reorganization
energy, ∆G0 is the overall free energy of reaction,kB is
Boltzmann’s constant,T is the temperature, andh is Planck’s
constant. A fit of the spectrum to this form yields the two
parameters,λcl and∆G0. The fit of eq 14 to the calculated first
absorption peak is shown in Figure 4. The inferred solvent
reorganization energy is 3625 cm-1, which is in remarkably
good agreement with the value of 3644 cm-1 calculated from

TABLE 4: Permanent and Transition Dipole Moments for
Betaine-30a

permanent transition dipole moment components (D)
state |bµ|(|µx|) (D) |µx| |µy| |µz|

A. Calculated Average Values in Acetonitrile Solution
S0 24.95 (24.94)
S1 5.5 (2.49) 2.1 0.04 0.04
S2 20.7 (20.04) 0.06 1.0 1.7
S3 10.2 (8.55) 0.2 0.9 0.3

B. Calculated Average Values without Solute-Solvent Interactions
S0 15.8 (15.8)
S1 7.4 (4.2) 4.1 0.06 0.03
S2 8.0 (6.9) 0.08 0.7 0.03
S3 9.8 (8.7) 0.04 0.2 0.3

a The internal reference frame used to calculate the Cartesian
components of the transition and permanent dipole moments is defined
in Figure 1.

Figure 4. S0 to S1 electronic transition calculated in acetonitrile (open
circles) and without solvent interactions (filled circles). The lines are
Gaussian fits to the simulation data using eq 14 for acetonitrile (solid
line) and without solvent (short dashed line). The reorganization
energies calculated from the simulated data are 3625 cm-1 in acetonitrile
and 763 cm-1 in the absence of solvent interactions.

K(ν) ) xπkBT

λcl
exp(-

(hν - λcl + ∆G0)
2

4kBTλcl
) (14)
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the fit to the experimental spectrum.5 This very close agreement
is presumably in part fortuitous. The result is also close to the
simulated value of 4260 cm-1 for a rigid solute, effective
potential model.10 The overall free energy of reaction∆G0 is
-13753 cm-1, the magnitude of which is similar to, but larger
than, that found from the fit to the experimental absorption
spectrum (-11,645 cm-1 5).

The good agreement with experiment manifest here demon-
strates that the model is sufficiently realistic to justify further
spectral analysis, which we consider next. To ascertain the
relative contribution of intramolecular and solvent broadening
to the spectrum, the electronic wave functions and corresponding
absorption spectrum were fully recalculated with the same solute
configurational set, butwithout including the solvent influence
(i.e., Hµµ ) Hµµ

(0) in eq 9). The resulting spectrum would be the
gas phase spectrum if the gas phase configurational sampling
were the same as that for betaine-30 samples in acetonitrile.
Alternatively, the spectrum can also be considered to ap-
proximate the behavior of the spectrum that would be obtained
in a completely nonpolar, nonpolarizable solvent with the
plausible corresponding assumption that the distribution of
torsional angles shown in Figure 2 is not changed in going from
acetonitrile to a nonpolar solvent. As can be seen from Figure
5, the solvent has a profound effect on the wavelength and
intensities of the three lowest energy transitions. The S0 to S1

transition is shifted over 7000 cm-1 from 17 700 cm-1 in
solution to 10 700 cm-1 in the absence of solvent interactions.
The value of 10 700 cm-1 is in close agreement with the
estimated transition energy in long-chain alkane solvents of
10 850 cm-1.2 The energies of lowest and second (10 700 and
16 700 cm-1, respectively) transitions are also in good agreement
with the gas phase INDO/S results of Alencastro et al.49 which
are 11 300 and 16 900 cm-1.

The broadening of the peaks of the “gas” phase or nonpolar
solvent spectrum necessarily arises solely due to fluctuations
of the conformation of the molecule. To determine which
torsional ring angle has the greatest effect on the energy of the
S0 to S1 transition, the energy gap was plotted at each MD time
step as a function of the torsional angles. Not surprisingly, the
energy was found to be correlated predominantly with changes

in the central ring angleθ (see Figure 1), as shown in Figure
6a. This significant result is also observed in other very recent
calculations by Mente and Maroncelli.10 This indicates that
fluctuations in the central ring angle are primarily responsible
for the broadening of the peak in the nonpolar solvent or “gas”
phase spectrum. In the case of the spectrum calculated using
the solvent electrostatic field generated by the acetonitrile
molecules, the broadening can arise from ring angle fluctuations
and from solvent fluctuations. The corresponding correlation
diagram, shown in Figure 6b, generated including the solvent
influence (see eq 6), however, reveals that in the polar solvent,
the transition energy fluctuations are apparently completely
uncorrelatedwith fluctuations in the central ring angle. The
fact that this is true is shown in Figure 6c, which gives the
angular dependence of the average excitation energy obtained
from the data in Figure 6b. The insensitivity evident in Figure
6c is in striking contrast to that manifest in Figure 6a, in the
absence of solvent. The results in Figure 6c show clearly that
the correlation evident in the gas phase (Figure 6a) isnotsimply
hidden by the large solvent fluctuations contributing to the
results in solution (Figure 6b). Rather, Figure 6b shows the
surprising result that the solvent orientational polarization
somehow destroys the dependence of the transition energy on
the central ring angle. As a corollary, it follows that in the
present calculation, the line shape in acetonitrile is therefore
due to solvent fluctuations and not dependent on the distribution
of ring angles sampled by the molecule in solution.

There is clear evidence for an electronic effect of the solvent,
in that the S0 f S1 transition frequency is highly correlated
with the central ring angle in the absence of the polar solvent,
but these are essentially uncorrelated in the presence of the
solvent field. Analysis of the electronic matrix elements
comprising the transition energy reveals that the origin of this
surprising result lies in the electronic reorganization of the solute
in the presence of the solvent. More specifically, the values of
the Coulombic and exchange integrals contributing to the central
ring angle dependence are significantly shifted by this electronic
reorganization, so that, in the presence of the solvent field, the
key matrix elements have relatively small magnitudes and their
dependence on the ring angle tend to cancel. In contrast, this is
not found to be the case when the solute wave function is
evaluated in the absence of the solvent field. While the generality
of this behavior is not clear, the result for this solute alone
provides an important warning for the interpretation of the
solution phase spectra of similar solutes in the general case.

The absorption width is smaller in the gas-phase spectrum,
and the resulting fit (see Figure 4) gives a reorganization energy
of 763 cm-1. A corresponding value of 1100 cm-1 has been
estimated by Mente and Maroncelli.10 Reorganization energies
found from fits to the experimental spectra for nonpolar solvents
are approximately 1700 cm-1 for related molecules and are
largely independent of solvent type.4 The difference between
nonpolar solvent reorganization energy from experiment and
from the gas phase simulation is consistent with the view4 that
in nonpolar solvents there are additional contributions to the
reorganization energy arising from the solvent. At the same time,
the present results demonstrate that there are, in general, low
frequency solute modes contributing to the “classical” reorga-
nization energy. In the present case, the data in Figure 6a show
that the central ring angle is a primary candidate for the
dominant solute degree of freedom. However, as shown above,
the contribution of this degree of freedom to the classical part
of the reorganization energy is evidentlynot simply additive,
independent of the solvent. As a result, the separation of this

Figure 5. The simulated electronic absorption spectrum in acetonitrile
(solid line) and calculated without solvent interactions (dot-dashed
line). The locations of the individual transitions are labeled in solid
font for the solution spectrum and in outline font for the transitions
calculated without solvent interactions.
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component from that due to solvent by spectral differences
between polar and nonpolar solutions5 is not supported by the
present results. In particular, the good agreement between
experiment and calculation obtained here for both the absorption
maximum and reorganization energy for the solution phase
suggests that the classical (low frequency) component of the
reorganization energy in the case of acetonitrile and possibly
other aprotic polar solvents may come more heavily from the
solvent then previously believed. It is particularly interesting
to note that resonance Raman data for betaine-30 taken in
acetonitrile52 have been interpreted in terms of a relatively high
solvent component of the reorganization energy (∼6000 cm-1),
a result that corresponds more closely to the present result than
to the cited interpretations of static absorption spectra.5 Nev-
ertheless, a puzzling difference between these alternative
experimental analyses for the high frequency component (not
addressed here) remains.

4. Conclusions

The electronic absorption spectrum of betaine-30 in aceto-
nitrile has been simulated and analyzed using a combined MD
and electronic structure methodology based on semiempirical
PPP electronic Hamiltonian. The minimum energy conformation
of the molecule in the gas phase and solution are found to be
substantially the same, and this structure agrees well with
previous theoretical studies using alternative quantum chemical
approximations where comparison is possible. The simplified
model reproduces rather well the solvatochromic shift in the
absorption maximum, as well as the absolute position, width,
and intensity of the lowest energy S0 to S1 transition.

Given this basis for confidence in the validity of the model,
a calculation of the absorption spectrum without inclusion of
the solvent influence has revealed the dramatic effect of solvent
orientational polarization on the ground and excited state wave
functions and the corresponding transition energies. While the
gas phase ground state S0 dipole moment agrees well with the
experimental estimate2 in relatively nonpolar solvent, a large
enhancement (by∼9 D) is found in acetonitrile solution,
paralleling corresponding, but somewhat smaller, increases
previously reported for a continuum solvent model.49 The
solvent reorganization energy associated with excitation to the
S1 excited state that can be inferred from a fit to the solution
absorption spectrum gives a value in good agreement with that
inferred from analysis of the experimental spectrum.5 However,
while the fluctuations in the torsion of the central dihedral ring
angle of the betaine-30 in acetonitrile are found to be strongly
correlated with fluctuations in the transition energy in the gas
phase, this correlation is shown to be lost in acetonitrile solution.
In this solution, the absorption width is determined solely by
the fluctuations in the solvent field and is remarkably indepen-
dent of the internal torsional coordinates of the betaine-30. Given
the good agreement obtained with the solution phase experi-
mental fit, the result suggests that the classical reorganization
energy cannot be separated into a solvent contribution and a
solvent independent solute intramolecular vibrational compo-
nent. This conclusion is contrary to assumptions made in some
previous theoretical studies9 as well as in experimental studies5

of this solution.
The good agreement between the model calculations and

experiment obtained here indicates that the model is also a useful
one for studying the back electron transfer dynamics of the S1

state. Such studies will be reported elsewhere.53
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