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The reaction of superoxide radical anions with sulfide radical cation complexes represents an important
sulfoxide-forming process. Here, absolute rate constants for the reaction of-suffur [>S0S<]" and
sulfur—nitrogen (B> SO NH,R] ) three-electron bonded sulfide radical cation complexes with superoxide and,
for comparison, carbon dioxide radical anion have been measured by pulse radiolysis. For two different sulfur
sulfur bonded species, thetermolecularcomplex from dimethyl sulfide and thietramolecularcomplex

from 1,5-dithia-3-hydroxycyclooctane, the rate constants for the reaction with superoxide are on the order of
1.6 x 101°M~1 s71 and with the carbon dioxide radical anion on the order of 6.8.2) x 10° M~ s™%. The

fact that the stronger reducing carbon dioxide radical anion shows the lower rate constant can be rationalized
by the higher internal reorganization energy©0,~ as compared to £ . The rate constant for the reaction

of superoxide with the sulfurnitrogen bonded radical cation of Met-Gly= 5.3 x 10° M1 s™1, is 3-fold

lower as compared to that of the reaction with the sutulfur bonded radical cation complexes.

Oxidation reactions of organic sulfides are of great importance and/or their respective complexes react via (i) deprotonation in
in biological system&? in the atmosphergéand on surfaces. the a position to yielda-(alkylthio)alkyl radicals, (ii) dispro-
Often such oxidations are carried out by hydroxyl radicals, portionation, or (iii) one-electron oxidation of appropriate
generated through a variety of processes such as Fenton typelectron donors, yielding sulfide and the oxidized electron
reaction$~7 the homolytic decomposition of peroxynitrous donoril12 However, recently we have quantified additional
acid®° the photolysis on semiconductor surfaces (e.g., CdS or reaction channels of aliphatic organic and peptide sulfide radical

TiOy),* or the effects of ionizing radiation on wat¥r. cation complexes which directly lead to the respective two-
In aqueous solution, the reaction of hydroxyl radicals with electron oxidation products, the sulfoxides, through (a) a
sulfides predominantly yields sulfide radical cationsS™ hydroxide-dependent reaction with molecular oxygen (reaction

(reactions 1 and 2; representatively shown for dimethyl sulfide), 5)'7 or (b) the reaction with superoxide radical anion (reactions
which stabilize through association with an additional nonoxi- 6 and 7)1819
dized sulfide molecule (reaction 3)!? Alternatively, other

nucleophiles, X, such as hydroxyl, carboxyl, ester, or amino HO o +ym e
functions can substitute for the nonoxidized sulfide to yield a 2a+ 0,7 >S=0+ =S+ H/O;" (5)
variety of sulfide radical cationnucleophile complexes (reac- 2a+ 0. — [>S(+)—O—O(_) + S<] (6)
tion 4)13 2
[>SP-0-0) + 5<] — 2 >S=0 (7)
HO" + S<—>S-0H (1) Q)
_ n Reactions 6 and 7 represent an important sulfoxide-forming
1—HO +>S 2 mechanism when sulfides are oxidized under conditions where
>t 4 g< = [>SO S<]+ (2a) ©) hydroxyl radicals and superoxide are generated simultaneously.
This is the case for some biological conditions of oxidative
>S4+ X" =[>S—X] =0+ (2h) (4) stress, i.e., respiratory buftand certainly when sulfides are

subjected to photolysis on the surface of semiconductors such

Electronically, sulfur-sulfurt* and sulfur-nitrogert® bonded as, e.g., TiQ in aqueous suspensiohdn the latter system,
complexes are best described a$12* three-electron bonded  photolytic charge-separation results in the simultaneous forma-
structures with one electron localized in the antibondirig tion of surface-bound hydroxyl radicals and superoxide (through
orbital of the sulfur-sulfur or sulfur-nitrogen bond. In contrast,  the reduction of surface-bound oxygen by conduction-band
for sulfur—oxygen bonded complexes, o*, or x radical electrons).

structures have been descriBétlisually, sulfide radical cations To fully describe the reactions of sulfide radical cation

complexes with superoxide, absolute rate constants are neces-
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Figure 1. Optical spectrum recorded: after pulse irradiation of an
N,O-saturated aqueous solution, pH 7, containing 102 M DMS.
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Experimental Section

Materials. Dimethyl sulfide (DMS) and 1,5-dithia-3-hy-
droxycyclooctane (DTHCO) were from Aldrich Chemical Co.
(Milwaukee, WI), and the peptide Met-Gly was from Bachem
(King of Prussia, PA). All chemicals were of p.a. quality and
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pulse irradiation of an pD-saturated aqueous solution, pH 7,
containing 1x 1072 M DMS. The absorbance withax = 465
nm is characteristic for the radical cation compks formed
according to reactions-43 (at 102 M DMS, equilibrium 3 is
located nearly completely on the side of compl2a).1112
Division of the radiation chemical yield, expressedGages =
3.63 x 1073 J°1 cm! by the known extinction coefficient of
2aat 465 nmtt 25465 = 6200 M1 cm™, yieldsG(2a) = 0.58
uM J71, For the specific conditions employed, eq | predicts
GN20(HO®) = 0.64uM J~1. Thus, the fraction of HOconverting
into 2aamounts td5(2a)/G(HO*) = 0.91. The residual fraction
(ca. 0.1) of HOYyields a-(alkylthio)alkyl radicals3, likely via
direct hydrogen abstraction from DMS (reaction 10). The latter
absorb withlmax = 285+ 5 nm and do not interfere with the
optical spectrum oRa in the visible regiort1-12

HO" + DMS — H,O + ‘CH,~S~CH, (3)  (10)

used as received. Solutions were made up with deionized water When the same experiment is performed in the additional

provided by a Millipore Milli-Q system. The pH values were
adjusted by the addition of either NaOH or HGIO

Pulse Radiolysis.Pulse radiolysis experiments were per-
formed with the Notre Dame Titan 8 MeV Beta model TBS-

presence of either (2:68.7) x 10~2 M phosphate buffer, X
1071 M NaClQy, or 2 x 1072 M NaHCQ,, there is no significant
change in the spectral characteristicRafHowever, the initial
radiation chemical yields slightly drop frofGesss = 3.63 x

8/16-1S linear electron accelerator with typical pulse lengths 1072 J-1 cm (no buffer) to 3.43x 103 Jtcm™ (2 x 1073

of 10 ns. Absorbed doses per pulse were on the order-G#1
Gy (1 Gy = 1 J/kg). Dosimetry was based on®saturated
solutions containing 1& M KSCN, taking a radiation chemical
yield of G = 0.6354M J~1 and a molar extinction coefficient
of 7580 M1 cm™! at 472 nm for the (SCNJ~ radical. Here

M phosphate) or 3.29« 103 J! cm! (8.7 x 103 M
phosphate). At the same time, with increasing phosphate
concentrations, a slight acceleration of the overall formation of
2ais observed. Since phosphate does not react with, M@
believe that phosphate reacts both as general acid, accelerating

the G value denotes the concentration of species produced/reaction 2, and as general base promoting the decomposition
converted per 1.0 J absorbed energy. A description of the pulseof 2a (reaction 12; see below).
radiolysis setup, data collection, and processing and details of The radiation chemical yield&e4es are, of course, signifi-

the chemical dosimeter can be found elsewR&Experiments
were performed with continuously flowing solutions at room
temperature £23 °C). Experimental error limits are10%
unless specifically noted.

Results

Radiolysis of Water. Pulse irradiation of water leads to the
formation of the primary reactive species shown in reactiéh 8.
In N>O-saturated solutions, the hydrated electrong,,eare
converted into HOradicals according to reaction 9.

q

€ +N,O—HO +HO +N,

H,0—e,, , HO H ®)
©)

The effective radiation chemical yields, of the primary species

available for the reaction with a substrate depend on the

concentration of the added substrate. FgDOMaturated solu-
tions, the effective radiation chemical yield of H@GN:2(HO"),
converting a given substrate S into substrate radicatsu$ be
calculated according to eq | (whéekgrepresents the rate constant
for the reaction of HOwith S)22 For air-saturated solutions, a
first approximation is based 0B(H*) = 0.06uM J%, G(€xq)

= 0.29uM J71, andG¥'(HO") ~ 0.5 G¥°(HO"), where ('-C-
(HO) is calculated according to ecfa.

G'°(HO") = 0.54x 10 ®+ 0.31x
k{S]/(4.7 x 10%)"?
1+ (kJS]/(4.7 x 1¢%))*?

—6

V)

Dimethyl Sulfide (DMS). Formation and Decay of [[(DMg]r*
(2d). Figure 1 displays the optical spectrum recordeds &fter

cantly reduced in the presence of 2 102 M HCO,",
exclusively rationalized by a competitive reaction of H@th
HCO,~ (see below).

For high concentrations of DMS, e.gz2 x 1072 M, the
decay of2a shows pure second-order kinetics over an applied
dose range of 1:914.5 Gy, corresponding to initial concentra-
tions of 2a]j = (1.1-8.5) x 1075 M, yielding 2k;; = 1.2 x
1I®PM st

2 2a— products (12)

At lower concentrations of DMS, the decay 2d contains an
additional first-order component due to the deprotonation of
>S* (reaction 12), shifting equilibrium 3 toward the side of
the monomeric radical catior.
>S"—H" 4 'CH,~S—CH, (12)
Reaction of2a with Superoxide (Reaction 6Jhe reaction
betweerRa and superoxide (reaction 6) was investigated in air-
saturated aqueous solutions, pH 7.0, containing—{2.@) x
1072 M DMS and (0.1-2.0) x 10°1 M NaHCGQ; at a constant
ratio of [HCO,"]:[DMS] = 10.
2a+ 0, —[>S"-0-0") + s<] (6)
Under these conditions, hydrated electrong, €G = 0.29uM
J1), directly react with @ to yield superoxide (reaction 13;
kiz= 1.9 x 1000M-1gt 23).

€,

2q T 0,— 0,

(13)

Hydrogen atoms, HG = 0.06uM J™1), yield superoxide either
via direct reaction with @(reaction 14k = 2.1 x 10*°M~1
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s™1 23 or via reaction with formate (reaction 1ks = 2.1 x

1 M~1s1 23 where the resulting carbon dioxide radical anion

rapidly reduces oxygen (reaction 165 = 4 x 10° M1 s71

24 (the actual ratio between reactions 14 and 15 varies with
the employed concentration of formate in the individual

experiments).
H'+0,—H" + 0, (14)
H*+ HCO, —H,+°CO,” (15)
‘CO, +0,—CO,+ 0, (16)

The hydroxyl radicals branch between reaction 1 and hydrogen
transfer from formate to yieldCO,~ (reaction 17k;7 = 3.2 x
1P M ts1 2,
HO'+ HCO, —H,0+'CO, a7

On the basis ok; &~ 1.0 x 101 M~1 s71 we expect that at
a constant ratio of [HC&]/[DMS] = 10, ca. 24% of the initially
available HO react with DMS vyielding hydroxysulfuranyl
radicalsl (reaction 1). (Initially, it was reported th&g = 1.9

x 100 M~1 5111 However, in view of our recent data with
other small sulfide’® we believe thak; is closer to 1.0x 10w

Bonifadc¢ et al.
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Figure 2. Absorption vs time profile for2a, monitored atl = 465
nm, following pulse irradiation of an air-saturated aqueous solution,
pH 7, containing 5x 1072 M DMS, 5 x 102 M NaHCGQ,, and 1.78

x 1072 M NaClO,.

10

M~1s71 This lower rate constant leads also to a much better =,
agreement between experimentally measured and theoreticallﬁ
predicted yields of sulfide radical cations in the presence of :

formate.)

Pulse irradiation of an air-saturated aqueous solution contain-
ing 1 x 102M DMS and 1x 107 M HCO," yields Gesgs =
(0.39+ 0.03)x 103 J1cm?, corresponding t6&(2a) = 0.063
+ 0.005u4M J1 at lus after the pulse, in fair accordance with
the expected 0.07aM J~1. The radiation chemical yield of
superoxide is then derived as

G(0,7) = G(H") + G(g,g ) + G¥(HO") — G(1) =
0.06+ 0.29+ 0.34— 0.063/0.9= 0.62uM J*

whereG(1) = G(2a)/0.9.

Similar calculations hold for all applied experimental condi-
tions varying the DMS concentration in the range (€210) x
1072 M and the formate concentration in the range £210)

x 107t M. This ensured the ratio of the initial reactant
concentrations being [©]i/[2a]; ~ 10 and, therefore, pseudo-
first-order kinetics for the reaction oRa with Oy~. For
illustration, a first-order computer fit of the decay of species
2aat 465 nm is presented in Figure 2.

Irradiation doses between 1.6 and 13.2 Gy were applied to
air-saturated aqueous solution, pH 7.0, containing 1072 M
DMS and 1x 10 M HCO;™, generating (1.68.3) x 107/

M 2aand (1.6-8.3) x 107 M Oy~. The pseudo-first-order
rate constantsps for the respective absorptiefiime traces
of 2awere plotted as a function of j&] as displayed in Figure
3. From the slope of the straight line we calculkge= 7.4 x
10° M~1 st irrespective of the absence or presence of 2
103 M phosphate buffer.

Linear correlations betwedgpsand [G°~] were also obtained
for air-saturated aqueous solutions, pH 7.0, containing the
combinations 1x 103 M DMS/1 x 102 M HCO,™ and 2x
102 M DMS/2 x 101 M HCO,~; from the slopes we obtain
ke = 1.0 x 109 and 9.6x 1®® M1 s71 respectively.

Effect of lonic StrengthBecause of the different applied

*»®

4 10
10° [0,"], M

Figure 3. Plot of kops for the first-order decay o2a as a function of
superoxide radical anion concentration. Conditions: pulse irradiation
of air-saturated aqueous solutions, pH 7, containing 10 mM DMS, 0.1
M NaHCGQ; and either no®) or 2 x 102 M (#) phosphate.

mined at different ionic strengthg, As reaction 6 represents

a reaction between two ions of opposite charge, the kinetic
salt effect needs to be taken into account. Hence, the effect of
ionic strength was experimentally determined in air-saturated
aqueous solutions, pH 7.0, containing<510~2 M DMS, 5 x

102 M HCO;7, and various additional concentrations of
NaClO, between 0 and 1.5 10~ M. The pseudo-first-order
rate constant&ops for the decay of2a were determined for
various doses anki calculated akond[O2*]. The respective
second-order rate constants and ionic strengths are related
through the Brastedt-Bjerrum eq Il wherex = 0.509 in water

at 25°C.?

22,7504/
+Vu

Figure 4 displays a plot of logs vs 1.02:¥%/(1 + 1Y) which
yields the expected straight line with a slopezfs = —1.
Extrapolation tou = 0 yieldskso = 1.6 x 101°M~1 s71, All
experimentally obtained rate constants have, therefore, been
corrected tqu = 0 according to eq Il and are summarized in
Table 1.

Reaction oRa with *CO,~ (Reaction 18)Reaction 18 oRa

log ks = log ks o + (1

formate concentrations, the above rate constants were deterwith *CO,~ was investigated in oxygen-free,,®-saturated
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Figure 5. Optical spectrum recordedus after pulse irradiation of an
N,O-saturated aqueous solution, pH 7, containing 20~ M HDTCO
(4) and 0.2 M NaClQ.

TABLE 1: Summary of Rate Constants, Extrapolated to
lonic Strength g = 0

rate constant, Mts!

species Q" *CO~
(DMS)ZJN 2a k5,0: 1.60x 10 k16,0: 6.7 x 1°
(HDTCO)+° 5 kzz,(): 1.63x 10 kzl,o: 6.3x 10®

[(SON)Met-Gly] 7 koao=5.30x 10° nd
aqueous solutions, pH 7.0, containing-@0) x 103 M DMS
and (1-20) x 1072 M HCO;™ at the constant ratio of [HCO]/
[DMS] = 10.
2a+ "CO, — products (18)

Under these conditions, we obtain€¢'CO,")/G(2a) ~ 56,
where *CO,~ was generated via reactions 15 and 17. This
ensured conditions of pseudo-first-order kinetics for the reaction
of 2awith *CO,~. Doses per pulse were varied between 1 and
13 Gy similar to the conditions described for reaction 6.

Computer fits of the decay dfa (absorption vs time traces
at 465 nm) gave first-order fits for all doses, yieldiags which
were plotted as a function of§O,] in order to derivek;g at
the various ionic strengths. Subsequently, kggwas corrected
according to eq Il to yielkigo= 6.7 x 1® M1 s for u =
0.

3-Hydroxy-1,5-dithiacyclooctane (HDTCO; 4).The oxida-
tion of the cyclic dithiane HDTCO4) yields the intramolecu-
larly sulfur—sulfur bonded radical cation complex where

complex formation is independent of substrate concentration.

J. Phys. Chem. A, Vol. 104, No. 6, 2000243

a radiation chemical yield dBeggo= (2.3+ 0.12) x 103 J1
cm L,

By analogy to the oxidation of 1,5-dithiocyclooctane (1,5-
DTCO) to [1,5-DTCOT* (Amax = 400 nm, €400 = 5800 M1
cm~113) by HOr, the spectrum is assigned to the intramolecularly
sulfur—sulfur three-electron bonded radical cation of HDTCO,
[HDTCO]* (5), formed according to reactions 19 and 20. Using

OH OH
®

HO® 4 {? —»  HO—$* S (19)
~. )
OH OH
W

HO—S® ¢ — Se'sS + HO 20)
O -

eq |, the effective radiation chemical yield of Hf@acting with
HDTCO (to yield hydroxysulfuranyl radicd) is calculated as
G = 0.56uM J 1 (takingkig ~ 1.0 x 101°M~1s71, by analogy
to the reaction of HOwith other sulfide®). Assuming thab
nearly stoichiometrically converts intg, the extinction coef-
ficient is calculated ass 400 = 4100 M1 cm™.

Radical catiorb decomposes via mixed-order kinetics as the
respective traces 0Besoo VS time could be fitted neither to
second-order nor to first-order kinetics. We note that, in addition
to deprotonation and/or disproportionatios, may suffer a
kinetically first-order fragmentation of the,€ Cg bond as such
a process has been observed for the (hydroxyethyl)methyl sulfide
radical cation generated from 2-(methylthio)ethanol, ;€H
S(+9)—CH,CH,—OH.26 However, the radical catiob is suf-
ficiently stable for investigating its reaction with superoxide and
*CO,~; over the whole employed dose range of-288 Gy,
corresponding to an initial concentration ®bof (1.0-3.9) x
1076 M, the first half-lives for the decomposition &f varied
between 538 and 184&s.

Reaction of5 with *CO,~ (Reaction 21)The reaction ob
with *CO,~ (reaction 21) was investigated in,®-saturated
aqueous solution, pH 7.0, containing<210~* M HDTCO and
5 x 1073 M HCO;,™.

5+ °CO, — products (21)
Under these conditions, the decay at 400 nm is clearly biphasic;
a rapid initial decay with;;, < 35 us, dependent ort€CO, 7],

is followed by a significantly slower decay with, > 800 us
(Figure 6). This slower decaying species has an absorption
spectrum withlmax~ 400 nm (see insert in Figure 6). Evidence
for its formation is not only obtained in J0 but also

Thus, three-electron bonded sulfide radical cation complexes air-saturated solutions whegereacted with @~ (see below).
of 4 can be generated at submillimolar substrate concentrations,Hence, we believe that this residual absorption represents the

permitting higher ratios of [HC@]/[sulfide].

Formation and Decay of the Radical Cation [HDTCO[5).
Figure 5 displays the optical spectrum obtainedséfter pulse
irradiation of an NO-saturated aqueous solution, pH 7, contain-
ing 2 x 1004 M HDTCO and 2x 10t M NaClO,. It is
characterized by an absorption maximum gt = 400 nm and

product of a side reaction between H&hd HDTCO rather than

a product from the reaction &fwith *CO,~. From the difference
between the initial absorbance at 400 nm and the residual
absorbance observed after the complete decdy wie obtain
G(5) = 0.044uM J 1 andG(*CO,;") = 0.61uM J71, i.e,, [-
CO,)/[5] ~ 14. Values forkyps are calculated from first-order
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Figure 6. Absorption vs time profile at = 400 nm following pulse irradiation of anJ9-saturated aqueous solution, pH 7, containing 204
M HDTCO and 5x 102 M NaHCOQ,. Insert: (upper trace) spectrum 7.5 after the pulse; (lower trace) spectrum at ca. g8Cafter the
pulse.

computer fits of the decay of the initial 400 nm absorbance. A absence of superoxid&,is relatively stable and decays with

plot of the respectiv&psas a function ofCO,~] gave a straight first half-lives on the order of 200400 us.

line with a slope corresponding @1 = 5.4 x 10° M1 st at

u =5 x 1072 M. By application of eq Il, we obtaiky; o= 6.3 0\\ ~

x 1® M~tstatu = 0 (see Table 1). C—NH—CH,CO,
Reaction ofs with Superoxide (Reaction 2ZJhe reaction

between5 and superoxide was investigated in air-saturated HO® + Met-Gly  —» ) +  H0 (23)
aqueous solutions, pH 7, containing (20) x 104 M Nees
HDTCO and 5.0x 103 M NaHCO.. HEON
7
5+ O, " — products (22)

The reaction o7 with superoxide (reaction 24) was examined
through pulse irradiation of air-saturated aqueous solutions, pH
7.0, containing 2« 1074 M Met-Gly and 2x 1073 M NaHCQO,
at various doses (where the ratio of the initial yields of
superoxide and was [ ]/[7] = 9.3).

Under these conditions, we obta@®(5) = 0.025+ 0.02uM

J-1. The combined yields of superoxide then amourG(Q,"-)

= G(H*) + G(esq") + G¥(HO") — G(5) = 0.06+ 0.29+ 0.29

— 0.025= 0.62uM J71, and the ratio [@~]/[5] = 24.8. The
absolute concentration of superoxide was varied in the range
of (3.9-10.6) x 107% M by changing the radiation dose between

6.5 and 17 Gy. . .
The initial decay o6, measured at 400 nm is accelerated by Under these conditions, speciedecayed according to pseudo-
first-order kinetics, monitored at 385 nm, withys linearly

increasing concentrations of superoxide. However, under these v X S
conditions also the residual 400 nm absorbance decayed fastefl€Pendent on the initial concentrano_nl of_fuperomde. A p3|ot of
as compared to deoxygenated solutions, resulting in overall KobsVS [0 "] yieldskos = 4.8 x 10° M~ s™* atu flz i<110‘
biphasic kinetics at 400 nm. Hence, the traces were well fit by @1d, extrapolated ta = 0, keao = 5.3 x 10° M™% s* (see

7+ O, — products (24)

biexponential computer fits yielding two first-order rate con- Table 1).

stants where the higher one was ascribed to reaction 22 and the_. .

slower to a presently uncharacterized reaction of the residual Iscussion

400 nm absorbance. From the pl@bs vs [O*~] we obtained The reaction of sulfide radical catiemucleophile complexes
koo = 1.39x 10 M1 s foru =5 x 1073 M. Application with superoxide represents an efficient sulfoxide-forming
of eq Il yields kppo = 1.63 x 101° Mt s71 for u = 0, in process under conditions where significant amounts of sulfide
excellent agreement witks o (see Table 1). radical cation complexes and superoxide are formed simulta-

Methionylglycine.The reaction of methionylglycine with  neously'81°0n the basis of the comparison of relative product
hydroxyl radicals yields the sulfumitrogen bonded radical yields in O and DO, we concluded that freely diffusing
cation complex [(8] N)Met-Gly] (7) (reaction 23), characterized  singlet oxygenlO,, potentially formed according to the one-
through an absorption spectrum withax = 385 nm?” In the electron-transfer reaction 25, does not contribute to sulfoxide
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