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The electronic response of a 2D hexagonal array of quantum dots is computed as a function of the distance
between the dots. The electronic properties result from the interplay between three factors: (i) the “inherent
disorder” due to the size, shape, and environmental fluctuations of the dots, (ii) the coupling of adjacent dots,
and (iii) the role of the Coulombic repulsion. The computations are carried out using a Pariser-Parr-Pople
type Hamiltonian, which is fully diagonalized in a many-electron basis as a function of the interdot separation.
At high compression, the dots nearly touch one another and the electronic response is dominated by the
coupling between the dots. An Anderson-like delocalized to localized transition arises as the lattice is expanded
because the interdot coupling decreases. When the dots are further apart, the electronic response is dominated
by the Coulombic repulsion of electrons (of opposite spin) on a given dot. The latter gives rise to a Mott-type
insulator to metal transition as the extended array is compressed. In addition, we also discuss the case where
large fluctuations in size are able to overcome the Coulombic effects. For such arrays, the Mott-type insulator
to metal transition is smeared out by the disorder effects. Moreover, at large interdot separation, the ground
state is found to be ionic while for moderately disordered arrays, the ground state is covalent. Comparison is
made with the experimental results of the Heath group.

1. Introduction

Designer solids, where the electronic properties of the “atoms”
can be tuned1,2 and the related problem of molecular electron-
ics3,4 are receiving considerable attention. Key and current
aspects can also be found in other papers in this special issue.
I discuss a quantum mechanical computational approach where
the following experimental and theoretical aspects are empha-
sized:

i. Role of Disorder. Assemblies of nanodots are particularly
sensitive to the lack of perfect periodicity in the properties of
the sites because the individual dots are inherently not identical.
The reason is that the dots are prepared by wet chemical
methods5-8 and so there is some (possibly small, about 10% in
diameter,9 but always finite) fluctuation in the size of the dots.
Since the electronic response of an individual dot is governed
by its size,10 the arrays always exhibit some inherent disorder
and this is the case for both metallic dots and semiconducting
ones.11 The role of this disorder will be shown to be paramount,
particularly so at closer packing.12,13 In other words, there are
qualitative changes in the electronic response of the supperlattice
due to this disorder.

In addition to this inherent disorder, four additional contribu-
tions can be included in the present approach. The second source
of disorder is a packing or “geometrical” disorder. This arises
because the lattice need not be perfectly arranged or, even, it
can be quite defectively packed. The computational results, to
be discussed below, are that it takes a fairly extensive geo-
metrical disorder before it induces qualitative changes in the
electronic properties.

The third source of disorder is what one might call a chemical
disorder, but one should recognize that the size distribution also

has a chemical (or, to be strict, a thermodynamic) origin. By a
chemical disorder13 we mean that the chemical composition of
the dots need not be uniform. To a large extent, whether this
source of variation is present or not is under the control of the
experimentalist.

The fourth source of perturbation is due to the thermal motion
of the lattice. We mean here the changes in the inter-dot
distances. The dots are heavy on the atomic scale and this means
that the phonon frequencies are low so that the lattice vibrational
modes are essentially classical with an average ofkT thermal
energy per mode. This effect is the same as that giving rise to
resistivity in metals and to the polaron theory in crystals.14,15

The formalism to be discussed below, while quantum mechan-
ical, can incorporate this coupling and it can do so particularly
easily in the limit when the motion of the lattice can be regarded
as a classical field which is coupled to the electronic motion.
As I will briefly discuss, in this limit the effect is not dissimilar
to that due to geometrical disorder. I will not, however, present
computational results for thermally assisted charge hopping from
one dot to another.

The fifth perturbation discussed here is one that is more
special to assemblies of nanodots. It is that the dots have an
internal structure and the conducting electrons, as they move
from one dot to another can scatter due to the internal degrees
of freedom. The formalism can allow each dot to have its own
set of electronic levels, but I will here adopt a modest approach
and only allow phenomenologically for this effect by adding a
scattering phase shift when an electron hops from one dot to
another. More work is needed on the importance of this effect,
which causes a dephasing of the coherent propagation of the
electrons. Ultimately, the fourth and fifth effects can cause a
transition from coherent to dissipative transport of charge.

ii. Role of Lattice Compression.Assemblies of nanodots
provide a theorist’s dream in that the coupling between the dots
can be tuned over a wide range by experimentally varying the
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lattice spacing. The details of doing so have been discussed
elsewhere.1,2,6The range of variation is seemingly limited. The
lattice spacing,D, that is, the distance between the centers of
two adjacent dots (see inset in Figure 1) can be varied from
about twice the mean diameter of the dots, 2R, down to where
the dots are effectively touching, 2g D/2R g 1. Even so, the
experimental results in themselves6,16,17 show that there are
qualitative changes in the electronic and optical responses as
the lattice spacing is varied in this range. Our analysis12,13 of
these results suggests that this is quite consistent with what one
should expect considering the physical range of the inter-dot
coupling.

There are two ways that the lattice spacing appears in the
Hamiltonian. One, mentioned above, is that it governs the
tunneling (or the above barrier transfer) of an electron from
one dot to another. The second role of the inter-dot separation
is that it governs the magnitude of the Coulombic repulsion
between electrons localized on neighboring dots. This, which
is a polarization or a cross-capacitance effect, is explicitly
included in the Hamiltonian.

The experiments on the compressed lattice are static: The
compression is changed very slowly. But the same Hamiltonian
that allows us to compute the electronic response at different
spacings can also be used to explore the dynamical role of the
lattice motion.

iii. Coulomb Blockade. The computational scheme that we
implement does fully and correctly incorporate the role of the,
so-called, Coulomb blockade.18-21 This, sometimes known as
the “charging energy”, is the energetic discrimination against
two electrons (of opposite spin) being on the same dot. Often
the effect is also referred to as the finite capacitance of a dot.
The value of the charging energy can be determined experi-
mentally by Coulomb blockade experiments.2,22,23Note that the
capacitance is related to the volume of the dot and so it too can
have a variation due to the fluctuations in size, to a lesser extent
though than the fluctuations of the site energies (see below).

It is well-known how to write down a Hamiltonian that
incorporates the Coulomb blockade. In solid state physics this
is usually known as the Hubbard term.24 Theoretical chemists
are also aware of the importance of this effect and the equivalent

Hamiltonian is known to them as that of Pariser-Parr-Pople
(PPP).25-30 The PPP Hamiltonian goes one step beyond the
Hubbard model in that it also allows an electron on one dot to
interact with an electron on another dot. These additional terms
are expected to decrease in magnitude as the lattice spacing
increases.

The electrostatic terms depend on two electrons at a time
and so cannot be exactly treated in a one-electron approximation
(also called the independent particle model or, technically, the
self-consistent-field approximation). The computational scheme
we use fully accounts for these terms. There is, of course, a
price. We use a many-electron description of the wave function.
Technically, we use a basis of states generated by the unitary
group U(n), wheren is the number of dots in the array. The
states are antisymmetrized spin eigenfunctions of a given
multiplicity. The matrix elements of the electrostatic terms can
be analytically computed in such a basis.26,31 The price: the
number of basis states (and hence the size of the Hamiltonian
matrix) increases exponentially withn; cf. eq A.1 below. The
advantage: when the Hamiltonian matrix is diagonalized, one
(numerically) generates exact eigenstates. The band structure,
including the relative positions of the valence and the conduction
bands is thereby obtained.

Having enumerated the features that are included in the model
Hamiltonian used herein, it is only reasonable to reiterate an
important feature that is not properly handled. The Hamiltonian,
as actually used in the present computations, does not do justice
to the internal structure of the dots. To be sure, one can allow
phenomenologically for this structure (we do say more about
this below) and one can readily generalize the Hamiltonian as
used here so as to endow each dot with an internal electronic
structure. But this is yet to be implemented as a computationally
viable scheme. (The problem is at the same time to do a proper
job on the Coulomb blockade and to allow for an internal
structure. The computational cost of doing so is that the size of
the Hamiltonian matrix becomes prohibitive.)

2. Electronic Model

Each quantum dot is represented as a site of a lattice. In the
computations reported below, there is one site orbital that can
accommodate zero, one, or two (of opposite spin) electrons but,
otherwise, the dot is not endowed with an internal structure.
However, we will introduce some effects of the structure of
the dot in eq 2.7 below, but this is done in a phenomenological
manner.

The sites are arranged in a 2D hexagonal lattice, which means
that completed shells have 7, 19, 37, 61, 91, ... sites, respectively.
The geometry of the lattice is specified byD, the distance
between the centers of adjacent dots whereD is measured in
units of 2R. R is the mean dot radius, with a typical value of a
few tens of ångstroms. The geometry of the 7 site lattice is
shown as an inset in Figure 1.

Four unit-bearing coupling parameters determine the elec-
tronic properties of the lattice. These are shown in Figure 1, as
a function of the lattice spacing measured in units of the mean
diameter of the dots,D/2R. As indicated in the figure, the
relative magnitude of these parameters determine the coupling
regime. Two parameters characterize a given site. First are the
site energies,Ri, i ) 1, 2, ...,n. R is the energy of one electron
in the site orbital. The site energies depend on the size of the
dots and their inherent fluctuations,∆R, and of course, on the
chemical composition.R is expected to depend on the mean
radius of the dots,R, as 1/R2, so that∆R ∝ R ∆R/R. Note that

Figure 1. Relative strengths of the different perturbations included in
the PPP Hamiltonian (2.12) as a function of the interdot separation
D/2R, plotted on a logarithmic scale.∆R is the range of the fluctuation
in the site energies andI the self-capacitance of the individual dots.
The transfer integral,â, is given in eq 2.4 and the cross capacitance,
γ, in eq 2.10. Note how the Coulombic effects and/or the fluctuation
in the site energies are the strongest perturbation at large interdot
separations, while it isâ that plays a dominant role at small values of
D/2R. The inset shows the two geometrical parameters of the 2D
hexagonal array.D is the distance between the centers of two
neighboring dots and 2R is the mean diameter of the dots.
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the sites are coupled to one another so that the site energies are
just a zeroth-order approximation for the energy of an electron
on the site. When two electrons (of opposite spin) are localized
in a given site orbital, the energy of the site is not 2R but 2R +
I, whereI, the self-capacitance, is the Coulombic repulsion of
two electrons of opposite spin localized on the same site.I,
which corresponds to the charging energy of the individual dots,
can be determined by “Coulomb blockade” experiments, using
scanning tunneling microscopy (STM).2,22,23I is size dependent.
More precisely,I ) e2/C(R), wheree is the unit charge and
C(R) is the size dependent finite capacitance of an individual
dot. C(R) ) 4πε0εR, whereR is the radius of the dot,ε0 is the
permittivity of vacuum, andε is the dielectric constant of the
material surrounding the particle.ε is basically the dielectric
constant of alkane chains of the ligands that stabilize the metallic
core and varies between 2 and 3. For a 3 nmdiameter quantum
dot surrounded by a material with a dielectric constant,ε ) 3,
I is found to be about 0.3 eV, which is in agreement with the
Coulomb blockade experiments,22 and we use this experimental
value in the computation reported below. Because of the
fluctuation in the mean dot radius, the charging energy also
fluctuates. However, the range,∆I ∝ I ∆R/R, of the fluctuation
in the charging energies remains small compared to the
fluctuations of the site energies becauseI is typically more than
an order of magnitude smaller than the site energiesR. The
effect of the fluctuation of the charging energies is therefore
neglected in the computational results presented below.

Two parameters characterize the coupling of the dots and
are therefore sensitive to the lattice spacing. The electron can
coherently (but see below) transfer from one site to another with
an amplitudeâ. The “transfer integral”â is determined by the
overlap of the orbitals of adjacent dots and is therefore here
put equal to zero unless the dots are near neighbors on the lattice.
The value ofâ can be tuned by compressing the lattice and we
expect it to decrease (exponentially) as the lattice is expanded
(cf. Figure 1 and eq 2.4 below). For chemical physicists, an
important role of the computation and of the comparison with
experiment is to determine the decline ofâ with distance. We
have previously done so12 by fitting our computed response to
the nonlinear optical response measured for an array of silver
quantum dots.6 â is also sensitive to the size of the dots and to
the ligand coverage on the dots. Below, it will also be used to
mimic the effect of lattice thermal motion and the internal
structure of the dots (see eq 2.7).

The cross capacitanceγ also couples adjacent dots. This
electrostatic coupling is due to an electron on one dot polarizing
a neighboring dot. It is usually not included in the Hubbard
Hamiltonian but it is part of the PPP Hamiltonian. The cross
capacitance is easy to incorporate because, like the self-
capacitance, it is diagonal in the many-electron basis set that
we use. The specific details are provided in the Appendix.

The form of the many-electron Hamiltonian is

H0 is a one-electron Hamiltonian of the tight binding (or Hu¨ckel)
type and allows for size fluctuations and lattice compression as
discussed below

wherei is the index of a dot,i ) 1, 2, ...,n. ai,µ andai,µ
† are the

annihilation and creation operators for an electron on sitei with
a given spinµ (µ is up or down).28,29 Note that whileH0 is a
one-electron operator,H1, which corresponds to the Coulombic
terms (cf. eq 2.8 and section 2.2 below) is not.

2.1. One-Electron Considerations.Already at the level of
H0 one can see the effects of disorder, particularly so when the
lattice is compressed, so that (see Figure 1) the role of the
transfer integralâ dominates. For the computations discussed
below, we usedRi’s that fluctuate randomly within∆R (≡R0δR)
around a mean valueR0:

where rani is a random number in the range of [0, 1] and the
sampling is such that∑i (rani - 0.5) ) 0. The transfer integral
â has the distance dependence

which saturates at high compressions and otherwise has an
exponential decline with a (dimensionless) range parameterL.
The parameters ofâ in eq 2.4 are determined as discussed in
ref 12 (see also Figure 1 therein), by a fit of the computed
response to the experimental nonlinear optical response, the
second harmonic generation (SHG).6 For dots with a mean
diameter 2R ≈ 30 Å, the fit of the experimental data12 leads to
D0/2R ) 1.2, which is the interdot separation by whichâ has
dropped to half its maximal value,â0 ) 0.5 eV and1/2L ) 5.5.
The transfer integral is thus found to be rather long range. This
value is consistent with what we estimate on the basis of a
through space charge transfer.13 Note that these parameters,
determined by a fit to the experimental SHG,12 lead also to a
good agreement between the computed32 and the experimental17

response for another observable, the frequency dependent
dielectric constant in the visible range. In particular, our model
computations32 reproduce the qualitative changes experimentally
observed in the frequency dielectric constant, which exhibits
the insulator to a metal transition as the lattice is compressed.17

When there are no fluctuations, the one-electron Hamiltonian
of a lattice of identical dots can be written as13

whereM is the n × n adjacency matrix (n is the number of
sites),33 i.e., a matrix with unit entries where the row and column
indices correspond to near neighboring sites. The eigenvectors
of hHückel are the molecular orbitals (MO’s). They are the
eigenvectors ofM and so do not change in character as the
lattice spacing is changing. This is unlike when the fluctuation
in the site energies are taken into account, where due to
fluctuations, the MO’s (≡eigenvectors ofn × n H0 (eq 2.2)) at
low â ()large spacing) are localized.13 This is the well-known
Anderson transition18-20,34 which occurs (cf. Figure 1) when
the transfer integralâ is no longer comparable in magnitude to
the range of the fluctuations in the site energies. Thenâ cannot
bridge the gap between the energies of adjacent sites and the
one-electron wave function becomes localized. This remains also
the case in the equivalent many-electron Hu¨ckel description,
as can be seen from Figure 2, which shows the weights of the
ground state on the zeroth-order many-electron site states for
two interdot separations. At each interdot separation, the weights
result from a full diagonalization of the Hu¨ckel Hamiltonian in
the many-electron basis set (for the details about the many-

H ) H0 + H1 (2.1)

H0 ) ∑
i,j

n

hi,j∑
µ

2

ai,µ
† aj,µ with

hi,j ) {Ri if i ) j
âi,j * 0 for near neighbors only(2.2)

Ri ) R0(1 + δRi) ≡ R0[1 + δR(rani - 0.5)] (2.3)

â ) (â0/2)(1 + tanh((D0 - D)/4RL)) f â0 exp(-D/2RL)
(2.4)

hHückel ) R0I + âM (2.5)
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electron description, see section 2.2). At short interdot separation
(upper panel),â is the strongest perturbation. The ground
electronic state is well delocalized over all the many-electron
site states of a given total spin, and the array has a metallic
character. On the other hand, at large interdot separation,â is
orders of magnitude weaker than the fluctuation in the site
energies. Then, the ground electronic state converges to a single
ionic state (state number 142,35 the state numbering is arbitrary),
whose site occupancies are uneven, as shown in the inset. The
convergence of the Hu¨ckel ground electronic state to an ionic
configuration at large separation in the presence of site energy
fluctuation is due to the failure of the Hu¨ckel Hamiltonian to
discriminate between the covalent and the ionic many-electron
states. This is further discussed in sections 2.2 and 3 below
where eqs 3.1-3.4 provide a schematic representation of the
site occupancy of the covalent and ionic many-electron states.

Geometrical disorder implies fluctuation in the magnitude of
â. Both the analytical and computational evidence13 is that this
is not such an important effect. The reason is the exponential
dependence ofâ on the lattice spacing. From eq 2.4

Large variations in the lattice spacings will cause large changes
in â at large interdot separations, where the value ofâ becomes
negligible with respect to the charging energy,I, and the range
of the fluctuation in the site energies,∆R.

Before turning to a many-electron theory, we point out two
additional sources of variations inâ. One is the role of lattice
thermal vibrations. So far we discussed the lattice spacing as a
parameter in the Hamiltonian. Strictly speaking, however, it is
a dynamical variable and, in a quantum mechanical approach,
it is an operator. It is, of course, simpler to regard the lattice

vibrations as classical. Then,D becomes a time dependent
variable, of bounded variation, whose mean value is the nominal
lattice spacing and whose variance is determined by the
equipartition theorem. It is therefore easy to compute〈â〉 where
the mean is a thermal average. However, what we really need
to do is to compute〈exp(-iHt)〉. This is possible and we will
report on it elsewhere.

The internal structure of the dots is also a source of
modulation of â. In the one-electron picture, the migrating
electron moves into or out of the site orbital. In reality, the
electron is scattered within the dot (as seen, e.g., in the width
of the plasmon resonance6,36). Even if the scattering is elastic,
the electron acquires an extra phase and this phase can be quite
different for different dots. It follows that the simplest correction
for the role of the internal structure is to replace the otherwise
realâ by a complex number, whose phase is essentially random
and which, in lowest order, allows only for elastic event so that
the matrixâ should remain Hermitian

This does not require any additional computational effort
because the Hamiltonian remains Hermitian and so can be
diagonalized by a unitary transformation. Such computations
have just been reported.37

2.2. Many-Electron Theory.This section discusses the exact
incorporation of two-electron effects, such as Coulomb blockade,
by using a many-electron wave function. The form of the many-
electron Hamiltonian is

whereH0 is the one-electron Hamiltonian of the Hu¨ckel (or tight
binding) part as given by eq 2.2. Then

where the new operators that enter are the number operators
for the different sites,i ) 1, 2, ...,n,

which sums over both directions of the spin. The parameters of
the one-electron part are as discussed in section 2.1, determined
by a fit to the experimental nonlinear optical response.12 I is
the charging of the individual dots, also discussed above. We
use for the variation of the cross capacitance,γ, with the interdot
separation the same weak distance dependence as in molecules,38

wherea is a constant ande is the unit charge. Note that the
magnitude of the cross polarization term is typically weaker
than the Coulomb blockade term and does not play an important
role in the computational results reported below.

To diagonalize this Hamiltonian exactly (which is equivalent
to a full configuration interaction (CI)), we rewrite it in terms
of the generators,Êi,j,

Figure 2. Weights of the many-electron ground electronic state of
the Hückel Hamiltonian (eq 2.2) on the 784 many-electron site states,
computed forD/2R ) 1.2 (upper panel) andD/2R ) 1.6 (lower panel).
R0 ) 20 â0, ∆R ) 1 â0, and the parameters inâ are as given in section
2.1. At short interdot separation, the ground electronic state is well
delocalized over the site many-electron states. At larger interdot
separation, the ground electronic state becomes localized on a single
site many-electron state.35 Note the difference of scale for they axis in
the upper and the lower panels.

|δâ|
â
98
D > R

δ( D

2R)/L ) (δ( D

2R)/( D

2R))(( D

2R)/L) (2.6)

âij f |â| exp(iδij) âji ) âij
* (2.7)

H ) H0 + H1 (2.1)

H ) ∑
i,j

n

hij∑
µ

2

ai,µ
† aj,µ

one-electron part

+
1

2
I∑

i

(ni - 1)2

Coulomb blockade

+

1

2
γ∑

i,j

ninj

cross polarization

(2.8)

ni ≡ ∑
µ

ai,µ
† ai,µ (2.9)

γ ) e2/[2R(D/2R + (e2/I2R) + a)] (2.10)
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of the unitary groupU(n) (n is the number of sites).26,27,31,39,40

The prime on the second sum indicates thati and j are near
neighbors. Note that only diagonal operators appear in the two-
electron terms. As discussed in the Appendix, this makes the
analytical form of the Hamiltonian matrix quite simple. In
particular, the site-diagonal part,

is a diagonal matrix. For then-electronn-site system that we
consider here, the Coulomb blockade term ((1/2)∑(Êii - 1)2)
counts the number of doubly occupied sites. The reason is that
in this particular case, the number of doubly occupied orbitals
is equal to the number of unoccupied sites.

Specifically, we represent the Hamiltonian in a spin adapted
many-electron basis set that belong to an irreducible representa-
tion of the groupU(n)39(Gelfand- Teltsin states). There are
784 such (doublet) states for a 7-electron, 7-site lattice. For the
next completed hexagon there are 19 sites and 2 821 056 160
doublet states. (The required equation is (A.1) of the Appendix
where more detail is provided about the many-electron states).

3. Results for a Many-Electron Description

Before reporting results for the full diagonalization of the
Hamiltonian (2.8), we first discuss the properties of the
electronic spectrum at large values of the interdot separation,
D/2R, where the strength of the transfer integral,â, is much
smaller than the Coulomb terms (cf. Figure 1) so that it can be
neglected. Then, at large interdot separation, the electronic
spectrum exhibits a band structure that can be understood in
terms of the HamiltonianHsite (eq 2.13). Note that the cross
polarization term of eq 2.8 is neglected in (2.13). This provides
a simpler discussion and does not affect the band structure. The
reason is that, typically, the cross capacitance,γ, is smaller than
the self-capacitance,I. As a result, the effect of the cross
polarization term is essentially to shift the levels within the bands
that are separated by the charging energy,I.

Hsite is diagonal in the many-electron site basis set. Without
the Coulomb repulsion term and in the absence of fluctuations
in the site energies (δR ) 0), all the doublet states of ann-site,
n-electron model are degenerate with an energynR0. For n )
7, the possible electronic configurations have zero, one, two,
or three doubly occupied sites. Since each doubly occupied
orbital is penalized byI because of the Coulombic repulsion,
when the Coulomb blockade term is included, four bands of
degenerate states appear with energies 7R0, 7R0 + I, 7R0 + 2I,
and 7R0 + 3I, respectively. The zeroth-order ground state
corresponds to the electronic configurations with one electron
per site (see eq 3.1 below) and is unaffected by the Coulomb
blockade term. It is 14 times degenerate, and its energy is 7R0.

It is a covalent state that has an insulator character because the
matrix elements of the transfer integralâ among these 14
degenerate states are zero. All the excited electronic states are
ionic (they have at least a doubly occupied site orbital). They
will be coupled byâ when it is strong enough to bridge the
gaps between their respective energies. (For the ionic zeroth-
order states, the matrixâ has both interband and intraband
nonzero matrix elements.) Equations 3.1-3.4 show the oc-

cupancies of the seven site orbitals for one of the degenerate
many-electron states belonging to each of the four bands. As
already discussed, the covalent ground state (eq 3.1) is 14 times
degenerate. There are 210 degenerate ionic states with an energy
equal to 7R0 + I (eq 3.2), which are all the doublet configura-
tions with a single doubly occupied site orbital, 420 ionic states
at 7R0 + 2I (two doubly occupied site orbitals, eq 3.3), and
140 ionic states at 7R0 + 3I with three doubly occupied site
orbitals (eq 3.4).

Fluctuations in the site energies are diagonal in the zeroth-
order many-electron site states. They do not affect the ground
electronic state since the sampling is such that∑i(rani - 0.5).
Therefore, its energy remains unchanged and equal to 7R0 even
when disorder is taken into account. On the other hand, the
energy mismatch in the site energies due to disorder splits the
energies of the ionic states, which leads to a smear out of the
band structure of the higher states, as can be seen in Figure 3
below.

The upper panel of Figure 3 shows the transition frequencies,
Eng ) En - Eg, whereEg is the energy of the ground electronic
state andEn is the energy of the electronic excited state,
computed for moderate fluctuation in the site energies, that is,
for a range of fluctuation,∆R, that is smaller than the self-
capacitance of the individual dots,I: ∆R < I. The transition
frequencies are computed by full diagonalization of the PPP
Hamiltonian (2.12) as a function of the interdot separationD/2R.
The details of the full CI procedure that we implement are given
in the Appendix. At large values ofD/2R, as discussed above,
Hsite (eq 2.13) is a good description. One clearly sees the band
of 13 very small transition frequencies arising from the splitting
of the 14 times degenerate zeroth-order covalent ground state
by the second-order (and higher) terms of the transfer integral,
which leads to transition frequencies of the order ofâ2/I. The

Êi,j ≡ ∑
µ

2

ai,µ
† aj,µ i, j ) 1, ...,n (2.11)

H ) R0∑
i)1

n

(1 + δRi)Êi,i + â∑
i,j

n

′Êi,j +
I

2
∑
i)1

n

(Êi,i - 1)2 +

γ

2
∑
i,j

n

Êi,iÊj,j (2.12)

Hsite ) R0∑
i)1

n

(1 + δRi)Êi,i +
I

2
∑
i)1

n

(Êi,i - 1)2 (2.13)

Electronic Properties of Quantum Nanodots Assemblies J. Phys. Chem. A, Vol. 104, No. 20, 20004743



three higher bands have merged into a single band of ionic states
because of the fluctuations in site energies and also because of
the cross polarization term. They are separated from the ground
state by an energy gap at least equal toI. As the interdot
separation decreases, the strength of the transfer integral,â,
increases exponentially (eq 2.4 and Figure 1) and when it is
strong enough to overcome the Coulombic effects, the lower
covalent band merges with the higher ionic bands. This is the
Mott transition and it occurs for the parameters of our model at
D/2R ) 1.5.

Therefore, forD/2R > 1.5, the array behaves as a Mott
insulator, with a covalent ground state. This can be seen from
the lower panel of Figure 4 where the weights of the ground
electronic state on the zeroth-order many-electron site states are
plotted forD/2R ) 1.8. The ground electronic state is found to
be a linear combination of the 14 covalent zeroth-order site states
(eq 4.1), with larger weights on states 292 and 479 (the
numbering of the states is arbitrary).35 This is unlike for the
many-electron Hu¨ckel Hamiltonian, where the ground many-
electron state shown in Figure 2 converges to an ionic
configuration at large interdot separation. Figure 2 and Figure
4 are computed for the same amount of disorder in the site
energies. The difference is that in the Hamiltonian used in Figure
4, the Coulombic terms (Coulomb blockade and cross polariza-
tion; see eq 2.8) are included. As a result, and insofar that
∆R < I, the ground electronic state is covalent, because the
Coulomb blockade term penalized the ionic configurations by
I (the “charging energy”) for each doubly occupied orbital. On
the other hand, in the Hu¨ckel Hamiltonian, there is no energy
penalty for doubly occupied sites, so that covalent and ionic
configurations are degenerate (of course here within the range
of the fluctuation in the site energies). This is a well-known
failure of the one-electron description.41

The upper panel of Figure 4 shows the weights of the ground
state computed for a smaller value of the interdot separation
(D/2R ) 1.2). For this interdot separation, the electronic
coupling,â, is strong enough to bridge the Coulombic effects
and the fluctuations in the site energies, so that the ground state
is very well delocalized over all the site zeroth-order states. For
these small values ofD/2R, the array is conducting. The
Anderson-like transition is found to occur at a value of
D/2R ≈ 1.3. The smallest transition frequency (Eng ≈ 0.4 â0)
seen in Figure 3 upper panel at short distances (D/2R < 1.3) is
due to the splitting of the doubly degenerate zeroth-order ground
state (≡ground state of the Hamiltonian (2.5)) by the fluctuation
in the Ri’s.

In the lower panel of Figure 3, the transition frequencies are
plotted for a larger amount of fluctuation in theRi’s, so that
∆R > I, for the same range in the energy axis as in the upper
panel. At large interdot separation, the band gap between the
covalent and the ionic many-electron states that is due to the
Coulombic effects has vanished. This indicates that the Mott
transition is smeared out by the fluctuation in the site energies:
For larger amounts of disorder, the very small transition
frequencies (of the order ofâ2/I) disappear and the distribution
of transition frequencies is entirely determined by the range of
fluctuation in the site energies,∆R. The inset in the lower panel
is for a smaller range in energy, so that the details of the
distribution of the transition frequencies appears more clearly.
Note that since∆R is wider, the Anderson transition occurs at
a shorter value ofD/2R (D/2R ) 1.2) because a larger value of
â is needed to bridge the energy mismatch between the site
energies.

At large interdot separations, as∆R increases, an interesting
transition occurs for the ground electronic state: While for
∆R < I the ground electronic state is covalent (Figure 4, lower
panel), larger amounts of disorder (∆R > I) lead to an ionic

Figure 3. Transition frequencies,Eng ) En - Eg, in units of â0,
computed as a function of the interdot separationD/2R. The parameters
used areR0 ) 20 â0 and I ) 1.2 â0 and γ is given in eq 2.10 with
2R ) 30 Å anda ) 1 Upper panel:∆R < I (∆R ) 1 â0). The Mott
transition occurs atD/2R ≈ 1.5, and the Anderson-like transition, at
D/2R ≈ 1.3. Lower panel:∆R > I (∆R ) 5 â0). In this case, the Mott
transition is smeared out by the fluctuation in the site energies. In the
inset, theEng’s are shown for a smaller energy range. The Anderson
transition is seen to occur at a smaller value ofD/2R (D/2R ) 1.2)
than in the upper panel.

Figure 4. Weights of the ground electronic state on the many-electron
site zeroth-order states for an array where∆R < I. Computed for the
same Hamiltonian parameters as in Figure 3 upper panel. Upper panel:
D/2R ) 1.2. The wave function is well delocalized over all the 784
many-electron site zeroth-order states. Lower panel:D/2R ) 1.8, the
ground electronic state converges to a linear combination of the 14
covalent site zeroth-order states, with the highest weights on states 219
and 479. The inset shows the site occupancy of the covalent states.
Note the difference of scale for they axis in the upper and the lower
panels.
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ground electronic state (lower panel of Figure 5). The computa-
tion reported in Figure 5 is for the same Hamiltonian parameters
as in the lower panel of Figure 3. The ground state computed
at D/2R ) 1.8 converges to the ionic state number 137, whose
site occupancy is shown as an inset in the figure.35 For smaller
values ofD/2R (upper panel), the ground electronic state remains
well delocalized over the whole range of many-electron zeroth-
order site states. It is less well delocalized, though, than for the
same value ofD/2R as in the upper panel of Figure 4 because
∆R is larger in Figure 5.

In Figure 6, the number of states is plotted as a function of
energy for three interdot separations,D/2R ) 1.2, 1.5, and 1.8.
For moderate amounts of disorder such that∆R < I (upper panel
of Figure 6), at large interdot separation (D/2R ) 1.8), the
Coulomb gap between the 14 covalent states and the ionic bands
is clearly seen. This gap can be probed experimentally by
current-voltage (I-V) measurements on the arrays as a function
of the interdot separation, from which density of state curves
can be obtained.2,22,23At this large interdot separation, a more
disordered array (such that∆R > I) does not exhibit a gap in
the number of states vs energy curve, as can be seen from the
lower panel. The Mott insulator-metal transition is masked by
the fluctuations in the site energies, which are strong enough
to wash out the band structure induced by the Coulombic effects.

At large interdot separation, highly disordered arrays (∆R >
I) are expected to exhibit a finite density of states at 0 K since
there is no Coulomb gap, but they still behave as an insulator
because the transfer integral,â is not strong enough to bridge
the energy mismatch between the different states due to disorder.
Recent experimental results of the Heath group17 on disordered
bilayers, where the metallic character is probed by measuring
the frequency dependent dielectric constant in the visible show
that this can be the case. Another interesting feature of these
disordered supperlattices is that individual dots in the array are
expected to lead to differentI-V curves, as suggested by our

model where ionic states have three different kinds of sites,
with zero, one, and two electrons, respectively. This appears to
be supported by recent experimental measurements23,42and work
is in progress along these lines.43

4. Concluding Remarks

The compression of silver quantum dot arrays that is possible
using the Langmuir technique allows reversible tuning of the
strength of the interdot coupling. It therefore provides an
experimental access to different facets of the insulator to metal
transition, which occurs as the lattice is compressed.1,2,6,16

Basically, the arrays behave as a metal at small interdot
separations and have an insulator character at larger separations.
One important aspect of the metal-insulator transition is that
it can be reversed by decreasing the level of compression of
the lattice. The metal to insulator transition in 2D monolayers
of silver quantum dots has been probed by the Heath group
using various experimental techniques: by optical means by
measuring the second harmonic generation6 and the frequency
dependent dielectric constant in the visible2,17 and at very low
frequencies by impedance spectroscopy.16 Variable temperature
STM gives access to the Mott transition.22,23

The metal to insulator transition manifests itself by qualitative
changes in the various experimental responses; i.e., the second
harmonic generation measured in the visible increases expo-
nentially as the lattice is compressed,6 the real part of the
complex frequency dependent dielectric constant becomes
negative upon lattice compression,17 and the Coulomb gap in
the density of states observed for low temperature at large
interdot separation disappears as the dots are brought closer.22,23

The electronic model discussed here reproduces well these
qualitative changes, and semiquantitative comparisons with the
experimental results of the Heath group are provided else-
where.12,32 Here, we discussed more systematically the role of

Figure 5. Weights of the ground electronic state on the many-electron
site zeroth-order states for a highly disordered array with∆R > I.
Computed for the same Hamiltonian parameters as in Figure 3 lower
panel. Upper panel:D/2R ) 1.2. The wave function is still well
delocalized over all the 784 many-electron site zeroth-order states.
Lower panel:D/2R ) 1.8. The ground electronic state now converges
to an ionic state, the state number 137, whose site occupancy is shown
in the inset.35 Note the difference of scale for they axis in the upper
and the lower panel.

Figure 6. Number of states vs energy computed for three interdot
separations:D/2R ) 1.8, 1.5, and 1.2. Upper panel:∆R < I (same
Hamiltonian parameters as in the upper panel of Figure 3). At large
interdot separation, there is a gap in energy of aboutI between the 14
lowest covalent electronic states and the higher ionic states. Lower
panel:∆R > I (same Hamiltonian parameters as in the lower panel of
Figure 3) The gap has disappeared because the fluctuation in the site
energies is wide enough to wash out the band structure due to the
Coulombic effects.
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the inherent disorder and of the Coulombic effects on the
electronic properties using computational examples. A system-
atic discussion is possible because a small number of electronic
parameters, that is, the variation of the transfer integral,â, with
the interdot separation, the value of the charging energy,I, of
the individual dots, and the range of the fluctuations in the sizes,
∆R, suffice to capture the essential features of the changes in
electronic response as the lattice is compressed. Moreover, these
parameters can be determined from experiment. As discussed
in section 2, we take the experimental values ofI and∆R. The
parametrization ofâ is determined from the fit of the computed
response to the experimental second harmonic generation,12 as
also discussed in section 2. We would like to reiterate that the
same values of these parameters, together with the experimental
values ofI and∆R, also reproduce at a semiquantitative level
the changes due to the metal to insulator transition experimen-
tally observed for other quantities, such as the frequency
dependent dielectric response17,32 and the Coulomb blockade
curves obtained by STM.22,23,43

Disorder is inherently present in supperlattices of quantum
nanodots because of the inherent size fluctuation due to their
preparation by wet chemical synthesis. Disorder plays an
important role both in the Anderson type and in the Mott type
metal to insulator transitions. It is the driving force for the
Anderson-like transition that occurs when the interdot coupling
is no longer strong enough to bridge the differences in the site
energies induced by the size fluctuations. The Mott metal to
insulator transition is also strongly affected by disorder. Our
computational results show that it can be masked when the
disorder in the site energies overcome the Coulombic terms.
Depending on the amount of disorder, the Anderson type and
the Mott type transitions do not occur at the same interdot
separation. While optical measurements (SHG and frequency
dependent dielectric constant) appear to be more sensitive to
the Anderson transition, density of states (DOS) curves obtained
by STM probe the presence (or not) of the Coulomb gap typical
of the Mott insulators.

For arrays with moderate amounts of disorder (∆R < I), we
find that the Anderson-like transition occurs at a shorter interdot
separation than the Mott transition. Intermediate values ofD/2R
correspond to an intermediate coupling regime where all
perturbations are important. Our computational results also
show, in agreement with recent experiments,17,22,23that at large
interdot separation, increasing amounts of disorder can induce
a transition from a covalent to an ionic ground electronic state,
thereby leading to arrays with no Coulomb gap at 0 K but still
behaving as a insulator because of the Anderson localization
of the wave function due to disorder. TheI - V curves of the
individual dots belonging to such arrays with an ionic ground
electronic state are expected to be of three kinds, corresponding
to the three kinds of dots typical of an ionic ground state: neutral,
with an excess of electron and with a defect of electron, as
suggested by our many-electron model. Preliminary experimen-
tal results show that it is likely to be the case.23,42
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Appendix: The Site Many-Electron Basis Set and the
Hamiltonian Matrix

The many-electron description that we implement is based
on the “spin free” formalism pioneered by Paldus26 and
Matsen.40 This formalism is based on a unitary group approach39

that consists of rewriting the Hamiltonian in terms of the
generatorsÊi,j (eq 2.11) of the groupU(n), wheren is the number
of sites. This leads to eq 2.12

The matrix of the Hamiltonian (2.12) is then written in the
spin symmetry adapted many-electron site states. For a system
of n sites andN electrons, of total multiplicity (2S + 1), the
dimension N of the irreducible representation of the spin
symmetry adaptedN-electron states is uniquely specified and
given by

where

and(mn) are the binomial coefficients. For the (n)) seven-site,

(N)) seven-electron system there areN ) 784 many-electron
doublet (S ) 1/2) states. (a, b, c) are the components of the
highest weight vector in Paldus’ notation. All the orthonormal
spin-adaptedN-electron states can be generated in terms of the
(a, b, c) vector. For then ) 7, N ) 7 system, this vector is (3,
1, 3) for all the 784 doublet states. One convenient way to
represent the many-electron states is to write them as ann-row
three-column Paldus tableaux where the highest row of the
tableau is given by the highest weight vector (a, b, c) ≡ (an, bn,
cn). The entries of the different rows are then recursively
obtained from the highest weight vector.26,31

The matrix elements of the Hamiltonian (2.12) in the site
many-electron states, (m), take a very simple form. The diagonal
generatorsÊi,i are diagonal:

whereei
(m) is the occupancy of sitei for the many-electron site

state, (m), ei
(m) ) 0, 1, or 2. This implies that all the Coulombic

(two-electron) terms included in the Pariser-Parr-Pople Hamil-
tonian are diagonal in the site many-electron states. The only
nondiagonal terms are the matrix elements of the transfer
integral, â. They are readily computed using the matrix
representation26,31 of the near neighbor raising and lowering
generatorsÊi,i(1, i ) 1, ...,n - 1, and the commutation relation

which implies the recursion relation

(A.5) is used to compute the matrix elements,Êi,j*i(1, which
are necessary for a 2D hexagonal structure.

The N × N (N ) 784) matrix of the Hamiltonian (2.12) is
then diagonalized, which corresponds to a full CI diagonalization
for PPP Hamiltonian.
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