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The electronic response of a 2D hexagonal array of quantum dots is computed as a function of the distance
between the dots. The electronic properties result from the interplay between three factors: (i) the “inherent
disorder” due to the size, shape, and environmental fluctuations of the dots, (ii) the coupling of adjacent dots,
and (iii) the role of the Coulombic repulsion. The computations are carried out using a P&dserPople

type Hamiltonian, which is fully diagonalized in a many-electron basis as a function of the interdot separation.
At high compression, the dots nearly touch one another and the electronic response is dominated by the
coupling between the dots. An Anderson-like delocalized to localized transition arises as the lattice is expanded
because the interdot coupling decreases. When the dots are further apart, the electronic response is dominated
by the Coulombic repulsion of electrons (of opposite spin) on a given dot. The latter gives rise to a Mott-type
insulator to metal transition as the extended array is compressed. In addition, we also discuss the case where
large fluctuations in size are able to overcome the Coulombic effects. For such arrays, the Mott-type insulator
to metal transition is smeared out by the disorder effects. Moreover, at large interdot separation, the ground
state is found to be ionic while for moderately disordered arrays, the ground state is covalent. Comparison is
made with the experimental results of the Heath group.

1. Introduction has a chemical (or, to be strict, a thermodynamic) origin. By a

Designer solids, where the electronic properties of the “atoms” chemical disordé? we mean that the chemical composition of

can be tunet? and the related problem of molecular electron- the dots need not be uniform. To a large extent, whether this
ics*4 are receiving considerable attention. Key and current source of variation is present or not is under the control of the

aspects can also be found in other papers in this special issueEXperimentalist.

the following experimental and theoretical aspects are empha-Of the lattice. We mean here the changes in the inter-dot
sized: distances. The dots are heavy on the atomic scale and this means

i. Role of Disorder. Assemblies of nanodots are particularly —that the phonon frequencies are low so that the lattice vibrational

sensitive to the lack of perfect periodicity in the properties of Modes are essentially classical with an averageTahermal
the sites because the individual dots are inherently not identical. €n€rgy per mode. This effect is the same as that giving rise to
The reason is that the dots are prepared by wet chemical'@sistivity in metals and to the polaron theory in crystafs:
method§ 8 and so there is some (possibly small, about 10% in The formalism to be discussed below, while quantum mechan-
diameter® but always finite) fluctuation in the size of the dots. ical, can incorporate this coupling and it can do so particularly
Since the electronic response of an individual dot is governed €asily in the limit when the motion of the lattice can be regarded
by its sizel® the arrays always exhibit some inherent disorder @S @ classical field which is coupled to the electronic motion.
and this is the case for both metallic dots and semiconductingAS | will briefly discuss, in this limit the effect is not dissimilar
onest! The role of this disorder will be shown to be paramount, 0 that due to geometrical disorder. | will not, however, present
particularly so at closer packifig13In other words, there are computational results for thermally assisted charge hopping from
qualitative changes in the electronic response of the supperlattice®n€ dot to another.
due to this disorder. The fifth perturbation discussed here is one that is more
In addition to this inherent disorder, four additional contribu- special to assemblies of nanodots. It is that the dots have an
tions can be included in the present approach. The second sourcéternal structure and the conducting electrons, as they move
of disorder is a packing or “geometrical” disorder. This arises from one dot to another can scatter due to the internal degrees
because the lattice need not be perfectly arranged or, even, itof freedom. The formalism can allow each dot to have its own
can be quite defectively packed. The computational results, to Set of electronic levels, but I will here adopt a modest approach
be discussed below, are that it takes a fairly extensive geo-and only allow phenomenologically for this effect by adding a
metrical disorder before it induces qualitative changes in the scattering phase shift when an electron hops from one dot to
electronic properties. another. More work is needed on the importance of this effect,
The third source of disorder is what one might call a chemical Which causes a dephasing of the coherent propagation of the
disorder, but one should recognize that the size distribution also€lectrons. Ultimately, the fourth and fifth effects can cause a
transition from coherent to dissipative transport of charge.

T Part of the special issue “Electronic and Nonlinear Optical Materials: i. Role of Lattice Compression. Assemblies of nanodots
Theory and Modeling”. : )
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10° Hamiltonian is known to them as that of Paris®arr—Pople
(PPP)Y5-30 The PPP Hamiltonian goes one step beyond the
B B Hubbard model in that it also allows an electron on one dot to
o 100 RN interact with an electron on another dot. These additional terms
S | Ande ‘ dtod i itude as the latti i
N \\Anderson\ are expected to decrease in magnitude as the lattice spacing
B8 102k \\\ \\ increases.
§ \ The electrostatic terms depend on two electrons at a time
) 103 ‘ §\ » and so cannot bg exactly treated in a one-electron approximation
Cd @ \AOC \ (also called the independent particle model or, technically, the
\. \\\ self-consistent-field approximation). The computational scheme
76 AANMIHHIMIHMININIIHEIINININNY we use fully accounts for these terms. There is, of course, a
1 1.2 14 16 18 2 price. We use a many-electron description of the wave function.

Technically, we use a basis of states generated by the unitary
group U(n), wheren is the number of dots in the array. The

D /2R
Figure 1. Relative strengths of the different perturbations included in  states are antisymmetrized spin eigenfunctions of a given

the PPP Hamiltonian (2.12) as a function of the interdot separation 1y tiplicity. The matrix elements of the electrostatic terms can
D/2R, plotted on a logarithmic scalda is the range of the fluctuation

in the site energies anidthe self-capacitance of the individual dots. be analytlcally.computed in such a baaé'l The price: the .
The transfer integral3, is given in eq 2.4 and the cross capacitance, Number of basis states (and hence the size of the Hamiltonian
v, in eq 2.10. Note how the Coulombic effects and/or the fluctuation Mmatrix) increases exponentially with cf. eq A.1 below. The

in the site energies are the strongest perturbation at large interdotadvantage: when the Hamiltonian matrix is diagonalized, one
separations, while it i$ that plays a dominant role at small values of  (numerically) generates exact eigenstates. The band structure,

D/2R. The inset shows the two geometrical parameters of the 2D jq¢|ding the relative positions of the valence and the conduction
hexagonal arrayD is the distance between the centers of two bands is thereby obtained

neighboring dots andRis the mean diameter of the dots. ) ) )
Having enumerated the features that are included in the model

lattice spacing. The details of doing so have been discussedHamiltonian used herein, it is only reasonable to reiterate an
elsewheré:26 The range of variation is seemingly limited. The ~important feature. that is not properly hanglled. The HamHtoman,
lattice spacingD, that is, the distance between the centers of @S actually used in the present computations, does not do justice
two adjacent dots (see inset in Figure 1) can be varied from 10 the internal structure of the dots. To be sure, one can allow
about twice the mean diameter of the dotR, down to where ~ Phenomenologically for this structure (we do say more about
the dots are effectively touching,2 D/2R = 1. Even so, the this below) and one can readily generalize the Hamiltonian as
experimental results in themsel§é&17 show that there are used here so as to endow each dot with an internal electronic
qualitative changes in the electronic and optical responses asStructure. But this is yet to be implemented as a computationally
the lattice spacing is varied in this range. Our anakjdisof ylable scheme. (The problem is at the same time to dO_ a proper
these results suggests that this is quite consistent with what ondob on the Coulomb blockade and to allow for an internal
should expect considering the physical range of the inter-dot Structure. Th(_a compu_tatlonal cost of dc_>|r_1_g so is that the size of
coupling. the Hamiltonian matrix becomes prohibitive.)

There are two ways that the lattice spacing appears in the
Hamiltonian. One, mentioned above, is that it governs the 2. Electronic Model
tunneling (or the above barrier transfer) of an electron from ) ) )
one dot to another. The second role of the inter-dot separation Each quantum dot is represented as a site of a lattice. In the
is that it governs the magnitude of the Coulombic repulsion computations reported below, there is one site orbital that can

between electrons localized on neighboring dots. This, which @ccommodate zero, one, or two (of opposite spin) electrons but,
is a polarization or a cross-capacitance effect, is explicitly Otherwise, the dot is not endowed with an internal structure.

included in the Hamiltonian. However, we will introduce some effects of the structure of

The experiments on the compressed lattice are static: Thethe dot in eq 2.7 below, but this is done in a phenomenological
compression is changed very slowly. But the same Hamiltonian Manner.
that allows us to compute the electronic response at different  The sites are arranged in a 2D hexagonal lattice, which means
spacings can also be used to explore the dynamical role of thethat completed shells have 7, 19, 37, 61, 91, ... sites, respectively.
lattice motion. The geometry of the lattice is specified Wy, the distance

iii. Coulomb Blockade. The computational scheme that we between the centers of adjacent dots wheris measured in
implement does fully and correctly incorporate the role of the, units of R. Ris the mean dot radius, with a typical value of a
so-called, Coulomb blockad&:2! This, sometimes known as few tens of angstroms. The geometry of the 7 site lattice is
the “charging energy”, is the energetic discrimination against shown as an inset in Figure 1.
two electrons (of opposite spin) being on the same dot. Often  Four unit-bearing coupling parameters determine the elec-
the effect is also referred to as the finite capacitance of a dot. tronic properties of the lattice. These are shown in Figure 1, as
The value of the charging energy can be determined experi- a function of the lattice spacing measured in units of the mean
mentally by Coulomb blockade experimef#Z:23Note that the diameter of the dotsD/2R. As indicated in the figure, the
capacitance is related to the volume of the dot and so it too canrelative magnitude of these parameters determine the coupling
have a variation due to the fluctuations in size, to a lesser extentregime. Two parameters characterize a given site. First are the
though than the fluctuations of the site energies (see below). site energiesy;, i = 1, 2, ...,n. o is the energy of one electron

It is well-known how to write down a Hamiltonian that in the site orbital. The site energies depend on the size of the
incorporates the Coulomb blockade. In solid state physics this dots and their inherent fluctuation&ga, and of course, on the
is usually known as the Hubbard te#hTheoretical chemists  chemical compositiona is expected to depend on the mean
are also aware of the importance of this effect and the equivalentradius of the dotsR, as 1R?, so thatAa. O o AR/R. Note that
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the sites are coupled to one another so that the site energies areherei is the index of a dot, = 1, 2, ...,n. a, anda/, are the
just a zeroth-order approximation for the energy of an electron annihilation and creation operators for an electron oni siti¢h
on the site. When two electrons (of opposite spin) are localized a given spinu (« is up or down)}82° Note that whileHy is a

in a given site orbital, the energy of the site is notfaut 2o + one-electron operatai;, which corresponds to the Coulombic
I, wherel, the self-capacitance, is the Coulombic repulsion of terms (cf. eq 2.8 and section 2.2 below) is not.
two electrons of opposite spin localized on the same sjte. 2.1. One-Electron ConsiderationsAlready at the level of

which corresponds to the charging energy of the individual dots, Hy one can see the effects of disorder, particularly so when the
can be determined by “Coulomb blockade” experiments, using lattice is compressed, so that (see Figure 1) the role of the
scanning tunneling microscopy (ST¥I3223| is size dependent.  transfer integraly dominates. For the computations discussed
More precisely,l = €?/C(R), wheree is the unit charge and  below, we usedy’s that fluctuate randomly withitho. (=agdat)

C(R) is the size dependent finite capacitance of an individual around a mean valuey:

dot. C(R) = 4mepeR, whereR is the radius of the doky is the

permittivity of vacuum, and is the dielectric constant of the o = 0(1+ 00y) = a[1 + da(ran — 0.5)]  (2.3)
material surrounding the particle.is basically the dielectric

constant of alkane chains of the ligands that stabilize the metallicwhere ranis a random number in the range of [0, 1] and the
core and varies between 2 and 3r BB nmdiameter quantum  sampling is such tha§; (ran — 0.5) = 0. The transfer integral
dot surrounded by a material with a dielectric constant, 3, p has the distance dependence

| is found to be about 0.3 eV, which is in agreement with the

Coulomb blockade experimeritsand we use this experimental 8 = (8,/2)(1+ tanh(O, — D)/4RL)) — 3, exp(—D/2RL)

value in the computation reported below. Because of the (2.4)
fluctuation in the mean dot radius, the charging energy also

fluctuates. However, the rang&| O | AR/R, of the fluctuation which saturates at high compressions and otherwise has an
in the charging energies remains small compared to the exponential decline with a (dimensionless) range paranteter
fluctuations of the site energies becaugetypically more than The parameters gf in eq 2.4 are determined as discussed in

an order of magnitude smaller than the site energie3he ref 12 (see also Figure 1 therein), by a fit of the computed
effect of the fluctuation of the charging energies is therefore response to the experimental nonlinear optical response, the
neglected in the computational results presented below. second harmonic generation (SHGFor dots with a mean

Two parameters characterize the coupling of the dots and diameter R ~ 30 A, the fit of the experimental dafdeads to
are therefore sensitive to the lattice spacing. The electron canDo/2R = 1.2, which is the interdot separation by whifthas
coherently (but see below) transfer from one site to another with dropped to half its maximal valugo = 0.5 eV and/,.L = 5.5.
an amplitudes. The “transfer integral3 is determined by the ~ The transfer integral is thus found to be rather long range. This
overlap of the orbitals of adjacent dots and is therefore here value is consistent with what we estimate on the basis of a
put equal to zero unless the dots are near neighbors on the latticethrough space charge transtériNote that these parameters,
The value ofg can be tuned by compressing the lattice and we determined by a fit to the experimental SH&8gad also to a
expect it to decrease (exponentially) as the lattice is expandedgood agreement between the compéieaid the experimentll
(cf. Figure 1 and eq 2.4 below). For chemical physicists, an response for another observable, the frequency dependent
important role of the computation and of the comparison with dielectric constant in the visible range. In particular, our model
experiment is to determine the decline/fvith distance. We computation® reproduce the qualitative changes experimentally
have previously done $bby fitting our computed response to  observed in the frequency dielectric constant, which exhibits
the nonlinear optical response measured for an array of silverthe insulator to a metal transition as the lattice is compre¥sed.
quantum dot§.j is also sensitive to the size of the dots and to ~ When there are no fluctuations, the one-electron Hamiltonian
the ligand coverage on the dots. Below, it will also be used to of a lattice of identical dots can be written'as
mimic the effect of lattice thermal motion and the internal
structure of the dots (see eq 2.7). Nijcket = Col + M (2.5)

The cross capacitance also couples adjacent dots. This ) ) o
electrostatic coupling is due to an electron on one dot polarizing WhereM is then x n adjacency matrixr(is the number of
a neighboring dot. It is usually not included in the Hubbard Sites)?i.e., a matrix with unit entries where the row and column
Hamiltonian but it is part of the PPP Hamiltonian. The cross indices correspond to near nelgh_borlng sites. The eigenvectors
capacitance is easy to incorporate because, like the self-Of NHucke are the molecular orbitals (MO's). They are the
capacitance, it is diagonal in the many-electron basis set thatéigenvectors oM and so do not change in character as the

we use. The specific details are provided in the Appendix. !attice sp_acing is c_hanging. This is_, unlike when the fluctuation
The form of the many-electron Hamiltonian is in the site energies are taken into account, where due to

fluctuations, the MO’s#£eigenvectors of x n Hp (eq 2.2)) at
H=H +H 2.1) low 3 (=large spacing) are localizédThis is the well-known

0 ! : Anderson transitiof¥~2934 which occurs (cf. Figure 1) when
the transfer integra# is no longer comparable in magnitude to

Ho is a one-electron Hamiltonian of the tight binding (ofdKel) the range of the fluctuations in the site energies. Theannot
type and allows for size fluctuations and lattice compression as bridge the gap between the energies of adjacent sites and the
discussed below one-electron wave function becomes localized. This remains also

the case in the equivalent many-electrorickiel description,
" 2 T . as can be seen from Figure 2, which shows the weights of the
Ho = zhivizai,ﬂai,ﬂ with ground state on the zeroth-order many-electron site states for
Moo . two interdot separations. At each interdot separation, the weights

h — {ai it =] _ 2.2) result from a full diagonalization of the tekel Hamiltonian in
W |Bij=0  fornear neighbors 0”'); ' the many-electron basis set (for the details about the many-
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0.02 . S vibrations as classical. The) becomes a time dependent
DIPR =12 variable, of bounded variation, whose mean value is the nominal
lattice spacing and whose variance is determined by the
equipartition theorem. It is therefore easy to comgfitevhere

the mean is a thermal average. However, what we really need
to do is to computééxp(—iHt)[] This is possible and we will
report on it elsewhere.

The internal structure of the dots is also a source of
modulation of 3. In the one-electron picture, the migrating
electron moves into or out of the site orbital. In reality, the
DR =16 electron is scattered within the dot (as seen, e.g., in the width

] of the plasmon resonarfc®). Even if the scattering is elastic,
the electron acquires an extra phase and this phase can be quite

0.01 - b

0.8 -

ground state weight
<

0.6 1 i different for different dots. It follows that the simplest correction
0.4 | | for the role of the internal structure is to replace the otherwise
) reals by a complex number, whose phase is essentially random
0.2 - _ and which, in lowest order, allows only for elastic event so that
the matrixf should remain Hermitian
0 L 1 1 L 1 ]

50 150 250 350 450 550 650 750 ﬂij — B exp@éij) ﬁji = ,3“ (2.7)
_ _ many electron site zero order state _ This does not require any additional computational effort
Figure 2. Weights of the many-electron ground electronic state of phecause the Hamiltonian remains Hermitian and so can be

the Hickel Hamiltonian (eq 2.2) on the 784 many-electron site states, ; i i i i
computed folD/2R = 1.2 (upper panel) anb/2R = 1.6 (lower panel). glz:lvgeo?uashtzsgegyrSngg%ry transformation. Such computations

oo = 200, Aa. = 1 3y, and the parameters jhare as given in section . . .
2.1. At short interdot separation, the ground electronic state is well  2-2. Many-Electron Theory. This section discusses the exact

delocalized over the site many-electron states. At larger interdot incorporation of two-electron effects, such as Coulomb blockade,
separation, the ground electronic state becomes localized on a singleby using a many-electron wave function. The form of the many-
site many-electron sta Note the difference of scale for tlyeaxis in electron Hamiltonian is

the upper and the lower panels.

o ) . . H=H,+H, (2.2)
electron description, see section 2.2). At short interdot separation

(upper panel), is the strongest perturbation. The ground
electronic state is well delocalized over all the many-electron
site states of a given total spin, and the array has a metallic
character. On the other hand, at large interdot separaiis, no2 1
orders of magnitude weaker than the fluctuation in the site H = zhiiZaTuaiu + _|Z(ni — 1)2 +
energies. Then, the ground electronic state converges to a single T o 245

whereHg is the one-electron Hamiltonian of the'ekel (or tight
binding) part as given by eq 2.2. Then

"

ionic state (state number 142the state numbering is arbitrary), one-electron part Coulomb blockade

whose site occupancies are uneven, as shown in the inset. The 1

convergence of the Hikel ground electronic state to an ionic Eyzninj (2.8)
]

configuration at large separation in the presence of site energy
fluctuation is due to the failure of the 'ldkel Hamiltonian to
discriminate between the covalent and the ionic many-electron
states. This is further discussed in sections 2.2 and 3 below
where eqs 3.4£3.4 provide a schematic representation of the
site occupancy of the covalent and ionic many-electron states. n = t

Geometrical disorder implies fluctuation in the magnitude of i Zai#ai#
B. Both the analytical and computational evidelids that this “

is not such an important effect. The reason is the exponential\yhich sums over both directions of the spin. The parameters of
dependence gf on the lattice spacing. From eq 2.4 the one-electron part are as discussed in section 2.1, determined

by a fit to the experimental nonlinear optical respotskis
16f] p>R 6( D)/L _ (6( D)/( D ))(( D)/L) 2.6) the charging of the individual dots, also discussed above. We

cross polarization

where the new operators that enter are the number operators
for the different sitesi = 1, 2, ...,n,

(2.9)

2R

2R

B 2R 2R use for the variation of the cross capacitangayith the interdot

2R
separation the same weak distance dependence as in mofécules,

Large variations in the lattice spacings will cause large changes

in 8 at large interdot separations, where the valug bécomes y = 2/[2R(D/2R + (eZIIZR) + a)] (2.10)
negligible with respect to the charging energyand the range

of the fluctuation in the site energieAp.. wherea is a constant aneé is the unit charge. Note that the

Before turning to a many-electron theory, we point out two magnitude of the cross polarization term is typically weaker
additional sources of variations fh One is the role of lattice  than the Coulomb blockade term and does not play an important
thermal vibrations. So far we discussed the lattice spacing as arole in the computational results reported below.
parameter in the Hamiltonian. Strictly speaking, however, itis  To diagonalize this Hamiltonian exactly (which is equivalent
a dynamical variable and, in a quantum mechanical approach,to a full configuration interaction (Cl)), we rewrite it in terms
it is an operator. It is, of course, simpler to regard the lattice of the generatoréi,,»,
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R 2 It is a covalent state that has an insulator character because the
E;= ZaI#am ihj=1,..,n (2.11) matrix elements of the transfer integrdl among these 14
i degenerate states are zero. All the excited electronic states are
ionic (they have at least a doubly occupied site orbital). They
of the unitary grougJ(n) (n is the number of sitegf.27:313940 || be coupled byp when it is strong enough to bridge the
gaps between their respective energies. (For the ionic zeroth-

n R no |no 5 order states, the matrig has both interband and intraband
H= aOZ(l + doy)E;; + ﬁZ'EiJ +§ B, -1+ _ nonzero matrix elements.) Equations 334 show the oc-
I= [F] 1=
y n
Ein,iEj,j (2.12) u o
1

The prime on the second sum indicates thanhdj are near “ “
neighbors. Note that only diagonal operators appear in the two-

electron terms. As discussed in the Appendix, this makes the

analytical form of the Hamiltonian matrix quite simple. In Covalent
particular, the site-diagonal part,

ionic
E, =70 3.1 E =Top+1 (3.2)

n R L
= o, (l+6ai)Eiyi+£ (E,— 1y (2.13)

H

site

is a diagonal matrix. For the-electronn-site system that we

consider here, the Coulomb blockade terf)§ (Ei — 1)) m @ a

counts the number of doubly occupied sites. The reason is that

in this particular case, the number of doubly occupied orbitals

is equal to the number of unoccupied sites. ‘ . -
Specifically, we represent the Hamiltonian in a spin adapted tome rome

many-electron basis set that belong to an irreducible representa- E,=Tag+21 33) E,=Ta 3 (4)

tion of the groupU(n)®%(Gelfand— Teltsin states). There are

784 such (doublet) states for a 7-electron, 7-site lattice. For the
next completed hexagon there are 19 sites and 2 821 056 16ccupancies of the seven site orbitals for one of the degenerate
doublet states. (The required equation is (A.1) of the Appendix Mmany-electron states belonging to each of the four bands. As

where more detail is provided about the many-electron states).already discussed, the covalent ground state (eq 3.1) is 14 times
degenerate. There are 210 degenerate ionic states with an energy

equal to & + | (eq 3.2), which are all the doublet configura-
tions with a single doubly occupied site orbital, 420 ionic states
Before reporting results for the full diagonalization of the at 7ao + 21 (two doubly occupied site orbitals, eq 3.3), and
Hamiltonian (2.8), we first discuss the properties of the 140 ionic states atdp + 3| with three doubly occupied site
electronic spectrum at large values of the interdot separation,orbitals (eq 3.4).
D/2R, where the strength of the transfer integyal,is much Fluctuations in the site energies are diagonal in the zeroth-
smaller than the Coulomb terms (cf. Figure 1) so that it can be order many-electron site states. They do not affect the ground
neglected. Then, at large interdot separation, the electronicelectronic state since the sampling is such thétan — 0.5).
spectrum exhibits a band structure that can be understood inTherefore, its energy remains unchanged and equalgeven
terms of the HamiltoniarHsi (eq 2.13). Note that the cross when disorder is taken into account. On the other hand, the
polarization term of eq 2.8 is neglected in (2.13). This provides energy mismatch in the site energies due to disorder splits the
a simpler discussion and does not affect the band structure. Thesnergies of the ionic states, which leads to a smear out of the
reason is that, typically, the cross capacitanpcés smaller than band structure of the higher states, as can be seen in Figure 3
the self-capacitancd, As a result, the effect of the cross below.
polarization term is essentially to shift the levels within the bands  The upper panel of Figure 3 shows the transition frequencies,
that are separated by the charging enetgy, Eng = En — Eg, whereE, is the energy of the ground electronic
Hsie is diagonal in the many-electron site basis set. Without state andE, is the energy of the electronic excited state,
the Coulomb repulsion term and in the absence of fluctuations computed for moderate fluctuation in the site energies, that is,
in the site energiesi¢. = 0), all the doublet states of ansite, for a range of fluctuationAa, that is smaller than the self-
n-electron model are degenerate with an energy. Forn = capacitance of the individual dotk, Aa. < I. The transition
7, the possible electronic configurations have zero, one, two, frequencies are computed by full diagonalization of the PPP
or three doubly occupied sites. Since each doubly occupied Hamiltonian (2.12) as a function of the interdot separaié2R.
orbital is penalized by because of the Coulombic repulsion, The details of the full Cl procedure that we implement are given
when the Coulomb blockade term is included, four bands of in the Appendix. At large values @/2R, as discussed above,
degenerate states appear with energies 7o, + |, 700 + 21, Hsie (€9 2.13) is a good description. One clearly sees the band
and fw + 3l, respectively. The zeroth-order ground state of 13 very small transition frequencies arising from the splitting
corresponds to the electronic configurations with one electron of the 14 times degenerate zeroth-order covalent ground state
per site (see eq 3.1 below) and is unaffected by the Coulomb by the second-order (and higher) terms of the transfer integral,
blockade term. It is 14 times degenerate, and its energyds 7  which leads to transition frequencies of the ordep3df. The

3. Results for a Many-Electron Description
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Figure 3. Transition frequenciesk,y = E, — Eg, in units of fo, Figure 4. Weights of the ground electronic state on the many-electron

computed as a function of the interdot separabé2R. The parameters site zeroth-order states for an array whare < |. Computed for the
used areny = 20 o andl = 1.2 o andy is given in eq 2.10 with same Hamiltonian parameters as in Figure 3 upper panel. Upper panel:
2R =30 A anda = 1 Upper panelAa < | (Ao = 1 o). The Mott D/2R = 1.2. The wave function is well delocalized over all the 784
transition occurs ab/2R ~ 1.5, and the Anderson-like transition, at many-electron site zeroth-order states. Lower pab&R = 1.8, the
D/2R =~ 1.3. Lower panelAa > | (Aa = 5 f). In this case, the Mott ground electronic state converges to a linear combination of the 14
transition is smeared out by the fluctuation in the site energies. In the covalent site zeroth-order states, with the highest weights on states 219
inset, theEyg's are shown for a smaller energy range. The Anderson and 479. The inset shows the site occupancy of the covalent states.
transition is seen to occur at a smaller valueDéeR (D/2R = 1.2) Note the difference of scale for theaxis in the upper and the lower
than in the upper panel. panels.

three higher bands have merged into a single band of ionic states The upper panel of Figure 4 shows the weights of the ground
because of the fluctuations in site energies and also because oftateé computed for a smaller value of the interdot separation
the cross polarization term. They are separated from the ground(P/2R = 1.2). For this interdot separation, the electronic
state by an energy gap at least equall tAs the interdot coupling, s, is strong enoug_h to brldge the Coulombic effects
separation decreases, the strength of the transfer intgdral, and the fluctuat|on$ in the site energies, so that the ground state
increases exponentially (eq 2.4 and Figure 1) and when it is 1S VeTY well delocalized over all the site zgroth-order_states. For
strong enough to overcome the Coulombic effects, the lower these small values obD/2R, the array is conducting. The
covalent band merges with the higher ionic bands. This is the Anderson-like transition is found to occur at a value of

Mott transition and it occurs for the parameters of our model at DI2R ~ 1:3' The smallest transition fre_quend&ng ~04 ﬁ(.’)
D/2R = 1.5. seen in Figure 3 upper panel at short distant¥gR < 1.3) is

due to the splitting of the doubly degenerate zeroth-order ground

Therefore, forD/2R > 1.5, the array behaves as a Mott a0 ¢ ground state of the Hamiltonian (2.5)) by the fluctuation

insulator, with a covalent ground state. This can be seen from in the a,’s.

the lower panel of Figure 4 where the weights of the ground |, \e |ower panel of Figure 3, the transition frequencies are
electronic state on the zeroth-order many-electron site states A lotted for a larger amount of fluctuation in thg's, so that

plotted forD/2R = 1.8. The ground electronic state is foundto A, > I, for the same range in the energy axis as in the upper
be a linear combination of the 14 covalent zeroth-order site statespaneL At large interdot separation, the band gap between the
(eq 4.1), with larger weights on states 292 and 479 (the coyalent and the ionic many-electron states that is due to the
numbering of the states is arbitrafy)This is unlike for the  coylombic effects has vanished. This indicates that the Mott
many-electron Hekel Hamiltonian, where the ground many-  transition is smeared out by the fluctuation in the site energies:
electron state shown in Figure 2 converges to an ionic For larger amounts of disorder, the very small transition
configuration at large interdot separation. Figure 2 and Figure frequencies (of the order @/1) disappear and the distribution

4 are computed for the same amount of disorder in the site of transition frequencies is entirely determined by the range of
energies. The difference is that in the Hamiltonian used in Figure flyctuation in the site energieAa. The inset in the lower panel

4, the Coulombic terms (Coulomb blockade and cross polariza- js for a smaller range in energy, so that the details of the
tion; see eq 2.8) are included. As a result, and insofar that distribution of the transition frequencies appears more clearly.
Ao < |, the ground electronic state is covalent, because the Note that sinceAa. is wider, the Anderson transition occurs at
Coulomb blockade term penalized the ionic configurations by a shorter value ob/2R (D/2R = 1.2) because a larger value of

I (the “charging energy”) for each doubly occupied orbital. On S is needed to bridge the energy mismatch between the site
the other hand, in the Hitel Hamiltonian, there is no energy  energies.

penalty for doubly occupied sites, so that covalent and ionic At large interdot separations, Asx increases, an interesting
configurations are degenerate (of course here within the rangetransition occurs for the ground electronic state: While for
of the fluctuation in the site energies). This is a well-known Aa < | the ground electronic state is covalent (Figure 4, lower
failure of the one-electron descriptiéh. panel), larger amounts of disordekd > |) lead to an ionic
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Figure 5. Weights of the ground electronic state on the many-electron g0

site zeroth-order states for a highly disordered array with > 1. Figure 6. Number of states vs energy computed for three interdot

Computed for the same Hamiltonian parameters as in Figure 3 lower separationsD/2R = 1.8, 1.5, and 1.2. Upper paneko. < | (same

panel. Upper panelD/2R = 1.2. The wave function is still well Hamiltonian parameters as in the upper panel of Figure 3). At large

delocalized over all the 784 many-electron site zeroth-order states. interdot separation, there is a gap in energy of abdetween the 14

Lower panel:D/2R = 1.8. The ground electronic state now converges lowest covalent electronic states and the higher ionic states. Lower

to an ionic state, the state number 137, whose site occupancy is showrpanel:Aa > | (same Hamiltonian parameters as in the lower panel of

in the inset> Note the difference of scale for theaxis in the upper Figure 3) The gap has disappeared because the fluctuation in the site

and the lower panel. energies is wide enough to wash out the band structure due to the

Coulombic effects.

ground electronic state (lower panel of Figure 5). The computa-

tion reported in Figure 5 is for the same Hamiltonian parameters model where ionic states have three different kinds of sites,

as in the lower panel of Figure 3. The ground state computed With zero, one, and two electrons, respectively. This appears to

atD/2R = 1.8 converges to the ionic state number 137, whose Pe supported by recent experimental measurertfeftnd work

site occupancy is shown as an inset in the fidior smaller IS in progress along these lin€s.

values ofD/2R (upper panel), the ground electronic state remains )

well delocalized over the whole range of many-electron zeroth- 4- Concluding Remarks

order site states. It is less well delocalized, though, than for the  The compression of silver quantum dot arrays that is possible

same value oD/2R as in the upper panel of Figure 4 because ysing the Langmuir technique allows reversible tuning of the

Ao is larger in Figure 5. strength of the interdot coupling. It therefore provides an
In Figure 6, the number of states is plotted as a function of experimental access to different facets of the insulator to metal

energy for three interdot separatiobs?R= 1.2, 1.5, and 1.8.  transition, which occurs as the lattice is compresseti

For moderate amounts of disorder such that< | (upper panel Basically, the arrays behave as a metal at small interdot

of Figure 6), at large interdot separatioD/2R = 1.8), the separations and have an insulator character at larger separations.

Coulomb gap between the 14 covalent states and the ionic band©ne important aspect of the metahsulator transition is that

is clearly seen. This gap can be probed experimentally by it can be reversed by decreasing the level of compression of

current-voltage (—V) measurements on the arrays as a function the lattice. The metal to insulator transition in 2D monolayers

of the interdot separation, from which density of state curves of silver quantum dots has been probed by the Heath group

can be obtaine&?22#t this large interdot separation, a more using various experimental techniques: by optical means by

disordered array (such thato. > 1) does not exhibit a gap in  measuring the second harmonic gener&tamd the frequency

the number of states vs energy curve, as can be seen from thelependent dielectric constant in the visfdieand at very low

lower panel. The Mott insulatermetal transition is masked by  frequencies by impedance spectroscéjyariable temperature

the fluctuations in the site energies, which are strong enough STM gives access to the Mott transitiét?3

to wash out the band structure induced by the Coulombic effects.  The metal to insulator transition manifests itself by qualitative
At large interdot separation, highly disordered arraye. ¢ changes in the various experimental responses; i.e., the second

I) are expected to exhibit a finite density of state® & since harmonic generation measured in the visible increases expo-

there is no Coulomb gap, but they still behave as an insulator nentially as the lattice is compressethe real part of the

because the transfer integraljs not strong enough to bridge complex frequency dependent dielectric constant becomes

the energy mismatch between the different states due to disordernegative upon lattice compressibnand the Coulomb gap in

Recent experimental results of the Heath gféom disordered the density of states observed for low temperature at large

bilayers, where the metallic character is probed by measuring interdot separation disappears as the dots are brought &lg3er.

the frequency dependent dielectric constant in the visible show The electronic model discussed here reproduces well these

that this can be the case. Another interesting feature of thesequalitative changes, and semiquantitative comparisons with the

disordered supperlattices is that individual dots in the array are experimental results of the Heath group are provided else-

expected to lead to differemt-V curves, as suggested by our where!?32Here, we discussed more systematically the role of
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the inherent disorder and of the Coulombic effects on the Appendix: The Site Many-Electron Basis Set and the
electronic properties using computational examples. A system- Hamiltonian Matrix

atic discussion is possible because a small number of electronic
parameters, that is, the variation of the transfer integrakith

the interdot separation, the value of the charging endrgyf,

the individual dots, and the range of the fluctuations in the sizes,
AR, suffice to capture the essential features of the changes in
electronic response as the lattice is compressed. Moreover, thescg
parameters can be determined from experiment. As discusse
in section 2, we take the experimental value$ ahdAR. The
parametrization of is determined from the fit of the computed
response to the experimental second harmonic genefgtam,
also discussed in section 2. We would like to reiterate that the
same values of these parameters, together with the experiment
values ofl andAR, also reproduce at a semiquantitative level
the changes due to the metal to insulator transition experimen- _b+1n+1)n+1
tally observed for other quantities, such as the frequency N= n+ 1\a c
dependent dielectric respod$é? and the Coulomb blockade
curves obtained by STNR23:43

Disorder is inherently present in supperlattices of quantum atb+c=n
nanodots because of the inherent size fluctuation due to their 2a+b=N
preparation by wet chemical synthesis. Disorder plays an
important role both in the Anderson type and in the Mott type b=2S (A-2)
metal to insulator transitions. It is the driving force for the
Anderson-like transition that occurs when the interdot coupling
is no longer strong enough to bridge the differences in the site (N=) seven-electron system there &te= 784 many-electron
energies induced by the size fluctuations. The Mott metal to doublet § = ;) states. §, b, c) are the components of the
insulator transition is also strongly affected by disorder. Our highest weight vector in Paldus’ notation. All the orthonormal
computational results show that it can be masked when the SPin-adaptedi-electron states can be generated in terms of the
disorder in the site energies overcome the Coulombic terms. (& b, ¢) vector. For then = 7, N = 7 system, this vector is (3,
Depending on the amount of disorder, the Anderson type and 1, 3) for all the 784 doublet states. One convenient way to
the Mott type transitions do not occur at the same interdot "ePresent the many-electron states is to write them asraw
separation. While optical measurements (SHG and frequencythree-column Paldus tableaux where the highest row of the
dependent dielectric constant) appear to be more sensitive tof@bleau is given by the highest weight vectaytf, ) = (an, by,
the Anderson transition, density of states (DOS) curves obtained®)- The entries of the different rows are then recursively

by STM probe the presence (or not) of the Coulomb gap typical ©Ptained from the highest weight vect6r* _ _
of the Mott insulators. The matrix elements of the Hamiltonian (2.12) in the site

many-electron statesyy, take a very simple form. The diagonal
t generatords;; are diagonal:

The many-electron description that we implement is based
on the “spin free” formalism pioneered by Palétusand
Matsen?® This formalism is based on a unitary group appréach
that consists of rewriting the Hamiltonian in terms of the
eneratorE,j (eq 2.11) of the group)(n), wheren is the number

f sites. This leads to eq 2.12

The matrix of the Hamiltonian (2.12) is then written in the
spin symmetry adapted many-electron site states. For a system
of n sites andN electrons, of total multiplicity (3 + 1), the
dimension N of the irreducible representation of the spin
ymmetry adaptedl-electron states is uniquely specified and
iven by

(A1)

where

and(rr?) are the binomial coefficients. For the<f) seven-site,

For arrays with moderate amounts of disord&o(< 1), we
find that the Anderson-like transition occurs at a shorter interdo
separation than the Mott transition. Intermediate valud3/aR Im)|E, |(1) = ei(m) 5 (A.3)
correspond to an intermediate coupling regime where all L (.0 '
perturbations are important. Our computational results also wheree™ is the occupancy of sitefor the many-electron site
show, in agreement with recent experime¥it&;23that at large state, ), €™ = 0, 1, or 2. This implies that all the Coulombic
interdot separation, increasing amounts of disorder can induce(mO-éleétron) terms included in the Paris¥arr-Pople Hamil-

a transition from a covalent to an ionic ground electronic state, (.21 are diagonal in the site many-electron states. The only

tbhehreb_y Ieading_to alrraysbwith no C?“'ﬁmz gdal@a< blut Stli_” .__nondiagonal terms are the matrix elements of the transfer
ehaving as a insulator because of the Anderson loca |zat|onimegra|, 5. They are readily computed using the matrix

of the wave function due to disorder. The- V curves of the representqtio%‘iﬁl of the near neighbor raising and lowering

individual dots belonging to such arrays wit_h an ionic groun(_:i generators: i.1,i = 1, ...,n — 1, and the commutation relation
electronic state are expected to be of three kinds, corresponding
to the three kinds of dots typical of an ionic ground state: neutral, [Ej Bl =9, — 0 E; 1l kI=1,..,n (Ad)
with an excess of electron and with a defect of electron, as ) .
suggested by our many-electron model. Preliminary experimen-Which implies the recursion relation

T 2 R P
tal results show that it is likely to be the caSé¢: =B Bl (A.5)

i
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