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Grochala, Albrecht, and Hoffmann have recently observed that, for many organic and inorganic molecules,
the bond lengths in the catiofR(), neutral systemRy), first triplet excited stateReg, and anion R-)
approximately satisfiRy + R- — Rys — Res~ 0. This paper shows how the Fukui function, a concept from

the density functional theory of chemical reactivity, can be used to rationalize the Groélilatacht—
Hoffmann rule. The treatment also suggests which types of chemical systems will be best described by the
Grochala-Albrecht—Hoffmann rule.

I. Introduction where we have summed over the spin coordinates of all electrons

On the basis of results from a series of calculations, Grochala, and integrated over th? spatial coordinates qf the fast 1
electrons. In atomic units, the external potential of a molecule

Albrecht, and Hoffmann have proposed a new tool for under- . defined th h
standing the geometry of molecules, observing that IS defined throug

z,
R, +R.— R~ R~ 0 1) v(Fid) =y = 4)

/1

a

whereR+, R-, Rys, andResare the lengths of some bond for the Ra( )

cation, anion, singlet ground state, and first triplet excited state ywherez, is the atomic number ari_éa(/l) is the position of the

of a molecule, respectivelySummarizing some of Grochala, gth nucleus.

Albrecht, and Hoffmann’s results, eq 1 is most accurate when  Equation 2 indicates that if the electron density is known for
(1) the ground state of the molecule is nondegenerate and (2)all 4, thendE/dA is also known for alll. If we know 9E/dA for

the geometries of the cation, anion, singlet ground state, anda|l 4, then we can determine the potential energy surfaca,

first triplet excited state are similar. o to within an additive constant; the constant depends on our
The density functional theory of chemical reactivity is useful - choice of energy zero. In particular, knowledge of the electron
for justifying existing chemical principlelDensity functional  density for every value of the coordinate allows us to

theory’s principal tool for understanding the addition and determine the equilibrium value df 1o, since atlg
subtraction of electrons is the Fukui functi®r, and in the

present paper we use the Fukui function to derive the Groehala oE _

Albrecht=Hoffmann (GAH) rule. Accordingly, our arguments (a,l)ll:io a

involve formally exact theory rather than simple MO theory. 5 (5)
Our treatment reveals why the rule holds only for nonde- (3_)| 0

generate ground states in which the geometries of the cation, RYk A=A

anion, ground state, and first excited state are similar and
suggests other conditions which are necessary for the accuratdifferentiating eq 2 gives an expression #E/3A2 in terms of
fulfillment of the GAH rule. Finally, our derivation reveals how the electron density, namely,
one may extend the GAH rule to degenerate ground states.

_ PE_ Py (T 1) [0v(F1:2)
Il. Theoretical Background 972 = 72 f Y \ eV

dr, +

Within the Born—Oppenheimer approximation, the way the Py (~ 2)
- 7 o\l
energy of a molecule changes when the nuclear positions change fP( w|————dr; (6)
along some coordinate} (keeping all other internuclear
coordinates fixejj is given by the HellmanaFeynman theorem: . L ) )
The foregoing analysis indicates that if we are given the electron

0E()) l)( O(rly;{))d_. densities of the cationp((r;4)), anion (-(F;4)), ground state
= Fr

FY all

(2) (pgs(T;4)), and first excited state of a molecule.{r;4)) along
some coordinaté, then we can compute the potential energy
curves,E+(1), E-(4), Egd{4), and Ecd4), for these systems to
within an additive constant. Moreover, given the appropriate
densities, we can use egs 2, 5, and 6 to find the equilibrium
values of the coordinatefor the cation £+), anion ¢-), ground
state 4q¢, and first excited statel¢y). Hence, a relationship
p(TiA) = N[ [ [WH(2) W) ds,dx,... dy  (3) between the densities of the cation, anion, ground state, and
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wherein we have introduced the electron dengify;; 1), and
the external potentialyg(fi; 4). In terms of theN-electron
molecular wave function, the electron density is given by
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first excited state implies a relationship between their potential orbital of the ground state to the LUMO orbital of the ground
energy surfaces, which in turn implies a relationship between state. Neglecting the subsequent orbital relaxation, we have
A+, A-, Ags, andies

This argument suggests a method for deriving the GAH rule.
First derive a relationship between the densities of the cation,
anion, ground state, and first excited state; we do this in section Orbital relaxation is not always negligible, however, and so we
lll.A. Use this result to derive relationships between the systems' demonstrate that eq 10 incorporates the effects of orbital
potential energy surfaces (IlIB). Finally, use the relationships relaxation in an approximate way.
between the potential energy surfaces to derive a relationship The Fukui functions may be expressed in terms of the kohn

PedT) ~ Pgs(?) — Promo(T) + PLumo(T) (11)

betweenldy, -, Ags andies (I1IC) and explore under what
conditions this relationship becomes identical to the GAH rule
(D). This method for deriving the GAH rule suggests an
extension of the rule to degenerate ground states (IlIE).

lll. Theoretical Development

A. Relationships Between the DensitiesProposition 1.

Suppose that M is a molecule with a nondegenerate (and hence

a singlet) ground state. Then, to a good approximation, the
electron densities of the catiop,(T;4)), anion(p-(F;A)), ground
state pgsT;1)), and first excited state of a moleculge{r;1))
satisfy

JTogdTi2) + pedTiA) = po (T3 4) —

p_(F ;z)l(av"(? 2

A

)d?xo @)

for all 1.
Justification.If eq 7 holds for any particular value af then
one of the following three statements is true:

0 28D oy
(i) {pgdT:2) + pedT:4) — po(T32) —
TN Wwo(T; 1)
o_(T;A)} is orthogonal “’m

(ii)) pgdTi2) + pedFi) — p,(Fi2) — p_(T:2) =Ofor all ¥

Case (i) only occurs when the external potentig(d), does
not depend on the coordinafe Accordingly, case (i) never
happens whei is an internuclear coordinate of some type (see
eq 4). While case (i) may, perchance, occur for some
exceptional value of, it certainly cannot cause eq 7 to be valid
over a wide range of. Therefore, if the proposition is true for
all 4, it must be that case (iii) is true for almost al{case (iii)
may fail for that exceptional value df where case (ii) holds).

Within density functional theorythe ground state electron
density of a system is related to the ground state densities of
its cation and its anion by the Fukui function from beldw(r),
and the Fukui function from abové&f(T), respectively?3>

p(T54) = pedT34) — £(T;4)
p-(F12) = pgdT2) + F(F:2)

8
9)

Substituting egs 8 and 9 into eq 7 reveals that proposition 1 is
true if and only if
PedT3A) & podT34) — F(T54) + f7(F:1) (20)

We now argue that eq 10 represents a good approximation

Shanf orbitals, { ¢;(r)} :#8

F(F12) = (ap(? ;z)) — T+
T\ N vo(F)[N=N N
Nl(am(?;z)ﬁ)
.Z oN' vo(F) [N'=N
F(Td) = (ap(? m)+ = b (TP +
AN vo(F)|N'=N N
N (9]¢ (TsA) 1P|
Z— (12)
= oN' vo(F) [N'=N

where the superscript and+ indicate that the derivatives are
taken from below and above, respectively. Within the context
of eq 12, Kohn-Sham orbitals which are doubly occupied occur
twice in the summation. We recast eq 12 by introducing the
highest occupied KohaSham molecular orbital (HOMO;
on(r)), the lowest unoccupied KohtSham molecular orbital
(LUMO; ¢n+1(T)), and the Kohr-Sham orbital densitieg(T;4)

= |¢i(T;4)12 = (¢i(T;4))* ¢i(T;A)). These substitutions yield

HOMO-1 [9p,(T ;)\~
f(T;2) = puomo(T:4) + £ ( aN' )VO(?) N'=N
R H%Ao (api(_r';l))+ (13)
£ ON' Jum)|N=N

Equation 13 reveals that that the Fukui functions are identical
to the densities of the frontier molecular orbitals when orbital
relaxation effects are neglected. Inserting eq 13, eq 10 becomes

PedT12) = pgdT34) + prumo(Ti4) = Promo(Ti4) +

HOMO-1 (3pi(?;,1) + (api(?;,l))
— +
= oN' [vy(F)|N=N N [vy(F)|N=N
Ipromo(FiA)| "
—_— (14)
8N' VO(f) N'=N

Comparing eq 14 and eq 11, we see that eq 10 is accurate
whenever

HOMO-1 (api(?;z))+ (api(?:z))-
Z - +
= oN' [y |[N=N oN' [y |N=N
IPromo(TiA\ ™
EE— (15)
oN' vo(F)|[N=N

to the excited state density. The excited state density of a systemaccurately approximates the effect of orbital relaxation upon

may be approximated by moving an electron from the HOMO

the density of the excited state.
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Consider that €33 (9pi(F;4)/6N), ) represents how  reflected by the need to invoke the frozen orbital approximation
the core orbital densities change when one removes an electrorfor the cation, anion, and excited state in the proof of eq 17.
from the HOMO orbital (as when forming the cation from the On the other hand, we were able to derive eq 16 from a theory
ground state). Likewise,Z-:OlMo_l(api(F;/l)/aN);’m) represents which is exact for the ground state, cation, and anion and which
how the core orbital densities change when one adds an electrorfpproximately includes orbital relaxation effects in the ap-
to the LUMO orbital (as when forming the anion from the proximation of the first excited state’s density.

ground state). Since the excitation process consists of removing C. Relationships Amonga+, -, Ags, and des Assume that

an electron from the HOMO orbital and then adding it to the the potential energy surfaces for the cation, anion, ground state,
LUMO orbital, the first term in eq 15 approximately models and first excited state are well approximated by quadratic
the relaxation of the core orbitals. We expect the main re- functions. Introducing the generalized force constants

maining error in the equation to be due to the fact that while )
(—329"° (@piT;4)/0N), ) tends to shift orbital density to _[E V=4 — as. es (18)
whereppomo(T;A) is large (since these regions of the molecule K= RYE I Y= TS

y=X

now have a deficit of electron density, this is energetically
favorable), it does not avoid shifting orbital density to regions \ye pave
where pLumo(T;A) is large (Coulombic repulsions with the

LUMO electron render this energetically unfavorable). Likewise,

while (5;5V° X (@pi(F:2)/0N), o)) successfully reduces the elec-

tron density in regions whér@_UMo(?;/l) is large, it does not

1
E.(A)~E. (1) + §k+(}~ — A,

concentrate electron density in regions wherewmo(r;4) is E.A)~E_(1.) +%k,(/1 — )
large. Accordingly, we expect that the first term in eq 15 needs (19)
to be corrected with a term which puts density in regions where N 1 _ 2
prouo(7:4) is large butpuwo(Fid) is small, Eod ) Bgdlgd + el ~ Ao
The final term in eq 15 represents how the HOMO orbital 1
density changes when an electron is added to the LUMO orbital E.(d) ~ E.{Aed + Ekﬁ# — /165)2

to form the anion. When forming the anion, the HOMO orbital
density decreases wheygumo(r;4) is large (reducing the
repulsive interactions between the HOMO and LUMO electrons)
and increases whepgiomo(T;4) is large buto umo(F;4) is small
(these are energetically favorable positions for the HOMO
electron). Therefore, the last term in eq 15 corrects the
deficiencies of the first term in a qualitatively correct way. 0~k (A —A) + K (A—2) —kd —Ag) —
Since eq 10 consists of the frozen orbital approximation (eq S
11) with approximate corrections for effects of the relaxation ked2 =29, if n=1 (21)
of the core orbitals (eq 15), we expect that eq 10 is an accurate 0~ Ky + k. — kye— kyg if N =2 (22)
approximation to the excited state density for most (if not all)
values of . Since eq 10 is accurate, case (iii) holds and Equation 22 allows us to simplify eq 21:
accordingly eq 7 is true.
This argument is somewhat heuristic in nature. An alternative 0~ Kydlgs T Kedtes = KAy — KA (23)
derivation is presented in the appendix, which clarifies the
assertion that eq 15 approximately accounts for the effects of Grochala, Albrecht, and Hoffmann have also derived eqs 22
orbital relaxation. and 23 (egs 10 and 11 of ref 15ection Il asserts a relationship
B. Relationships Among the Potential Energy Surfaces.  between the potential energy surfaces of the cation, anion,
Equation 7 relates the densities of the cation, anion, ground stateground state, and first excited-state implies a relationship
and the first excited state to one another and hence impliesbetween the equilibrium bond lengths of the systems. Indeed,
relationships between the potential energy surfaces of thesemanipulating eqs 22 and 23 gives
systems. Specifically, we have the following corollary to

wherel, A-, Ags, andles are the equilibrium values of for
the cation, anion, ground state, and first excited state, respec-
tively.

Applying corollary 1 to eq 19, we find

proposition 1. 0~ kgs(/lgs"' AesT Ay —A) + (Kes— kgs);Les_

Corollary 1. For a system with a nondegenerate ground state, (k. — kghy — (ko — kydh_
TE) TR TEM TEG AggFhes= Ay —A~

aAn aAn An aAn ~Uon= (16) (kgs_ Kedhes — (kgs_ k), — (kgs_ ko)A (24)

Kgs

for all A.

Proof. Use eq 7 and the HellmariFeynman theorem (eq  Rearranging eq 24,
2) to establish the result fan = 1. The result forn > 1 is
obtained by successive differentiation of the= 1 case. /1934' Aes™ Ay —A_~

We note that corollary 1 follows directly from Grochala, {((kys = koo = (kgs = kp) = (Kys = K))Aed
Albrecht, and Hoffmann’s eq b&: kg -

S
E,(1) + E.(1) — Eg(d) — E{}) ~ 0 (17) {(gs = K )(Ay = Aed — (ks — KA — 159} (25)

Kgs
Since eq 17 implies eq 16 while the converse is not true, eq 16
is accurate under less restrictive conditions than eq 17. This isand substituting eq 22 into the first term of eq 25 yields our
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main result, We rewrite eq 22 as

Agst Aes— Ay — A~ (kgs = ki) ~ (k- — ke (32)

th ~ kgs)(h ) k-: th = kgs)(l_ ~ Aol (26) Both eqgs 31a and 31b imply that

. . . o (Kgs = k) > 0> (ko — keg (33)
Since eq 26 is a key result, a summary of its derivation is
warranted. From corollary 1 (eq 16) and the harmonic potential which contradicts eq 32.
energy surface approximation (eq 19) we derive the approximate  yUp until this point, our theoretical treatment has been accurate
relations (21) and (22). Through manipulation of egs 21 and for any sort of internuclear coordinateincluding coordinates
22 we obtain eq 26. Hence, eq 26 is a good approximation corresponding to internal rotation, angle bending, bond lengths,
whenever egs 21 and 22 are accurate approximations. In turn,and normal modes of the molecule. The following proposition

egs 21 and 22 are accurate whenever eq 19 is accurate and thgnd its associated corollary narrows our treatment to the case
approximations involved in derivation of corollary 1 (notably, \here4 represents a bond length.

eq 11) are valid. Proposition 2.Suppose that the internuclear coordinate
D. Analyzing the Grochala—Albrecht—Hoffmann Rule. corresponds to a bond length. We may assume that as the force
Equation 26 reveals the following. constant for a system increases the bond length decreases.
Theorem 1.Within the present treatment, the Grochala Justification.Inasmuch as stronger bonds have shorter bond
Albrecht-Hoffmann rule holds if and only if lengths and larger force constants, this proposition is intuitively

reasonable. Moreover, this observation agrees with empirical
Ak — kg — Aed} (ke — kyd(A- — Aed} formulas that relate the bond length to the force constant.
- kgS Corollary 2. Letk;; i =1, 2, 3, 4 denote the bond stretching
force constant for four different electronic states of the same
There are two cases where eq 27 is indeed approximatelymolecule. Ifki > ko > ks > ki, theniy < 4, = 43 = 4a. _
zero: Theorem 1 and corollary 2 allow us to prove that the first
and second terms in eq 27 always have the same sign.
1 — A — AN =—f(k — 1 —AN=0 As a representative example, consider the case where
Wk = k(e = ) tlhe =g = 29} 28) ki > kgs > kes = k- (eq 30a). Corollary 2 implies that
A+ = Ags = Aes= A—. Hence, k+ — kg and @ — Aeg are both
(@) {(ks = kgd(hy — A} ={(k. = kgd(A_ — A9} =0 greater than zero, whil( — kg9 and @+ — 4e9 are both less
(29) than zero. Substitution into eq 27 reveals that the first and second
terms areboth negative, and hence case 1 does not occur.
The case wheréys = o is nonphysical and will not be  Performing similar arguments for eqs 36b in theorem 1
considered. Moreover, whenever the internuclear coordinate, reveals the following.
corresponds to a bond length, case 1 never occurs. To show Theorem 2When/ corresponds to a bond length, the first

0

(27)

this, we start with the following. and second terms in eq 27 always have the same sign. That is,
Theorem 2.The only orderings of the generalized force case 1 (eq 28) never occurs.

constants which are consistent with eq 22 are Case 2 (eq 29) only occurs when one of the following is true:
(@) Ky = kye = ko= K (2a)ky, — kys=K_ — k=0
(D) ki = keg= kys= ke (2b)Ay —As=A_ —2,=0
(C) K- = kye = ke = Ky (20)ky —kgs=4_ = 1=0
() ko = kg = kys= ki (30) (2d) A — Aes=k_ — k=0
(@) kgs = Ky = ko = Keg We now explore each of these cases in detail. Case 2a may be
®) kg >k 2k, =k, simplified by using eq 22, which reveals that case 2a occurs if

ST o T T e and only if all of the force constants are equal; that is,

(g) kesZ k+ zk =z kgS (2a)<=> k+ =k = kgS: kES (34)

() ke = ko 2 K, = kg
It is easily seen that when eq 34 holds, eq 23 reduces to the
Proof. We show that all other orderings are inconsistent with  GAH identity.
eq 22. Because eq 22 treats the ground state and the excited In case 2bl+ = A— = Aes We may thus substitutisfor 1+
state on equal footing and the cation and the anion on equalanda- in eq 23, obtaining

footing, we need only consider the possibilities
0~ kgslgs—i_ ;Les(kes_ k+ - k,) (35)
(@) kgs > ko™ Ky > K
o7l ke (31)  Adding and subtractingkfslq)
(b) kys > Ky > kos> ko
0~ kgs(/lgs - les) + le4kgs+ kes_ k+ - k—)

All other forbidden orderings may be treated by modifying the
following proof. and then applying eq 22, we find that
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Ags = s (36) that, sincekes~ k-, thendes~ A-. This then reduces the situation
to a case (case 2c; eq 39) in which the GAH error is zero.
Therefore, case 2b corresponds to the trivial case where the Inspection of the tables of results in ref 1 reveals that the
GAH rule holds because four systems under consideration generally have bond lengths
which are more or less equally spaced within the interval
37) (Min{AgsAesA;A-}, maxgsdesd+;A-}). In keeping with this
observation, we now estimate the error for a more typical case.
In case 2ckgs = k+. Substituting fokk+ in eq 22 reveals that Choosing our force constants to be ordered by eq 30a, we now
kes = k-. Substitution into eq 23 yields distribute the force constants and bond lengths evenly throughout

their range, i.el!
kgs(/'Lgs —Ay) T kdles— A1) =0 (38)

which, when combined with the relatioh. = Aeg reveals that
A+ = Ags Accordingly, case 2c holds if and only if

k+=kgs kfzkes
A=Ay A=A

gs

ﬂ’+ = l— = ies: lgs

k_ + spreadf) = k. + %spreadl() = Ky T %spreadl() =k,

Ay + spreadl) = A4+ %spread() =

(39) Aes T %spread/() =1_ (44)

gs /- es

The analysis for case 2d is similar to that for case 2c. Case In this case, which we term the "typical” case, eq 42 becomes

2d holds if and only if

4 spreadk)
Cypical ™ "5 (45)
k+ = kes k = kgs (40) ypical 9 kgs
Ay =les A= /‘Lgs Accordingly, the typical error in the GAH rule is only half as

bad as the worst case scenario. Since the variation in the force

We expect that the GAH rule will be approximately valid constants among the systems under consideration is frequently
when any of the cases 2&d are approximately valid. Unfor-  of the order of 1 N/m while the magnitude dfgsis frequently
tunately, it is not realistic to assume that any of these four casesabout 16 N/m, we predict that the typical error in the GAH
approximately hold. Case 2b renders the GAH rule trivial. As rule is about 5%, perhaps 2% in the best case scenario (where
was noted in ref 1, “approximate equality of force constants the force constants vary negligibly among these systems) to 25%
for the four species under discussion is evidently not true” in the worst scenario (in which the force constants vary
because the bond orders of these species differ substantiallysubstantially). This prediction is in general agreement with the
Accordingly, we do not expect case 2a to be even approximately computations of Grochala, Albrecht, and Hoffmann.
valid. Inspection of the tabulated data of Grochala, Albrecht, E. Degenerate Ground StatesWe now sketch a generaliza-
and Hoffmann reveals that it is rare for either the cation or the tion of the GAH rule to degenerate ground states. Analogous
anion to have a bond length very close to that of either the to proposition 1, the first step is to link the densities of the
ground or the excited state, hence cases 2c and 2d are similarlycation, anion, and ground state.
unrealistic. Proposition 3.Suppose that M is a molecule which has a

If none of the conditiona—2d hold, why does the GAH  degenerate ground state and suppose, furthermore, that the order
rule work as well as it does? Reference 1 tabulates the error inof this degeneracy is unchanged as we chahg&hen, the
the GAH rule relative to the spread in the equilibrium bond electron densities of the catiop.(f;2)), anion p—(F;4)), and
lengths: ground state dy(T;4)) approximately satisfy

felfe B L @) frot) - ot p 2D ar 0 as)
€= - rA) — pp(T52) — p_(T; r~
Max{ AggheshiiA} — Mi{Agghesd iA_} Pgs P P o
Substituting eq 27, the error expression becomes for all 1. In eq 46 pgT) is the density of any one of the
degenerate ground states.

k — A — AN +{(k — L — A Justification. A degenerate ground state occurs when the
€x the 7l 7 A9k e o3} (42) HOMO orbital(s) is not filled. In the general case, there are

kys SPready) Nvalence€lectrons ing spatial orbitals (8 spin—orbitals) and 0

) ) ) < Nvalence < 2g. In this case, there may be many different ground
To try to explain why this error is small, we compute the state densities with the same energy but different symmetry.
magnitude of eq 42. It turns out that eq 22, theorem 2, and However, if the ground state’s degeneracy is unchanged by a
COI’Ollary 2 S|gn|f|cant|y restrict the fOI’CG constants and bond Change |M, then a” Of the different possible ground StateS,

lengths, leading to the worst case error characterized by a range of different densities, have the same
energy for all 1. Practically, this restriction confines our
__ spreadk) spreadf) _ spreadk) 43 treatment to coordinates (as uniform stretching of all bonds in
€worst ™~ kg ( ) .
Spread{) kgs the molecule) which preserve the symmetry of the molecule.
Stating the condition symbolically, we require that for All
For instance, this case occurs when eq 30a holds in the form _ _
ki = kgs > kes ~ k- and - > Aes = Ags = A+. While this E4) = E,{4) 47)

ordering of bond lengths is in technical agreement with corollary
2, it is not in the spirit of proposition 2, which would indicate  wherei andj index the degenerate ground states. Differentiating
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eq 47 and applying the Hellmann/Feynman theorem (eq 2), we 0~ Kk, + ko — 2Ky (53)
find that, for all4,

0~ 2Kkydhgs — Kid, — KA (54)

E(A) aEig@) _ _
Equations 53 and 54 are analogous to eqgs 22 and 23. Manipula-

2 2 tions similar to eqs 2426 yield
o ek ”) - (K, = k)~ 1)
Pl B r T Kl T4 =l +i —2g4  (55)
Vv, o(_) A) kgs
dr (48)
Equation 55 is the generalization of eq 26 to degenerate ground
- 31,0(? g) N avo(? ,1) states and leads to a GAH rule for degenerate ground states:
S ool T\ dF = [T\
Ay +A_ =24~ 0 (56)

where we have denoted the densities of the degenerate ground
states api(r) and pj(r). This implies that we may choose any
of the degenerate ground state densities in eq 46.

Equation 56 is exact if and only if one of the following
equations holds:

Unlessg = 1, Hund’s maximum multiplicity rule indicates Wi, =i =1
the orbital from which one removes an electron to form the + - 98
cation (1)) and the orbital into which one puts an electron )k, =k_ =k

to form the anion ¢—(r)) will not be identical (although the

two orbitals will have identical energie¥).Moreover, the  Asin the nondegenerate case, neither (1) nor (2) is likely to be

orbitals ¢+() and ¢—(f) generally depend on which of the approximately true for many systems. Analysis similar to that
degenerate ground states is under consideration. Thereforejn section I11.D shows that
within the frozen orbital approximation, the densities of the
cation and anion are given by 1spreadK)
) A ' Edegenerate 2 kg (57)
P (T) = pedT) = (7)1 )
- . (49) The results for degenerate ground states could be obtained
p—(T) = pgdT) + 19_(F)] from the results for the nondegenerate ground states by assuming
that the first excited state and the ground state are degenerate.
wherep {r) is the electron density of the ground state under |ydeed, in many cases, a degenerate ground state is caused by
consideration. - an intersection between the potential energy surfaces of the
Since two different degenerate ground state densities are  ground state and the first excited state. This intersection

generally occurs at a point or along a curve which corresponds

+ry — - i . .
PgT) = Peord F) + 191.(T)] to a molecular structure of high symmetry. It is to the
oy _ v (50) internuclear coordinate associated with this curve that the results
PgdT) = peord T) + 1 (F)I of this section apply.

eq 48 implies that IV. Discussion

Revisiting the assumptions which were made in our derivation
f|¢+(*)l ( ) f ¢ (F)] ( )d_' (51) of the GAH rule reveals under what conditions the GAH rule
will hold. The first assumption is mentioned in the introduction
Adding the two eqs 49 and integrating agains(F;4)/d4) gives ~ Of the Hellmana-Feynman theorem (eq 2); the derivation
considers the way the energy of a molecular system changes
. . (T4 _ when the internuclear coordinate changesbut all other
S () + p(7) o) dr = S (2o dT) = internuclear coordinates remain fixetf.any of the remaining
3K — 7 coordinatesK is the number of nuclear centers in the
|¢+(r)| + |¢ ()] )( vo(T )) di (52) molecule}? differs substantially among the cation, anion, ground
state, and excited state, then holding all but one coordinate fixed
as we change the state of the molecule is no longer a good
Because of eqs 48 and 51, eq 52 is equivalent to the desired, 5oyimation. Even when this approximation fails, the GAH
result (eq 46). rule is useful for computational work since it predicts the re-

Analogous to corollary 1 in s.ection I11.B is the following. sults of performing a geometry optimization with respect to
Corollary 3. For a system with a degenerate ground state e coordinatel while keeping the otherkd — 7 coordinates
described by proposition 3, fixed 13

A)

We now turn to propositions 1 and 3, which provide
nEgs(’l) _ d"E.(4) _ o"E_(4) ~0, n=1 (52) approximate relationships between the densities of the systems
aAn aAn aAn LT under consideration (eqs 7 and 46). Proposition 3 depends on

the validity of the frozen orbital approximation, which likely
for all 4. provides a poor approximation to the density of the cation and

Assuming that the potential energy surfaces for the cation, the anion. Orbital mixing and JahiTeller effects frequently

anion, and ground state are harmonic (eq 19) and performingaccompany the formation of the cation and the anion when the
analysis similar to that of section Ill.C reveals that ground state is degenerate, and hence the validity of the frozen
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orbital assumption, upon which the justification of proposition and perform an analysis using the= 3 case of corollary 1.

3 rests, is questionable. Since Jaffreller distortions do not ~ We omit this analysis, as it is less illuminating that the
occur when there is only one degenerate orbital, we expect ourpreceding, but mention that the = 2 case of corollary 1
treatment to be most accurate when the HOMO orbital is indicates that

nondegenerate but singly occupied so that the ground state is a

doublet but both the anion and the cation are singlet states. k, + k. — k= K=o, (A —4,) +a_(A — 1) —

In contrast to our justification for proposition 3, we use the ags(,t — ,1g5) — 0o dd — Aod (59)
Fukui function to justify proposition 1; this allows the cation,
anion, and ground state to be treated exactly and allows US 10 gqation 59 provides a criterion for how anharmonic the
approximate the effects of orbital relaxation upon the excited ,iantial energy surface may be before egs 22 and the
state density. When one has a nondegenerate (necessarily singlel) ,psequent analysis become inaccurate. Since the potential
ground state, then one can form the singlet excited state (by gnergy surface of any coordinate is harmonic in the immediate
promoting the electron from the HOMO spin-up orbital to the ;icinity of the minimum, eq 59 gives an indication of how large
LUMO spin-up orbital) or the triplet excited state (by promoting spread{) may be before the harmonic approximation becomes

an electron from the HOMO spin-up orbital to the LUMO spin-  nacceptably inaccurat@ée conclude that eqs 22 and 23 are
down orbital). The orbital relaxation effects included in our ,0st accurate when spread(is small.

treatment of the excited state density (eq 15) approximate the st 4 qualitative level, the restriction of the potential energy
orbital relaxatlon.of the core .orbltals and neglect the relaxation {4 the form of eq 19 restricts the type of motion the coordinate
of the LUMO orbital. Accordlngly, our treatment will be most ) may represent to one well-described by eq 19 for a moderate
accurate when the LUMO orbital relaxes little. If the excited range ofL. This reduces the effectiveness of the GAH rule for
state is a triplet, the unpaired electron in the HOMO orbital 45 ginates;, which correspond to angle bendings and torsions.

and the unpaired electron in the LUMO orbital have the same o, the gther handyarmonic potentials are good approximations
spin, and hence the Pauli exclusion principle prevents them fromq . 1o stretching modes.

coming close together, effectively preventing the electron in 1,4 only remaining question is, for what sorts of systems is
the LUMO orbital from “relaxing” into the region of space ine error in the GAH rule (eqs 42, 43, 45, and 57) expected to
vacated by the removed HOMO electron. Thus, the ground po small? Our formulas reveal that when SPrepdE kg
state’s LUMO changes less when we form the triplet excited (equivalently, 0~ spreadk)/kys < 1), the GAH rules will be

state than when we form the singlet excited stateerefore, — pighy accurate. This is expected to be true for multiple bonds
we expect that proposition 1, and hence the GAH rule, will be gjnce removing electrons from the HOMO orbital and/or adding
most accurate for triplet excited states. electrons to the LUMO orbital generally changes the bond order
Since orbital relaxation may be modeled by mixing an orbital by at most 1. Therefore, when the total bond order for the bond
with other orbitals which are near to it in energy, we expect described by the coordinafeis greater than 1, we expect the
that the relaxation of the LUMO orbital will be smaller for  range of force constants to be moderate. This is especially true
systems with large band gaps. Large band gaps are associategshen the HOMO and LUMO orbitals are bothorbitals (of
with high values of the chemical hardné$and henceve expect  either the bonding or the antibonding variety); because most of
that the proposition 1 will be most accurate for systems with the bond strength (and hence most of the magnitudie) i
high chemical hardnessAlternatively, a high value of the  due to the unperturbed “skeleton” of bonds, changing the
aromaticity, a concept which correlates strongly with both the occupation ofz-type orbitals changek by a small amount
band gap and the chemical hardn¥sgypifies cases where  (compared to the change krwhich would result from changing
proposition 1 will be accurate. the occupation of-type orbitals) Accordingly, we expect that
The next approximation is eq 19, which states that, at least the GAH rule will be most accurate for molecules with multiple
in the vicinity of the equilibrium bond lengths for the various bonds. We expect systems where the HOMO and/or LUMO
systems, the potential energy surfaces for the systems undeworbitals ares-type orbitals to be especially well model&dhis
consideration are harmonic. Looking back at section 1lI.C, it conclusion agrees with the considerations of Grochala, Albrecht,
becomes apparent that we could omit the harmonic assumptionand Hoffmanrt.
(and indeed, also the assumptions embodied in propositions 1 The GAH rule provides insight into molecular geometry, but

and 3), by stating that there exist constakis k-, kgs, andkes it also may be used for predictions. For the ground state, cation,
such that egs 22 and 23 hold. From this perspective, the purposeand first triplet state of many molecules, accurate geometries
of section Il is to uncover information about the valueskeof may be determined by Hartre&ock calculation® with small

k-, kys and kes so that the error in the GAH rule can be to moderate-sized basis sets. By contrast, calculating accurate
estimated. We conclude that the constants which satisfy eqs 22geometries for anions is substantially more difficult, often
and 23 will resemble the physical force constants for the systemsrequiring correlated computational methods and large basis sets

whenever each potential energy surfage({), E-(4), Egs4), augmented by diffuse functions. When only a semiguantitative
andEed1)) has a small third derivative with respectt¢hence geometry for the anion is needed, the GAH rule allows one to
a small anharmonicity) when evaluatediat 1, Ags, andAes simply predict the anion’s geometry. Such semiquantitative

Even when the anharmonicity is not small, there exist geometries might be useful as initial guesses for geometry
constantsk;, such that eqs 22 and 23 hold. But now we cannot Optimizations.
identify these constants with the force constants for the system .
and hence cannot estimate the error in terms of these constants/- Additional Results
In this case, we can assume a potential energy surface of the Ppart || asserts that a relationship between the densities of two
form systems provides a link between their potential energy surfaces.
L Substitution of the relationship between the ground-state density
3 a2 1 133 and densities of the cation, anion, and first excited state (egs
() 2k"(/1 M) F 3|OL‘(;L 4) (58) 8—10) into the first (eq 2) and second-order Hellmann/Feynman
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theorems (eq 6) gives these relationships explicitly. Namely, no. of states wo(T )
J1 Y on(Tid) + fpTia——| df ~0 (63
E.'(A) =Eg (1) — [ (T:4) vy (T:4) dT =

for every 1, wherepi(f;A) is the density of some state of the
no. of states,

E."() = Eg'(W) — [ (F:) vy (FiA) dF —

molecule { o} =, are real numbers and
f f(T;4) Vou(_f;l) dr (60) 1 no. of states
E'(A) = Ege() + [ 1 (F: 1) vy (T; ) dF pp(Tid) ~ ] Z 0p;(T34) (64)
E"(A)=E,'(A) + f f7(T;A) vy (T3A) AT + When ps(F;4) happens to be close to the density of some state

. e s of the molecule (as is the case for the special cases of eqs 63
ff (F;4) vo"(7:4) dF (61) and 64 we consider in this paper), generalization of the

, , - S - . derivation in the text gives
Eed(W) ~ Egl(A) + [ (F(T:2) — £ (T:2))vg'(F:2) dF
no. of states

Eeo'(A) ~ Eg'(A) + [(F(T32) — £/ (F:))vg (F;4) dF + Z ok + Ay~ 0 (65)

f(f+(?) — (M) (T;A) dT (62)
Given a specific case, the applicability of eq 65 may be

Equations 60 and 61 are exact since egs 8 and 9 give the exacgscerte}ined through a detailed analysis similar to that contained
density for the cation and the anion, respectively. Moreover, in sections il and IV of the present paper.
since if we know the derivative of the function we can determine
the value of that function to within an additive constant, eqs 60 VI. Summary
and 61 allow one to determine the potential energy surfaces of If the ground state of a system is nondegenerate, the
the cation and the anion to within an additive constant (which Grochala-Albrecht-Hoffmann rule, eq 1, is valid for bond
amounts to a choice of the zero of energy). Unfortunately, even lengths in the cation, anion, ground state, and first triplet excited
this approach is not yet practical; evaluating eqs 60 and 61 state. On the other hand, when the ground state is degenerate,
requires knowledge of the Fukui functions and efficient methods the generalized GAH rule, eq 56, is valid for changes along
for the accurate calculation of the Fukui functions remain any internuclear coordinafethat does not change the order of
elusive. On an optimistic note, computing the Fukui function the degeneracy. We have also explained some of the restrictions
from a Kohn-Sham DFT calculation is a subject of active on the validity of the GAH rule which were noted in the original
research, and progress is being m&de. paper. Specifically, we have observed that the GAH rule is not

We should also comment on the use of density functional €xpected to hold for systems where the cation, anion, ground
theory concepts in this derivation. Inspection of the derivation State, and excited state molecules have markedly different
reveals that one can formally derive the same results usinggeometrles. We have also derived some new conditions which
frontier molecular orbital theory. For instance, one could assume &€ favorable (though perhaps not always absolutely necessary)
that the wave function of the cation was obtained by removing for the accurate fulfillment of the Grochatalbrecht-Hoff-
the HOMO orbital from the ground state wave function, that mMann rule and |ts.general|zat|on to degeneratg ground states.
the wave function of the anion was obtained by adding the (1) The geometric parameter under consideration corresponds

LUMO orbital to the ground state wave function, and that the to a bond stre_tching. Accordingly, the Grochalbrecht-
wave function of the excited state was obtained by adding the Hoffmann rule is gxpected to be most accurate for bond lengths
LUMO orbital to the cation’s wave function. Such a treatment and the symmetric and antisymmetric stretching modes of a
would give the same results as the treatment in the text, but them°|eCU|e'

assumptions are much more severe. By using Fukui functions fir(t2) XTr:te Oglge?r?etrlres of Ti?eti\saltloni’maillnll?n;(grog?dr f’rt]ats’ Iand
to obtain the exact densities of the cation and the anion, we st excited state are quafitatively simiiar except for the vajue

were able to treat these systems exactly. Even our approximation?;n(zgieng]fgl? da\lfvchzor:?;]r;a;e.u-ﬁaiisar?;zg;ﬁﬂ{gﬁgfgﬁm r;t(:gol:g
to the excited state density is much less restrictive than the d

. L . . not change dramatically among the systems under discussion.
molecular orbital theory approximation just mentioned. Requir- . o
. . . . . (3) For systems with a nondegenerate ground state, it is
ing the excited-state density to be given by eq 10 is not a true -
“frozen orbital approximation” since. for instance. the LUMO advantageous for the band gap to be large. Equivalently, systems
: al app L ’ .~ which are highly aromatic or have a high value of the chemical
orbital density can change significantly as long as there is a

- . " . hardness are expected to follow the Grochaibrecht—
compensating change in the densities of the core Orb'taIS'Hoffmann rule more accurately
Moreover, even if eq 10 is not accurate for@alleq 7 can be (4) 0~ spreadk)/kys < 1 (See.eqs 42, 43, 45, and 57.) This
still be accurate. Similar comments apply to our generalization N e :

f the GAM rule to d ‘ d states: eq 46 hold condition is most readily satisfied for multiple bonds and is
otthe rule 1o degenerate ground stales, eq may ho expected to be most accurate when dhleond “skeleton” of a
even when eq 52 is not accurate in a pointwise sense, and e

) . Gnolecule is unchanged upon formation of the cation, anion, and
52 can hold whenever the effects of orbital relaxation on the g iplet excited state. Accordingly, we expect that the error
core orbitals’ density and the appropriate frontier orbital’s density i, the Grochala Albrecht—Hoffmann rule will be smallest when
cancel. the HOMO and/or LUMO orbitals are, 9, ¢, etc. type orbitals.

As has also been implicitly suggested by Grochala, Albrecht,
and Hoffmann, the GAH rule may be generalized to states other Acknowledgment. The authors acknowledge useful cor-
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Appendix

indicates that our approximation to the cation’s wave function
depends on whether we first optimize thespin orbital and
then thef-spin orbital, or vice versa. Sinc®” and ®% are
close to one another anyway, we decide not to chge$e

This appendix sketches an alternative approach to propositionsand %4(x) to minimize the cation’s energy but instead choose
1 and 3. We start with the special case of proposition 3 where 7,(x) andjs(X) so that®

the HOMO orbital energy is nondegenerate but the HOMO
orbital is only singly occupied in the ground state. In this case,

the ground state is a doublet while both the cation and the anion

B0 Xpg—) = PLOG Koo Xy—2) (69)

are singlet states. One may then approximate the wave functionsy,e immediately observes that eq 69 is only satisfied when

for the ground state by annihilating spinrbitals from the anion:

lijgs(xl’XZ"“’XN) = f W (X X+ X 1) P 1) Dy

. ) (66
WXy X, Xy) = f W (XX X )P (K1) Biygn

Xo(X) = do(X)
15(%) = dp(X)

(70)

Since®” and ®¢ are both close to the true wave function of
the cation, and hence to one another, we expect that substitution

where x; denotes both the spatial and the spin coordinates of eq 70 into eq 68 will yield a satisfactory approximation to

associated with théh electron,/dx; denotes integration over

the wave function of the cation. Equation 70 indicates that eq

the spatial coordinates and summation over the spin coordinate69 holds when thet- and5-spin electrons of the ground state

of the ith electron,g.s)(X) is a spin-orbital with a(3) spin,
W_ is theexactwave function for the anion, andfg and ¥

are “decoupled”; that is, the best way to remove caspin
electron from the system is unchanged by the removal of a

are approximate wave functions for the ground state which have -spin electron from the system. Interactions between electrons

spinsa. and 3, respectively. The extended Koopmans'’ theor-
emt®~20 indicates that the wave functior\y'gg obtained by
minimizing the energy oflI’gS with respect to all possible
choices ofg(X) is the exactwave function for the ground
state?0-22 Writing the optimal choice fog,(x) as ¢q(x), one
finds that the density of the ground state is given by

hdT) = p_(T) = o (T)? (67)

A similar result holds folg, and we note thatn this special

of opposite spin are hence effectively ignored.
Within the approximation of egs 68 and 70, the density is
given by

p(T) = p_(T) — 1¢o(T)I* — lop(T)?
(71)
= p_(T) = 2l¢o(T)I?

where the second equality follows because the extended
Koopmans’ theorem method of construction (eq 66) indicates

case, the spatial densities of the two degenerate ground statedhat #«(X) and ¢(x) differ only with respect to spin, and not

are identical

Likewise, the wave function of the cation can be ap-
proximated by annihilating either arspin orbital j.(xn), from
IP;S or a f-spin—orbital, ys(xn), from ‘Ifgs. Using eq 66, we
may then write

W (X X o Xy q) =
S V(%00 X n) BuCnar) 00) Dygra
W (X Xy Xy_p) =

f W (X X0 Xni1) P 1) Lo DXy (68)

We might anticipate that the extended Koopmans’ theorem
would indicate that minimizing the energy ﬁfﬁ with respect

to y4(X) yields the exact wave function for the catiOHﬁ. This

is not the case; minimizing the energy‘éﬁ with respect to
75(X) yields a wave function for the catio:b,/fr, which is “spin-
contaminated”, that is,d)’i is not an eigenfunction of the
squared-magnitude total spin operatt232* SinceS and the
Hamiltonian operatort, commute, it follows thaﬂ)ﬁ, is not
the exact wave function for the cation. In practice, the spin
contamination o@/i is found to be relatively minor and the
energy ofCDﬁ is accuraté? Applying the same procedure to

spatially. Equations 68 and 71 imply thag,dr;1) — p+(F;4)

— p—(F;1) = 0, and hence proposition 3 (eq 46) is satisfied.
Proposition 1 may be justified in a similar way. Given the

o-spin state of a doublet anion, annihilate @spin orbital to

form an approximation to the wave function of the singlet

ground state and A-spin orbital to form an approximation to

the wave function of the triplet excited state:

‘i‘gf(Xsz,---XN) = f W2 (X X1 X ) Po(Kn 1) Py

oo o ~ (72)
Wes (X1 X1 X) = f W2 (Xy X - Xt )Xy ) DXy

Now, choosep.(x) and &sﬁ(x) to minimize the energy of the
ground state and excited state, respectively. Because the anion
is a doublet, the wave functions for the ground state and first
excited state so obtained are not exact. However, Morrison, Day,
and Smith have noted that this construction gives accurate wave
functions?® Approximating the densities of the first triplet
excited state and the ground state through these wave functions,
we find

pI(T) = p*(F) = l¢o(T)I?

(73)
Pe(T) = p(T) — lopg(T)I?
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Like the anion, the cation is a doublet. Hence, the wave function
of the cation may be approached by annihilating eithgspin
orbital, 7s(xy), from li’gf or an o-spin orbital, 7(xn), from
P

W Xy X Xy g) =
f W (X X X 11) B 1) TpO) Dy

WS e X0 Xy 1) =

S WX Xoy11) B 00e0) Tal) Bty (74)

o

If we chooseys(xn) and 7q(xv) so that the energies Oi’+,gs
and ¢ ., are minimized, we expect that the two wave
functions obtained through eq 74 will resemble one another,
but not be identical. If instead of choosifig(xy) andy.(Xy) so

as to minimize the energy, we force

liji,gs(XbXZ""’XN—l) = li’i,es(xl'XZ""’XN—l) (75)
we recover eq 70. Substituting eq 70 in eq 74 reveals that

p(F) = p_(F) = [¢o(T)I* — l(F)I? (76)

Equations 73 and 76 reduce eq 11 to an identity, thereby

establishing the validity of proposition 1. The present justifica-
tion of proposition 1 may be clarified by establishing a link
between it and the justification provided in the body of the paper.
The essential link is the identification @f,(F)|2 as an accurate
approximation to the Fukui function from abovié(r) (eq 9),
and|¢p(r)|? as an accurate approximation to the Fukui function
from below, () (eq 8).

Ayers and Parr

first annihilates an electron from an optinwdspin orbital and
then from an optimap-spin orbital, or vice versa.

Assumptions A and B represent sufficient, but probably not
necessary, conditions for the validity of propositions 1 and 3.
Nonetheless, assumptions A and B represent this work’s most
refined set of sufficient conditions for propositions 1 antf 3.
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