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Grochala, Albrecht, and Hoffmann have recently observed that, for many organic and inorganic molecules,
the bond lengths in the cation (R+), neutral system (Rgs), first triplet excited state (Res), and anion (R-)
approximately satisfyR+ + R- - Rgs - Res ≈ 0. This paper shows how the Fukui function, a concept from
the density functional theory of chemical reactivity, can be used to rationalize the Grochala-Albrecht-
Hoffmann rule. The treatment also suggests which types of chemical systems will be best described by the
Grochala-Albrecht-Hoffmann rule.

I. Introduction

On the basis of results from a series of calculations, Grochala,
Albrecht, and Hoffmann have proposed a new tool for under-
standing the geometry of molecules, observing that

whereR+, R-, Rgs, andResare the lengths of some bond for the
cation, anion, singlet ground state, and first triplet excited state
of a molecule, respectively.1 Summarizing some of Grochala,
Albrecht, and Hoffmann’s results, eq 1 is most accurate when
(1) the ground state of the molecule is nondegenerate and (2)
the geometries of the cation, anion, singlet ground state, and
first triplet excited state are similar.1

The density functional theory of chemical reactivity is useful
for justifying existing chemical principles.2 Density functional
theory’s principal tool for understanding the addition and
subtraction of electrons is the Fukui function,2-5 and in the
present paper we use the Fukui function to derive the Grochala-
Albrecht-Hoffmann (GAH) rule. Accordingly, our arguments
involve formally exact theory rather than simple MO theory.

Our treatment reveals why the rule holds only for nonde-
generate ground states in which the geometries of the cation,
anion, ground state, and first excited state are similar and
suggests other conditions which are necessary for the accurate
fulfillment of the GAH rule. Finally, our derivation reveals how
one may extend the GAH rule to degenerate ground states.

II. Theoretical Background

Within the Born-Oppenheimer approximation, the way the
energy of a molecule changes when the nuclear positions change
along some coordinate,λ (keeping all other internuclear
coordinates fixed), is given by the Hellmann-Feynman theorem:

wherein we have introduced the electron density,F(rb1; λ), and
the external potential,ν0(rb1; λ). In terms of theN-electron
molecular wave function, the electron density is given by

where we have summed over the spin coordinates of all electrons
and integrated over the spatial coordinates of the lastN - 1
electrons. In atomic units, the external potential of a molecule
is defined through

whereZR is the atomic number andRBR(λ) is the position of the
Rth nucleus.

Equation 2 indicates that if the electron density is known for
all λ, then∂E/∂λ is also known for allλ. If we know ∂E/∂λ for
all λ, then we can determine the potential energy surface,E(λ),
to within an additive constant; the constant depends on our
choice of energy zero. In particular, knowledge of the electron
density for every value of the coordinateλ allows us to
determine the equilibrium value ofλ, λ0, since atλ0

Differentiating eq 2 gives an expression for∂2E/∂λ2 in terms of
the electron density, namely,

The foregoing analysis indicates that if we are given the electron
densities of the cation (F+(rb;λ)), anion (F-(rb;λ)), ground state
(Fgs(rb;λ)), and first excited state of a molecule (Fes(rb;λ)) along
some coordinateλ, then we can compute the potential energy
curves,E+(λ), E-(λ), Egs(λ), andEes(λ), for these systems to
within an additive constant. Moreover, given the appropriate
densities, we can use eqs 2, 5, and 6 to find the equilibrium
values of the coordinateλ for the cation (λ+), anion (λ-), ground
state (λgs), and first excited state (λes). Hence, a relationship
between the densities of the cation, anion, ground state, and

ν0( rb1;λ) ≡ ∑
a

-
ZR

| rb1 - RBR(λ)|
(4)

(∂E
∂λ)|λ ) λ0

) 0

(∂2E

∂λ2)|λ ) λ0
> 0
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∂
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∂λ2
)

∂
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∂λ2
+ ∫∂F( rb1;λ)

∂λ (∂ν0( rb1;λ)

∂λ ) dr1 +

∫F( rb1;λ)(∂2ν0( rb1;λ)

∂λ2 ) dr1 (6)

R+ + R- - Rgs - Res≈ 0 (1)

∂E(λ)
∂λ

)
∂Vnn

∂λ
+ ∫ F( rb1;λ)(∂ν0( rb1;λ)

∂λ )drb1 (2)

F( rb1;λ) ≡ N∫∫∫Ψ*(λ) Ψ(λ) ds1 dx2 ... dxN (3)
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first excited state implies a relationship between their potential
energy surfaces, which in turn implies a relationship between
λ+, λ-, λgs, andλes.

This argument suggests a method for deriving the GAH rule.
First derive a relationship between the densities of the cation,
anion, ground state, and first excited state; we do this in section
III.A. Use this result to derive relationships between the systems'
potential energy surfaces (IIIB). Finally, use the relationships
between the potential energy surfaces to derive a relationship
betweenλ+, λ-, λgs, and λes (IIIC) and explore under what
conditions this relationship becomes identical to the GAH rule
(IIID). This method for deriving the GAH rule suggests an
extension of the rule to degenerate ground states (IIIE).

III. Theoretical Development

A. Relationships Between the Densities.Proposition 1.
Suppose that M is a molecule with a nondegenerate (and hence
a singlet) ground state. Then, to a good approximation, the
electron densities of the cation (F+(rb;λ)), anion(F-(rb;λ)), ground
state (Fgs(rb;λ)), and first excited state of a molecule (Fes(rb;λ))
satisfy

for all λ.
Justification.If eq 7 holds for any particular value ofλ, then

one of the following three statements is true:

Case (i) only occurs when the external potential,ν0(λ), does
not depend on the coordinateλ. Accordingly, case (i) never
happens whenλ is an internuclear coordinate of some type (see
eq 4). While case (ii) may, perchance, occur for some
exceptional value ofλ, it certainly cannot cause eq 7 to be valid
over a wide range ofλ. Therefore, if the proposition is true for
all λ, it must be that case (iii) is true for almost allλ (case (iii)
may fail for that exceptional value ofλ where case (ii) holds).

Within density functional theory,2 the ground state electron
density of a system is related to the ground state densities of
its cation and its anion by the Fukui function from below,f-(rb),
and the Fukui function from above,f+(rb), respectively:2,3,5

Substituting eqs 8 and 9 into eq 7 reveals that proposition 1 is
true if and only if

We now argue that eq 10 represents a good approximation
to the excited state density. The excited state density of a system
may be approximated by moving an electron from the HOMO

orbital of the ground state to the LUMO orbital of the ground
state. Neglecting the subsequent orbital relaxation, we have

Orbital relaxation is not always negligible, however, and so we
demonstrate that eq 10 incorporates the effects of orbital
relaxation in an approximate way.

The Fukui functions may be expressed in terms of the Kohn-
Sham7 orbitals,{φi(rb)}:4,8

where the superscript- and+ indicate that the derivatives are
taken from below and above, respectively. Within the context
of eq 12, Kohn-Sham orbitals which are doubly occupied occur
twice in the summation. We recast eq 12 by introducing the
highest occupied Kohn-Sham molecular orbital (HOMO;
φN(rb)), the lowest unoccupied Kohn-Sham molecular orbital
(LUMO; φN+1(rb)), and the Kohn-Sham orbital densities (Fi(rb;λ)
≡ |φi(rb;λ)|2 ) (φi(rb;λ))*φi(rb;λ)). These substitutions yield

Equation 13 reveals that that the Fukui functions are identical
to the densities of the frontier molecular orbitals when orbital
relaxation effects are neglected. Inserting eq 13, eq 10 becomes

Comparing eq 14 and eq 11, we see that eq 10 is accurate
whenever

accurately approximates the effect of orbital relaxation upon
the density of the excited state.

∫[Fgs( rb;λ) + Fes( rb;λ) - F+( rb; λ) -

F-( rb;λ)](∂ν0( rb;λ)

∂λ ) drb ≈ 0 (7)

(i)
∂ν0( rb; λ)

∂λ ) 0
for all rb

(ii) {Fgs( rb;λ) + Fes( rb;λ) - F+( rb;λ) -

F-( rb;λ)} is orthogonal to
∂ν0( rb; λ)

∂λ ) 0

(iii) Fgs( rb;λ) + Fes( rb;λ) - F+( rb;λ) - F-( rb;λ) ) 0 for all rb

F+( rb;λ) ) Fgs( rb;λ) - f-( rb;λ) (8)

F-( rb;λ) ) Fgs( rb;λ) + f+( rb;λ) (9)

Fes( rb;λ) ≈ Fgs( rb;λ) - f-( rb;λ) + f+( rb;λ) (10)

Fes( rb) ≈ Fgs( rb) - FHOMO( rb) + FLUMO( rb) (11)

f-( rb;λ) ≡ (∂F( rb;λ)

∂N′ )
ν0( rb)

- |
N′)N
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∑
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∂N′ )
ν0( rb)

- |
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∂N′ )
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+ |
N′)N

) |φN+1( rb;λ)|2 +

∑
i)1

N (∂|φi( rb;λ)|2

∂N′ )
ν0( rb)

+ |
N′)N

(12)

f-( rb;λ) ) FHOMO( rb;λ) + ∑
i)1

HOMO-1 (∂Fi( rb;λ)

∂N′ )
ν0( rb)

- |
N′)N

f+( rb;λ) ) FLUMO( rb;λ) + ∑
i)1

HOMO (∂Fi( rb;λ)

∂N′ )
ν0( rb)

+ |
N′)N

(13)

Fes( rb;λ) ≈ Fgs( rb;λ) + FLUMO( rb;λ) - FHOMO( rb;λ) +

∑
i)1

HOMO-1{(∂Fi( rb;λ)

∂N′ )
ν0( rb)

+ |
N′)N

- (∂Fi( rb;λ)

∂N′ )
ν0( rb)

- |
N′)N

} +

(∂FHOMO( rb;λ)

∂N′ )
ν0( rb)

+ |
N′)N

(14)

[ ∑
i)1

HOMO-1{(∂Fi( rb;λ)

∂N′ )
ν0( rb)

+ |
N′)N

- (∂Fi( rb;λ)

∂N′ )
ν0( rb)

- |
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}] +

[(∂FHOMO( rb;λ)

∂N′ )
ν0( rb)

+ |
N′)N] (15)
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Consider that (-∑i)1
HOMO-1(∂Fi(rb;λ)/∂N)ν0(rb)

- ) represents how
the core orbital densities change when one removes an electron
from the HOMO orbital (as when forming the cation from the
ground state). Likewise, (∑i)1

HOMO-1(∂Fi(rb;λ)/∂N)ν0(rb)
+ ) represents

how the core orbital densities change when one adds an electron
to the LUMO orbital (as when forming the anion from the
ground state). Since the excitation process consists of removing
an electron from the HOMO orbital and then adding it to the
LUMO orbital, the first term in eq 15 approximately models
the relaxation of the core orbitals. We expect the main re-
maining error in the equation to be due to the fact that while
(-∑i)1

HOMO-1(∂Fi(rb;λ)/∂N)ν0(rb)
- ) tends to shift orbital density to

whereFHOMO(rb;λ) is large (since these regions of the molecule
now have a deficit of electron density, this is energetically
favorable), it does not avoid shifting orbital density to regions
where FLUMO(rb;λ) is large (Coulombic repulsions with the
LUMO electron render this energetically unfavorable). Likewise,
while (∑i)1

HOMO-1(∂Fi(rb;λ)/∂N)ν0(rb)
+ ) successfully reduces the elec-

tron density in regions whereFLUMO(rb;λ) is large, it does not
concentrate electron density in regions whereFHOMO(rb;λ) is
large. Accordingly, we expect that the first term in eq 15 needs
to be corrected with a term which puts density in regions where
FHOMO(rb;λ) is large butFLUMO(rb;λ) is small.

The final term in eq 15 represents how the HOMO orbital
density changes when an electron is added to the LUMO orbital
to form the anion. When forming the anion, the HOMO orbital
density decreases whereFLUMO(rb;λ) is large (reducing the
repulsive interactions between the HOMO and LUMO electrons)
and increases whereFHOMO(rb;λ) is large butFLUMO(rb;λ) is small
(these are energetically favorable positions for the HOMO
electron). Therefore, the last term in eq 15 corrects the
deficiencies of the first term in a qualitatively correct way.

Since eq 10 consists of the frozen orbital approximation (eq
11) with approximate corrections for effects of the relaxation
of the core orbitals (eq 15), we expect that eq 10 is an accurate
approximation to the excited state density for most (if not all)
values of λ. Since eq 10 is accurate, case (iii) holds and
accordingly eq 7 is true.

This argument is somewhat heuristic in nature. An alternative
derivation is presented in the appendix, which clarifies the
assertion that eq 15 approximately accounts for the effects of
orbital relaxation.

B. Relationships Among the Potential Energy Surfaces.
Equation 7 relates the densities of the cation, anion, ground state,
and the first excited state to one another and hence implies
relationships between the potential energy surfaces of these
systems. Specifically, we have the following corollary to
proposition 1.

Corollary 1.For a system with a nondegenerate ground state,

for all λ.
Proof. Use eq 7 and the Hellmann-Feynman theorem (eq

2) to establish the result forn ) 1. The result forn > 1 is
obtained by successive differentiation of then ) 1 case.

We note that corollary 1 follows directly from Grochala,
Albrecht, and Hoffmann’s eq 5:1

Since eq 17 implies eq 16 while the converse is not true, eq 16
is accurate under less restrictive conditions than eq 17. This is

reflected by the need to invoke the frozen orbital approximation
for the cation, anion, and excited state in the proof of eq 17.9

On the other hand, we were able to derive eq 16 from a theory
which is exact for the ground state, cation, and anion and which
approximately includes orbital relaxation effects in the ap-
proximation of the first excited state’s density.

C. Relationships Amongλ+, λ-, λgs, and λes. Assume that
the potential energy surfaces for the cation, anion, ground state,
and first excited state are well approximated by quadratic
functions. Introducing the generalized force constants

we have

whereλ+, λ-, λgs, andλes are the equilibrium values ofλ for
the cation, anion, ground state, and first excited state, respec-
tively.

Applying corollary 1 to eq 19, we find

Equation 22 allows us to simplify eq 21:

Grochala, Albrecht, and Hoffmann have also derived eqs 22
and 23 (eqs 10 and 11 of ref 1).1 Section II asserts a relationship
between the potential energy surfaces of the cation, anion,
ground state, and first excited-state implies a relationship
between the equilibrium bond lengths of the systems. Indeed,
manipulating eqs 22 and 23 gives

Rearranging eq 24,

and substituting eq 22 into the first term of eq 25 yields our

∂
nEgs(λ)

∂λn
+

∂
nEes(λ)

∂λn
-

∂
nE+(λ)

∂λn
-

∂
nE-(λ)

∂λn
≈ 0; n g 1 (16)

E+(λ) + E-(λ) - Egs(λ) - Ees(λ) ≈ 0 (17)

kx ) (∂2Ex

∂λ2 )|
λ)λy*x

; x, y ) +, -, gs, es (18)

E+(λ) ≈ E+(λ+) + 1
2
k+(λ - λ+)2

E-(λ) ≈ E-(λ-) + 1
2
k-(λ - λ-)2

Egs(λ) ≈ Egs(λgs) + 1
2
kgs(λ - λgs)

2

Ees(λ) ≈ Ees(λes) + 1
2
kes(λ - λes)

2

(19)

0 ≈ k+(λ - λ+) + k-(λ - λ-) - kgs(λ - λgs) -
kes(λ - λes), if n ) 1 (21)

0 ≈ k+ + k- - kgs - kes, if n ) 2 (22)

0 ≈ kgsλgs + kesλes- k+λ+ - k-λ- (23)

0 ≈ kgs(λgs + λes- λ+ - λ-) + (kes- kgs)λes-
(k+ - kgs)λ+ - (k- - kgs)λ-

λgs + λes- λ+ - λ- ≈
(kgs - kes)λes- (kgs - k+)λ+ - (kgs - k-)λ-

kgs
(24)

λgs + λes- λ+ - λ- ≈
{((kgs - kes) - (kgs - k+) - (kgs - k-))λes}

kgs
-

{(kgs - k+)(λ+ - λes) - (kgs - k-)(λ- - λes)}
kgs

(25)
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main result,

Since eq 26 is a key result, a summary of its derivation is
warranted. From corollary 1 (eq 16) and the harmonic potential
energy surface approximation (eq 19) we derive the approximate
relations (21) and (22). Through manipulation of eqs 21 and
22 we obtain eq 26. Hence, eq 26 is a good approximation
whenever eqs 21 and 22 are accurate approximations. In turn,
eqs 21 and 22 are accurate whenever eq 19 is accurate and the
approximations involved in derivation of corollary 1 (notably,
eq 11) are valid.

D. Analyzing the Grochala-Albrecht-Hoffmann Rule.
Equation 26 reveals the following.

Theorem 1.Within the present treatment, the Grochala-
Albrecht-Hoffmann rule holds if and only if

There are two cases where eq 27 is indeed approximately
zero:

The case wherekgs ) ∞ is nonphysical and will not be
considered. Moreover, whenever the internuclear coordinate,λ,
corresponds to a bond length, case 1 never occurs. To show
this, we start with the following.

Theorem 2.The only orderings of the generalized force
constants which are consistent with eq 22 are

Proof.We show that all other orderings are inconsistent with
eq 22. Because eq 22 treats the ground state and the excited
state on equal footing and the cation and the anion on equal
footing, we need only consider the possibilities

All other forbidden orderings may be treated by modifying the
following proof.

We rewrite eq 22 as

Both eqs 31a and 31b imply that

which contradicts eq 32.
Up until this point, our theoretical treatment has been accurate

for any sort of internuclear coordinateλ, including coordinates
corresponding to internal rotation, angle bending, bond lengths,
and normal modes of the molecule. The following proposition
and its associated corollary narrows our treatment to the case
whereλ represents a bond length.

Proposition 2.Suppose that the internuclear coordinateλ
corresponds to a bond length. We may assume that as the force
constant for a system increases the bond length decreases.

Justification.Inasmuch as stronger bonds have shorter bond
lengths and larger force constants, this proposition is intuitively
reasonable. Moreover, this observation agrees with empirical
formulas that relate the bond length to the force constant.

Corollary 2. Let ki; i ) 1, 2, 3, 4 denote the bond stretching
force constant for four different electronic states of the same
molecule. Ifk1 g k2 g k3 g k4, thenλ1 e λ2 e λ3 e λ4.

Theorem 1 and corollary 2 allow us to prove that the first
and second terms in eq 27 always have the same sign.
As a representative example, consider the case where
k+ g kgs g kes g k- (eq 30a). Corollary 2 implies that
λ+ e λgs e λese λ-. Hence, (k+ - kgs) and (λ- - λes) are both
greater than zero, while (k- - kgs) and (λ+ - λes) are both less
than zero. Substitution into eq 27 reveals that the first and second
terms areboth negative, and hence case 1 does not occur.
Performing similar arguments for eqs 30b-h in theorem 1
reveals the following.

Theorem 2. Whenλ corresponds to a bond length, the first
and second terms in eq 27 always have the same sign. That is,
case 1 (eq 28) never occurs.

Case 2 (eq 29) only occurs when one of the following is true:

We now explore each of these cases in detail. Case 2a may be
simplified by using eq 22, which reveals that case 2a occurs if
and only if all of the force constants are equal; that is,

It is easily seen that when eq 34 holds, eq 23 reduces to the
GAH identity.

In case 2b,λ+ ) λ- ) λes. We may thus substituteλes for λ+
andλ- in eq 23, obtaining

Adding and subtracting (kgsλgs)

and then applying eq 22, we find that

λgs + λes- λ+ - λ- ≈
{(k+ - kgs)(λ+ - λes)} + {(k- - kgs)(λ- - λes)}

kgs
(26)

0 ≈ {(k+ - kgs)(λ+ - λes)} + {(k- - kgs)(λ- - λes)}
kgs

(27)

(1) {(k+ - kgs)(λ+ - λes)} ) -{(k- - kgs)(λ- - λes)} * 0
(28)

(2) {(k+ - kgs)(λ+ - λes)} ) {(k- - kgs)(λ- - λes)} ) 0
(29)

(a)k+ g kgs g kesg k-

(b) k+ g kesg kgs g k-

(c) k- g kgs g kesg k+

(d) k- g kesg kgs g k+

(e)kgs g k+ g k- g kes

(f) kgs g k- g k+ g kes

(g) kesg k+ g k- g kgs

(h) kesg k- g k+ g kgs

(30)

(a)kgs > kes> k+ > k-

(b) kgs > k+ > kes> k-

(31)

(kgs - k+) ≈ (k- - kes) (32)

(kgs - k+) > 0 > (k- - kes) (33)

(2a)k+ - kgs ) k- - kgs ) 0

(2b) λ+ - λes) λ- - λes) 0

(2c)k+ - kgs ) λ- - λes) 0

(2d) λ+ - λes) k- - kgs ) 0

(2a)S k+ ) k- ) kgs ) kes (34)

0 ≈ kgsλgs + λes(kes- k+ - k-) (35)

0 ≈ kgs(λgs - λes) + λes(kgs + kes- k+ - k-)
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Therefore, case 2b corresponds to the trivial case where the
GAH rule holds because

In case 2c,kgs ) k+. Substituting fork+ in eq 22 reveals that
kes ) k-. Substitution into eq 23 yields

which, when combined with the relationλ- ) λes, reveals that
λ+ ) λgs. Accordingly, case 2c holds if and only if

The analysis for case 2d is similar to that for case 2c. Case
2d holds if and only if

We expect that the GAH rule will be approximately valid
when any of the cases 2a-2d are approximately valid. Unfor-
tunately, it is not realistic to assume that any of these four cases
approximately hold. Case 2b renders the GAH rule trivial. As
was noted in ref 1, “approximate equality of force constants
for the four species under discussion is evidently not true”
because the bond orders of these species differ substantially.
Accordingly, we do not expect case 2a to be even approximately
valid. Inspection of the tabulated data of Grochala, Albrecht,
and Hoffmann reveals that it is rare for either the cation or the
anion to have a bond length very close to that of either the
ground or the excited state, hence cases 2c and 2d are similarly
unrealistic.

If none of the conditions2a-2d hold, why does the GAH
rule work as well as it does? Reference 1 tabulates the error in
the GAH rule relative to the spread in the equilibrium bond
lengths:

Substituting eq 27, the error expression becomes

To try to explain why this error is small, we compute the
magnitude of eq 42. It turns out that eq 22, theorem 2, and
corollary 2 significantly restrict the force constants and bond
lengths, leading to the worst case error

For instance, this case occurs when eq 30a holds in the form
k+ ≈ kgs > kes ≈ k- and λ- > λes ≈ λgs ≈ λ+. While this
ordering of bond lengths is in technical agreement with corollary
2, it is not in the spirit of proposition 2, which would indicate

that, sincekes≈ k-, thenλes≈ λ-. This then reduces the situation
to a case (case 2c; eq 39) in which the GAH error is zero.

Inspection of the tables of results in ref 1 reveals that the
four systems under consideration generally have bond lengths
which are more or less equally spaced within the interval
(min{λgs;λes;λ+;λ-}, max{λgs;λes;λ+;λ-}). In keeping with this
observation, we now estimate the error for a more typical case.
Choosing our force constants to be ordered by eq 30a, we now
distribute the force constants and bond lengths evenly throughout
their range, i.e.,11

In this case, which we term the “typical” case, eq 42 becomes

Accordingly, the typical error in the GAH rule is only half as
bad as the worst case scenario. Since the variation in the force
constants among the systems under consideration is frequently
of the order of 102 N/m while the magnitude ofkgs is frequently
about 103 N/m, we predict that the typical error in the GAH
rule is about 5%, perhaps 2% in the best case scenario (where
the force constants vary negligibly among these systems) to 25%
in the worst scenario (in which the force constants vary
substantially). This prediction is in general agreement with the
computations of Grochala, Albrecht, and Hoffmann.

E. Degenerate Ground States.We now sketch a generaliza-
tion of the GAH rule to degenerate ground states. Analogous
to proposition 1, the first step is to link the densities of the
cation, anion, and ground state.

Proposition 3.Suppose that M is a molecule which has a
degenerate ground state and suppose, furthermore, that the order
of this degeneracy is unchanged as we changeλ. Then, the
electron densities of the cation (G+(rb;λ)), anion (F-(rb;λ)), and
ground state (Ggs(rb;λ)) approximately satisfy

for all λ. In eq 46 Fgs(rb) is the density of any one of the
degenerate ground states.

Justification. A degenerate ground state occurs when the
HOMO orbital(s) is not filled. In the general case, there are
Nvalenceelectrons ing spatial orbitals (2g spin-orbitals) and 0
< Nvalence< 2g. In this case, there may be many different ground
state densities with the same energy but different symmetry.
However, if the ground state’s degeneracy is unchanged by a
change inλ, then all of the different possible ground states,
characterized by a range of different densities, have the same
energy for all λ. Practically, this restriction confines our
treatment to coordinates (as uniform stretching of all bonds in
the molecule) which preserve the symmetry of the molecule.
Stating the condition symbolically, we require that for allλ

wherei andj index the degenerate ground states. Differentiating

λgs ) λes (36)

λ+ ) λ- ) λes) λgs (37)

kgs(λgs - λ+) + kes(λes- λ-) ) 0 (38)

k+ ) kgs k- ) kes

λ+ ) λgs λ- ) λes

(39)

k+ ) kes k- ) kgs

λ+ ) λes λ- ) λgs

(40)

ε ≡ λgs + λes- λ+ - λ-

max{λgs;λes;λ+;λ-} - min{λgs;λes;λ+;λ-}
(41)

ε ≈ {(k+ - kgs)(λ+ - λes)} + {(k- - kgs)(λ- - λes)}
kgs spread(λ)

(42)

εworst ≈
spread(k) spread(λ)

kgsspread(λ)
)

spread(k)
kgs

(43)

k- + spread(k) ) kes+ 2
3
spread(k) ) kgs + 1

3
spread(k) ) k+

λ+ + spread(λ) ) λgs + 2
3
spread(λ) )

λes+ 1
3
spread(λ) ) λ- (44)

εtypical ≈ - 4
9

spread(k)
kgs

(45)

∫[2Fgs( rb;λ) - F+( rb;λ) - F-( rb;λ)](∂ν0( rb;λ)

∂λ ) drb ≈ 0 (46)

Egs
i (λ) ) Egs

j (λ) (47)
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eq 47 and applying the Hellmann/Feynman theorem (eq 2), we
find that, for all λ,

where we have denoted the densities of the degenerate ground
states asFi(rb) andFj(rb). This implies that we may choose any
of the degenerate ground state densities in eq 46.

Unlessg ) 1, Hund’s maximum multiplicity rule indicates
the orbital from which one removes an electron to form the
cation (φ+(rb)) and the orbital into which one puts an electron
to form the anion (φ-(rb)) will not be identical (although the
two orbitals will have identical energies).12 Moreover, the
orbitals φ+(rb) and φ-(rb) generally depend on which of the
degenerate ground states is under consideration. Therefore,
within the frozen orbital approximation, the densities of the
cation and anion are given by

whereFgs
i (rb) is the electron density of the ground state under

consideration.
Since two different degenerate ground state densities are

eq 48 implies that

Adding the two eqs 49 and integrating against (∂ν0(rb;λ)/∂λ) gives

Because of eqs 48 and 51, eq 52 is equivalent to the desired
result (eq 46).

Analogous to corollary 1 in section III.B is the following.
Corollary 3. For a system with a degenerate ground state

described by proposition 3,

for all λ.
Assuming that the potential energy surfaces for the cation,

anion, and ground state are harmonic (eq 19) and performing
analysis similar to that of section III.C reveals that

Equations 53 and 54 are analogous to eqs 22 and 23. Manipula-
tions similar to eqs 24-26 yield

Equation 55 is the generalization of eq 26 to degenerate ground
states and leads to a GAH rule for degenerate ground states:

Equation 56 is exact if and only if one of the following
equations holds:

As in the nondegenerate case, neither (1) nor (2) is likely to be
approximately true for many systems. Analysis similar to that
in section III.D shows that

The results for degenerate ground states could be obtained
from the results for the nondegenerate ground states by assuming
that the first excited state and the ground state are degenerate.
Indeed, in many cases, a degenerate ground state is caused by
an intersection between the potential energy surfaces of the
ground state and the first excited state. This intersection
generally occurs at a point or along a curve which corresponds
to a molecular structure of high symmetry. It is to the
internuclear coordinate associated with this curve that the results
of this section apply.

IV. Discussion

Revisiting the assumptions which were made in our derivation
of the GAH rule reveals under what conditions the GAH rule
will hold. The first assumption is mentioned in the introduction
of the Hellmann-Feynman theorem (eq 2); the derivation
considers the way the energy of a molecular system changes
when the internuclear coordinateλ changesbut all other
internuclear coordinates remain fixed.If any of the remaining
3K - 7 coordinates (K is the number of nuclear centers in the
molecule)13 differs substantially among the cation, anion, ground
state, and excited state, then holding all but one coordinate fixed
as we change the state of the molecule is no longer a good
approximation. Even when this approximation fails, the GAH
rule is useful for computational work since it predicts the re-
sults of performing a geometry optimization with respect to
the coordinateλ while keeping the other 3K - 7 coordinates
fixed.13

We now turn to propositions 1 and 3, which provide
approximate relationships between the densities of the systems
under consideration (eqs 7 and 46). Proposition 3 depends on
the validity of the frozen orbital approximation, which likely
provides a poor approximation to the density of the cation and
the anion. Orbital mixing and Jahn-Teller effects frequently
accompany the formation of the cation and the anion when the
ground state is degenerate, and hence the validity of the frozen

∂Egs
i (λ)

∂λ
)

∂Egs
j (λ)

∂λ

∂Vnn

∂λ
+ ∫Fgs

i ( rb; λ)(∂ν0( rb;λ)

∂λ ) drb )

∂Vnn

∂λ
+ ∫Fgs

j ( rb;λ)(∂ν0( rb;λ)

∂λ ) drb (48)

∫Fgs
i ( rb;λ)(∂ν0( rb;λ)

∂λ ) drb ) ∫Fgs
j ( rb;λ)(∂ν0( rb;λ)

∂λ ) drb

F+
i ( rb) ) Fgs

i ( rb) - |φ+
i ( rb)|2

F-
i ( rb) ) Fgs

i ( rb) + |φ-
i ( rb)|2′

(49)

Fgs
+( rb) ) Fcore( rb) + |φ+

i ( rb)|2

Fgs
-( rb) ) Fcore( rb) + |φ-

i ( rb)|2′
(50)

∫|φ+
i ( rb)|2(∂ν0( rb;λ)

∂λ ) drb ) ∫ |φ-
i ( rb)|2(∂ν0( rb;λ)

∂λ ) drb (51)

∫(F+
i ( rb) + F-

i ( rb))(∂ν0( rb;λ)

∂λ ) drb ) ∫(2Fgs
i ( rb) -

|φ+
i ( rb)|2 + |φ-

i ( rb)|2)(∂ν0( rb;λ)

∂λ ) drb (52)

2
∂

nEgs(λ)

∂λn
-

∂
nE+(λ)

∂λn
-

∂
nE-(λ)

∂λn
≈ 0; n g 1 (52)

0 ≈ k+ + k- - 2kgs (53)

0 ≈ 2kgsλgs - k+λ+ - k-λ- (54)

(k+ - kgs)(λ+ - λ-)

kgs
) λ+ + λ- - 2λgs (55)

λ+ + λ- - 2λgs ≈ 0 (56)

(1) λ+ ) λ- ) λgs

(2) k+ ) k- ) kgs

εdegenerate)
1
2

spread(k)
kgs

(57)
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orbital assumption, upon which the justification of proposition
3 rests, is questionable. Since Jahn-Teller distortions do not
occur when there is only one degenerate orbital, we expect our
treatment to be most accurate when the HOMO orbital is
nondegenerate but singly occupied so that the ground state is a
doublet but both the anion and the cation are singlet states.

In contrast to our justification for proposition 3, we use the
Fukui function to justify proposition 1; this allows the cation,
anion, and ground state to be treated exactly and allows us to
approximate the effects of orbital relaxation upon the excited
state density. When one has a nondegenerate (necessarily singlet)
ground state, then one can form the singlet excited state (by
promoting the electron from the HOMO spin-up orbital to the
LUMO spin-up orbital) or the triplet excited state (by promoting
an electron from the HOMO spin-up orbital to the LUMO spin-
down orbital). The orbital relaxation effects included in our
treatment of the excited state density (eq 15) approximate the
orbital relaxation of the core orbitals and neglect the relaxation
of the LUMO orbital. Accordingly, our treatment will be most
accurate when the LUMO orbital relaxes little. If the excited
state is a triplet, the unpaired electron in the HOMO orbital
and the unpaired electron in the LUMO orbital have the same
spin, and hence the Pauli exclusion principle prevents them from
coming close together, effectively preventing the electron in
the LUMO orbital from “relaxing” into the region of space
vacated by the removed HOMO electron. Thus, the ground
state’s LUMO changes less when we form the triplet excited
state than when we form the singlet excited state.Therefore,
we expect that proposition 1, and hence the GAH rule, will be
most accurate for triplet excited states.

Since orbital relaxation may be modeled by mixing an orbital
with other orbitals which are near to it in energy, we expect
that the relaxation of the LUMO orbital will be smaller for
systems with large band gaps. Large band gaps are associated
with high values of the chemical hardness,14 and hencewe expect
that the proposition 1 will be most accurate for systems with
high chemical hardness.Alternatively, a high value of the
aromaticity, a concept which correlates strongly with both the
band gap and the chemical hardness,15 typifies cases where
proposition 1 will be accurate.

The next approximation is eq 19, which states that, at least
in the vicinity of the equilibrium bond lengths for the various
systems, the potential energy surfaces for the systems under
consideration are harmonic. Looking back at section III.C, it
becomes apparent that we could omit the harmonic assumption
(and indeed, also the assumptions embodied in propositions 1
and 3), by stating that there exist constants,k+, k-, kgs, andkes

such that eqs 22 and 23 hold. From this perspective, the purpose
of section III is to uncover information about the values ofk+,
k-, kgs, and kes so that the error in the GAH rule can be
estimated. We conclude that the constants which satisfy eqs 22
and 23 will resemble the physical force constants for the systems
whenever each potential energy surface (E+(λ), E-(λ), Egs(λ),
andEes(λ)) has a small third derivative with respect toλ (hence
a small anharmonicity) when evaluated atλ+, λ-, λgs, andλes.

Even when the anharmonicity is not small, there exist
constants,ki, such that eqs 22 and 23 hold. But now we cannot
identify these constants with the force constants for the system
and hence cannot estimate the error in terms of these constants.
In this case, we can assume a potential energy surface of the
form

and perform an analysis using then ) 3 case of corollary 1.
We omit this analysis, as it is less illuminating that the
preceding, but mention that then ) 2 case of corollary 1
indicates that

Equation 59 provides a criterion for how anharmonic the
potential energy surface may be before eqs 22 and the
subsequent analysis become inaccurate. Since the potential
energy surface of any coordinate is harmonic in the immediate
vicinity of the minimum, eq 59 gives an indication of how large
spread(λ) may be before the harmonic approximation becomes
unacceptably inaccurate.We conclude that eqs 22 and 23 are
most accurate when spread(λ) is small.

At a qualitative level, the restriction of the potential energy
to the form of eq 19 restricts the type of motion the coordinate
λ may represent to one well-described by eq 19 for a moderate
range ofλ. This reduces the effectiveness of the GAH rule for
coordinates,λ, which correspond to angle bendings and torsions.
On the other hand,harmonic potentials are good approximations
for bond stretching modes.

The only remaining question is, for what sorts of systems is
the error in the GAH rule (eqs 42, 43, 45, and 57) expected to
be small? Our formulas reveal that when spread(k) , kgs

(equivalently, 0≈ spread(k)/kgs , 1), the GAH rules will be
highly accurate. This is expected to be true for multiple bonds
since removing electrons from the HOMO orbital and/or adding
electrons to the LUMO orbital generally changes the bond order
by at most 1. Therefore, when the total bond order for the bond
described by the coordinateλ is greater than 1, we expect the
range of force constants to be moderate. This is especially true
when the HOMO and LUMO orbitals are bothπ orbitals (of
either the bonding or the antibonding variety); because most of
the bond strength (and hence most of the magnitude ofk) is
due to the unperturbed “skeleton” ofσ bonds, changing the
occupation ofπ-type orbitals changesk by a small amount
(compared to the change ink which would result from changing
the occupation ofσ-type orbitals).Accordingly, we expect that
the GAH rule will be most accurate for molecules with multiple
bonds. We expect systems where the HOMO and/or LUMO
orbitals areπ-type orbitals to be especially well modeled.This
conclusion agrees with the considerations of Grochala, Albrecht,
and Hoffmann.1

The GAH rule provides insight into molecular geometry, but
it also may be used for predictions. For the ground state, cation,
and first triplet state of many molecules, accurate geometries
may be determined by Hartree-Fock calculations16 with small
to moderate-sized basis sets. By contrast, calculating accurate
geometries for anions is substantially more difficult, often
requiring correlated computational methods and large basis sets
augmented by diffuse functions. When only a semiquantitative
geometry for the anion is needed, the GAH rule allows one to
simply predict the anion’s geometry. Such semiquantitative
geometries might be useful as initial guesses for geometry
optimizations.

V. Additional Results

Part II asserts that a relationship between the densities of two
systems provides a link between their potential energy surfaces.
Substitution of the relationship between the ground-state density
and densities of the cation, anion, and first excited state (eqs
8-10) into the first (eq 2) and second-order Hellmann/Feynman

k+ + k- - kgs - kes) R+(λ - λ+) + R-(λ - λ-) -
Rgs(λ - λgs) - Res(λ - λes) (59)

Ei(λ) ) 1
2
ki(λ - λi)

2 + 1
3!

Ri(λ - λi)
3 (58)
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theorems (eq 6) gives these relationships explicitly. Namely,

Equations 60 and 61 are exact since eqs 8 and 9 give the exact
density for the cation and the anion, respectively. Moreover,
since if we know the derivative of the function we can determine
the value of that function to within an additive constant, eqs 60
and 61 allow one to determine the potential energy surfaces of
the cation and the anion to within an additive constant (which
amounts to a choice of the zero of energy). Unfortunately, even
this approach is not yet practical; evaluating eqs 60 and 61
requires knowledge of the Fukui functions and efficient methods
for the accurate calculation of the Fukui functions remain
elusive. On an optimistic note, computing the Fukui function
from a Kohn-Sham DFT calculation is a subject of active
research, and progress is being made.17

We should also comment on the use of density functional
theory concepts in this derivation. Inspection of the derivation
reveals that one can formally derive the same results using
frontier molecular orbital theory. For instance, one could assume
that the wave function of the cation was obtained by removing
the HOMO orbital from the ground state wave function, that
the wave function of the anion was obtained by adding the
LUMO orbital to the ground state wave function, and that the
wave function of the excited state was obtained by adding the
LUMO orbital to the cation’s wave function. Such a treatment
would give the same results as the treatment in the text, but the
assumptions are much more severe. By using Fukui functions
to obtain the exact densities of the cation and the anion, we
were able to treat these systems exactly. Even our approximation
to the excited state density is much less restrictive than the
molecular orbital theory approximation just mentioned. Requir-
ing the excited-state density to be given by eq 10 is not a true
“frozen orbital approximation” since, for instance, the LUMO
orbital density can change significantly as long as there is a
compensating change in the densities of the core orbitals.
Moreover, even if eq 10 is not accurate for allrb, eq 7 can be
still be accurate. Similar comments apply to our generalization
of the GAH rule to degenerate ground states; eq 46 may hold
even when eq 52 is not accurate in a pointwise sense, and eq
52 can hold whenever the effects of orbital relaxation on the
core orbitals' density and the appropriate frontier orbital’s density
cancel.

As has also been implicitly suggested by Grochala, Albrecht,
and Hoffmann, the GAH rule may be generalized to states other
than the cation, anion, ground state, and first triplet excited state.
In the general case we have, corresponding to eqs 7 and 46,

for every λ, whereFi(rb;λ) is the density of some state of the
molecule,{Ri}i)1

no. of statesare real numbers and

WhenFâ(rb;λ) happens to be close to the density of some state
of the molecule (as is the case for the special cases of eqs 63
and 64 we consider in this paper), generalization of the
derivation in the text gives

Given a specific case, the applicability of eq 65 may be
ascertained through a detailed analysis similar to that contained
in sections III and IV of the present paper.

VI. Summary

If the ground state of a system is nondegenerate, the
Grochala-Albrecht-Hoffmann rule, eq 1, is valid for bond
lengths in the cation, anion, ground state, and first triplet excited
state. On the other hand, when the ground state is degenerate,
the generalized GAH rule, eq 56, is valid for changes along
any internuclear coordinateλ that does not change the order of
the degeneracy. We have also explained some of the restrictions
on the validity of the GAH rule which were noted in the original
paper. Specifically, we have observed that the GAH rule is not
expected to hold for systems where the cation, anion, ground
state, and excited state molecules have markedly different
geometries. We have also derived some new conditions which
are favorable (though perhaps not always absolutely necessary)
for the accurate fulfillment of the Grochala-Albrecht-Hoff-
mann rule and its generalization to degenerate ground states.

(1) The geometric parameter under consideration corresponds
to a bond stretching. Accordingly, the Grochala-Albrecht-
Hoffmann rule is expected to be most accurate for bond lengths
and the symmetric and antisymmetric stretching modes of a
molecule.

(2) The geometries of the cation, anion, ground state, and
first excited state are qualitatively similar except for the value
of one internal coordinate. The harmonic approximation (eq 19)
remains valid when the equilibrium value of this coordinate does
not change dramatically among the systems under discussion.

(3) For systems with a nondegenerate ground state, it is
advantageous for the band gap to be large. Equivalently, systems
which are highly aromatic or have a high value of the chemical
hardness are expected to follow the Grochala-Albrecht-
Hoffmann rule more accurately.

(4) 0 ≈ spread(k)/kgs , 1. (See eqs 42, 43, 45, and 57.) This
condition is most readily satisfied for multiple bonds and is
expected to be most accurate when theσ-bond “skeleton” of a
molecule is unchanged upon formation of the cation, anion, and
first triplet excited state. Accordingly, we expect that the error
in the Grochala-Albrecht-Hoffmann rule will be smallest when
the HOMO and/or LUMO orbitals areπ, δ, φ, etc. type orbitals.
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E+′(λ) ) Egs′(λ) - ∫ f-( rb;λ) ν0′( rb;λ) drb

E+′′(λ) ) Egs′′(λ) - ∫ f-′( rb;λ) ν0′( rb;λ) drb -

∫ f-( rb;λ) ν0′′( rb;λ) drb (60)

E-′(λ) ) Egs′(λ) + ∫ f+( rb; λ) ν0′( rb; λ) drb

E-′′(λ) ) Egs′′(λ) + ∫ f+′( rb;λ) ν0′( rb;λ) drb +

∫ f+( rb;λ) ν0′′( rb;λ) drb (61)

Ees′(λ) ≈ Egs′(λ) + ∫ (f+( rb;λ) - f-( rb;λ))ν0′( rb;λ) drb

Ees′′(λ) ≈ Egs′′(λ) + ∫(f+′( rb;λ) - f-′( rb;λ))ν0′( rb;λ) drb +

∫(f+( rb) - f-( rb))ν0′′( rb;λ) drb (62)

∫{ ∑
i)1

no. of states

RiFi( rb;λ) + âFâ( rb;λ)}(∂ν0( rb;λ)

∂λ ) drb ≈ 0 (63)

Fâ( rb;λ) ≈ -1

â
∑
i)1

no. of states

RiFi( rb;λ) (64)

∑
i)1

no. of states

Riλi + âλâ ≈ 0 (65)
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Appendix

This appendix sketches an alternative approach to propositions
1 and 3. We start with the special case of proposition 3 where
the HOMO orbital energy is nondegenerate but the HOMO
orbital is only singly occupied in the ground state. In this case,
the ground state is a doublet while both the cation and the anion
are singlet states. One may then approximate the wave functions
for the ground state by annihilating spin-orbitals from the anion:

where xi denotes both the spatial and the spin coordinates
associated with theith electron,∫dxi denotes integration over
the spatial coordinates and summation over the spin coordinate
of the ith electron,φ̃R(â)(x) is a spin-orbital with R(â) spin,
Ψ- is theexactwave function for the anion, andΨ̃gs

R andΨ̃gs
â

are approximate wave functions for the ground state which have
spinsR and â, respectively. The extended Koopmans’ theor-
em18-20 indicates that the wave function,Ψgs

â , obtained by
minimizing the energy ofΨ̃gs

â with respect to all possible
choices ofφ̃R(x) is the exact wave function for the ground
state.20-22 Writing the optimal choice forφ̃R(x) asφR(x), one
finds that the density of the ground state is given by

A similar result holds forΨgs
R , and we note that,in this special

case, the spatial densities of the two degenerate ground states
are identical.

Likewise, the wave function of the cation can be ap-
proximated by annihilating either anR-spin orbital,ø̃R(xN), from
Ψgs

R or a â-spin-orbital, ø̃â(xN), from Ψgs
â . Using eq 66, we

may then write

We might anticipate that the extended Koopmans’ theorem
would indicate that minimizing the energy ofΨ̃+

â with respect
to ø̃â(x) yields the exact wave function for the cation,Ψ+

â . This
is not the case; minimizing the energy ofΨ̃+

â with respect to
ø̃â(x) yields a wave function for the cation,Φ+

â , which is “spin-
contaminated”, that is,Φ+

â is not an eigenfunction of the
squared-magnitude total spin operator,Ŝ2.23,24SinceŜ2 and the
Hamiltonian operator,Ĥ, commute, it follows thatΦ+

â , is not
the exact wave function for the cation. In practice, the spin
contamination ofΦ+

â is found to be relatively minor and the
energy ofΦ+

â is accurate.23 Applying the same procedure to

Ψgs
R , we obtain adifferentapproximation to the wave function

of the cation,Φ+
R . Φ+

R is an equally accurate approximation to
the exact wave function of the cation,23 and hence we suspect
that Φ+

â and Φ+
R are approximately equal. It is somewhat

disconcerting thatΦ+
â is not exactlyequal toΦ+

R , since this
indicates that our approximation to the cation’s wave function
depends on whether we first optimize theR-spin orbital and
then theâ-spin orbital, or vice versa. SinceΦ+

â and Φ+
R are

close to one another anyway, we decide not to chooseø̃R(x)
and ø̃â(x) to minimize the cation’s energy but instead choose
ø̃R(x) and ø̃â(x) so that25

One immediately observes that eq 69 is only satisfied when

SinceΦ+
â andΦ+

R are both close to the true wave function of
the cation, and hence to one another, we expect that substitution
of eq 70 into eq 68 will yield a satisfactory approximation to
the wave function of the cation. Equation 70 indicates that eq
69 holds when theR- andâ-spin electrons of the ground state
are “decoupled”; that is, the best way to remove anR-spin
electron from the system is unchanged by the removal of a
â-spin electron from the system. Interactions between electrons
of opposite spin are hence effectively ignored.

Within the approximation of eqs 68 and 70, the density is
given by

where the second equality follows because the extended
Koopmans’ theorem method of construction (eq 66) indicates
that φR(x) andφâ(x) differ only with respect to spin, and not
spatially. Equations 68 and 71 imply that 2Fgs(rb;λ) - F+(rb;λ)
- F-(rb;λ) ) 0, and hence proposition 3 (eq 46) is satisfied.

Proposition 1 may be justified in a similar way. Given the
R-spin state of a doublet anion, annihilate anR-spin orbital to
form an approximation to the wave function of the singlet
ground state and aâ-spin orbital to form an approximation to
the wave function of the triplet excited state:

Now, chooseφ̃R(x) and φ̃â(x) to minimize the energy of the
ground state and excited state, respectively. Because the anion
is a doublet, the wave functions for the ground state and first
excited state so obtained are not exact. However, Morrison, Day,
and Smith have noted that this construction gives accurate wave
functions.23 Approximating the densities of the first triplet
excited state and the ground state through these wave functions,
we find

Ψ̃gs
â (x1,x2,...,xN) ≡ ∫Ψ-(x1,x2,...,xN+1)φ̃R(xN+1) dxN+1

Ψ̃gs
R (x1,x2,...,xN) ≡ ∫Ψ-(x1,x2,...,xN+1)φ̃â(xN+1) dxN+1

(66)

Fgs
â ( rb) ≡ F-( rb) - |φR( rb)|2 (67)

Ψ̃+
â (x1,x2,...,xN-1) ≡

∫ Ψ-(x1,x2,...,xN+1) φR(xN+1) ø̃â(xN) dxN+1

Ψ̃+
R(x1,x2,...,xN-1) ≡

∫ Ψ-(x1,x2,...,xN+1) φâ(xN+1) ø̃R(xN) dxN+1 (68)

Ψ̃+
â (x1,x2,...,xN-1) ) Ψ̃+

R(x1,x2,...,xN-1) (69)

ø̃R(x) ) φR(x)

ø̃â(x) ) φâ(x)
(70)

F+( rb) ) F-( rb) - |φR( rb)|2 - |φâ( rb)|2

) F-( rb) - 2|φR( rb)|2
(71)

Ψ̃gs
Râ(x1,x2,...,xN) ≡ ∫Ψ-

R(x1,x2,...,xN+1)φ̃R(xN+1) dxN+1

Ψes
RR(x1,x2,...,xN) ≡ ∫Ψ-

R(x1,x2,...,xN+1)φ̃â(xN+1) dxN+1

(72)

Fgs
Râ( rb) ) F-

R( rb) - |φR( rb)|2

Fes
RR( rb) ) F-

R( rb) - |φâ( rb)|2
(73)
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Like the anion, the cation is a doublet. Hence, the wave function
of the cation may be approached by annihilating either aâ-spin
orbital, ø̃â(xN), from Ψ̃gs

Râ or an R-spin orbital, ø̃R(xN), from
Ψ̃es

RR:

If we chooseø̃â(xN) and ø̃R(xN) so that the energies ofΨ̃+,gs
R

and Ψ̃+,es
R are minimized, we expect that the two wave

functions obtained through eq 74 will resemble one another,
but not be identical. If instead of choosingø̃â(xN) andø̃R(xN) so
as to minimize the energy, we force

we recover eq 70. Substituting eq 70 in eq 74 reveals that

Equations 73 and 76 reduce eq 11 to an identity, thereby
establishing the validity of proposition 1. The present justifica-
tion of proposition 1 may be clarified by establishing a link
between it and the justification provided in the body of the paper.
The essential link is the identification of|φR(rb)|2 as an accurate
approximation to the Fukui function from above,f+(rb) (eq 9),
and|φâ(rb)|2 as an accurate approximation to the Fukui function
from below,f-(rb) (eq 8).

This appendix demonstrates that propositions 1 and 3 may
be derived from two assumptions.

(A) The wave functions of the molecular ground state, triplet
excited state (or the other degenerate ground state), and cation
may be obtained by annihilating some combination of spin-
orbitals from the wave function of the anion.

(B) When forming the wave function of the cation, it does
not matter whether one first annihilates an optimalR-spin orbital
from the anion wave function and then aâ-spin orbital, or vice
versa.

The validity of assumption A follows from the exactness of
the extended Koopmans’ theorem (eq 66), when the wave
function is nondegenerate,20-22 and from the accuracy of the
simplified extended Koopmans’ theorem (eqs 68 and 72) when
the wave function is degenerate.23,24The validity of assumption
B is questionable. Perhaps the most compelling argument for
the accuracy of assumption A is intuitivesit seems that the result
of a double-ionization process should be identical whether one

first annihilates an electron from an optimalR-spin orbital and
then from an optimalâ-spin orbital, or vice versa.

Assumptions A and B represent sufficient, but probably not
necessary, conditions for the validity of propositions 1 and 3.
Nonetheless, assumptions A and B represent this work’s most
refined set of sufficient conditions for propositions 1 and 3.26
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Ψ̃+,gs
R (x1,x2,...,xN-1) ≡

∫ Ψ-
R(x1,x2,...,xN+1) φR(xN+1) ø̃â(xN) dxN+1

Ψ̃+,es
R (x1,x2,...,xN-1) ≡

∫ Ψ-
R(x1,x2,...,xN+1) φâ(xN+1) ø̃R(xN) dxN+1 (74)

Ψ̃+,gs
R (x1,x2,...,xN-1) ) Ψ̃+,es

R (x1,x2,...,xN-1) (75)

F+( rb) ≡ F-( rb) - |φR( rb)|2 - |φâ( rb)|2 (76)
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