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Exchange coupling constants for di-µ-oxo-bridged copper(II) dimers with varying Cu-O-Cu bond angles
have been calculated by means of density functional, broken symmetry (BS) techniques. The surprinsingly
large ferromagnetism recently computed by Ruiz et al. [Chem. Commun.1998, 2767] for such model complexes
has been rationalized within the framework of Kahn’s valence bond model of molecular magnetism, although
with a new twist. In effect, by defining and using the quantity∆P2(dxz), the difference of squared copper
triplet and BS spin populations, we show that Kahn’s (supposedly) antiferromagnetic term can turn out
ferromagnetic, as exemplified in a spectacular way for the title compound.

I. Introduction

One way currently explored to obtain novel permanent
magnets is to chemically generate discrete complexes exhibiting
interesting magnetic properties, especially ferromagnetism. This
is the reason a large variety of molecules have been studied in
the last three decades,1 as ferromagnetically compounds belong
to the minority case. In that respect, and by focusing on
transition metal dimers bridged by organic atoms or ligands,
the azido2,3 (when bridging in the “end-on” fashion) or hy-
droxo4,5 anions are known as being among the most efficient
mediators of ferromagnetism.

An alternative way of research relies on theoretical (molecular
magnetism modeling) and computational (ab initio quantum)
chemistry. Quite recently,6 in a systematic search for new
ferromagnetic compounds, Ruiz et al. showed computationally
(based on a broken symmetry (BS) approach7,8) that the di-µ-
oxo-bridged Cu(II) dimer, with a Cu-O-Cu bond angleθ of
101°, exhibits an exceptionally strong ferromagnetic coupling
constant (J ) +989 cm-1), using the Heisenberg Hamiltonian
H ) -JS1‚S2 and the B3-LYP method as implemented in the
GAUSSIAN package9 and by taking the energy of the broken-
symmetry solution as an approximation to that of the singlet
state (as proposed in ref 3). This last di-µ-oxo-bridged Cu(II)
dimer thus becomes a potentially very interesting candidate in
the run for ferromagnetically coupled compounds.

Unfortunately, there are no oxo-bridged Cu(II) dimers
described in the literature. With alternative copper and/or bridge
oxidation states, there are, however, Cu(I)µ-dioxygen-, Cu(II)
µ-peroxo-, or Cu(III) di-µ-oxo-bridged dimers, all three being
electronic isomers studied within the general context of dioxygen
activation by copper sites in biological and catalytic (oxidases)
systems10-12 (and references therein). Interconversion can occur
between these last isoelectronic forms, but they have all been
shown to exhibit strong antiferromagnetism.

There are, however, a few published studies on homometallic
(non-copper) di-µ-oxo dimers, both experimental13 with Fe(III)
and theoretical14 with Mn(III/III), Mn(III/IV), and Mn(IV/IV).
But these are measured or predicted to be antiferromagnetic.

Within the Hay-Thibeault-Hoffmann molecular orbital
(HTH-MO) model,15 the exchange coupling constantJ of an
A-X-B dimer (A and B are the metallic sites, and X the
bridging unit) is decomposed into ferromagnetic (JF) and
antiferromagnetic (JAF) contributions. More precisely,JAF varies
as -∆2/U, where∆ stands as the singly occupied molecular
orbitals (SOMOs) gap in the triplet state andU is the covalent
A-B/ionic A+-B- gap. In this context, the di-oxo-bridged Cu-
(II) dimer was found by Ruiz et al. to present a near degeneracy
of the two SOMOs. This reduces (or even cancels) the
antiferromagnetic contribution to the total exchange coupling
constant. More cannot be said as the study of ferromagnetic
systems (where|JAF| < JF) cannot be undertaken within this
MO formalism. In effect,JF is usually assumed to be constant
for a given family of compounds, and the variation ofJ ) JF +
JAF is thus generally ascribed toJAF through that of∆.

Upon reconducting part of the above-mentioned computations
by Ruiz et al., we came across some slightly differing quantita-
tive results, especially concerning the case of the planar [Cu2-
(µ-O)2(NH3)4]0 cation (cf. Scheme 1). But we obtained strong
ferromagnetism as well. Please notice that, asSAB

2 e 0.1 in
our computations (whereSAB is the overlap beween the localized
magnetic orbitals of monomers A and B), we did not equate
broken symmetry and singlet state energies. This amounts to
obtainingJ values twice as large as those computed by Ruiz et
al.6 (in anticipation to section III.2, we thus computed forθ )
101°, J ) 1604 cm-1, which is 802 cm-1 in Ruiz et al.’s
controversial convention16). Other reasons for the differences
may lie in the fact that we used different exchange-correlation
potentials, as proposed in the ADF quantum chemical code17,18

(cf. section III.1) We also slightly modified the original ADF
triple ú copper basis set, spatially contracting it, in relation with
other studies of ours.19

These last points are not, however, the main subject of this
article. Our own computations gave us rather an opportunity to
elaborate some new theoretical insights and results, reflecting
on some of the sources of ferromagnetism not considered
quantitatively so far. This may serve in turn as a guide to
interpret Ruiz et al.’s very interesting results.6
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II. Valence Bond Description of Molecular Magnetism

II.1. Kahn and Briat’s Model. Kahn and Briat’s valence
bond (KB-VB) approach20,21 of molecular magnetism, the
alternative to that of HTH(-MO), goes back to Heitler-London’s
view of the chemical bond, expressing the exchange term in
term of localized (valence-bond) orbitals. Within the “active
electron” approximation,1 Kahn and Briat defined the (nonor-
thogonal) magnetic orbitalsΦA andΦB as the highest occupied
molecular orbitals (HOMOs) of the localized A-X and X-B
fragments (with the overlapSAB ) 〈ΦA|ΦB〉), therefore called
natural molecular orbitals (NMOs). They then derived the
following simple expressions for the exchange coupling con-
stant:

with

∆ is (as in the MO formalism) the energy gap between the two
A-X-B SOMOs built from the interacting NMOs in the (VB/
MO) triplet state. The ferromagneticj contribution stands as
the self-repulsion of the overlap densityFAB ) ΦAΦB whereas
k is a Coulombic integral involvingFAA ) ΦA

2.
From a computational point of view, and within the valence-

bond, broken-symmetry approach,7,8 the exchange couplingJ
()JF + JAF) can be alternatively written as

whereEHS andEBS refer to the high-spin (HS:S) 1, identified
as the triplet) and broken-symmetry (BS:Ms ) 0) spin states,
respectively. In the following, we will use the quantityJDFT,
defined as-2(EHS - EBS) (i.e., forSAB

2 , 1, as verified below).
We propose ourselves to present some of the main features

of an analytical model attempting to explain the strong ferro-
magnetism obtained by Ruiz et al. for the planar [Cu2(µ-O)2-
(NH3)4]0 model cation within the framework of Kahn and Briat’s
valence bond approach to molecular magnetism. Equation 2
above will be then used as a tool to rationalize our computational
results derived from eq 3, in a manner described in the following
section.

II.2. Valence Bond Model Revisited.A more explicit VB
formulation of JAF, without explicit appearance of∆ (i.e.,
moving a step backward in Kahn and Briat’s derivation) is given
by20

Starting from a simplified description of the NMOs in the case
of a di-µ-oxo-bridged Cu(II) dimer (see Scheme 2, top):

with a, b, c > 0 and dA,B ≡ dxz (cf. Scheme 1), we obtain
(neglecting direct copper d-d overlap):

with sx ) 〈dA|px〉 ) -〈dB|px〉 and sz ) 〈dA|pz〉 ) 〈dB|pz〉 (both
negative). From eq 6, we expect atθC ) 90°, for symmetry
reasons,a ) b, sx ) sz; that is,SAB ) 0.

If needed, the terminal ligation L can be formally introduced
by redefining the metallic dA,B orbitals as monomer orbitals DA,B

≡ dA,B - L. Moreover, as the contribution of the bridge s
orbitals is usually not negligible, as already shown by HTH,15

our simplified eq 5 could be easily generalized into

where P and S now stand for (s, p) bridge orbital combinations
ranged according to symmetry (i.e., as they would appear
separately in the two SOMOs, i.e., P inΦA + ΦB, S in ΦA -
ΦB). Thus, for the di-µ-oxo-bridged Cu(II) dimer, P would be
made out of{pz} (sz becomes sP ≡ 〈D|P〉) and S would be made
out of {s, px} (sx ) sS ≡ 〈D|S〉). In particular,SAB ) a2 - b2

+ 2c(asP - bsS) no longer cancel for exactlyθ ) 90°. All our
subsequent results could be then easily given in terms of these
generalized metal/bridge orbitals, without affecting the form of
the analytical expressions derived below. Notice, finally, that
the set of eq 7 can be directly used to analyze magneto-structural
correlations for any bridged Cu(II) dimers (especially for
hydroxo-bridged complexes without modification, or for azido-
bridged Cu(II) dimers by settingS ≡ 0, as done by us
elsewhere19).

Coming back to eq 5, the insertion of the analytical ex-
pressions of the NMOs intoJAF yields the following VB

SCHEME 1: Schematic Representation of the Studied
Planar Oxo-Bridged Copper Dimera

a The chosen axes are also indicated.

J ) JF + JAF (1)

{JF ) 2(j - kSAB
2)

JAF ≈ -2
∆SAB

1 + SAB
2

(2)

J ) JF + JAF ≈ -2
EHS - EBS

1 + SAB
2

(3)

JAF ) -
4SAB

1 - SAB
4∫FAB(r1) - SABFAA(r1)

rB1
dV1 (4)

SCHEME 2: Schematic Representation of (Top) the
Two Localized Natural Magnetic Orbitals (NMOs) ΦA
and ΦB, (Middle) the Two Singly Occupied Molecular
Orbitals (SOMOs) Ψ+ and Ψ- in the Triplet State, and
(Bottom) the Two Partially Delocalized Orthogonal
Magnetic Orbitals (OMOs) ΦA′ and ΦB′

{ΦA ) apz + bpx + cdA

ΦB ) apz - bpx + cdB
(5)

{〈ΦA|ΦB〉 ) SAB ≈ (a2 - b2) + 2c(asz - bsx)

〈ΦA|ΦA〉 ) 1 ≈ (a2 + b2 + c2) + 2c(asz + bsx)
(6)

{ΦA ) aP + bS+ cDA

ΦB ) aP - bS+ cDB
(7)
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expression (SAB
4 , 1):

whereO(sx,z) stands for all contributing terms involving (px,zdxz)
products, whose integrals are of the order of sx,z. By restricting
thereforeJAF to the p2-bridge22 and d2-metal orbitals, the main
contributors toJAF, one obtains

where

and

One first notices that the two px and pz orbitals formally
contribute separately toJbdg (although both contribute toSAB,
of course). If we writeJbdg ) Jbdg

Z + Jbdg
X , with Jbdg

Z ) -4a2SAB-
(1 - SAB)IPz andJbdg

X ) +4b2SAB(1 + SAB)IPx, one can see that
both contributions toJbdg are formally identical, although being
of opposite sign, withJbdg

Z (θC) ) Jbdg
X (θC) ) 0. Both ferromag-

netic and antiferromagnetic contributions are therefore of the
same magnitude, and the fact that one will dominate over the
other one is a matter of subtle considerations, not easily grasped.
In effect, and for symmetry reasons,IPz(θC ( δθ) ) IPx(θC -
δθ). Hence forθ < θC, a2 > b2, IPz(θC - δθ) < IPx(θC - δθ),
andSAB > 0; that is, there are partial compensations within the
productsa2(1 - SAB) andb2(1 + SAB). For θ > θC, a2 < b2,
IPz(θC + δθ) > IPx(θC + δθ), andSAB < 0.

As far as the order of magnitude is concerned, equating
roughly IPx ≈ IPz ≈ 〈IP〉 (averaging overθ) andSAB ≈ a2 - b2,
one derives a very approximate expression forJbdg (intended
for qualitative purposes only):

that is,Jbdg roughly varies quadratically withSAB (as expected
from both HTH and KB since∆ ∼ SAB). There is, thus, inJbdg,
a partial compensation of the twoJbdg

Z and Jbdg
X and contribu-

tions linear inSAB, andJmet, originating from metal d orbitals,
is not negligible in comparison, as

This second contribution is found to be always ferromagnetic
for the di-µ-oxo-bridged copper(II) dimer, being negligibly small
aroundθC but significant (throughSAB

2) asθ departs from it.
Finally, equatingJAF ≈ Jbdg + Jmet with -2∆SAB (SAB

2 , 1)
would yield (with ∆ ) ∆bdg + ∆met):

that is, qualitatively (at the same level of eq 12)∆ ≈ 2c2SAB-
(〈IP〉 - 〈ID〉). Thus,∆ is linear inSAB as expected.

II.3. Definition of the Quantity ∆P2(dxz). We now aim at
quantifying the VB exchange coupling constant through the use
of HS and BS spin populations. This idea relies on the more
general goal of being able to relate directly the magnetic
properties of a given (triplet) dimer to (for example) its polarized
neutron diffraction map measuring the spatial spin density
distribution. Spin populations seem to be good intermediates
for such a goal. As a clue to the path we followed (the actual
scheme has been detailed elsewhere19), we very briefly mention
two different theoretical results:

i. The first ingredient we use has been obtained by Noodleman
within his BS-VB approach.7 He implicitly showed thatJAF ≈
-USAB

2 (whereU is, again, the covalent A-B/ionic A+-B-

gap, of the order of 5 eV) for weak overlapSAB
2 , 1. This

expression has been computationally verified by Hart et al.23

Notice already that, as a consequence of both eqs 12 and 13,
eq 9 becomesJAF ≈ -4c2(〈IP〉 - 〈ID〉)SAB

2, reminiscent of
Noodleman’s result (more on this below).

ii. The second ingredient has been derived by Caballol et al.
for metal-only magnetic orbitals, linking qualitativelySAB to
copper HS and BS spin populations16 (their eq 14, i.e.,SAB

2 ≈
1 - PBS

2 wherePHS
2 ) 1). More generally, it was natural to

consider (even when taking into account the bridge) a correlation
betweenJAF and SAB

2 ≈ PHS
2 - PBS

2 (cf. eq 17 of ref 16).
Notice here that, during the peer reviewing of this paper, such
a spin population-based estimation ofSAB

2 based on bothPHS

and PBS has been independently published by Ruiz et al.,24

revisiting Caballol et al.’s previous work.

As a consequence of both ingredients above, we therefore
propose to correlateJAF with the quantity∆P2(dxz) ≡ PHS

2(dxz)
- PBS

2(dxz), that is, JAF ≈ -U∆P2(dxz). Such a correlation
between DFT-computed quantities can be also arrived at by the
following analytical reasoning, although with a twist, as we will
show thatJbdg only (and notJAF) is effectively proportionnal to
∆P2(dxz) when bridge orbitals are explicitly taken into account.

Let us first construct the symmetrical and antisymmetrical
SOMOs of the high-spin (HS), triplet state:Ψ( ) [2(1 (
SAB)]-1/2(ΦA ( ΦB) (see Scheme 2, middle). These orbitals are
then recombined in order to obtain partially delocalized, but
mutually orthogonal, monomer orbitals suited for an analysis
within the broken symmetry (BS) method as proposed by
Noodleman:7 Φ′A,B ) 2-1/2(Ψ+ ( Ψ-) (see Scheme 2, bottom).
We then calculate Mulliken spin populations for the copper ions
in the HS and BS states,PHS(dxz) andPBS(dxz). A guideline of
these analytical MO manipulations is proposed in the Appendix
(the actual calculation is rather tedious). We then get the
following quantity:

asSAB
2, sx

2, sz
2 , 1. The similarity between the expressions of

Jbdg (eq 10) and∆P2(dxz) (eq 15) allows us to expect them to
be proportional, through

JAF ≈ -4SAB{a2(1 - SAB)∫pz
2(r1)

rB1
dV1 - b2(1 +

SAB)∫px
2(r1)

rB1
dV1 - c2SAB∫dA

2(r1)

rB1
dV1} + O(sx,z) (8)

JAF ≈ Jbdg + Jmet (9)

{Jbdg ≡ -4SAB{a2(1 - SAB)IPz
- b2(1 + SAB)IPx

}

Jmet ≡ -4SAB{-c2SABIDxz
}

(10)

{IPx,z
) ∫px,z

2

rB1
dV1

IDxz
) ∫dA,xz

2

rB1
dV1

(11)

Jbdg ≈ -4c2SAB
2〈IP〉 (12)

Jmet ≈ +4c2SAB
2〈ID〉 (13)

{∆bdg ≈ +2{a2(1 - SAB)IPz
- b2(1 + SAB)IPx

}

∆met ≈ -2c2SABIDxz

(14)

∆P2(dxz) ≡ PHS
2(dxz) - PBS

2(dzz)

)
c2SAB

(1 - SAB
2)

{a2(1 - SAB)(1 - 2sz
2) -

b2(1 + SAB)(1 - 2sx
2)}

≈ c2SAB{a2(1 - SAB) - b2(1 + SAB)} (15)
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Here is the twist alluded to above: the quantity∆P2(dxz)/c2 (and
not ∆P2(dxz) in this particular case) provides us with a mean of
quantifyingJbdg (and notJAF as first expected) within the KB-
VB approach. The appearance of the factorc2 in Jbdg results
from the fact of havingtwo orthogonal p orbitals mediating the
exchange phenomenon. Only in the conditions in which
Noodleman’s VB-BS formalism strictly applies, that isa, b ,
1 (i.e., c2 ≈ 1), would ∆P2(dxz) equateSAB

2. Then, and only
then,JAF ≈ Jbdg + Jmet≈ -4(〈IP〉 - 〈ID〉)SAB

2. This last equation
would be the transcription, within our approach, of Noodleman’s
result,7 with, formally, U ≡ 4(〈IP〉 - 〈ID〉). It is therefore
important to stress that Noodleman obtained his expression for
JAF at the (metal only) superexchange level (see ref 25 for the
inclusion of metal-bridge contributions), although it should still
hold as long as the weight of the bridging orbitals in the
magnetic orbitals is small (i.e., fulfilling the “active electron”
approximation1).

III. Density Functional Study

III.1. Quantum Chemistry Codes. Our calculations make
use of the Amsterdam LCAO density-functional program (ADF
2.3) developed by Baerends and co-workers.17,18,26-29 We used
the exchange-correlation “VBP” potential (Vosko, Wilk, and
Nusair’s exchange and correlation energy30,31 completed by
nonlocal gradient corrections to the exchange by Becke32 as
well as to the correlation by Perdew33). We used, moreover,
triple-ú (plus polarization) basis sets for all atoms. As already
hinted at above, we slightly modified the original ADF triple-ú
copper basis set, spatially contracting it, as fully discussed and
justified elsewhere.19

III.2. Results. We considered the case of the planar [CuII
2-

(µ-O2-)2(NH3)4]0 cation, as done by Ruiz et al.6 (cf. Scheme
1). Some calculated quantities relevant for our discussion are
reported in Table 1. The overlapSAB (as it appears in Table 1)
has been computed froma, b, c, sx and sz values as they appear
in the BS state: the singly occupied MO for each spin represents
well the NMO (coefficients reported in Table S-1, Supporting
Information).

We show in Figure 1 (filled circles,b) the plot ofJDFT as a
function of θ comprised between 70° and 110° (including the
two angles 96° and 101° used in ref 6).JDFT is mostly
ferromagnetic, moreover increasing in magnitude over most of
the angle range. This odd result, whose discussion is shifted to
section IV, is in contrast, as to the sign of the slope ofJDFT(θ),
but not as to the sign ofJDFT itself, with Figure 1 of Ruiz et al.6

They specifically considered in their Figure 1 an octahedral
ligand coordination on the copper sites, against a planar one in
our case. We find, however, the same large ferromagnetism.
We notice also in our Figure 1 thatJDFT presents two inflections,
one aroundθ ≈ 75°, and a second one near 105° (more on this
below).

Next, it can be easily shown thatJDFT(θ) here obtained is
not compatible with a constantJF term and a varyingJAF term
in the MO sense. In effect, the two SOMOs become degenerate
for θC ≈ 96° (not 90°, because of the actual involvement of s
bridge orbitals, as discussed by HTH15). For smaller and larger
angles,∆ keeps increasing in magnitude asθ departs fromθC

(∆ changes its sign atθC, as already noticed by Ruiz et al.6).
But, for larger angles, the total exchange coupling constantJDFT

is still increasingly ferromagnetic, and one cannot argue there

that the antiferromagnetic contribution is increasing proportion-
ally to -∆2/U.

The same kind of remark could be addressed to the VB model,
as developed initially by Kahn and Briat.20,21 Assuming again
a constantJF, it remains to quantify the differential antiferro-
magnetic contribution as-2∆SAB (cf. eq 2). If this model
explains well our results forθ < θC (see the dashed line on
Figure 1), it does not forθ > θC (∆ andSAB being of the same
sign: cf. Table 1 and Figure 2, where one verifies the linear
relationship between both quantities). We explicitly verified that
∆ andSAB are most often of the same sign (except just around
θC as ∆ ≈ 0 for θ ≈ 96° whereasSAB ≈ 0 for θ ≈ 90°; cf.
Figure 2). Incidentally, that∆ andSAB do not necessarily cancel
for exactly the same set of structural parameters has already

Jbdg ≈ -
4〈IP〉

c2
∆P2(dxz) (16)

Figure 1. Plot of JDFT (in cm-1) as a function of the Cu-O-Cu bond
angleθ. The thin continuous line stands forJbdg ≈ -k∆P2(dxz)/c2 (with
k ≈ 16 000 cm-1; see main text). The dashed line stands for-2∆SAB

(see main text).

Figure 2. Plot of∆ (as calculated by DFT) as a function ofSAB (given
in Table 1).

TABLE 1: JDFT (in cm-1), SOMO Gap ∆ (in eV), Estimated
SAB, PHS/BS(dxz), and ∆PDFT

2(dxz) as a Function of the
Cu-O-Cu Bond Angle θ

θ, deg JDFT (cm-1) ∆ (eV) SAB PHS(dxz) PBS(dxz) ∆PDFT
2(dxz)

70 -934 +0.395 +0.209 0.4690 0.4279 +0.037
75 -729 +0.379 +0.180 0.4757 0.4396 +0.033
80 -248 +0.318 +0.129 0.4759 0.4535 +0.021
85 +300 +0.230 +0.063 0.4701 0.4627 +0.007
90 +776 +0.130 -0.014 0.4582 0.4630 -0.004
96 +1246 +0.002 -0.117 0.4347 0.4487 -0.012

101 +1604 -0.113 -0.205 0.4075 0.4247 -0.014
105 +1964 -0.193 -0.268 0.3796 0.3975 -0.014
110 +2598 -0.267 -0.320 0.3392 0.3565 -0.012
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been noticed by others.34 Interestingly, therefore, forθ in the
range 90-96°, this provides for a small ferromagnetic contribu-
tion as-2∆SAB (supposedly antiferromagnetic) becomes actu-
ally ferromagnetic.

Either way, we see that there must be some variable (and
important) ferromagnetic contribution toJDFT for θ g θC as
the conventional HTH-MO or KB-VB molecular magnetism
models cannot rationalize our computational results.

Turning now to our alternative formulation (cf. eq 16) of
Kahn and Briat’s VB approach,19 there are two ways to proceed
further, depending on how one computes∆P2(dxz)’s.

On one hand, one can compute∆P2(dxz) analytically (cf. eq
15) from thea, b, c, sx and sy parameters listed in Table S-1
(results given under the heading∆PANA

2(dxz) in Table S-1). It
can be easily seen thatJbdg ≈ -4〈IP〉∆PANA

2(dxz)/c2 (or, for that
matter,Jbdg + Jmet) will assume a variation similar to that of
-∆2/U, -2∆SAB or -USAB

2 (see open circles (O) in Figure 3).
Notice in particular that∆PANA

2(dxz) g 0, canceling only around
θC. This serves only to illustrate the consistency of our spin
population-based approach as we started our derivation from
JAF ≈ -2∆SAB. This shows also that∆PANA

2(dxz) cannot serve
to rationalizeJDFT(θ) as computed by us.

On the other hand, the DFT-computed dxz HS and BS spin
populations yield an alternative estimation of∆P2(dxz), now
called∆PDFT

2(dxz), plotted as filled circles (b) in Figure 3. As
can be seen there,|∆PDFT

2(dxz)| > |∆PANA
2(dxz)| with ∆PDFT

2-
(dxz) canceling around 90°. Most importantly, however,∆PDFT

2-
(dxz) becomesnegatiVe for θ g θC (i.e.,PHS(dxz) < PBS(dxz): cf.
Table 1). A tentative reason will be given below in section IV.
Consequently,Jbdg ≈ -4〈IP〉∆PDFT

2(dxz)/c2, and thereforeJAF

≈ Jbdg + Jmet actually turn out ferromagnetic!
We thus plottedJDFT as a function of∆PDFT

2(dxz)/c2 (filled
circles (b) in Figure 4). Forθ e θC, the plot is about linear,
with a slope of∼10 600 cm-1 (2 eV). A roughly constantJF

value will not affect much the estimation of the slope. We also
plotted in Figure 4 (open circle,O) JDFT as a function of∆2,
only to verify that both quantities are indeed linearly related
for θ e θC. We then extrapolated this linear behavior observed
for small angles to large angles, reporting a plot ofJbdg(cm-1)
≈ -16 000.∆PDFT

2(dxz)/c2 (thin continuous line) in Figure 1.
The remaining difference betweenJDFT and Jbdg could be
explained, forθ e θC, by a roughly constant “true” ferromag-
netic term (JF ∼ 700 cm-1). But the key point to understand
the difference betweenJDFT andJF + Jbdg for large angles now
lies in the additional ferromagnetic termJmet mentionned in
section II.1. The quantity 4c2SAB

2, proportional to Jmet, is
reported in Figure 5. As one can see there,Jmet(θC + δθ) g

2Jmet(θC - δθ) (whereδθ g 0): this additional ferromagnetic
effect is therefore enhenced forθ g θC.

To obtain simultaneously reliable estimations of both〈IP〉 and
〈ID〉, we tentatively fittedJDFT(θ) (in the least-squares sense)
with the functionJOPT defined in eq 17, whereJF, 〈IP〉, and〈ID〉

are treated as parameters (averaged overθ) to be optimized,
although neither of the three is strictly constant. We found for
the wholeθ rangeJF ≈ 500 cm-1, 〈IP〉 ≈ 5200 cm-1, and〈ID〉
≈ 8100 cm-1 (JDFT is plotted againstJOPT in Figure S-1,
Supporting Information). Limiting the same fit toθ e 90° yields
ratherJF ≈ 600 cm-1, 〈IP〉 ≈ 4600 cm-1, and〈ID〉 ≈ 2400 cm-1.
This would set up an upper limit toJ ) JF + JAF of 500-600
cm-1, if JAF would remain negative according to classical
molecular magnetism models. No value ofU can be estimated
from these parameters (hereU ≡ 4(〈IP〉 - 〈ID〉) < 0 when the
wholeθ range is used!). Let us restate here that we do not satisfy
Noodleman’s approximations (here translated intoc2 ≈ 1) to
obtain reliable U values (cf. end of section II.3). Stated
otherwise, it is not possible to fit our computedJDFT(θ) values
with a function of the formJF - USAB

2 for the wholeθ range
(although, forθ e θC, JAF ≈ -USAB

2 would yield U between
4 and 5 eV, in relative good agreement with 6.5 eV obtained
from photoelectron spectroscopy for copper chlorides35 or 5.9
eV, Anderson’s estimate36).

Figure 3. Plot of ∆PDFT
2(dxz) (filled circles,b) and∆PANA

2(dxz) (open
circles,O) as a function of the Cu-O-Cu bond angleθ. Figure 4. Plots ofJDFT as a function of 10∆PDFT

2(dxz) (filled circles,
b) or ∆2 (open circles,O).

Figure 5. Plot ofJmet (through that of the quantity 4c2SAB
2) as a function

of the Cu-O-Cu bond angleθ.

JOPT ≈ JF - 4〈IP〉(∆PDFT
2(dxz)

c2 ) + 4〈ID〉c2SAB
2 (17)
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IV. Discussion and Conclusion

Forθ e θC, our DFT results on the [Cu2(µ-O)2(NH3)4]0 cation
can be rationalized by the classical molecular magnetism models
currently available. This is not the case forθ g θC: this system
seems to be exceptional because of its large remanent and in-
creasing ferromagnetism beyondθC. But, as noted by a referee,
this result is in contradiction with the classical magneto-struc-
tural correlation reported early by Crawford et al. for the ana-
logous (cf. section II.2) hydroxo-bridged Cu(II) complexes4

exhibiting an increase of the antiferromagnetic contribution
beyondθC.

On one hand, this surprising behavior can still be understood
on the basis of our modified VB approach, using, however,
∆PDFT

2(dxz) rather than∆PANA
2(dxz) values. This amounts to

saying that the supposedly VB antiferromagnetic termJAF ≈
Jbdg + Jmet then turns out to be ferromagnetic, mainly because
of negatiVe ∆PDFT

2(dxz)’s for large angles. This therefore
manifests a certain level of consistency between DFT-computed
JDFT and∆PDFT

2(dxz) quantities.
On the other hand, by identifying the VB NMOs as the singly

occupiedR andâ broken symmetry MOs, we obtained a set of
parameters yieldingpositiVe ∆PANA

2(dxz) values (cf. Figure 3
and Table S-1). These last values behave for the whole angle
range as expected on the basis of classical HTH-MO, KB-VB,
or BS-VB models but cannot explain our computational results
for large angles.

Where is the trick ?
To help solve this puzzle, we calculatedPHS and PBS

(analytical expressions given in eq A-3 of the Appendix) using
the BSa, b, c, sx and sz, andc parameters listed in Table S-1
and compare them with DFT-based values (given in Table 1).
If DFT PHS values are rather well predicted (except aroundθ
≈ 70°; cf. Figure 6a), such is not the case for thePBS quantities
(cf. Figure 6b).

As one performs a Mulliken spin population analysis on the
DFT-computed triplet state, the two SOMOs (Ψ+ andΨ-) turn
out to be the only source ofPHS (we mean that there is no net
spin population arising from the doubly occupied spin-orbitals).
In other words, the “active electron” approximation1 is there
valid. In the BS state, however,∼30% of the spin population
actually originates from the doubly occupied (polarized) spin-
orbitals, below the two BS-NMOs, over the wholeθ range.
Therefore, the culprit at the heart of the puzzle mentionned
above seems to be the DFT-computed BS copper spin popula-
tionsPBS (and therefore the BS spin state itself). The behavior
of ∆PDFT

2(dxz) and∆PANA
2(dxz) for θ g θC are thus mutually

inconsistent, being both of opposite signs. The remarkable point
is still that the computedJDFT values behave consistently with
∆PDFT

2(dxz) (as a consequence of eq 16), although the predicted
strong ferromagnetism is most probably artifactual.

Furthermore, both oxygen atoms start to interact through the
px orbital used in the NMOs (cf. eq 5). This (antibonding) px ≡
px

+ orbitals actually stands as a normalized bridge orbital, (i.e.,
px

( ) (2 + 2σ)-1/2(px
t(px

b), where “t” and “b” refer to the two
oxygen atoms, andσ ) 〈px

t|px
b〉 < 0). Forθ e θC, the bonding-

antibonding px+/px
- gap is about constant and small (≈0.5 eV)

so that the electronegative bridge orbital lies below that of the
metal. Asθ increases aboveθC, this gap increases up to≈2.5
eV for θ ) 110°, the px orbital raising higher than the Cu dxz

orbitals. The corresponding SOMOΨ- in the triplet state thus
becomes mainly oxygen in character; that is, one goes formally
from the CuII2(O2-)2 configuration (forθ < θC) to the CuI2(O-)2

configuration (forθ > θC), resulting in both the lowering of
PHS(dxz) (Cu(II) f Cu(I); cf. Figure 6a) and the parallel increase

of the O spin population (O2- f O-; not shown) in the triplet
(HS) state. In the BS state, however, the magnetic orbitals turn
out to be more localized on each left anf right fragments and
∆PDFT

2(dxz) actually becomes negative as a consequence.
Of course, this change from CuII

2(O2-)2 to CuI
2(O-)2 is but

a trend. In CuII2(O-)2 (not Cu(I) though),d(O-O) ≈ 1.4 Å (see
for example ref 11), whereas forθ ) 110°, d(O-O) ≈ 2.3 Å
in our model dimer. We are thus far from a typical peroxo O-O
distance. Upon actually reaching the CuI

2(O-)2 configuration
(for θ ≈ 140°, corresponding tod(O-O) ≈ 1.4 Å), one would
expectJ to revert toward diamagnetism (Cu(I) and O2

2- being
both diamagnetic). Computationally, however, we did not verify
that point.

As a conclusion, we developed in section II a spin population-
based model linking analyticallyJbdg, the main contributor to
JAF, to the quantity∆PANA

2(dxz) (cf. eq 16). At this level, our
theoretical formulation of molecular magnetism is fully compat-
ible with other classical models. Computationally, however,Jbdg

(as well asJAF) becomes ferromagnetic forθ > θC because of
negative∆PDFT

2(dxz) values. It is then remarkable thatJDFT

actually follows such a prediction. The DFT computations are
thus internally consistent, as is the analytical model, although
both differ radically as far as the resulting magnetism of the
dimer is concerned.

We therefore wonder if the exchange coupling constant of
the [Cu2(µ-O)2(NH3)4]0 cation, predicted to be strongly ferro-
magnetic by us and others,6 corresponds to the reality of actual
di-µ-oxo-bridged copper dimers. Without dividingJ ) JF +
JAF by 2, Ruiz et al. would find a ferromagnetic exchange
coupling constant of almost 2000 cm-1, whereas our own work
sets up an upper limit of about 500-600 cm-1 (if one accepts

b

a

Figure 6. Plots of DFT-based (filled circles,b) and analytical (open
circles,O) PHS(dxz) (a) andPBS(dxz) (b) as a function of the Cu-O-Cu
bond angleθ.
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the value ofJF obtained from eq 17 as being correct, apart from
the unexpected behavior ofJAF). In our view, this surprising
result is most probably linked (fully or partially) to a compu-
tational artifact at the BS state level. In effect, the required con-
ditions for a proper use of the BS techniques in this particular
case are not satisfied (cf. end of sections II.3 and III.2). Although
the magnetic orbital overlapSAB is small (SAB

2 , 1), this is not
because theweightof the bridging orbitals{px, pz} in ΦA and
ΦB is small (i.e.,a, b , 1 in eq 5 or 7, thus fulfilling the “active
electron” approximation), but because there is partialcompensa-
tion between both px/pz contributions inSAB ≈ a2 - b2 (cf. eq
6), hence the occurrence of additionalc2 factors in eqs 12-13
and 15-17.

However, the quantity∆PDFT
2(dxz) remains a remarkably

simple tool for the estimation of DFT-computed exchange
coupling constants, as demonstrated in sections II and III (see
also ref 19 for further details). This provides an alternative
semiquantitative way, to that of HTH, of rationalizing the
exchange phenomenon, although it requires the convergence of
two (HS and BS) instead of one (HS only) spin states.
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Grenoble.

Appendix

Within the framework of the oxo-bridged dimer defined in
section II.2, and from the two localized fragment orbitalsΦA

and ΦB, one constructs two (symmetric and antisymmetric)
SOMOs, typical for a HS-type calculation:

We now want to recombine these two MOs in order to obtain
(mutually orthogonal) monomer orbitals partly delocalized onto
the other metal:

This new set of orbitals correspond to the two monomer

(partially delocalized) functions after mutual interaction, as
suited within the broken symmetry method. We then calculate
the Mulliken copper spin populations (PA(dA) for CuA in Φ′A
andPB(dA) for CuA in Φ′B). Consequently, we finally compute
the HS (i.e.,PHS) and the BS (i.e.,PBS) spin populations as

An analytical expression for∆P2(dxz) is then straightforwardly
derived, given in the main text (eq 15).

Supporting Information Available: Plot of JDFT against
JOPT and table of coefficients for the singly occupied MO. This
information is available free of charge via the Internet at http://
pubs.acs.org.
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