Diffusion of H₂SO₄ in Humidified Nitrogen: Hydrated H₂SO₄

D. R. Hanson* and F. Eisele[†]

Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado Received: October 11, 1999; In Final Form: December 10, 1999

First-order rate coefficients for the wall loss of H_2SO_4 were measured as a function of relative humidity in a high-pressure laminar flow tube in conjunction with chemical ionization mass spectrometry detection. The measurements yield a diffusion coefficient for H_2SO_4 vapor in N_2 at 298 K of 0.094 (±0.006) atm cm² s⁻¹. For relative humidities (RH) up to about 40%, the measured first-order loss rates steadily decreased as the RH was increased. The effective diffusion coefficient at 40% RH was ~20% less than without H_2O present. The measured loss rates were less dependent on water vapor for RH between 40 and 70%. We interpret these observations as due to the addition of up to two H_2O molecules to H_2SO_4 , thus slowing the diffusion rate to the wall. The results indicate that about half the H_2SO_4 molecules are hydrated at ~8% RH and it is likely a second water molecule interacts with this species at higher RH. Calculations of the decrease in diffusivity of H_2SO_4 due to addition of water are consistent with the observed decreases.

Introduction

Aerosol particles in the atmosphere have potentially wideranging effects on climate, on atmospheric composition, and on health. Consequently, understanding their origin and growth and loss processes has been an active area of research. Field measurements¹ and theoretical considerations² indicate that the H₂SO₄ molecule plays a key role in these processes.

In the classical theory of nucleation from H_2SO_4 and H_2O molecules, the calculated rate of particle formation depends on the hydration of H_2SO_4 vapor molecules, of which the first steps are

$$H_2SO_4 + H_2O \leftrightarrow H_2SO_4 \cdot H_2O$$
(1a)

$$H_2SO_4 \cdot H_2O + H_2O \leftrightarrow H_2SO_4 \cdot (H_2O)_2$$
(1b)

The reason for this dependence, according to this theory, is that hydrated acid molecules do not contribute to the relative acidity (RA) and the strongly RA-dependent nucleation rates decrease when H_2SO_4 is hydrated. Consequently, there have been a number of studies that have derived hydrate distributions using simple models in combination with the thermodynamics of bulk solutions (classical hydrate theory^{3,4}). At 50% RH, for example, this theory predicts that ~10% of H_2SO_4 vapor molecules are unhydrated, ~40% are present as $H_2SO_4 \cdot H_2O$ and ~40% are present as $H_2SO_4 \cdot H_2O_3$.

However, recent work has cast doubt on the classical hydrate theory. Theoretical ab initio calculations at the molecular level are consistent with less hydration than the classical hydrate theory predicts.^{5,6} On the other hand, a molecular dynamics simulation⁷ predicts very extensive hydration, even more than the classical theory. Also, a rough comparison of measured⁸ and calculated⁹ H₂SO₄ vapor pressures of H₂SO₄/H₂O solutions suggests that hydrate formation is less extensive than the hydrate theory suggests.¹⁰

It is likely that in other nucleating systems involving H_2SO_4 , such as $NH_3/H_2SO_4/H_2O$ or ion-induced nucleation processes, reaction 1 will be important in particle formation. Also, the thermodynamics of (1) will be needed to improve nucleation theories based on the thermodynamics of individual molecular clusters. Therefore, it is likely that information regarding (1) will be important for understanding the formation of atmospheric particles. We present here evidence for the hydration of H_2SO_4 from measurements of the diffusion of H_2SO_4 species, H_2SO_4 + $H_2SO_4 \cdot (H_2O)_n$, as a function of water partial pressure.

Experiment

 H_2SO_4 loss measurements were carried out in a vertically mounted cylindrical flow reactor (i.d. 4.9 cm × 105 cm long), shown in Figure 1, held at 298 K by circulating a thermostated liquid through a jacket surrounding the reactor. N₂ gas with variable amounts of H₂O was flowed into a short (35 cm) flow tube attached to the top of the flow reactor. A flow straightener (a ¹/₂ in. thick aluminum plate with ~50 evenly spaced ¹/₈ in. holes) was positioned between the flow reactor and this section to decrease perturbations to the flow due to the gas inlets above it (suppressed the influence of gas jet streams). H₂SO₄ vapor was entrained in a separate flow of N₂ through a movable injector and [H₂SO₄] was monitored with a selected-ion chemical ionization mass spectrometer, SCIMS.^{11,12}

The movable "showerhead" injector is made of Teflon and glass tubing and is 4 cm long \times 4.85 cm in diameter (shown in detail in Figure 1). N₂ enters the injector via a long thin Teflon tube which also suspends the injector vertically in the flow reactor. This flow was distributed through approximately 30 evenly spaced 0.033 cm holes. The N₂ then picked up H₂SO₄ vapor as it passed through glass wool that had been soaked with \sim 1 g of 98% sulfuric acid. The N₂/H₂O flow, having passed through the flow straightener and part way down the reactor, then flows through the injector via \sim 30 evenly spaced 0.4 cm i.d. glass tubes. The N₂/H₂SO₄ flow was half (or less) of the total flow.

Flow Conditions. Total N_2 flow in the reactor was typically 1.6 standard L min⁻¹ (slpm), temperature was 298 K, and total

 $^{^\}dagger$ Also with the School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332.

Figure 1. Schematic drawing of flow reactor and detailed cross section and top view of injector.

pressure was 620 Torr resulting in an average flow speed of 1.9 cm s⁻¹. For most of the measurements, the SCIMS required a total flow of ~3.5 slpm and a supplementary flow of N₂ (~2 slpm) was added to the reactor effluent. The H₂O partial pressure was varied from ~0.1 to ~16 Torr by passing a portion of the flow through a perforated Teflon tube in a water bath.¹² $P_{\rm H_2O}$ was monitored with a dew/frost point hygrometer and comparison with the flow measurements indicated the flow through the saturator was fully saturated with H₂O at its vapor pressure for N₂ flows of 2 slpm and less. To check for buoyancy effects, in some experiments O₂ was added to the humidified flow to maintain a gas density equal to that of N₂. This made no difference in the results, suggesting that small differences in buoyancy between the two gases do not lead to a significantly disturbed flow.

Because attainment of laminar flow is very important for obtaining accurate results, flow visualization experiments were performed. The flow was visualized by entraining micron-sized sulfuric acid particles in either the injector (H₂SO₄-containing) or the main (H₂O-containing) flows and they were illuminated with a HeNe laser. In the measurement region, all particles flowed downward for total flow rates up to \sim 3 slpm; for total flows larger than this, gas jets and swirling was noted in the region just below the injector. The flow was also visualized without glass wool placed inside the injector: gas jets from the flows through the 0.033 cm holes caused noticeable swirling when the total injector flow was greater than 0.35 slpm.

The speed of the particles was crudely measured by recording the time they took to traverse a distance of 12 cm for total flow rates of 1 and 1.5 slpm. This was done for particles on the centerline of the reactor at a distance of \sim 40 cm downstream of the injector. The speed of the flow was measured to be within a few percent, well within the accuracy of this measurement, of that expected for fully developed laminar flow where the axially centered flow speed is twice the average flow.

Figure 2. Measured wall loss rate coefficient versus total N_2 flow rate for 2% and 42% RH.

Flow considerations also limited the measurements to a temperature of 298 K. It was found that the H₂SO₄ signal was erratic (variations of ~20%) when the flow tube temperature was ~4 K different from room temperature. However, the signal due to H₂SO₄ was very stable, and variability was essentially statistical, when the flow experienced only small (≤ 2 K) temperature changes on its course to the SCIMS. In the flow visualization experiments, it was noted that when the flow tube temperature, the flow through the room temperature transition to the SCIMS was noticeably disturbed. Apparently, the irregularity of temperature-induced eddies can cause erratic [H₂SO₄] in the detection region.

The injector was kept at least 20 cm away from the flow straightener to minimize disturbances to the flow through the injector (this distance is greater than the 5-15 cm distance required for laminar flow to develop from an initial plug-type flow). Also, the distance between the injector and the end of the thermostated measurement region (i.e., the injector position) was kept greater than the inverse of the wall loss rate coefficient (16-40 cm depending upon flow rate). This was done because [H₂SO₄] measured too near to the injector might be influenced by high order terms.¹³ The measured wall loss rate coefficient (units of cm⁻¹) times the average flow velocity results in the quantity $k_{\rm w}$, which is the measured first-order wall loss rate coefficient (s⁻¹). Shown in Figure 2 is k_w as a function of total flow rate for 2 and 42% RH. The measured kw are independent of flow rate over the range 0.9-2.2 slpm for 2% RH and from 0.7 to \sim 2 slpm for 42% RH. These observations provide strong evidence that the flow in the measurement region was characteristic of fully developed laminar flow for total N2 flow rates ≤ 2 slpm.

H₂**SO**₄ **Detection and Chemistry**. H₂SO₄ in the reactor effluent was detected by reaction with (HNO₃)_m·NO₃⁻ core ions ($m \le 2$) and monitoring the product HSO₄⁻ ions after stripping them of HNO₃ and H₂O molecules in a collisional dissociation chamber. The SCIMS technique is described in detail by Eisele and Tanner.¹¹ Some measurements were also performed with a transverse ion source-mass spectrometer inlet scheme.¹⁴ Typically, the initial average [H₂SO₄] was (0.3−3) × 10⁹ molecules cm⁻³, although for high relative humidity measurements requiring low flows through the H₂SO₄ injector it was as low as ~3 × 10⁷ cm⁻³.

Decomposition of H_2SO_4 to SO_3 and H_2O in the injector was possible. However, the H_2O partial pressure over 98 wt %

 H_2SO_4 (~10⁻⁴ Torr) is sufficient to maintain [SO₃] less than 2% of [H₂SO₄].¹⁵ Also, the typical flow rate through the source was such that the composition of the acid would be virtually unchanged during the course of the measurements. Finally, H₂O in the mixed flows was sufficient (≥3 × 10¹⁵ cm⁻³) to convert any SO₃ to H₂SO₄ within 1 s.¹⁶ Thus, SO₃, if present, would have been converted to H₂SO₄ well before the diffusion measurements were recorded.

The dimer (or higher clusters) of sulfuric acid, if present in significant amounts, would also affect diffusion rates. However, there was no change (<5%) in measured first-order loss rates for H₂SO₄ as initial [H₂SO₄] was varied over an order of magnitude. Because [dimer] would be quadratic in [H₂SO₄], we conclude it was not present at sufficient levels to affect the diffusion measurements. Eisele and Hanson,¹⁴ in a report on the detection of the clusters of H₂SO₄, estimate from their measurements that the dimer to monomer ratio is 0.01 at 236 K and [H₂SO₄] = 1 × 10⁹ cm⁻³. At 298 K and comparable [H₂SO₄], it is likely that the [dimer] to [H₂SO₄] ratio will be much less than 0.01. This also indicates the dimer could not significantly affect the rate of diffusion of H₂SO₄ species in our experiment.

We found that the glass wall of the reactor acted as a sink for H₂SO₄ so that once a H₂SO₄ molecule contacted the wall it did not desorb for most conditions. This was true even for RH as low as 1% when [H₂SO₄] was comparable to the equilibrium H₂SO₄ vapor concentration over a bulk solution (e.g., at 1% RH and 298 K the vapor pressure^{8,9} is equivalent to $\sim 3 \times 10^9$ cm^{-3}). If the wall did not act as an irreversible sink, then, after some H₂SO₄ had been deposited, it should provide a measurable source of H₂SO₄. H₂SO₄ coming off the walls was checked for by turning off the N₂ through the H₂SO₄ source. [H₂SO₄] in the flow was small even for RH as low as 1%, resulting in $[H_2SO_4]_{wall} < 10^7 \text{ cm}^{-3}$, much less than the equilibrium vapor pressure would give. Note that [H₂SO₄]_{wall} was subtracted from [H₂SO₄] in the analysis. Finally, loss rate coefficients did not depend on initial [H₂SO₄], which indicates that treating the data in this manner is correct. We conclude that the measured loss rates are equal to the diffusion-limited rates.

After some exposure to H₂SO₄, however, the wall exhibited a significant H₂SO₄ partial pressure at low RH, <0.5%. At very low RH (~0.1%) and a wall exposure of H₂SO₄ of ~10¹² cm⁻², [H₂SO₄]_{wall} was ~3 × 10⁸ cm⁻³, which is much less than its vapor pressure⁹ (~3 × 10¹⁰ cm⁻³) but is comparable to the typical [H₂SO₄] coming from the injector. These data were not used to extract diffusion coefficients because it is not known if [H₂SO₄]_{wall} is a function of axial distance. If [H₂SO₄]_{wall} varies along the length of the reactor and it is a significant fraction of [H₂SO₄], then the measured first-order loss rates will not be simply related to the diffusion coefficient. Therefore, the measurements where [H₂SO₄]_{wall} was >20% of [H₂SO₄]₀ (i.e., greater than ~10⁸ cm⁻³) were not included. This effectively limited the measurements to RH of ~0.35% and larger.

Analysis. For diffusion-limited wall loss of a species with diffusion coefficient D_c in a cylindrical flow tube of radius r, the first-order rate coefficient k_{dl} (s⁻¹) is given by

$$k_{\rm dl} = 3.65 D_{\rm c}/r^2 \tag{2}$$

The measured k_w are set equal to k_{dl} whereupon D_c is obtained. This equation was obtained from the treatment of Brown¹³ for diffusion in laminar flow within a cylindrical reactor. It is a shortcut valid when axial diffusion can be neglected as is the case here. The factor 3.65 is not sensitive (less than 0.3% change) to the experimental conditions here for flow rates from

Figure 3. $ln([H_2SO_4])$ versus injector position for five different RH (the *y*-axis data for 0.35% RH was multiplied by 0.5). N₂ flow rate was 1.53 slpm. The loss rate coefficients for 0.35, 10, and 42% RH are indicated in the figure.

1 to 2.5 slpm. However, as the flow rate and thus axial velocity decreases further, axial diffusion becomes nonnegligible and the factor 3.65 is no longer valid (e.g., at 0.5 slpm, (2) is $\sim 2\%$ high).

The main contributions to the uncertainty in the loss rate measurements are the accuracy of the flow meter calibrations $(\pm 2\%)$ and the possible uncertainty in relating the loss measurement to a diffusion coefficient due to the flow not perfectly attaining laminar flow conditions. The latter should depend on total flow rate; however, as discussed above, the measured k_w did not noticeably depend on flow rate. From the scatter (twice the standard deviation) in the k_w vs total flow rate data depicted in Figure 2, we estimate this latter error is $\leq 3\%$ for measurements at low RH and $\leq 6\%$ for measurements at high RH.

Results

Shown in Figure 3 is $\ln[H_2SO_4]$ vs injector position for five measurements with RH between 0.35 and 42%. A noticeable decrease in the wall-loss rate coefficient as $[H_2O]$ increases is exhibited. From these loss rate coefficients, values for the diffusion coefficient of the H_2SO_4 species were obtained using (2). These were multiplied by the total pressure to obtain the pressure-independent diffusion coefficient (*pD*) and these are plotted in Figure 4 as a function of RH. Note that the partial pressure of H_2O is $\leq 2.5\%$ of the total pressure and we assume that H_2SO_4 diffusion through an N_2 – H_2O (and, when present, O_2) mixture is equivalent to that through N_2 at the same total pressure.

The SCIMS measures the sum of all H_2SO_4 species and thus the measured first-order loss rates were set equal to an "effective" diffusion coefficient: pD_{eff} is equal to $P_{tot}D_c$ from (2). If we assume that H_2SO_4 can be hydrated by up to two water molecules, the effective diffusion coefficient for the sum of the species H_2SO_4 •(H_2O)_n for n = 0 to 2 is given by

$$pD_{\rm eff} = \frac{pD_0 + pD_1K_1RH + pD_2K_1K_2(RH)^2}{1 + K_1RH + K_1K_2(RH)^2}$$
(3)

where pD_0 is the diffusion coefficient of H₂SO₄ in N₂, pD_1 is that for H₂SO₄·H₂O, pD_2 is that for H₂SO₄·(H₂O)₂, and K_1 and K_2 are equilibrium constants for successive addition of H₂O.

Figure 4. Effective diffusion coefficient vs RH for the species H_2SO_4 + H_2SO_4 · H_2O + H_2SO_4 · $(H_2O)_2$ in N₂. Solid and dashed lines are fits to the data according to (3) (solid line: variable K_1 and K_2 ; dashed line: K_1 , K_2 , and K_3 predicted by classical hydrate theory). Inset: detailed view of the low RH data.

This equation is based in part on the reasonable assumption that the forward and backward rates of hydration, e.g. (1), are much faster than the diffusion transport processes. Equation 3 can be extended to include the cases of additional hydration steps by adding the terms $pD_nK_1K_2...K_n(RH)^n$ to the numerator and the terms $K_1K_2...K_n(RH)^n$ to the denominator.

Also shown in Figure 4 is a fit to the data according to (3) (solid line). The values of the diffusion coefficients for the one and two hydrates were constrained to be 85 and 76% of the neat H₂SO₄ molecule, respectively. The calculation of these values of the constraints is presented below. Constraining the diffusion coefficients was done in part because allowing them to vary independently resulted in nonsensical values, i.e., that $pD_2 \sim pD_1$. Values for the parameters obtained from the fit are

$$pD_0 = 0.094 \pm 0.0012$$
$$K_1 = 0.13 \pm 0.06$$
$$K_2 = 0.016 \pm 0.006 \tag{4}$$

The fit to (3) is a good representation of the data and we believe the inclusion of more parameters is not warranted (errors are the $2 - \sigma$ standard deviations in the parameters). The $2 - \sigma$ precision of the measurements is ~2% with a total estimated uncertainty (possible systematic + 2σ precision) of ~ \pm 7% for pD_0 . Note the values for pD_1 and pD_2 were set equal to pD_0 times 0.85 and 0.76, respectively, and uncertainties in these values are difficult to assign. The equilibrium constants in (3) and (4) are not in standard thermodynamic units. Using the standard state of 1 atm to calculate activities, the standard values, denoted by K_{1}^0 and K_{2}^0 , are 410 and 50, respectively.

Discussion

There are two previously reported values for the diffusion coefficient of H_2SO_4 in N_2 based on measurements. Lovejoy and Hanson¹⁷ report a value of 0.11 atm cm² s⁻¹ (±20%) at 295 K (RH \ll 1%) and Pöschl et al.¹⁸ report 0.088 (±2%) at 303 K (RH \leq 3%). Both are in agreement with the value for pD_0 at 298 K reported here of 0.094 (±7%), although consideration of the temperature differences deteriorates this agreement (the diffusion coefficient goes as $\sim T^{1.75}$).^{19,20}

The diffusion coefficient can be calculated assuming an interaction potential between the molecules, such as the common Lennard-Jones 12-6 potential. For interactions between polar molecules, the Stockmayer (12-6-3) potential is frequently used where δ is a parameter for the dipole–dipole interaction.^{19,20} The values for the molecular diameter and well depth (ϵ) for the H₂SO₄ molecule are not known. Here, we take the well depth to be $1.35kT_b$, where k is the Boltzmann constant and T_b is the boiling point.²¹ The factor 1.35 was chosen because that gives the relation between the boiling point and the recommended well depth for H₂O.²⁰ With this well depth for H₂SO₄, $\epsilon/k =$ 840 K, a molecular diameter of 4.4 Å for H₂SO₄ is necessary to obtain a calculated diffusion coefficient of H₂SO₄ in N₂ equal to the measured value (0.094 atm $\text{cm}^2 \text{ s}^{-1}$). Also, a diffusion coefficient of 0.07 atm cm² s⁻¹ for unhydrated H₂SO₄ diffusing in H₂O vapor was calculated using these molecular parameters and a δ parameter of 1.2, i.e., equal to that for the H₂O-H₂O dipole interaction.²⁰ The diffusion coefficients of H₂SO₄ in N₂ and in H₂O are similar, supporting the assumption that the small amounts of water vapor in the gas mixture can be taken to be equivalent to N₂.

An alternative approach was used to estimate the diffusion coefficients for the hydrated H₂SO₄ molecules. The interactions of N₂ with the H₂SO₄(H₂O)_n species (n = 0, 1, 2) were estimated by assuming a hard-sphere collision between N₂ and the atoms in $H_2SO_4(H_2O)_n$ and averaging over all orientations. The atomic positions in the $H_2SO_4(H_2O)_n$ molecules were taken from recent ab initio theory calculations.²² The atoms were assumed to be hard-sphere-like and their radii were set equal to atomic van der Waals radii.²³ The N₂ molecule was also approximated as a sphere. The diffusion coefficient obtained from this hardsphere approximation for neat H_2SO_4 in N_2 is 0.14 atm cm² s^{-1} . The ballpark agreement of this calculation with the measured value indicates this is a reasonable approach to estimating the diffusion coefficient. The average cross section for the N₂-H₂SO₄·H₂O collision was 15% greater than for N₂ colliding with the neat H₂SO₄ molecule and that for the H₂SO₄- $(H_2O)_2$ species was ~27% greater than that for neat H_2SO_4 . Including the increases in the reduced masses, the diffusion coefficients for the first and second hydrates would be 0.85 and 0.76 times, respectively, that for the H₂SO₄ molecule. Note the values of K_1 and K_2 deduced from the data depend on the values chosen for pD_1/pD_0 and pD_2/pD_0 .

A different fit to the data using the equilibrium constants predicted from classical hydrate theory²⁴ is shown as the dashed line in Figure 4. In this theory, $K^{0}_{1} = 1400$ and $K^{0}_{2} = 55$. The third hydration step was also included ($K_{3}^{0} = 14$). Again, the ratios of the diffusion coefficients were constrained as above along with pD_3 being 68% of the unhydrated molecule. This fit describes the data almost as well as that described above with the notable exception of the low RH region. The classical theory appears to predict hydration by a single water molecule much earlier than our data suggests. Finally, we added a third hydration step to (3) with the diffusion coefficients constrained as above and allowing the equilibrium constants to vary. The K_1 and K_2 did not significantly change from those in (4) and the fit value for K_{3}^{0} was 0. The 2 - σ upper limit to K_{3}^{0} was 30 ($K_3 \leq 0.01$). Although the scatter in the data does not allow for drawing firm conclusions concerning the third water of hydration, the data is not inconsistent with the classical theory.

The natural logarithm of K_n^0 is related to the standard free energy change of (1):

$$\ln K^0_{\ n} = -\Delta G^0_{\ n}/RT \tag{5}$$

resulting in values for ΔG_n^0 at 298 K of $-3.6 (\pm 1)$ and $-2.3 (\pm 0.3)$ kcal mol⁻¹ from (4); the errors are related to twice the 1σ errors in *K*. From ab initio calculations, Bandy and Ianni⁶ report values of -0.6 and 0 kcal mol⁻¹ for the first and second hydration steps, respectively, resulting in values for K^{0_1} of 3 and K^{0_2} of 1. These values result in essentially no hydration over the entire range of RH in our experiments and thus would predict virtually no change in diffusion rates as the RH is varied (e.g., at 70% RH, a K^{0_1} of 3 results in hydration of ~6% of H₂SO₄ molecules.) The ab initio calculations of Arstilla et al.⁵ are consistent with Bandy and Ianni in that they predict enthalpies of hydration that are 3-5 kcal mol⁻¹ less exothermic than the classical theory of hydration predictions.

A molecular dynamics simulation⁷ of $H_2SO_4-H_2O$ clusters predicts that a H_2SO_4 molecule will be extensively hydrated over the entire range of RH that we investigated. For example, at 298 K and 39% RH, this work predicts that the dominant cluster will be $H_2SO_4(H_2O)_4$. Their results, however, were very dependent on their choice of the interaction parameters between H_2SO_4 and H_2O . They also pointed out the sensitivity of the results to the hydration energy; differences in the latter quantity of $\sim 1 \text{ kcal mol}^{-1}$ resulted in large changes in predicted hydration.

It can be concluded that the results presented here are in better agreement with the predictions of the classical hydrate theory than the predictions from the current approaches at the molecular level. It is likely that molecular level theories will need to predict the energies of the hydrates to accuracies of better than ± 1 kcal mol⁻¹ to correctly describe hydrate distributions. While disagreement over the first water of hydration is evident, the close agreement of our results with the classical predictions with regard to the second water of hydration may indicate that the classical model improves as the size of the cluster increases.

McGraw and Weber¹⁰ suggest that measured total [H₂SO₄] over sulfuric acid aerosol⁸ are not consistent with a calculated total [H₂SO₄] using hydrate theory applied to theoretical neat H₂SO₄ vapor pressures of the bulk solutions.⁹ The experimental study of Marti et al. was constrained to RH less than 25% and thus this rough comparison was dominated by the first water of hydration (from our results the concentration of H₂SO₄(H₂O)₂ contributes only 20% to the total H₂SO₄ in the vapor at 25% RH; the scatter in the measurements⁸ is very much greater than 20%). Their contention pertains to the first water of hydration only and is bolstered by our results.

Nucleation events in the atmosphere that can be attributed to the H_2SO_4/H_2O binary system are likely to occur at high RH

(>50% RH²⁵). At high RH, the presence of the H₂SO₄ monohydrate may become less important for nucleation than the presence of the higher hydrates which we have shown may be somewhat accurately predicted by the classical theory. Therefore, the partial success of the classical theory in explaining particle production at high RH is consistent with the notion that these theories may become more accurate as the size of the cluster increases.

Acknowledgment. Conversations with R. Bianco and E. R. Lovejoy are gratefully acknowledged. This research was in part supported by NASA grant NAG5-6383.

References and Notes

(1) Weber, R. J.; McMurry, P. H.; Mauldin III, R. L.; Tanner, D. J.; Eisele, F. L.; Clarke, A. D.; Kapustin, V. N. *Geophys. Res. Lett.* **1999**, *26*, 307.

(2) Laaksonen, A.; Talanquer, V.; Oxtoby, D. W. Annu. Rev. Phys. Chem. 1995, 46, 489.

(3) Jaecker-Voirol, A.; Mirabel, P. J. Phys. Chem. 1988, 92, 3518.

(4) Kulmala, M.; Lazardis, M.; Laaksonen, A.; Vesala, T. J. Chem. Phys. 1991, 94, 7411.

- (5) Arstila, H.; Laasonen, K.; Laaksonen, A. J. Chem. Phys. 1998, 108, 1031.
 - (6) Bandy, A. R.; Ianni, J. C. J. Phys. Chem. A 1998, 102, 6533.
 - (7) Kusaka, I.; Wang, Z.-G.; Seinfeld, J. H. J. Chem. Phys. 1998, 108,

6829.
(8) Marti, J. J.; Jefferson, A.; Cai, X. P.; Richert, C.; McMurry, P. H.;
Eisele, F. J. Geophys. Res. 1997, 102, 3725.

(9) Clegg, S. L.; Brimblecombe, P.; Wexler, A. S. J. Phys. Chem. A **1998**, 102A, 2137 (http://www.uea.ac.uk/~e770/aim.html).

- (10) McGraw, R.; Weber, R. J. Geophys. Res. Lett. 1998, 25, 3143.
- (11) Eisele, F. L.; Tanner, D. J. J. Geophys. Res. 1993, 98, 9001.

(12) Ball, S. M.; Hanson, D. R.; Eisele, F.; McMurry, P. M. J. Geophys. Res. 1999, 104, 23709.

- (13) Brown, R. L. J. Res. Natl. Bur. Stand. (U.S.) 1978, 83, 1.
- (14) Eisele, F. L.; Hanson, D. R. J. Phys. Chem., in press.
- (15) Gmitro, J. I.; Vermeulen, T. Am. Inst. Chem. Eng. J. 1964, 10, 740.

(16) Lovejoy, E. R.; Huey, L. G.; Hanson, D. R. J. Phys. Chem. 1996, 100, 19911.

- (17) Lovejoy, E. R.; Hanson, D. R. J. Phys. Chem. 1996, 100, 4459.
- (18) Pöschl, U. et al. J. Phys. Chem. A 1998, 102, 10082.
- (19) Monchick, L.; Mason, E. A. J. Chem. Phys. 1961, 35, 1676.
- (20) Mason, E. A.; Monchick, L. J. Chem. Phys. 1962, 36, 2746.

(21) Ayers, G. P.; Gillett, R. W.; Gras, J. L. Geophys. Res. Lett. 1980, 7, 433.

(22) Bianco, R., private communication, 1999. These calculations agree closely with the structures reported in refs 5 and 6.

(23) Weast, R. C., Ed. *Handbook of Chemistry and Physics*; Chemical Rubber: Cleveland, OH, 1983.

- (24) Jaecker-Voirol, A.; Mirabel, P. Atmos. Environ. 1989, 23, 2053.
- (25) Clarke et al. Geophys. Res. Lett. 1999, 26, 2425.