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Though chemical forces in molecules have been of considerable interest for decades, the question of the
origin of such forces concerning different spatial regions in a molecule is still open to discussion. In this
paper we investigate chemical forces by a density functional study of two molecules, N2 and HCl. On the one
hand, we find that the quantitative details of slight polarizations of the electronic densities in the atomic core
regions yield major contributions to the forces, and this is responsible for the difficulties in calculating reliable
forces from approximate electron densities. On the other hand, the qualitative topology of the electron density
in the valence region is not at all unimportant for electrostatic forces, and this is responsible for the possibility
of a qualitative chemical interpretation of electrostatic binding.

1. Introduction

1.1. Electron Density and Force.The electron densityF(r )
and its topological features can be employed as a principal basis
of understanding chemical bonding. Namely,F determines (i)
the total energyE and thereby the bond energyBE and (ii) the
binding forcesF. Here we follow the convention that bonding
refers to energy and binding refers to (electrostatic) force. The
theoretical justification of point (i) had formally not been proven
before 1965 by Hohenberg and Kohn,1 and it is still an unsolved
problem: how to determine the energy of atoms and molecules
solely from the electron density. Concerning point (ii), it has
already been shown in the very begining years of quantum
mechanics by Hellmann (in 1933!;2 for later references, see refs
3 and 4) how the binding forces can be computed directly from
the electron density. The well-known so-called Hellmann-
Feynman formula reads

where the vectorFA is the force on nucleus A at positionRA,
NelF(r ) is the total electronic charge density, with normalization
∫dr F(r ) ) 1, and

is the Hellmann-Feynman force vector operator corresponding
to the molecular Hamiltonian.rA is the distance vector of an
electron from nucleus A with nuclear chargeZA, rA is its
absolute value, andRAB is the distance vector between the two
nuclei A and B. Atomic units (me ) 1, p ) 1, 4πε0 ) 1) are
used throughout this paper unless stated otherwise. It is
important to note that the derivation of eq 1 is, in the most
simple case, based on the assumption thatF(r ) is the exact
electron density of the molecule, computed from theexact Nel-
electron wavefunction by

Here,∫dr ′ means integration over all electronic spin coordinates
and all spatial coordinates but one.

1.2. Different Expressions of the Force.The validity of the
Hellmann-Feynman force theorem (and its generalizations) can
also be proven for (exact or specially optimized densities of)
several model systems such as Hartree-Fock or XR.5,6 The
crucial point is that the force theorem does not hold in general
for approximate densities, especially not in the standard quantum
chemical case, where basis functions are centered on the moving
nuclei. It is well-known that the errors of the force introduced
by the “fixed-center basis set approximation” can be enormously
large even for good quality standard basis sets. As a conse-
quence, forces in molecules (for instance needed during
geometry optimizations) are usually computed as the exact
gradient of the respective approximate energy expectation value
〈E〉 ) 〈ψ|Ĥ|ψ〉, which then includes all terms that would sum
up to zero upon integration ifψ were the exact eigenfunction
of Ĥ.

This has lead to a somewhat paradoxical situation. On the
one hand, eq 1 is conceptually quite simple since it connects
the features of the electron density in real space directly with
the chemical forces. From a computational as well as from an
experimental (i.e., density measurement) point of view, it is very
attractive to use eq 1 for the interpretation of chemical binding,
and numerous examples of such interpretations can be found
in the literature (see, e.g., ref 7). On the other hand it is
computationally demanding and, with present-day technology,
practically impossible by experimental methods to obtain the
electron density with a high enough accuracy that the application
of eq 1 would result in reasonably accurate forces, or at least
in forces of the correct sign. Conversely, the requirement that
the force vanishes at internuclear equilibrium can be used to
improve the experimental polarization of the core density!8

Nevertheless, such approximate electron densities are usually
accurate enough to reproduce a reasonable description of the
molecule, e.g., appropriate deformation densities (∆F), density
Laplacians (∇2F), or energy density functionals (ε(F)).

The qualitative interpretations of chemical binding with the
help of eq 1 are usually based on specific topological features
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of the electron density in the valence and bond regions of the
molecules, which are often already qualitatively well represented
by moderately sized basis sets. Yet the computation of the forces
using eq 1 often leads to totally wrong results. It is our aim
here to discuss this curious situation and to answer the question
about the spatial origin of the forces.

The following aspect is important in this context. In order to
explain the “physical nature of a chemical phenomenon”, the
mathematical formula of the respective physical observable
should be made transparent so that the sign and order of
magnitude of the numerical value become obvious. In quantum
mechanics, those formulas consist of integrals over the whole
space. A great many replacements and transformations, including
gauge transformations of the basic fields as well as of the
chemical forces, and integral transformations and partial integra-
tions, are possible to modify the respective mathematical
expression. Accordingly, the explanation of the physical nature
of a phenomenon can be cast into many different, often
paradoxical, forms.

1.3. Outline. The paper is organized as follows: In section
2 the gauge freedom of the force is reviewed. In section 3 the
general formulas of force density and energy gradient density
functions are discussed. Section 4 considers suitable expressions
for the nuclear repulsion force density. After a short section 5
on computational details, spatial contributions to the forces in
N2 and HCl molecules are analyzed in section 6. Section 7
contains some final conclusions.

2. Internal Coordinates and Gauge of the Force
From now on we will consider a diatomic molecule A-B

along coordinate axisx, i.e.,RA ) (XA,0,0) andRB ) (XB,0,0),
cf. Figure 1. There are six positional variables, while the
molecular bonding energy only depends on a single variable,
the internuclear distanceR ) |RAB|. Because of theσV mirror
symmetry of the molecular electron density,E depends onXA

andXB only, while ∂E/∂YA ) 0 etc. Introducing a translational
transformation (compare also Silberbach9) with gauge parameter
η

we find for the nonvanishing component ofFAB ) (F(R),0,0)
in the directionRAB, as the physical invariant, which can be
split up arbitrarily into two contributions:

S in eq 4 has the meaning of an “η-weighted” center of the
molecule, whereη specifies the relative shifts of the two nuclei.
η ) 0 means that the geometrical center of the nuclei remains
fixed upon variation ofR, i.e., both nuclei are shifted by 0.5
dR toward each other when determining the energy gradient or
force. Berlin10 had chosen thisη-value implicitly without any
discussion, and Hinze11 strongly advocated for this special

choice as the only reasonable one.η ) (1 means that only
one of the two nuclei is shifted. Other special choices are fixing
the center of mass (CM) or charge (CC) of the nuclei:

Koga et al.12 and recently Ishida and Ohno13 have strongly
advocated for restricting oneself to theηCM choice, which
corresponds to the nuclear motions of a molecule vibrating in
free space. They also mentioned that for non-hydrogenic nuclei
with MA ≈ 2ZA, ηCM ≈ ηCC, while for hydrides the two choices
of η are quite different, though both are not too different from
unity. Since the forces originate in the charges of the particles,
ηCC may also be preferable in some discussions.ηCC corresponds
to the symmetric Berlin diagram (a) in Figure 2. For specific
purposes it may be more useful to investigateFA or FB

individually, i.e.,η ) (1.
The electronic part of the force operator, eq 2, corresponding

to eq 5 and Figure 1, reads

Figure 1. Coordinates of a diatomic molecule A-B oriented along
thex-axis. The nuclear positions on the axis are marked by dots. Note
the directions of thex-coordinates, which are consistent with the signs
in eqs 4-7; they ensureFA

el ) +FB
el.

Figure 2. Gauge dependent binding and antibinding regions in a
diatomic molecule. (Theη-values refer to the homonuclear caseZA )
ZB.) A negative sign ofFel, eq 7, corresponding to binding forces, is
indicated by light, and a positive sign (antibinding forces) by dark
shading. The arrows symbolize the relative weight and direction of
the shifts of each nucleus.η ) 0 means equal translations in opposite
directions,η ) (1 means that only one nucleus is shifted by twice the
amount.
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For the nuclear repulsion force it is desirable to introduce an
operator that similarly depends on the gauge throughη and is
split up into two terms in such a way that one obtains a
chemically sensible classical force picture at large distances (see
section 4).

As pointed out by Berlin,10 F̂el is a real function in three-
dimensional space, and since the electron densityF(r ) is
everywhere positive, the sign ofF̂el defines binding and
antibinding regions in a molecule in anη-dependent manner.
Figure 2 shows different “Berlin diagrams”. The gauge freedom
motivated Silberbach9 to completely reject Berlin’s concept of
binding and antibinding regions in a molecule, since they are
not uniquely defined corresponding to the Galilei-Newton
arbitrariness of coordinate choice.

3. The Force and the Energy Gradient

3.1. Discussion of the Force Expression.The total energy
of a molecule (in the Born-Oppenheimer approximation,
neglecting the kinetic energy of the nuclei) reads

For ψ exactly fulfilling (Ĥ - E)ψ ) 0, one obtains eqs 1 and
2, i.e.,

while the sum of the remaining terms vanishes,

Since this does, of course, not mean the vanishing of any
individual term in eq 10, one must, and should not, support
arguments in favor of the apparently vanishing role of the kinetic
electron energy in chemical binding. It is just the following type
of replacement of kinetic energy by potential energy terms
through inserting the Schro¨dinger equation, i.e.

which, since the early times of quantum chemistry,14,15evoked
this argumentation. The force theorem suggests only illusorily
that the binding force is essentially electrostatic. The convenient
result of a purely electrostatic force expression is obtained from
the knowledge that, upon electronic integration of the nuclear
gradient of theexactquantum chemical electronic density, the
sumof eq 10 will vanishexactly.

Hence there exist conceptionally different notions of different
physical pictures: on the one hand, there is the seemingly purely
electrostatic force, on the other hand, there is the complete
gradient of the molecular bonding energy, containing derivatives
of each individual energy term of the Hamiltonian, including
the contribution from〈T̂e〉. Furthermore the “energy gradient
function” in space,∂(ψ* Ĥψ)/∂R, has no similarity at all to the
“force function”, ψ*(∂Ĥ/∂R)ψ, see below. Accordingly, the
energy gradient will provide a completely different spatial
picture than the force. To avoid ambiguities, we note again that
upon integration both quantities give the same numerical result
for the total force, but the contributions of∂(ψ* Ĥψ)/∂R and of
ψ*(∂Ĥ/∂R)ψ come from different regions in space.

3.2. Expressions for the Energy Gradient.We will now
investigate energy gradientdensity functions which, after
integration over 3D space, yield the energy gradient or force
value. This is the first-order perturbation energyE(1) with respect
to δ, where the perturbationδ is the negatiVe change of
internuclear distance. For convenience,δ is chosen here so that
the signs correspond toE(1) ) F ) - ∂E/∂R. The superscripts
in parentheses denote the perturbation order with respect toδ.
Multiplication by ψ* of the Schrödinger equationĤψ ) ψE
leads, after integration, to

Cf. eq 3 for the definition of∫dr ′. The energy density function
ψ* Ĥψ of a system is, pointwise, just the electron density
multiplied by E. The first-order perturbation of eq 12 is

whereĤ(1) ) ∂Ĥ/∂δ, F(1) ) ∂F/∂δ etc. We assume〈ψ(0)|ψ(1)〉 )
0. From the first-order perturbation equation,

it follows that the functionψ(0)*Ĥ(1)ψ(0) on the right-hand side
of eq 13, i.e., the force density, strongly diverging at the nuclei
according to eq 7, ispointwisecancelled by terms contained in
the functionψ(0)*Ĥ(0)ψ(1). Thereby the function on the left-hand
side of eq 13 results, which is much smoother at the nuclei.

Alternatively, one may multiply eq 14 byψ(0)* and integrate
as in eq 3 to obtain

We see from eqs 13 and 15 that the energy gradient density
function of the molecule is given by two terms. The first one is
its electron densityF(0)(r ) multiplied by E(1), which yields the
gradient or forceValue E(1) ) F ) -∂E/∂R upon integration. It
is superimposed by another functionF(1)(r ) ) -∂F/∂R, multi-
plied by some arbitrary factor, for instanceE(0) in eq 13, or
alternatively E(0)/2 in eq 15. Upon integration it does not
contribute to the numerical expectation value of the force, since
F(1) integrates up to zero.

3.3. Relation of Different Expressions.Exploiting, upon
integration of eq 13 or 15, the hermitian property ofĤ(0) and
the relation (H(0) - E(0))ψ(0) ) 0 for exactψ(0), the force is
obtained as

The last two terms on the right-hand side of eq 13, or the last
term on the right-hand side of eq 15, vanishafter integration;
see eq 10. Deleting a part or all of these terms, we go from eq
13 to eq 15 to eq 17,

This drastically changes the integrand function without changing
the integral value in the case of an exactψ (except its error
sensitivity), and one obtains the force density from the energy
gradient density. At the nuclear equilibrium distance, whereE(1)

) 0, i.e., where the nuclear and electronic forces are at
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2
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(C) F̂F(r ) ) ∫dr ′ψ(0)*Ĥ(1)ψ(0) (17)
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equilibrium and the total force or energy gradient vanish, the
topology of the energy gradient density, eq 13, is solely deter-
mined by the topology ofF(1) ) -∂F/∂R. The force density, eq
17, depicts a completely different picuture of binding in terms
of electrostatic forces, involving a 1/r2 factor. The difference
in these two equivalent pictures reflects again the hidden, but
nevertheless important, role of the kinetic energy for chemical
bonding.

Noting that the first-order equation (14) means that

a more general expression for the density functionf(r ), yielding
the force or gradient value upon integration, reads

where (λ; µ) andη are arbitrary parameters. The special cases
“expectation value” (A:13), “first-order equation” (B:15), and
“force expression” (C:17) are contained in the general force
and energy gradient density expression (D:19). The three special
forms (13), (15), and (17) are represented by (λ; µ) ) (0; 1),
(0; 1/2), and (1; 0), respectively.

4. Choice of Nuclear Repulsion and Promolecular Forces

The electron densityF of a molecule can be represented as
the superposition of (i) densities of the independent spherical
atomsFA (the so-calledpromolecular densityFpro) and (ii) a
moleculardensity deformation∆F:

where∫dr FA ) 1, ∫dr ∆F ) 0, andNel ) NA + NB. The
electronic part of the force,Fel, and the nuclear repulsion force,
Fnuc, being of opposite sign, can be several orders of magnitude
larger than the total forceF ) Fel + Fnuc, especially near the
equilibrium internuclear distance. The major part of the electron-
ic binding forceFA

el on nucleus A is trivially due to the shield-
ing of the repulsion of nuclear chargeZB by the promolecular
electron density, canceling the nuclear repulsion force almost
totally. It is desirable to eliminate these two huge contributions
of different sign from the discussion of the total binding force.
This is achieved by introducing anη-gauge also into the nuclear
repulsion force so that the promolecular contributions from both
atoms to bothFel andFnuc approximately cancel each other for
any choice ofη. From the Schro¨dinger equation, the gauge-
free nuclear repulsion force density is initially obtained as

A suitable choice for anη-gauge ofFnuccan be achieved through
F f F̃η

where F̃A and F̃B are the densities of the deformed “atoms in
molecules”, i.e.,NelF ) NAF̃A + NBF̃B. (Concerning another
decomposition ofF̂nuc, see ref 13). The most simple possibility
of choosingF̃A, F̃B is to approximate these functions by the
promolecular independent atom densitiesFA, FB, thereby keeping
the exact normalization and the value of the integral:

There are two points justifying such an approach:
(i) As mentioned above, the promolecular electronic force,

never completely compensates the nuclear repulsion forceZAZB/
R2. This means, the essential molecular binding effects come
from the electronic force of the molecular deformation density
F∆F:

with

From this point of view, which has extensively been discussed
in the literature,16,17 the nuclear repulsion force is considered
as a promolecular property.

(ii) At large internuclear distances, the nuclear repulsion force
FA

nuc is almost completely compensated byFA
el through the

electron density contributionsFB around nucleus B, and vice
versa. Our choice of weighting the nuclear repulsion force at
the one nucleus with the atomic electron density around the
other nucleus ensures that at large internuclear distances the
spatial contributions to the electronic force are compensated by
the contributions to the nuclear repulsion force in thesame
regions of space.

5. Definitions and Computational Details

All computations were performed with the Amsterdam
Density Functional (ADF) program18,19using the Vosko-Wilk-
Nusair (VWN) functional20 and the Becke 88+ Perdew 86
gradient corrections.21,22 As already mentioned above, ap-
proximate electron densities in general do not fulfil the force
theorem. To overcome this problem, comparatively large multi-ú
polarized Slater type basis sets together with a highly accurate
numerical integration technique23,24were applied. In this context
the polarization of the core density plays a crucial role. Therefore
sufficient p, d, and f polarization functions for both the valence
and the core shells were added. Compare also refs 13 and 25.

The polarization of the core densities,∆polF, was analyzed
by two methods: either by accurate numerical integration of
the basis representation or by a partial wave decomposition (i.e.,
thedensityis decomposed into s, p, d, f, ... components around
one of the atoms). Only thepx-“partial wave” contribution∆pxF
to the total density contributes to the force value, since the force
operatorF̂A

el is proportional toxA/rA
3 , i.e., toYpx, whereYpx(θ, φ)

is a real spherical harmonic. Therefore∆pxF was projected out
with the help of an even tempered auxiliary one-centerpx-basis
for the density, with overlap matrix〈px|px〉, symbolically (where
px ) px(r)Ypx(θ,φ))

Specific spatial contributions to the force integrals were then
obtained by splitting the total 3D space up into specific regions
(see Figure 3), thereby representing the force or gradient function
by a few representative numbers. A numerical integration grid

∫dr ′ ψ(0)*Ĥψ(1) ) - ∂E
∂R

F + F̂F - E
2
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generated by Boerrigter’s technique23 was used so that both the
nuclear vicinity as well as the borders of the spatial regions do
not cause artifacts.

With core densitywe mean here the total, well-defined
electron density in the “core” regions near the atomic nuclei. It
consists of the density of the atomic core orbitals and of the
inner tails of the molecular valence orbitals. In contrast, the
atomic coreorbitals are not uniquely defined, becausesin the
Hartree-Fock or Kohn-Sham approachessthey can be trans-
formed unitarily. That is, physical core density polarizations
can be described either mainly by core orbitals or mainly by
valence orbitals.

Similarly the “inner shells” of the atoms here do not mean
respective orbitals but the density in respective spatial regions.
The radii of the spatial K, L, and M shells were defined as the
(average)r-values of the inner node(s) of the canonical valence
orbitals of the neutral atomic ground states, e.g.,r(N-K-shell)
from N-2s orr(Cl-L-shell) from Cl-3s,3p.

6. H-F Forces in N2 and HCl

The calculated nuclear equilibrium distancesRe of N2 and
HCl are 1.107 and 1.297 Å (experimental values are 1.098 and
1.275 Å, respectively). In comparison with the energy gradients,
the forces were found to be in good (error<0.005 a.u. for N2)
or reasonable (error<0.02 a.u. for HCl) agreement over a large
range of internuclear distances.

6.1. Radial Summation of Force Contributions.Figure 4
shows the Hellmann-Feynman force (FA or FB, i.e., η ) (1)
for N2 and HCl at equilibrium internuclear distanceRe, radially
integrated up torA around the respective nucleus as a function
of rA, i.e. usingf(r) of eq 19, for instance

The nuclear repulsion force of the neighbor nucleus is
effectively shielded by the large promolecular contributions of
the electronic force, each of which (Fel andFnuc) integrates up
to -576 eV/Å (or -146 eV/Å) in the case of N2 (or HCl,
respectively). For any diatomic molecule the promolecular force
(of spherical neutral atoms) shows a rather simple behavior:
up to the radiusrA ) RAB, the total electron density around the
neighbor nucleus A shields the nuclear repulsion force,

while electron density outside this radius does not contribute
(Faraday cage effect). It means that the antibindingFnuc

outweighs the attractive promolecular electronic forceFB
pro a

little. The total integral (rA f ∞) of Fpro therefore is positive,
i.e., antibinding;16 see Figure 4.

The “missing” binding force to create a stable molecule atR
) Re is due to the deformation density∆F; as mentioned above,
F∆F ) -Fpro. Large contributions to the total integral value of
F∆F are already created in the core region, for the N2 molecule
for instance about 90% in the K-shell of the N atom, due to the
dipolar core polarization, and only about 10% in regionsrN >
R/3, that is in the bond region and in the regions behind the
nuclei (see Figure 4). This situation motivated Spackman and
Maslen,17 after a “visual inspection” of the corresponding maps
of ∆F (Figure 5),F̂ (Figure 2) andF̂‚∆F (Figure 6), to state
rather generally that regions far away from the nuclei play “little
or no role” in binding.

In the case of HCl (bottom of Figure 4) the huge contributions
to the binding force on Cl,FCl

∆F, from the region of the chlorine
K shell are almost completely canceled by antibinding forces
due to opposite polarizations in the chlorine L shell, while the
remaining 14% of the binding forces come from regions with
rCl > R/2 around the Cl nucleus. Concerning the force on
hydrogen,FH

∆F, it comes from the bond region, as expected. It
is well-known (see, e.g., ref 16) that hydrides and especially
H2 are somewhat untypical examples of chemical binding. This
is because of the absence of core shells and because of the
existence of only a single s-valence shell on the H atom. A
bonded hydrogen always shows accumulation of charge density
in the bond region, what is clearly not a necessary condition
for binding of atoms with open p- or d-shells.17,26

The 1/r2 factor in the expression ofF̂el strongly weights the
neighborhood regions of the nuclei and causes huge positive
and negative values of the force integrand on opposite sides of
the nuclei at smallr-values, which nearly cancel each other upon
integration, while any dipolar polarization of the core electron

Figure 3. Division of space into chemically relevant parts for a
diatomic molecule.CA, CB, core (and inner valence) shells of atoms
A, B; RB, back side of atom B; B, central bond region; V, outer valence
region; O, outer region; D, distant region. The following radii were
chosen for N2: 32 pm for CN, 24 pm for B, 88 pm for V, 265 pm for
O. For HCl: 42 pm for CCl, 21 pm for CH, 42 pm for RH, 33 pm for
B, 117 pm for V, 265 pm for O.

Figure 4. Radially integrated total force (FA
tot) and its promolecular

(FA
pro) and deformation density contribution (FA

∆F) for (a) N2 (top) and
(b, c) HCl (bottom) at the computed equilibrium internuclear distances
R, see eq 27. The symbols K, L, ... denote the radii of the core shells
(defined in section 5). Note the logarithmic scale of the abscissa,rA

being the distance from nucleus A. The gauge parameterη (see section
2) is (1.

FA(rA) ) ∫0

rAdr′A r′A
2 ∫dΩ′ f(r ′) (28)

F B
pro )

ZB

RAB
2

[ZA - ∫0

RABdrA 4πrA
2 FA(rA)] (29)
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density will yield an important contribution to the binding force.
However, it is a rash argument that core polarization is the sole
reason for chemical binding forces.

Radially integrated contributions toFtot andF∆F are shown
for different internuclear distances of N2 and HCl in Figures 7
and 8. The contributions from the nuclear vicinity as well as
those from the bond regions and from regions far from the nuclei
vary with internuclear distance and are both appreciable.

Figure 5. Contour maps of the electron deformation density∆F of N2

and HCl at equilibrium internuclear distance. Contour line values are
0.000,( 0.002× 2n electrons per bohr3, n ) 0, 1, 2 ... (the maximum
∆F of N2 is about 0.9 e Å-3). The zero contours are dotted; negative
contours are dashed.

Figure 6. Contour maps ofF̂∆F for N2 and HCl at equilibrium
internuclear distance.ηCC gauge forF̂ corresponding to Berlin diagram
in Figure 2a. Contour line values are 0.00,( 0.02× 2n Hartrees per
bohr4, n ) 0, 1, 2, ... The zero contours are dotted, negative contours
are dashed.

Figure 7. Radially integrated total force (FN
tot) and the contribution

from the deformation density (FN
∆F) for N2 at various internuclear

distances. The curve for the equilibrium distance is bold. See also the
caption of Figure 4.

Figure 8. Radially integrated total force (FCl
tot) and the contribution

from the deformation density (FCl
∆F) for HCl at various internuclear

distances. The curve for the equilibrium distance is bold. See also the
caption of Figure 4.
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6.2. Force Contributions from Different Regions of Space.
In Table 1 the electronic forcesFel andF∆F at R ) Re are split
up into contributions from different regions of the molecule,
cf. Figure 3. In both diatomics, N2 and HCl, we have applied
three different gauge parameters:η ) (1 andηcc (eq 6b), the
latter corresponding to the symmetric Berlin diagram of Figure
2a. In the case of N2 the core polarization is indeed the largest
contribution toF∆F, but the density changes in the inner bond
region (B), in the outer valence region (V), and on the back
sides of the atoms (contained in the O region) give rise to
contributions to the totalFel of the same order of magnitude
than those from the atomic cores. AtRe, the antibinding forces
from the atomic back sides, which are due to a lone pair charge
accumulation in this electrostatically antibinding region, cancel
a large part of the binding forces in the bond and valence region,
so that the sum of these forces approximately vanishes in the
radial contributions toF∆F, cf. Figure 4.

A similar situation holds for HCl. Especially for the choice
of ηCC (FAB) the bond and the outer valence regions dominate
the binding forces from∆F, while the core polarization gives
an important but, in contrast to N2 not the dominant contribution
to FCl

∆F (ηcc weightsFCl much less (×1/18) thanFH (×17/18), and
H without core orbitals is an atypical bond mate). Again, other
regions far away from the nuclei contribute binding and
antibinding forces of the same order of magnitude, which, in
their sum, determine the sensitive balance of forces at equilib-
rium geometry. Figures 7 and 8 indicate that at other internuclear
distances the changing topology of∆F weights other regions
of space differently, sometimes in a way that major binding
effects take place at distancesJR/2 from the nuclei.

6.3. Core Polarization.Figure 9 shows significant dipolar
polarization of the core densitiy of N in N2 and of Cl in HCl.
In Figure 10 the radially integrated electronic contribution of
the force, eq 28, as obtained from the partial wave decomposi-
tion of the density, eq 27, is compared with the respective result
from numerical integration of the total density as in Figure 4.
In N2 the polarized 1s core shell contributes approximately 11%
(i.e., -1.28 au) to the total electronic force of-11.2 au. This
represents a major contribution toF∆F, namely 76% (i.e.,-1.00
au, see Table 1). The individually much larger binding and
antibinding forces around the Cl nucleus in HCl (Figures 4b
and 10b) result from the orthogonality of the chlorine K and L
shells, which causes polarizations of opposite signs in different
shells (see also ref 27).

The all-electron calculations and the (appropriately designed)
frozen atomic coresvalence only optimizedscalculations (N,
1s; Cl, 1s2s2p frozen) are known to yield quite similar binding
energies and equilibrium structures. Figure 9 demonstrates that
the core polarizations are also similar in both approaches. In
the case of valence only calculations, the specific molecular
features in the atomic valence shells causes a specifically
polarized valence density distribution. The orthogonalization of
the asymmetric molecular valence orbitals on the spherical
atomic core orbitals creates polarized tails of the valence orbitals
in the core regions. In other words, the sign topology of the
molecular valence shell is coupled to the corresponding sign
pattern of density polarizations in the atomic core shells as a

TABLE 1: Contributions to the Hellmann -Feynman Force Integral from Different Spatial Regions as Represented in Figure 3,
for N2 and HCl at Equilibrium Internuclear Distance a

F ∆F FA
el FA

∆F FAB
el FAB

∆F FB
el FB

∆F

N2

CN(A) 2.4286 0.0173 -1.2806 -1.0006 -2.5888 -0.5159 -3.8969 -0.0312
CN(A) 2.4286 0.0173 -3.8969 -0.0312 -2.5888 -0.5159 -1.2806 -1.0006
B 0.2337 0.0546 -1.5144 -0.3519 -1.5144 -0.3519 -1.5144 -0.3519
V 4.0836 0.0418 -7.8708 -0.4655 -7.8708 -0.4655 -7.8708 -0.4655
O 4.2146 -0.0190 3.2694 0.5374 3.2694 0.5374 3.2694 0.5374
D 0.6109 -0.1120 0.0818 0.0100 0.0818 0.0100 0.0818 0.0100

∑ 14.0000 0.0000 -11.2115 -1.3019 -11.2115 -1.3019 -11.2115 -1.3019

HCl
CCl(A) 10.0115 -0.0029 -0.4291 -0.3157 -1.5975 -0.0167 -1.6663 0.0009
CH(B) 0.0609 0.0122 -0.1757 -0.0368 -0.0689 -0.0456 -0.0626 -0.0462
RH 0.1443 -0.0012 -0.3259 -0.0108 -0.0713 -0.0217 0.0947 -0.0224
B 0.2429 0.0309 -2.1746 -0.1853 -0.3317 -0.0506 -0.2233 -0.0426
V 3.9762 0.0583 -9.2114 0.1704 -1.2475 -0.0480 -0.7791 -0.0608
O 3.5096 -0.0835 9.4645 -0.1389 0.3436 -0.0288 -0.1929 -0.0223
D 0.0546 -0.0138 0.0215 -0.0041 0.0003 -0.0003 -0.0009 -0.0001

∑ 18.0000 0.0000 -2.8304 -0.5211 -2.8304 -0.2116 -2.8304 -0.1934

a The gauge parameter was chosen asη ) (1 (FA andFB, respectively) orηCC (FAB).

Figure 9. Dipolar polarization of (a) the N and (b) the Cl core density
(p-wave contribution) in N2 and HCl at equilibrium internuclear
distance, from “all-electron” and from “frozen atomic core orbital”
calculations. ProMol means the “promolecular” superposition of
spherical unperturbed atomic densities, the tail of the other atom's
density causing only a small density polarization.
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consequence of the orthogonality restriction arising from the
Pauli principle (compare also Hellmann28 in 1936).

In an all-electron calculation the molecular core density
polarization is represended by the sum of core orbital polariza-
tions and polarized tails of the valence orbitals. In a recent
reinvestigation of contributions of the canonical SCF orbitals
to Fel 13 it was found that a significant part ofFel resulted from
the density of the inner core molecular orbitals, e.g., in N2 from
1σg and 1σu, what was called the “atomic dipole” (AD)
contribution. These results are in agreement with Figures 9 and
10, where a fraction of the core polarization is due to
polarization of the core orbitals.

Figure 9 shows that the core orbital polarization of N2 is not
completely accounted for in the valence only calculation. This
is the error of the frozen core approximation, which seems to
be compensated by a respective change (i.e., error) of the valence
charge density so that the molecular energy and force curves
are still quite accurate.

7. Concluding Remarks

The chemical bond energy gradients or binding forces
between the atomic nuclei, which have well-defined values and
vanish at equilibrium structure, can be obtained by 3D integra-
tion over a strongly gauge-dependent function, eqD:19. It may
be called the energy gradient/force density. It contains terms
proportional toF(r ), to ∂F(r )/∂R, and/or toF(r )/r2.

The first two terms represent the energy gradient density.
Significant contributions to the kinetic and potential bonding
energy gradients come from the valence regions of the molecule.
Bonding can be explained through density changes in the bond
overlap and lone pair regions.

Since the valence molecular orbitals should be chosen
orthogonal to the inner core orbitals in order to obtain a simple
picture in the orbital model, the pattern of core density
polarizations is coupled to the pattern of the valence density
deformations. Bonding/binding can (partially) be explained
through valence shell effects or (partially) through core density
effects, namely, when the neighborhood of the nuclei is weighted
by a 1/r2-factor in the Hellmann-Feynman binding force
expression.

In the gradient expression, the kinetic energy gradient partially
cancels the potential energy gradients, and a numerically
sensitive potential term is left over in the Hellmann-Feynman
force expression. The coupling of density deformations in the
valence and core regions in the holistic theory of quantum
mechanics allows one to explain bonding/binding, for instance,
along either of the following two lines. One may analyze the
interplay of several different energy or energy gradient contribu-
tions from the inner and outer valence regions, the determination
of which is numerically stable. Or one may discuss simple
electrostatic force contributions from all molecular regions (the
inner and outer core shells, together with contributions from
the valence regions), which are not easy to compute accurately
(however, see, e.g., ref 29).

The core density polarization can be represented either
dominantly by core orbitals or dominantly by the orthogonality
tails of the valence functions. A frozen core orbital approxima-
tion still reproduces a large part of the core density polarization.
Bonded hydrogen atoms constitute a somewhat unusual case
of bonding, since there are no core shells. Finally we note that
the first derivation and discussion of the electrostatic force
theorem was published by Hellmann in a rather common journal
already in 1933.2
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Figure 10. Radially integrated Hellmann-Feynman force density in
the core regions of (a) N in N2 and of (b) Cl in HCl. The points were
calculated by numerical integration of the density, and the curves were
obtained by analytical integration of the p-wave contribution to the
core density polarization shown in Figure 9.
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