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Where Do the Forces in Molecules Come from? A Density Functional Study of Nand HCI
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Though chemical forces in molecules have been of considerable interest for decades, the question of the
origin of such forces concerning different spatial regions in a molecule is still open to discussion. In this
paper we investigate chemical forces by a density functional study of two moleculasdNHCI. On the one

hand, we find that the quantitative details of slight polarizations of the electronic densities in the atomic core
regions yield major contributions to the forces, and this is responsible for the difficulties in calculating reliable
forces from approximate electron densities. On the other hand, the qualitative topology of the electron density
in the valence region is not at all unimportant for electrostatic forces, and this is responsible for the possibility
of a qualitative chemical interpretation of electrostatic binding.

1. Introduction o(r) = fdr’ e 3)

1.1. Electron Density and ForceThe electron density(r)
and its topological features can be employed as a principal basisHere, /dr’ means integration over all electronic spin coordinates
of understanding chemical bonding. Namedydetermines (i) and all spatial coordinates but one.
the total energyE and thereby the bond ener@E and (i) the 1.2. Different Expressions of the ForceThe validity of the
binding forces-. Here we follow the convention that bonding  Hellmann-Feynman force theorem (and its generalizations) can
refers to energy and binding refers to (electrostatic) force. The also be proven for (exact or specially optimized densities of)
theoretical justification of point (i) had formally not been proven several model systems such as HartrEeck or Xa.56 The
before 1965 by Hohenberg and Kohand it is still an unsolved  crucial point is that the force theorem does not hold in general
problem: howto determine the energy of atoms and molecules for approximate densities, especially not in the standard quantum
solely from the electron density. Concerning point (ii), it has chemical case, where basis functions are centered on the moving
already been shown in the very begining years of quantum nuclei. It is well-known that the errors of the force introduced
mechanics by Hellmann (in 1933fpr later references, see refs  py the “fixed-center basis set approximation” can be enormously
3 and 4) how the binding forces can be computed directly from |arge even for good quality standard basis sets. As a conse-
the electron density. The well-known so-called Hellmann guence, forces in molecules (for instance needed during

Feynman formula reads geometry optimizations) are usually computed as the exact
9E R gradient of the respective approximate energy expectation value
Fp= TR fdr Fap(r) 1) (E0= @ |H|yL which then includes all terms that would sum
A up to zero upon integration if were the exact eigenfunction
of H.

where the vectoF, is the force on nucleus A at positidRy,

Neio(r) is the total electronic charge density, with normalization This has lead loa somewhat pgradqxwal situation. On the
dr p(r) = 1, and one hand, eq 1 is conceptually quite simple since it connects

the features of the electron density in real space directly with

) ) ) Ma Rag the chemical forces. From a computational as well as from an
Fo=Fd+Fl=—-NzZ,—+ ZABZAZB— 2 experimental (i.e., density measurement) point of view, it is very

ra = R attractive to use eq 1 for the interpretation of chemical binding,
and numerous examples of such interpretations can be found

is the Hellmanr-Feynman force vector operator corresponding in the literature (see, e.g., ref 7). On the other hand it is
to the molecular Hamiltoniarr., is the distance vector of an computationally demanding and, with present-day technology,
electron from nucleus A with nuclear char@, ra is its practically impossible by experimental methods to obtain the
absolute value, anBag is the distance vector between the two  electron density with a high enough accuracy that the application
nuclei A and B. Atomic unitsrte = 1, i = 1, 4reo = 1) are of eq 1 would result in reasonably accurate forces, or at least
used throughout this paper unless stated otherwise. It isin forces of the correct sign. Conversely, the requirement that
important to note that the derivation of eq 1 is, in the most the force vanishes at internuclear equilibrium can be used to

simple case, based on the assumption #{a} is the exact  improve the experimental polarization of the core denity!
electron density of the molecule, computed from éact N- Nevertheless, such approximate electron densities are usually
electron wavefunction by accurate enough to reproduce a reasonable description of the
;. - schwarz@ch p molecule, e.g., appropriate deformation densities)( density
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of the electron density in the valence and bond regions of the
molecules, which are often already qualitatively well represented
by moderately sized basis sets. Yet the computation of the forces
using eq 1 often leads to totally wrong results. It is our aim
here to discuss this curious situation and to answer the question
about the spatial origin of the forces. ZlLV
The following aspect is important in this context. In order to

explain the “physical nature of a chemical phenomenon”, the x
mathematical formula of the respective physical observable X .4 XA XB »X
should be made transparent so that the sign and order of AL __ToB
magnitude of the numerical value become obvious. In quantum R

mechanics, those formulas consist of integrals over the whole Figure 1. Coordinates of a diatomic molecule— oriented along

space. A great many replacements and transformations, includinge v-axis. The nuclear positions on the axis are marked by dots. Note
gauge transformations of the basic fields as well as of the the directions of the-coordinates, which are consistent with the signs
chemical forces, and integral transformations and partial integra-in eqs 4-7; they ensurds = +F¢,

tions, are possible to modify the respective mathematical
expression. Accordingly, the explanation of the physical nature an=0 b)n =06
of a phenomenon can be cast into many different, often "
paradoxical, forms.

1.3. Outline. The paper is organized as follows: In section
2 the gauge freedom of the force is reviewed. In section 3 the
general formulas of force density and energy gradient density
functions are discussed. Section 4 considers suitable expressions
for the nuclear repulsion force density. After a short section 5
on computational details, spatial contributions to the forces in
N, and HCI molecules are analyzed in section 6. Section 7
contains some final conclusions.

2. Internal Coordinates and Gauge of the Force

From now on we will consider a diatomic molecule-B
along coordinate axis, i.e.,Ra = (Xa,0,0) andRg = (Xs,0,0),
cf. Figure 1. There are six positional variables, while the
molecular bonding energy only depends on a single variable,
the internuclear distand® = |Rag|. Because of the, mirror F_igure'2. Gauge dependent binding and antibinding regions in a
symmetry of the molecular electron densiE/depends orXa diatomic molecule. (Thg-values refer to the homonuclear case=

- . . Zg.) A negative sign of®, eq 7, corresponding to binding forces, is

andXg only, while 9E/dY = 0 etc. Introducing a translational  qgicated by light, and a positive sign (antibinding forces) by dark
transformation (compare also Silberb3ahith gauge parameter  shading. The arrows symbolize the relative weight and direction of

o

antibinding binding

n the shifts of each nucleug.= 0 means equal translations in opposite
1 directions,7 = £1 means that only one nucleus is shifted by twice the
+ amount.
X, =S— T"R (4a) u
choice as the only reasonable ome= +1 means that only
Xg =S+ HR (4b) one of the two nuclei is shifted. Other special choices are fixing
2 the center of mass (CM) or charge (CC) of the nuclei:
we find for the nonvanishing component Bfg = (F(R),0,0) Mo — M
in the directionRag, as the physical invariant, which can be 77CM __B A (6a)
split up arbitrarily into two contributions: Mg + M,
JE(R) Z;—Z
FR) = ——— cc_B A
R =717, (6b)
X X
= —(;TE) a_RA - (§7E) 8_F\’B Koga et al*?2 and recently Ishida and Ohkohave strongly
Al Xg B/ Xa advocated for restricting oneself to thg™ choice, which
corresponds to the nuclear motions of a molecule vibrating in
=F 1+7 +F 1-n_ FatFg +7 Fa—Fsg free space. They also mentioned that for non-hydrogenic nuclei
A2 B 2 2 2 5 with Ma & 2Za, M ~ €€, while for hydrides the two choices
®) of » are quite different, though both are not too different from

Sin eq 4 has the meaning of am-tveighted” center of the unity. Since the forces origjnate in the charges of the particles,
molecule, where specifies the relative shifts of the two nuclei. 7°©may also be preferable in some discussigfi§.corresponds

» = 0 means that the geometrical center of the nuclei remains t0 the symmetric Berlin diagram (a) in Figure 2. For specific
fixed upon variation ofR, i.e., both nuclei are shifted by 0.5 Purposes it may be more useful to investig&ig or Fs
dRtoward each other when determining the energy gradient or individually, i.e.,n = +1.

force. Berlid® had chosen thig-value implicitly without any The electronic part of the force operator, eq 2, corresponding
discussion, and HinZé strongly advocated for this special to eq 5 and Figure 1, reads
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fel 1+7n_cosf, 1—n_cosby 3.2. Expressions for the Energy GradientWe will now
F="No| 52— 5 L5 (7) investigate energy gradientdensity functions which, after
Ta s integration over 3D space, yield the energy gradient or force

For th | Ision f it is desirabl introd value. This is the first-order perturbation enegy with respect
or the nuclear repulsion force it is desirable to introduce an o, where the perturbation is the negatve change of

operator _that similarly depends on the gauge throygind ?S internuclear distance. For conveniendés chosen here so that
split up into two terms in such a way that one obtains a the signs correspond B3 = F = — 9E/OR. The superscripts
chemically sensible classical force picture at large distances (seqn parentheses denote the perturbation order with respect to

section 4). A Multiplication by y* of the Schralinger equatiorHy = yE
As pointed out by Berlif? F¢! is a real function in three- Ieadsp after inteyg:r/;tion to gereq Ve

dimensional space, and since the electron densfty is
everywhere positive, the sign dfe defines binding and D
antibinding regions in a molecule in apdependent manner. Ep(r) = fdr yrHY
Figure 2 shows different “Berlin diagrams”. The gauge freedom
motivated Silberbachto completely reject Berlin’s concept of
binding and antibinding regions in a molecule, since they are
not uniquely defined corresponding to the Galitélewton
arbitrariness of coordinate choice.

(12)

Cf. eq 3 for the definition of/dr’. The energy density function
yY*Hy of a system is, pointwise, just the electron density
multiplied by E. The first-order perturbation of eq 12 is

(A) E(l)p(O)(r) 4 E(O)p(l)(r) —
3. The Force and the Energy Gradient S dr [y @ Ay @ 4 O {OYO 4 ), O {OR, Y (13)

3.1. Discussion of the Force ExpressiorThe total energy
of a molecule (in the BorrOppenheimer approximation,
neglecting the kinetic energy of the nuclei) reads

E = IAly0= 0,0+ Dy JH B+ DO (8) AOY® + AOy© = EOy©@ + EOp®  (14)

whereA® = 5A/35, p® = 9p/30 etc. We assumap©|yDi=
0. From the first-order perturbation equation,

it follows that the functiony©@"H®y© on the right-hand side

For ¢ exactly fulfilling (I:I — E)y = 0, one obtains egs 1 and ! i i J .
of eq 13, i.e., the force density, strongly diverging at the nuclei

2, e, ; A : .
according to eq 7, ipointwisecancelled by terms contained in
. 9~ A the functiony©"H©Op@), Thereby the function on the left-hand
F=- H”‘ﬁ[VNe"' VNN]‘V)D ©) side of eq 13 results, which is much smoother at the nuclei.
Alternatively, one may multiply eq 14 by©" and integrate
while the sum of the remaining terms vanishes, as in eq 3 to obtain
BIj'eD Ip 8@7843 dp B) EDoOr) + 1. EO,Dr) =
ﬁ—’_@NeﬁD_" R +@NN¥2D:O (10) (B) E”p™(r) E70(r)

[ @ AOYO 4 O O] (15)
Since this does, of course, not mean the vanishing of any

individual term in eq 10, one must, and should not, support We see from egs 13 and 15 that the energy gradient density
arguments in favor of the apparently vanishing role of the kinetic function of the molecule is given by two terms. The first one is
electron energy in chemical binding. It is just the following type its electron density©(r) multiplied by E®, which yields the

of replacement of kinetic energy by potential energy terms gradient or forceralue B = F = —3E/dR upon integration. It

through inserting the Schdinger equation, i.e. is superimposed by another functipf(r) = —3p/dR, multi-
R R plied by some arbitrary factor, for instan&? in eq 13, or
D, T, — ElpO0= — (| V o0 (11) alternatively E©/2 in eq 15. Upon integration it does not
contribute to the numerical expectation value of the force, since
which, since the early times of quantum chemistrit evoked o@D integrates up to zero.

this argumentation. The force theorem suggests only illusorily 3.3, Relation of Different Expressions_Eproiting, upon

that the binding force is essentially electrostatic. The convenient integration of eq 13 or 15, the hermitian propertyHf) and

result of a purely electrostatic force expression is obtained from the relation H® — E@)y© = 0 for exacty©), the force is

the knowledge that, upon electronic integration of the nuclear obtained as

gradient of theexactquantum chemical electronic density, the

sumof eq 10 will vanishexactly F=Ee®=@9A[%y%0 (16)
Hence there exist conceptionally different notions of different

physical pictures: on the one hand, there is the seemingly purelyThe last two terms on the right-hand side of eq 13, or the last

electrostatic force, on the other hand, there is the completeterm on the right-hand side of eq 15, vanister integration;

gradient of the molecular bonding energy, containing derivatives see eq 10. Deleting a part or all of these terms, we go from eq

of each individual energy term of the Hamiltonian, including 13 to eq 15 to eq 17,

the contribution from{T¢[J Furthermore the “energy gradient

function” in spacep(y*Hy)/0R, has no similarity at all to the ~ (C) Fo(r) = fdr'w(o)*ﬂ(l)w(o) (17)

“force function”, y*(aH/9R)y, see below. Accordingly, the

energy gradient will provide a completely different spatial This drastically changes the integrand function without changing

picture than the force. To avoid ambiguities, we note again that the integral value in the case of an exgctexcept its error

upon integration both quantities give the same numerical result sensitivity), and one obtains the force density from the energy

for the total force, but the contributions a&fy*Hzy)/0R and of gradient density. At the nuclear equilibrium distance, wite

Y*(dA/OR)y come from different regions in space. = 0, i.e., where the nuclear and electronic forces are at
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equilibrium and the total force or energy gradient vanish, the e - Z,Zg[1+ 7 1-9
topology of the energy gradient density, eq 13, is solely deter- Fe=FMePe= [dr = 5> Pe T 5Pl (23)
mined by the topology 0p® = —3p/dR. The force density, eq AB

17, depicts a completely different picuture of binding in terms

of electrostatic forces, involving ar#/factor. The difference

in these two equivalent pictures reflects again the hidden, but

nevertheless important, role of the kinetic energy for chemical gl

bonding. FePe= [ dr 17~ (Napa + Nopg) (24)
Noting that the first-order equation (14) means that el

There are two points justifying such an approach:
(i) As mentioned above, the promolecular electronic force,

O ) 9E . E dp never completely compensates the nuclear repulsion ExZg/
S @Ry =~ RTFP—5R (18) R2. This means, the essential molecular binding effects come
from the electronic force of the molecular deformation density
a more general expression for the density funct{o) yielding FAe;
the force or gradient value upon integration, reads

(D) (1) = 1F,(0p(r) — (1= )250() — wELL) (19) vt

F= Fel,pro_l_ Fnuc,pro+ FAp (25)

A

[
where (; _y) andy are arbitrgry parameters. _The special cases AP = fdr-F—e-Ap (26)
“expectation value” A:13), “first-order equation” B:15), and Ng

“force expression” C:17) are contained in the general force ) ) ] ] ) )

and energy gradient density expressibri0). The three special ~ From this point of view, which has extensively been discussed

forms (13), (15), and (17) are represented byu) = (0; 1), in the literature’®1” the nuclear repulsion force is considered
(0; /), and (1; 0), respectively. as a promolecular property.

(i) At large internuclear distances, the nuclear repulsion force
4. Choice of Nuclear Repulsion and Promolecular Forces Fa'° is almost completely compensated B through the

electron density contributionss around nucleus B, and vice
versa. Our choice of weighting the nuclear repulsion force at
the one nucleus with the atomic electron density around the
other nucleus ensures that at large internuclear distances the
spatial contributions to the electronic force are compensated by
Ny = ZNAPA + Ap=p"°+ Ap (20) :Zgigr?gtcr);b:;gz: to the nuclear repulsion force in Same

The electron density of a molecule can be represented as
the superposition of (i) densities of the independent spherical
atomspa (the so-calledoromolecular densityP™©) and (ii) a
moleculardensity deformatiom\p:

where fdr pa = 1, fdr Ap = 0, andNeg; = Na + Ng. The 5. Definitions and Computational Details

electronic part of the forcése, and the nuclear repulsion force, All computations were performed with the Amsterdam
Fnuc being of opposite sign, can be several orders of magnitude Density Functional (ADF) prograthusing the Voske-Wilk —
larger than the total force = F®' + F"c, especially near the  Nysair (VWN) functionad® and the Becke 88 Perdew 86
equilibrium internuclear distance. The major part of the electron- gradient correctiond?2 As already mentioned above, ap-

ic binding forceF!‘i' on nucleus A is trivially due to the shield-  proximate electron densities in general do not fulfil the force
ing of the repulsion of nuclear char@g by the promolecular  theorem. To overcome this problem, comparatively large njulti-
electron density, canceling the nuclear repulsion force almost po|arized Slater type basis sets together with a highly accurate
totally. It is desirable to eliminate these two huge contributions nymerical integration technigi4were applied. In this context

of different sign from the discussion of the total binding force. the polarization of the core density plays a crucial role. Therefore
This is achieved by introducing apgauge also into the nuclear  gyfficient p, d, and f polarization functions for both the valence
repulsion force so that the promolecular contributions from both zndthe core shells were added. Compare also refs 13 and 25.
atoms to both=¢' andF"uc approximately cancel each other for The polarization of the core densitie&?®p, was analyzed
any choice ofy. From the Schidinger equation, the gauge-  py two methods: either by accurate numerical integration of
free nuclear repulsion force density is initially obtained as  the basis representation or by a partial wave decomposition (i.e.,

77 thedensityis decomposed into s, p, d, f, ... components around
Anucp(r) = A Bp(r) (21) one of the atoms). Only thg-“partial wave” contributionAp o
Rig to the total density contributes to the force value, since the force

) ) ) operatoﬂi,‘i' is proportional t0<A/rf\, i.e., toYy, whereY,, (0, ¢)
A suitable choice for an-gauge of"°can be achieved through  is a real spherical harmonic. Therefakg,p was projected out

P = Py with the help of an even tempered auxiliary one-cepgdrasis
14y 1-p for the density, with overlap matrixy|px[) symbolically (where
Py =" Pat+ 5 (22) Px = P Yp(0.9))

App(0) = pHDIRT oD (27)
Px

wherepa and pg are the densities of the deformed “atoms in
molecules”, i.e.,Ne|p = Napa + Ngps. (Concerning another

decomposition of"t¢, see ref 13). The most simple possibility Specific spatial contributions to the force integrals were then
of choosingpa, ps is to approximate these functions by the obtained by splitting the total 3D space up into specific regions
promolecular independent atom densifigsps, thereby keeping (see Figure 3), thereby representing the force or gradient function
the exact normalization and the value of the integral: by a few representative numbers. A numerical integration grid
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Figure 3. Division of space into chemically relevant parts for a 0 e
diatomic moleculeCa, Cg, core (and inner valence) shells of atoms N | 0 ——
A, B; Rs, back side of atom B; B, central bond region; V, outer valence .49 Fa [
region; O, outer region; D, distant region. The following radii were = LY 10 ¢
chosen for N: 32 pm for Gy, 24 pm for B, 88 pm for V, 265 pm for S =
O. For HCI: 42 pm for G, 21 pm for Gy, 42 pm for Ry, 33 pm for & 3,
B, 117 pm for V, 265 pm for O. -120 HCL
— -30
. , . K LRA2R 0.2 R2R
generated by Boerrigter’s technid@&vas used so that both the A ; log. scale] (. TA: log. scale]

nuclear vicinity as well as the borders of the spatial regions do
not cause artifacts. Figure 4. Radially integrated total forceFY") and its promolecular

With core densitywe mean here the total, well-defined (FA”) and deformation density contributio{") for (a) N (top) and
electron density in the “core” regions near the atomic nuclei. It (b, ¢) HCI (bottom) at the computed equilibrium internuclear distances

. . . . R, see eq 27. The symbols K, L, ... denote the radii of the core shells
consists of the density of the atomic core orbitals and of the (defined in section 5). Note the logarithmic scale of the abscissa,

inner tails of the molecular valence orbitals. In contrast, the pejng the distance from nucleus A. The gauge paranetsee section
atomic coreorbitals are not uniquely defined, becausia the 2) is +1.

Hartree-Fock or Kohn-Sham approacheghey can be trans-
formed unitarily. That is, physical core density polarizations while electron density outside this radius does not contribute
can be described either mainly by core orbitals or mainly by (Faraday cage effect). It means that the antibindfic

valence orbitals. outweighs the attractive promolecular electronic foFg¥ a
Similarly the “inner shells” of the atoms here do not mean |jitje. The total integral (s — ) of FP™ therefore is positive,

respective orbitals but the density in respective spatial regions.j e antibinding® see Figure 4.
The radii of the spatial K, L, and M shells were defined as the ;¢ “missing” binding force to create a stable moleculRat
(averagey-values of the inner node(s) of the canonical valence _— Reis due to the deformation densifyp; as mentioned above

orbitals of the neutral atomic ground states, e.g\-K-shell) FA = —FPro_ | arge contributions to the total integral value of
from N-2s orr(Cl-L-shell) from Cl-3s,3p. FA» are already created in the core region, for themblecule
6. H—F Forces in N, and HCI for instance about 90% in the K-shell of the N atom, due to the

dipolar core polarization, and only about 10% in regions
R/3, that is in the bond region and in the regions behind the
nuclei (see Figure 4). This situation motivated Spackman and
' Maslen!” after a “visual inspection” of the corresponding maps
of Ap (Figure 5),F (Figure 2) and~-Ap (Figure 6), to state
rather generally that regions far away from the nuclei play “little
or no role” in binding.
In the case of HCI (bottom of Figure 4) the huge contributions

The calculated nuclear equilibrium distandesof N, and
HCl are 1.107 and 1.297 A (experimental values are 1.098 and
1.275 A, respectively). In comparison with the energy gradients
the forces were found to be in good (erre0.005 a.u. for M)
or reasonable (error0.02 a.u. for HCI) agreement over a large
range of internuclear distances.

6.1. Radial Summation of Force Contributions.Figure 4
shows the HellmanaFeynman forceRa or Fg, i.e.,n = 1) o Ap . .
for N, and HCI at equilibrium internuclear distanBg radially to the binding force on CEf, from the region of the chlorine
integrated up t@a around the respective nucleus as a function K shell are almost completely canceled by antibinding forces
of ra, i.e. usingf(r) of eq 19, for instance due to opposite polarizations in the chlorine L shell, while the

remaining 14% of the binding forces come from regions with

Ay, .2 e ree > R/2 around the CI nucleus. Concerning the force on
Falra) = fo dra Ta fdQ i) (28) hydrogen FZ’, it comes from the bond region, as expected. It
is well-known (see, e.g., ref 16) that hydrides and especially

The nuclear repulsion force of the neighbor nucleus is H hat untvoical | f chemical binding. Thi
effectively shielded by the large promolecular contributions of . 2 are somewnat untypical exampies ot chemicas binding. 1his
the electronic force, each of whick% andF"9 integrates up is because of the absence of core shells and because of the

to T576 eV/A (or F146 eV/A) in the case of N(or HCI existence of only a single s-valence shell on the H atom. A

respectively). For any diatomic molecule the promolecular force ponded hydrogen always shows accumulation of charge density

(of spherical neutral atoms) shows a rather simple behavior: in the bond region, what is clearly not a necessary condition

- . ) i %

up to the radiusa = Rag, the total electron density around the for b|nd|n2g of atqms with open P 0[3 shelis: )

neighbor nucleus A shields the nuclear repulsion force, The 1f2 factor in the expression di strongly weights the
neighborhood regions of the nuclei and causes huge positive

Re ) and negative values of the force integrand on opposite sides of
[Za = J, dradary pa(ra)l (29) the nuclei at smali-values, which nearly cancel each other upon
RIZ-\B integration, while any dipolar polarization of the core electron

ZB
E pBro ——
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Figure 7. Radially integrated total forceF[{") and the contribution
Figure 5. Contour maps of the electron deformation denaipyof N, from the deformation densityFf;?) for N, at various internuclear
and HCI at equilibrium internuclear distance. Contour line values are distances. The curve for the equilibrium distance is bold. See also the
0.000,+ 0.002x 2" electrons per boRrn =0, 1, 2 ... (the maximum  caption of Figure 4.

Ap of Ny is about 0.9 e A3). The zero contours are dotted; negative
contours are dashed.
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Figure 8. Radially integrated total forceF) and the contribution
— * from the deformation densityFf) for HCI at various internuclear

Figure 6. Contour maps ofFAp for N, and HCI at equilibrium distances. The curve for the equilibrium distance is bold. See also the

internuclear distancey°° gauge for- corresponding to Berlin diagram  caption of Figure 4.

in Figure 2a. Contour line values are 0.@80,0.02 x 2" Hartrees per

boht, n=0, 1, 2, ... The zero contours are dotted, negative contours

are dashed.

Radially integrated contributions 6t and FA¢ are shown
for different internuclear distances ok ldnd HCI in Figures 7
density will yield an important contribution to the binding force. and 8. The contributions from the nuclear vicinity as well as
However, it is a rash argument that core polarization is the sole those from the bond regions and from regions far from the nuclei
reason for chemical binding forces. vary with internuclear distance and are both appreciable.
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TABLE 1: Contributions to the Hellmann —Feynman Force Integral from Different Spatial Regions as Represented in Figure 3,
for N, and HCI at Equilibrium Internuclear Distance 2

P Ap FA PR’ Fie Fab Fa Fe’
N2
Cna) 2.4286 0.0173 —1.2806 —1.0006 —2.5888 —0.5159 —3.8969 —0.0312
Cna) 2.4286 0.0173 —3.8969 —0.0312 —2.5888 —0.5159 —1.2806 —1.0006
B 0.2337 0.0546 —1.5144 —0.3519 —1.5144 —0.3519 —1.5144 —0.3519
\ 4.0836 0.0418 —7.8708 —0.4655 —7.8708 —0.4655 —7.8708 —0.4655
(0] 4.2146 —0.0190 3.2694 0.5374 3.2694 0.5374 3.2694 0.5374
D 0.6109 —0.1120 0.0818 0.0100 0.0818 0.0100 0.0818 0.0100
> 14.0000 0.0000 —11.2115 —1.3019 —11.2115 —1.3019 —11.2115 —1.3019
HCI
Ceia 10.0115 —0.0029 —0.4291 —0.3157 —1.5975 —0.0167 —1.6663 0.0009
Ch) 0.0609 0.0122 —0.1757 —0.0368 —0.0689 —0.0456 —0.0626 —0.0462
Ry 0.1443 —0.0012 —0.3259 —0.0108 —0.0713 —0.0217 0.0947 —0.0224
B 0.2429 0.0309 —2.1746 —0.1853 —0.3317 —0.0506 —0.2233 —0.0426
\ 3.9762 0.0583 —9.2114 0.1704 —1.2475 —0.0480 —0.7791 —0.0608
(0] 3.5096 —0.0835 9.4645 —0.1389 0.3436 —0.0288 —0.1929 —0.0223
D 0.0546 —0.0138 0.0215 —0.0041 0.0003 —0.0003 —0.0009 —0.0001
> 18.0000 0.0000 —2.8304 —0.5211 —2.8304 —0.2116 —2.8304 —0.1934

2The gauge parameter was chosemas +1 (Fa andFg, respectively) omCcC (Fag).

6.2. Force Contributions from Different Regions of Space.

In Table 1 the electronic forcd=®' andF2» atR = R, are split 0-2 p-density [a.u.] gn
up into contributions from different regions of the molecule, e A-ElL =t Ad Teal N
cf. Figure 3. In both diatomics, Nand HCI, we have applied 0.1 l '
three different gauge parameteng:= +1 andz*c (eq 6b), the -
latter corresponding to the symmetric Berlin diagram of Figure o N_?_________ F.'.???.’.‘.E?!?....
2a. In the case of Nthe core polarization is indeed the largest e
contribution toF2#, but the density changes in the inner bond
region (B), in the outer valence region (V), and on the back 0lre - 2 ProMo| ======
sides of the atoms (contained in the O region) give rise to Scane’
contributions to the totaF® of the same order of magnitude -0.2b = . -~ -
than those from the atomic cores. Ry, the antibinding forces I Ve : :
from the atomic back sides, which are due to a lone pair charge Distance from N [a.u.]
accumulation in this electrostatically antibinding region, cancel :
a large part of the binding forces in the bond and valence region, 0.4 p-density [a.u] «~— All-El
so that the sum of these forces approximately vanishes in the —_—
radial contributions td=2¢, cf. Figure 4. 0.2

A similar situation holds for HCI. Especially for the choice /.\
of 7€ (Fag) the bond and the outer valence regions dominate 0
the binding forces from\p, while the core polarization gives \_/
an important but, in contrast to,Mot the dominant contribution -0.2 HCl
to FA° (7°° weightsF¢ much less kY1g) thanFy (x174g), and /
H wictlhout core orbitals is an atypical bond mate). Again, other -0.4 Frozen Co-e- -
regions far away from the nuclei contribute binding and -0.2 5.2 0 0.2 0.4
antibinding forces of the same order of magnitude, which, in Distance from Cl [a.u.]

their sum, determine the sensitive balance of forces at equilib- rigyre 9. Dipolar polarization of (a) the N and (b) the Cl core density
rium geometry. Figures 7 and 8 indicate that at other internuclear (p-wave contribution) in Bl and HCI at equilibrium internuclear
distances the changing topology &p weights other regions  distance, from “all-electron” and from “frozen atomic core orbital”
of space differently, sometimes in a way that major binding calculations. ProMol means the “promolecular” superposition of
effects take place at distances/2 from the nuclei. spherical unperturbed atomic der!sities, the Fail of the other atom's
6.3. Core Polarization. Figure 9 shows significant dipolar ~ d€nsity causing only a small density polarization.
polarization of the core densitiy of N ind\and of Cl in HCI. The all-electron calculations and the (appropriately designed)
In Figure 10 the radially integrated electronic contribution of frozen atomic corevalence only optimizedcalculations (N,
the force, eq 28, as obtained from the partial wave decomposi-1s; Cl, 1s2s2p frozen) are known to yield quite similar binding
tion of the density, eq 27, is compared with the respective result energies and equilibrium structures. Figure 9 demonstrates that
from numerical integration of the total density as in Figure 4. the core polarizations are also similar in both approaches. In
In N the polarized 1s core shell contributes approximately 11% the case of valence only calculations, the specific molecular
(i.e., —1.28 au) to the total electronic force efL1.2 au. This features in the atomic valence shells causes a specifically
represents a major contributionfé#, namely 76% (i.e.;~1.00 polarized valence density distribution. The orthogonalization of
au, see Table 1). The individually much larger binding and the asymmetric molecular valence orbitals on the spherical
antibinding forces around the Cl nucleus in HCI (Figures 4b atomic core orbitals creates polarized tails of the valence orbitals
and 10b) result from the orthogonality of the chlorine K and L in the core regions. In other words, the sign topology of the
shells, which causes polarizations of opposite signs in different molecular valence shell is coupled to the corresponding sign
shells (see also ref 27). pattern of density polarizations in the atomic core shells as a
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-1.75 T In the gradient expression, the kinetic energy gradient partially

K-shell | L-shell cancels the potential energy gradients, and a numerically
| sensitive potential term is left over in the Hellmarifeynman

-1.05 N2 force expression. The coupling of density deformations in the

valence and core regions in the holistic theory of quantum

|
Fly) : mechanics allows one to explain bonding/binding, for instance,
[au] | second N along either of the following two lines. One may analyze the
0.00 | at2.09 a.u. interplay of seyeral different energy or energy gradient cor_1trib_u-
N 041 0.3 , [a.u] 0.6 tions from the inner and outer valence regions, the determination

of which is numerically stable. Or one may discuss simple

-2.55 electrostatic force contributions from all molecular regions (the
| inner and outer core shells, together with contributions from
Pﬁl(rCl) ‘ the valence regions), which are not easy to compute accurately
{a.u) } (however, see, e.g., ref 29).
-0.85 1 The core density polarization can be represented either
| dominantly by core orbitals or dominantly by the orthogonality
0.00 | : tails of the valence functions. A frozen core orbital approxima-
' |' ‘, H at 2.45 a.u.] tion still reproduces a large part of the core density polarization.
Cl 013 rglaul 0.54 Bonded hydrogen atoms constitute a somewhat unusual case

. o o of bonding, since there are no core shells. Finally we note that
Figure 10. Radially integrated HellmanrFeynman force density in the first derivation and discussion of the electrostatic force
the core regions of (_a) N in Nanql of (b) Clin H_CI. The points were h blished by Hell . h . |
calculated by numerical integration of the density, and the curves were theéorem was published by Hellmann in a rather common journal
obtained by analytical integration of the p-wave contribution to the already in 1933.
core density polarization shown in Figure 9.
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