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An efficient direct integral-driven algorithm for the random-phase approximation (RPA) is introduced using
the equation of motion on a transition density matrix representing a “quasi particle”. In the algorithm, several
roots are obtained at the same time by solving a set of coupled equations that are projected on a space spanned
by a set of error vectors representing the quasi particles. The most time-consuming RPA operation on the
vectors is accomplished by a single call of an integral-generation routine, and the time per iteration is comparable
to that for a direct SCF cycle. The algorithm is implemented using a new integral package based on
accompanying coordinate expansion (ACE), as well as traditional integral routines from GAMESS. The example
applications indicate good convergence of the iterative scheme. In some computationally intensive cases, the
RPA computation for several excited states is completed in less time than the SCF computation.

Introduction

The recent advent of powerful computational tools has
significantly changed materials research. Particularly, quantum
chemical computations of molecules and molecular aggregates
provide very important information about the materials that
might not be accessible otherwise. Many quantum chemical
methods have been developed and implemented for efficient
computation of the ground-state energy of large molecular
systems typical in materials research. Advances in the develop-
ment and implementation of algorithms for excited-state com-
putations for such large molecular systems have been achieved
to a lesser extent. The random-phase approximation (RPA) is
certainly one of the most popular and important methods for
computing the excited states of molecules.1-3 It is popular
because several excited states are obtained directly with
relatively modest computational effort even for large molecular
systems. The recent, rapid change in the computational environ-
ment has promoted efforts to develop and implement direct
integral-driven algorithms. The direct integral-driven RPA has
been developed and implemented by several groups.4-13 In a
direct algorithm, the RPA matrix is not explicitly evaluated,
but the vectors resulting from the RPA operation are evaluated
and stored. The RPA operation is accomplished by tracing trial
vectors and integrals. In direct integral-driven schemes, entire
integrals are evaluated for each iteration, instead of being
computed once and stored in low-speed storage space. Therefore,
the direct and direct integral-driven schemes require much less
storage space. Of course, we need to pay for this advantage by
repeating the computationally demanding integral evaluation for
each iteration. We introduce an efficient direct RPA algorithm
for obtaining several roots at a time. In the algorithm, one
iteration requires almost the same computational effort as one
Hartree-Fock (HF) self-consistent field (SCF) cycle. Because
the iterative scheme for the RPA typically converges quite well,
the computation time is almost equivalent to, or even smaller
than, that of the SCF calculations.

Theory and Computational Algorithm

The equation of motion (EOM) for the transition density
matrix Fj(r, r′) in the frequency domain is

The Hamiltonian can be decomposed as

wheref is a one-body Fock operator composed of the zeroth-
order Hartree-Fock (HF) density matrix andVN is a two-body
operator defined as the normal product with respect to the
zeroth-order HF reference state. The transition density matrix
Fj(r, r′) represents the transition of an electron betweenr andr′
upon excitation and may be expressed as a superposition of HF
particle-hole states. Equation 1 can also be seen as an EOM
for the “quasi particle” (QP) represented by the transition density
matrix. We construct the HF particle-hole and hole-particle
states using binary products of the zeroth-order HF vacant and
occupied orbitalsφa(r)φi(r′) andφa(r′)φi(r). Therefore,

whereFjk is thekth element of the zeroth-order transition density
matrices in particle-hole and hole-particle space defined by
the zeroth-order HF orbitals and∆k ) εa - εi with the orbital
energiesεa andεi. Thef operator need not be diagonal but fulfils
eq 3 for particle-hole and hole-particle transition density
matrices. Projecting the equation onto particle-hole and hole-
particle space, we have the familiar RPA equation for a set of
transition densities oscillating with an eigenfrequencyωI.

Here, the elements of the Hamiltonian between pairs of
particle-hole {a, i}, {b, j} and hole-particle {i, a}, {j, b}
transition density matrices are
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A set of the transition density matrices [YI

ZI] corresponds to the
Ith eigenvector in eq 1 with an associating eigenvalueωI. The
RPA operationsAZ , BZ, AY , andBY correspond to contrac-
tions of the Hamiltonian with the transition density matrices.
We see that theVN component is not diagonal and that the
particle-hole transition density matrices (represented byZ)
interact not only with themselves but also with the hole-particle
transition density matrices (represented byY) through this term.
The problem can be also rewritten as a set of coupled equations.

with a bi-orthonormal condition

Here, we see that the oscillation in particle-hole creation and
annihilation is expressed as a coupling of symmetric (real)Z
+ Y and antisymmetric (imaginary)Z - Y modes. This
expression is computationally more convenient because we can
work on real symmetric and antisymmetric matrices instead of
general nonsymmetric forms of matrices. Indeed, the RPA
operations (A + B)(Z + Y) and (A - B)(Z - Y) can be
accomplished using ordinary real Fock matrix formation algo-
rithms with a minor modification for the antisymmetric mode.
As the number of HF particle-hole states increases, the
dimensions ofA + B andA - B also increase. Straightforward
diagonalization of eq 4 in the particle-hole and hole-particle
spaces or the corresponding solution of eq 6 becomes more
demanding.

We interpret the transition associated with an excitation
energyωI in terms of quasi particles that interact with each
other. A QP is iteratively defined as an elemental excitation
with which a particular transition is described. In other words,
a set of QPs, whose dimension is much smaller than the total
HF particle-hole space, fulfils eq 4 or eq 6 for a particular
excitation. We solve the corresponding equations by a series
of transformations within a subspace spanned by a set of bi-
orthonormal vectorsb andc representing the QPs.

Here,

and∼ indicates the transpose of a matrix.

Therefore, the problem of seeking a bi-orthonormal set of
vectorsZ + Y andZ - Y is converted to a problem of seeking
a bi-orthonormal set of vectorsb andc. The b andc vectors
are chosen in an iterative fashion for a manifold spanned byb
) b + δb andc ) c + δc to fulfill eq 6 with δb and δc as
small as possible.

Here, ∆S and ∆A are matrices consisting of the diagonal
elements of the respective Hamiltonians. There are several
choices in partitioning the Hamiltonian in eq 11 in order to solve
for δb andδc. One choice is to take the full diagonal element
of the Hamiltonians. Another choice is to take only the zeroth-
order part∆ to approximate the Hamiltonians, and we employ
the latter choice here.

The most time-consuming process in the algorithm is the
application of the RPA operationsA + B andA - B on theb
and c vectors. This process can be accomplished through the
generation of symmetric and antisymmetric Fock matrices
followed by a projection onto particle-hole space. In compu-
tationally intense cases such as large molecules or extensive
basis set calculations, integral evaluation in the Fock-matrix-
generation step is the dominant component of the total CPU
demand. The algorithmic details for obtainingmRPA roots are
given in the following series of steps.

1. Choosel ) l initial trial bi-orthonormal vectorsb and c
(where l initial > m) representing approximate solutions. The
dimension of the subspace spanned byb andc is L ) l.

2. Createl symmetric and antisymmetric density matrices.
3. Generatel symmetric and antisymmetric Fock matrices

and project them onto particle-hole space to obtain (A + B)b
and (A - B)c.

4. Create effective HamiltoniansGS andGA for symmetric
and antisymmetric modes by back projecting the Fock matrices
onto the space spanned by theb andc vectors (dimensionL).

5. Solve the coupled equations of dimensionL by a series of
transformations in eq 8 to obtainS, T, andω.

6. Generatem new pairs of error vectorsδb andδc from eq
12.

7. Schmidt bi-orthonormalize, and append the newb andc
vectors, with norms bigger than a certain threshold, to a set of
previous vectors. Increment the size of the subspaceL to L +
l (wherel e m).

8. Go to step 2, and iterate the process until the norm of new
error vectorsb and c in step 6 or 7 becomes smaller than a
certain threshold.

Alternatively, we can choose a set of orthonormal vectorsb
to fulfill eq 6. The conditon for the error vectors in this case
becomes

Aai;bj ) ∆k + [φa*( r)φi(r)|φj*( r′)φb(r′)] -
[φa*( r)φb(r)|φj*( r′)φi(r′)] (5a)

Bai;bj ) [φa*( r)φi(r)|φb*( r′)φj(r′)] -
[φa*( r)φj(r)|φb*( r′)φi(r′)] (5b)

(A + B)(Z I + YI) ) (Z I - YI)ωI (6a)

(A - B)(Z I - YI) ) (Z I + YI)ωI (6b)

(Z̃ I + ỸI)(ZJ - YJ) ) δIJ (7)

GSU ) UX (8a)

W2 ) X1/2ŨGAUX1/2 (8b)

W2V ) Vω2 (8c)

S ) UX-1/2Vω1/2 (8d)

T ) UX1/2Vω-1/2 ) (S̃)-1 (8e)

GS ) b̃(A + B)b (9a)

GA ) c̃(A - B)c (9b)

S ) c̃(Z + Y) (10a)

T ) b̃(Z - Y) (10b)

(A + B)bSI - cTIωI ) δcTωI - (A + B)δbS

≈ ωIδc - ∆Sδb ) 0 (11a)

(A - B)cTI - bSIωI ) δbSωI - (A - B)δcT

≈ ωIδb - ∆Aδc ) 0 (11b)

δbI )
ωI[(A - B)cT - bSωI] + ∆[(A + B)bS - cTωI]

ωI
2 - ∆2

(12a)

δcI )
∆[(A - B)cT - bSωI] + ωI[(A + B)bS - cTωI]

ωI
2 - ∆2

(12b)
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The algorithm is similar to the case described above whenc is
replaced byb. In this case, however, we increment the subspace
in step 7 byl′ (l′ e 2m) spanned by the orthonormal vectorsb,
which are obtained after Schmidt orthonormalization. Therefore,
the dimension of the subspaces tends to increase twice as fast.

Results and Discussion

We implemented the direct integral-driven RPA algorithm
described above using both bi-orthonormal (case A) and
orthonormal (case B) sets of error vectors. The preliminary
application of the algorithm to an ethylene molecule with a small
basis set (Table 1) indicates that both schemes provide
monotonic convergence of the lowest five roots.

The lowest roots in case A require more iterations than those
in case B, although the size of the final subspace is similar.
Olsen et al. introduced a direct scheme in which the RPA
problem is solved in a subspace via paired expansion vectors.6

That algorithm provides fast convergence, but it requires a one-
index transformation of integrals. Weiss et al.8 and Ochsenfield
et al.9 used a scheme in which (A - B)(A + B)X ) XW is
solved by consecutive operations onX. Zakrzewski et al.
implemented a direct RPA approach based on an algorithm in
which eq 4 is directly projected onto a subspace spanned by
error vectors toZ andY.12 However, they used symmetric and
antisymmetric RPA operations in order to maximize the RPA
operation per each integral-evaluation call (minimize the
integral-evaluation calls per iteration). Therefore, the efficiency
for this part of their algorithm should be similar to our
implementation. In their implementation, the error vectors are
generated by a denominator with the full diagonal element of
the Hamiltonian, as in the original Davidson scheme.15 The
coupling nature of the oscillating amplitudes in the transition
densities leads to a form of the equation in the time-dependent
density functional theory (TDDFT) parallel to the one in the
RPA equation. Recently, Stratmann et al. presented an imple-
mentation of the direct TDDFT.13 In their algorithm, a set of
coupled equations corresponding to eq 6 is solved directly.
Indeed, the idea to work on the coupled equations goes far back
to that of Tamura and Udagawa.14 Stratmann et al. expanded
the error vectors with a set of orthonormal vectors representing
a subspace in which the projected equation is solved. This
implementation seems similar to case B, although in our
implemetation, the bi-orthnormal condition (eq 7) is automati-
cally guaranteed through a series of transformations (eq 8). The
RPA equation has a paired solution giving a norm of identity
and of minus identity. In the algorithm proposed by Olsen et
al., the solutions are efficiently sought in the restricted subspace
spanned by a pair of expansion vectors. In the present algorithm,
the expansion vectors that are determined automatically fulfill
bi-orthonormality (eq 7) except for the sign. The subspace is
restricted to the correct one by appropriately choosing expansion
vectors with a positive norm during the iteration. Furthermore,
in method B, error vectors are chosen in a fashion reflecting
the paired structure of the equation in order to increment the
subspace with this restriction (eq 13).

As is noted above, the partition of the Hamiltonians in eq 11
is arbitrary, and the full set of diagonal elements are chosen in
the denominator of the error vector in the original Davidson

scheme.15 We partition the Hamiltonian with the zeroth-order
HF manifold. The resulting denominator shift is a simple
difference of HF eigenvalues. In the current implementation,
the HF problem is solved before the RPA part begins, and the
difference∆ is a simple constant in the RPA iteration. The full
set of diagonal elements contains the self-interaction of quasi-
particles representing the particle-hole and hole-particle states,
and the evaluation of the self-interaction term requires extra
transformation of integrals. In direct implementations, such
transformation should be avoided as much as possible. The most
time-consuming process is the RPA operation on the error
vectors. In the present implementation, the RPA operation is
consistently interpreted as contraction of the two-body interac-
tion VN with the transition density matricesFj(r, r′) of the
symmetric and antisymmetric modes representing the quasi

δbI )
(A - B)bT - bSωI

ωI - ∆
(13a)

δbI )
(A + B)bS - bTωI

ωI - ∆
(13b)

TABLE 1: Convergence in the Five Lowest Singlet-Singlet
RPA Excitation Energies of Ethylene with a DZ Basis Set25

A B

iteration
energy

differencea
dimension of

subspaces
energy

differencea
dimension of

subspaces

First Root
1 35.05428 10 35.05448 10
2 3.63620 15 1.08381 29
3 0.70627 20 0.03408 36
4 0.55176 25 0.00113 40
5 0.21847 29 0.00002 42
6 0.17508 33 0.00000 44
7 0.07418 35
8 0.04283 37
9 0.01195 39
10 0.00821 40
11 0.00244 41
12 0.00102 42
13 0.00032 43
14 0.00022 44
15 0.00005 45
16 0.00002 46
17 0.00000 47

Second Root
1 8.70838 10 8.70838 10
2 0.32768 15 0.09622 20
3 0.04397 20 0.00000 29
4 0.00000 25

Third Root
1 7.73479 10 7.73480 10
2 0.49870 15 0.09406 20
3 0.12671 20 0.00001 29
4 0.01487 25 0.00000 36
5 0.00015 29
6 0.00000 33

Fourth Root
1 4.71482 10 4.71489 10
2 0.39177 15 0.07437 20
3 0.26678 20 0.00104 29
4 0.04920 25 0.00000 36
5 0.01463 29
6 0.00206 33
7 0.00042 35
8 0.00011 37
9 0.00000 39

Fifth Root
1 20.84438 10 20.84438 10
2 1.54166 15 0.07199 20
3 0.10884 20 0.00002 29
4 0.03919 25 0.00000 36
5 0.00012 29
6 0.00000 33

a The energy difference values (in 1000 au) are the differences from
the final converged values.
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particles. Therefore, we can employ the same strategies as in
the standard SCF theory, in which Fock matrix formation is
nothing but the contraction of the two-body interaction with
the zeroth-order density matrix. This part, corresponding to the
RPA operations, is completely analogous to the perturbed Fock

matrix generation in the time-dependent Hartree-Fock (TDHF)
theory for dynamic property evaluation.16 In Tables 2-4, the
relative timing of the RPA iteration for the lowest five singlet-
singlet transitions compared to a SCF cycle, is shown. Method
B is used for all of the examples.

In small molecule applications (Table 2), the ratio of the
timing is a few times larger than unity, and the RPA computation
consequently costs more than the SCF computation. However,
in larger molecules (Table 3) or in cases with more extensive
basis sets (Table 4), the ratio becomes close to unity, and the
RPA computation costs less than the SCF computation. Note
that the convergence criteria for those cases (Tables 2-4) is
much more severe (a threshold of 10-5 in the maximum norm
of error vectors) than would be used in practice. The conver-
gence in energy with a precision comparable to experiment could
be obtained much more easily.

The efficiency of the algorithm depends on the convergence
of the iteration and on the timing of the RPA operations in the
iteration. The former depends on the application and the initial
guesses, but the algorithm shows the efficient convergence
property for the different applications examined here. For the
latter, we can estimate the efficiency from the number of RPA
operations that are performed for each iteration. In case A,l e
m, the RPA operations for each symmetric and antisymmetric
density matrix are performed, whereasl′ e 2mRPA operations
are required in case B. From this simple analysis, case A seems
to be much more efficient than case B. In large molecules or in
applications with an extended basis set, however, integral
evaluation is much more time-consuming than the tracing of
the integral with density matrices. The RPA operations (2l or
2l′ for symmetric and antisymmetric density matrices, respec-
tively) in the present implementation are accomplished by a
single evaluation of the complete set of integrals, accompanied
by contractions with each transition density matrix, followed
by a projection onto particle-hole and hole-particle spaces.
The timing for each iteration is dominated by the single
evaluation of the complete set of integrals. Therefore, the
convergence property in the iteration is more important than
the efficiency of the RPA operation in the iteration. From the
data shown in Table 1, we feel that method B is more efficient
than method A, especially for computationally demanding cases.

Although the error vector manifold consisting ofb and c
should be selected for particular excitations, the applications
that we examined indicate that roots lying close together can
be efficiently computed by a single manifold. In other words,
a set of quasi particles is capable of describing several excited
states.

As is seen in eq 11, we have made the simple choice for
partitioning the Hamiltonians assuming the dominance of
diagonal elements. Therefore, it should suffer from slow
convergence problems, as in Davidson’s scheme, in cases in

TABLE 2: Relative Timing of the RPA Iteration for the
Five Lowest Roots oftrans-Butadiene with the DH Basis
Set26,a

iteration
dimension of

subspaces relative timingb

1 20 3.815
2 30 3.815
3 40 3.813
4 50 3.817
5 60 3.821
6 70 3.823
7 80 3.826
8 90 3.830
9 100 3.833

a C, [3S2P1D]; H, [2S1P]. Number of basis functions, 90; number
of electrons, 30; number of particle-hole pairs, 1125.b Timing relative
to a SCF cycle.

TABLE 3: Relative Timing of the RPA Iteration for the
Five Lowest Roots of C19H17N3O with the STO-3G Basis
Set24,a

iteration
dimension of

subspaces relative timingb

1 20 1.95
2 30 1.95
3 40 1.96
4 50 1.96
5 60 1.96
6 70 1.97
7 80 1.97
8 88 1.97
9 94 1.67

10 98 1.46

a Number of basis functions, 132; number of electrons, 160; number
of particle-hole pairs, 4160.b Timing relative to a SCF cycle.

TABLE 4: Relative Timing of the RPA Iteration for the
Five Lowest Roots of Ethylene with the ANO Basis Set27,a

iteration
dimension of

subspaces relative timingb

1 20 1.008
2 30 1.007
3 40 1.004
4 49 1.012
5 57 1.019
6 65 1.015

a C, [14S9P/4S3P]; H, [8S/2S]. Number of basis functions, 34;
number of electrons, 16; number of particle-hole pairs, 208.b Timing
relative to a SCF cycle.

TABLE 5: Convergence in the Five Lowest Singlet-Singlet RPA Excitation Energies of Benzene with the ANO Basis Set27,a

state

iteration 1b 2b 3b 4b 5b
dimension of

subspaces
time
(s)c

1 4.71302 18.85071 31.37325 31.37327 16.92471 10 394
2 0.08134 0.22955 0.79194 0.79194 1.06073 20 395
3 0.00087 0.00484 0.03416 0.03416 0.13201 30 395
4 0.00001 0.00008 0.00237 0.00237 0.01951 40 393
5 0.00000 0.00001 0.00007 0.00006 0.00087 50 395
6 0.00000 0.00000 0.00000 0.00000 0.00007 60 395
7 0.00000 0.00000 0.00000 0.00000 0.00000 70 395

a C, [14S9P/3S2P]; H, [8S4P/2S1P]. Number of basis functions, 84; number of electrons, 42; number of particle-hole pairs, 1323.b The numbers
(in 1000 au) are the differences from the final converged values.c Each SCF cycle took 331 s (14 510 s with GAMESS integrals) and required
15-16 iterations to converge. Each iteration in the RPA took about 14 670 s with GAMESS integrals.
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which nondiagonal elements dominate. Improvement can be
achieved by using different techniques, such as shifted inverse-
power methods.17 It is also possible to enhance the convergence
property by separating the computation and executing the
iterative scheme for each category in which the error vector
manifold describes a single type of excitation. The characteriza-
tion of the excitation is easily realized by back transforming
the transition density matrices onto the physical space expressed
by the basis set. The development of a more efficient imple-
mentation for general cases is in progress by taking the above
concepts into consideration.

In the cases in which integral evaluation is not completely
dominant, each RPA iteration takes longer than a SCF cycle,
so the RPA computation takes more time than the SCF
computation. However, in computationally more intense cases,
such as with generally contracted basis sets (Tables 4 and 5),
the time required for each RPA iteration is almost equivalent
to that required for a SCF cycle, and consequently the RPA
computation costs less than the SCF computation. For applica-
tions with larger molecules, we expect the same situation. In
those cases, improvement in integral evaluation is a very
important issue. We implemented the direct RPA scheme using
integral-evaluation routines from SPHERICA,18 as well as
GAMESS.19 The implementation is performed using Fortran 90
and Fortran 77 on both AIX (RS6000) and PC-Linux platforms.
The integral evaluation in SPHERICA employs the accompany-
ing coordinate expansion (ACE) formalism developed by
Ishida20 and outperforms considerably standard program pack-
ages such as HONDO21 and Gaussian 9822 in two-electron
integral evaluation of generally contracted basis sets (from
several times to a few orders of magnitude improvement).23 The
timings of a RPA iteration and a SCF cycle are compared using
IBM/POWER3-260, and the results are shown in Table 5,
together with the timings found using the GAMESS integral
routines. The implementation with SPHERICA, when compared
with the implementation using the GAMESS integral routines,
reveals overwhelming efficiency for the generally contracted
basis set applications. This performance superiority using
SPHERICA was reported in more detail.28 However, relative
timing of the RPA computation compared to the SCF computa-
tion does not vary much between those two cases, indicating
the efficiency of the algorithm employed. It must be noted,
however, that the present algorithm is based on the projection
of transition density matrices onto HF particle-hole and hole-
particle spaces. This projection would cost more than the integral
evaluation for applications with very large molecules in which
the diminishing coulomb force can scale down the relative cost
of the integral evaluations. An algorithm in which the transition
density matrices are directly determined without projection is
required for those cases, and the development of such an
algorithm is in progress.29

Conclusions

We developed a direct RPA algorithm in which the excited
states are directly computed in terms of quasi particles fulfilling
an equation of motion in particle-hole and hole-particle spaces.
The direct integral-driven RPA is implemented using this
scheme. The error vectors representing the quasi particles are
expanded on the subspaces using a bi-orthonormal and/or an
orthonormal set. The latter scheme seems to be better suited
for computationally intensive applications. Several applications
indicated the efficiency of the algorithm for the lowest excited
states of molecules, and the RPA computation costs less than
the SCF computation for computationally demanding cases. The

implementation with new integral-generation routines based on
ACE reveals overwhelming performance superiority for ap-
plications using generally contracted basis sets.
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