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An ab initio formulation for calculating solvent effects for organic molecules is presented. The solvent effects
are treated in two parts using different models for the solvent. For calculating the reaction field the solvent
is modeled as a continuum with the cavity determined ab initio as a surface enclosing the solute molecule,
which represents the minima of the interaction potential as a solvent molecule approaches a solute molecule
at various angles. The interaction potential is calculated using results of ab initio diatomic calculations on
various pairs of atoms with frozen asymptotic charge densities. The reaction field contribution from the solvent
is evaluated by using the apparent surface charge model with a dense grid of points on the cavity. For the
direct interaction we first construct the first shell of solvent molecules around the solute molecule by bringing
the solvent molecules as discrete systems to the cavity surface. The corresponding energy (consisting of both
the solvent-solute and solvent-solvent interaction) is minimized with respect to both the location of solvent
molecules as well as their orientation. The method is demonstrated by application to thep-nitroaniline in
various solvents. The solvated excitation energies are calculated and compared with experiment. We also
compute the solvated polarizabilities and second-order transition moments.

I. Introduction

Several ab initio methodologies now exist that can explain
and predict with various degrees of success the energetics and
properties of intermediate and large-size organic molecules in
the gas phase. However, most experimental measurements of
the properties of organic systems are carried out in the solvated
phase. It is, therefore, of high interest to develop methods and
computational strategies for describing the effects of solvent
on the molecular properties.

Early work1-4 on solvent effects, directed primarily to
estimate solvation energies, has led to developments in theoreti-
cal chemistry relating to the many-electron description of the
solvated molecule. Three distinct models have emerged: (i) one
that treats the solvent molecules around the solute molecule on
the same footing as the solute, the so-called supramolecular
model,5 (ii) the continuum model,6 where the solvent is treated
as a continuum that surrounds the solute molecule, and (iii) the
semicontinuum model.7-11 In the last two models the solute is
supposed to reside in a cavity not accessible by the continuum,
although for the semicontinuum model some of the solvent
molecules are allowed to exist within the cavity as discrete
entities. One important feature of the continuum model is the
fact that the solvated molecule induces polarization charges in
the solvent that then give rise to an extra field at the position
of the solute. This so-called reaction field (RF) is then
incorporated in the solute Hamiltonian.

While the supramolecular model is theoretically straightfor-
ward, the execution of the model is difficult since for a
satisfactory representation of the solvent a large number of
solvent molecules need to be considered. The method is
primarily employed to study the stochastic effects by adopting
empirical laws of interaction (e.g., Lennard-Jones) and then
carrying out Monte Carlo or molecular dynamics calculations.

On the other hand, the strictly continuum models, particularly
the polarization continuum model (PCM),12-15 although quite
successful for prediction of various solvation-related properties,
are fundamentally (but not fatally) flawed theoretically. First,
the separation of the solute from its nearest solvent shell
molecules is not large enough for the solute to see a continuous
solvent. Furthermore, particularly in a polar solvent, the solute
fails to see a constant dielectric “constant”, since the Boltzmann
factor exp(-pE/kT) cannot be linearized owing to the dipole
moment of the solvent being usually too large. For example,
for pNA as the solute with an estimated cavity radius of 10 au
and dipole moment of water as 1.5 au the “pE/kT’ for
p-nitroaniline (pNA0 in water turns out to be∼4.5 at room
temperature.

In the present work we shall adopt what can be regarded as
a semicontinuum model for the solvent. While the continuum
model is retained to obtain the reaction field contribution, the
“direct” electrostatic effects between solute and solvent are
obtained by constructing the first solvation shell by minimizing
enthalpy (with nothing included from the entropy-related forces).

This leads us to the following model: For the continuum
part of the solute-solvent interaction we determine the cavity
surface ab initio (unlike the continuum models hitherto reported)
by letting a solvent molecule approach a solute molecule from
various directions and orientations. The corresponding minima
are taken as describing the cavity surface. With the cavity so
defined the corresponding Poisson equation with the bulk
dielectric constant is solved to lead to the “reaction-field”, which
is then incorporated in the solute Hamiltonian. Using the cavity
as the starting point, we also obtain the direct contribution (as
opposed to the “reaction field”) to the total interaction energy
from the first solvation shell. In the following we shall present
a strictly ab initio formulation of the above model of the solvated
phase except for the only empirical parameter, the dielectric
constant. We shall then present some actual illustrative calcula-
tions on the system (pNA).
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II. Model for Solute -Solvent Interaction

We propose here an approximate framework where the
solute-solvent interaction is partitioned into two distinct parts,
the electrostatic∆Wels and the polarization∆Wpol

(S,L):

We shall treat the electrostatic part of the total solute-solvent
interaction as a sum of two-body interactions between the
constituent atoms of the solute and the solvent molecules. The
two-body interactions are obtained ab initio by first computing
the diatomic interaction for various pairs of atoms by assuming
that their charge distributions are rigidly undisturbed in fully
occupied (and, hence, sphericallly symmetric) atomic shells,
except for orthogonalization distortion as the solvent molecule
approaches the solute. The interaction potential for any pair of
atoms can then be shown to have the general form

wherenv andnv′ are the numbers of valence electrons on the
two atoms andfv andfv′ the degeneracies of the valence shells.
The core contribution∆Ecore, one-electron parts∆hv and∆hv′,
and the electron repulsion terms∆Jvv′, i, j ) 1, 2, are calculated
as the interaction of the “filled shells” using the orbitals of the
neutral atoms:

whereD0 is the core density matrix of the cores on both centers,
Dv is the valence density matrix on the two centers, with the
valence shells fully occupied, andJ and K are the Coulomb
and exchange supermatrices. The interaction contributions are
obtained by subtracting off the asymptotic values of these
quantities.

Consider the wave functions of either the isolated solute or
solvent molecules: In this work both will be assumed to be
closed-shell and, therefore, describable by a single-determinant
Hartree-Fock wave function.

The orbitals in the LCAO form are given by

whereæ’s are atomic functions. We shall re-expressψi’s as

whereæa’s are symmetrically orthogonalized atomic-like orbitals
(ALO). Assuming the overlapsSab≡ 〈φa|φb〉 between the atomic
centers to be small, one can write approximately

One can then show that

such that the Mulliken’s charges are given approximately as

In other words, Mulliken’s charge is simply the occupancy in
a “symmetrically orthogonalized” ALO representation of the
Hartree-Fock wave function.

The valence charge density of either solute or solvent is given
by the following expression

whereDal,bm is the valence density matrix andZa is the nuclar
charge (minus the core). Since the Coulomb integrals involving
the off-diagonal differential overlapφalφbm are, in general, very
small, we retain only the diagonal terms in eq 10. Furthermore,
we introduce the following approximation for valence shells
with degenerate subshells such as the p shells:

The approximation involves (for the p-type valence shell)
neglecting the part of the interaction corresponding to the “d”
component of the charge density, hence of the order ofO(1/R4)
or higher. Specializing the indices a and b, respectively, to
denote the solute and solvent atoms, one can write the total
electrostatic interaction energy as

whereZa andZb are the nuclear charges, the quantitiesQa, Qb,
... are the total Mulliken population densities at the centers a
and b and (ab) denotes the diatom involving the atoms a and b.
V(ab) is calculated using eq 2 where the valence occupancies
{nv}’s are replaced by the partial Mulliken population for the
valence shells{v}.

Thus, we use the following recipe to obtain the various two-
body potentials required for a given problem: First, we decide
upon a common level of basis for all calculations. (For the
present work we have chosen the 6-31G basis.) We consider
various pairs of atoms at various internuclear separations. Using
the orbitals obtained from atomic calculations, we first sym-
metrically orthonormalize them. With all the shells filled (i.e.,
with the same electronic configurations as the respective rare
gas atoms of the rows to which the atoms belong), the various

∆Wtot ) ∆Wels + ∆Wpol
(S) + ∆Wpol

(L) (1)

V(12) ) ∆Ecore+ ∑
v⊂atom1[nv

fv
∆hv + ∑

v′⊂atom1
(nvnv′

fvfv′
)∆Jvv′] +

∑
v⊂atom2[nv

fv
∆hv + ∑

v′⊂atom2
(nvnv′

fvfv′
)∆Jvv′] +

∑
v⊂atom1

∑
v⊂atom2

nvnv′

fvfv′

∆Jvv′ (2)

Ecore) h+D0 + D0
+(J - 1/2K )D0

hv ) h+Dv + D0
+(J - 1/2K )Dv v on atoms 1, 2

Jvv′ ) Dv
+(J - 1/2K )Dv′ v, v′ both on the same atom

Jvv′ ) Dv
+(J - 1/2K )Dv′ v and v′ on different atoms (3)
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parameters∆Ecore, ∆hv, ∆Jvv′, etc. are obtained and then fitted
to the following analytical forms:

III. Solute -Solvent Polarization Energy

To calculate the polarization contribution, we notice that the
polarizing field is very inhomogeneous and, therefore, it is
inaccurate to represent the polarization contribution in terms
of the “total” polarizabilities of the solvent and solute molecules.
We use instead the following approach: We write the total
polarization energy as the second-order perturbed energy:

where

and{φa} and{φa′} are respectively the localized occupied and
virtual orbitals (symmetrically orthogonalized) for the atom a,
E0 is the Hartree-Fock energy,Ea

(n) represents the excited
energy when the electron occupyingφa is promoted toφa′(n),
{Ra}’s are the atomic polarizabilities of the atoms in the
environment of their respective molecules, andRab is the
separation between atoms a and b.

IV. Determination of the Cavity Geometry

In this work the cavity surface is defined as consisting of the
set of points where the solute-solvent interaction potential
attains its minimum as the solvent molecule approaches the
solute molecule along the line joining their charge centroids
(CC). We can justify this definition in the following way:
Although only a solitary solvent molecule is considered in our
definition, the interaction minima in terms of the solvent solute
molecules approaching each other’s CC should lie very close
to those in the presence of the neighboring solvent molecules
since intuitively only the interaction along the radial direction
is dependent almost exclusively on the solute-solvent interac-
tion. A further corroboration of the present definition is obtained
(see below) where we actually build the first solvation shell
around a solvent molecule. It turns out that despite solvent-
solvent interaction the surface traced out by the centers of the
molecules in the first solvation shell continues to be ap-
proximately the cavity surface, as defined above. We are
currently exploring a more direct verification of this model by
doing molecular dynamics on a solute molecule embedded in
an assemblage of solvent molecules and then studying the time-
averaged shape and size of the first solvation shell.

In determining the cavity according to the present model, we
proceed as follows: We draw a large imaginary sphere around
the solute molecule with the center at the centroid of the
Mulliken charges defined by

We then place the centroid (similarly defined) of the solvent
molecule at various points of the surface of this sphere and let
it approach radially. The interaction energy is minimized at
every radial distance by optimizing the solvent molecular
orientation (not the relative positions of the atoms within the
solvent molecule, which are kept frozen). The motivation of
using the charge centroids is to ensure that the quadrupole terms
for most systems of interest (e.g., the centrosymmetric ones)
are small. This is important in determining the RF contributions.

Using the cavity surface as the starting point we build up the
first solvation shell as follows: (1) Add a solvent molecule to
the cavity surface with its CC on the cavity surface. Orient the
molecule to attain minimum in energy. (2) Add another one
likewise to the cavity surface. Optimize both its orientation as
well as location of CC on the cavity surface to attain energy
minimum. (3) More molecules are similarly added until energy
actually goes up. (4) Go back to the first solvent molecule and
optimize the location as well as orientation in the presence of
all the assembled molecules. We repeat the same operation (4)
for other molecules and so on until energy becomes stationary.
(5) As a final check on the bona fide nature of the first solvation
shell, we now allow out-of-cavity surface displacement of
individual solvent molecules. If any molecule is found to reach
a minimum energy at a point deviating by more than 10% from
its cavity surface solvent-solute distance, this is taken as an
indication that the molecule does not belong to the first solvation
shell. We then have to reoptimize (carry out step (4)) the
solvation shell with the molecule taken out. This is an expensive
part of the calculations. Fortunately, our preliminary finding
detects no substantial deviation of the locations of the CC’s of
the solvent molecules from the cavity surface.

V. Reaction Field

Consider now the effect of the solvent on the solute
Hamiltonian. Let us denote the total potential asφ(r ), created
by the solute and solvent treated as a continuum at a given point
r in space (in the cavity or outside). Then the polarization
induced in the dielectric is given by

Thus, one obtains

whence
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using Gauss’s theorem. The direction of the normal “nR” is from
the cavity outward into the solvent. Using the boundary
conditions

one can then obtain an equation involving only the surface
charges:

In the aboveφ0 is the potential in free space:

where{Qa} are the net Mulliken charges on the various atoms
and{Ra} denotes the position of the a-th nucleus,µ is the dipole
moment of the solute, andR is the distance from its CC. The
notation “CS” denotes cavity surface. We solve for∂φ/∂n
iteratively from the eq 20 by breaking the CS into tesserae.12-15

Since the cavities turn out to be nearly spherical and large
enough such that the linear (i.e., the dipolar) terms predominate,
we start with a value of∂φ/∂n given by

which is the value for a spherical cavity of radiusR enclosing
a central dipole momentµ.

VI. Application to the p-Nitroaniline (pNA) Molecule

We shall demonstrate the solvation scheme developed above
by applying it to calculate the solvated excitation energies,
polarizabilities, and the second-order transition moments for the
p-nitroaniline molecule and compare with other theoretical
results.6 The ab initio formalism we adopt to generate wave
functions is the modified sum-over-states (MSOS)16 approach
developed recently. Briefly, the method starts by first selecting
a set of highest occupied molecular orbitals (HOMO) and a set
of lowest unoccupied molecular orbitals (LUMO) and carrying
out a configuration interaction (CI) calculation consisting of all
single excitations from the HOMO’s to the LUMO’s. Using
the resulting states as the starting point, we correct them by
incorporating both the single excitations excluded in the above
CI (viz., those from lower occupied orbitals to higher unoccupied
ones and vice versa) as well as double excitations by a first-
order perturbative approach. The quantities we shall concentrate
in this work are the excitation energies, particularly those
corresponding to the excitation of the ground state to the lowest
charge-transfer state. Also, we shall calculate the diagonal
polarizability componentsRij ) {Rxx, Ryy, Rzz) and the second-
order transition momentsSij

b, of importance to two-photon

absorption, defined by

where

and the summation is over the intermediate single and double
excitations.

In calculating the solvated values for the above quantities,
we neglect the dynamical effects entirely, assuming that the
cavity surface remains rigidly unaffected under the time-
dependent perturbations involved. Also the static dielectric
constants are used throughout (in line with previous formulations
of the continuum models), the rationale being that our calcula-
tions are primarily directed to describing the ground state of
the solute+ solvent system. While the excited state energies
calculated are the vertical ones, only the electronic parts of the
polarizability and two-photon transition moments of the solute
molecule are targeted. It can be argued that since we are
interested in “vertical” (in the Franck-Condon sense) excitation
energies, we are justified in using frozen cavity surfaces in the
way we have defined them (as representing the location of the
CC’s of the solvent molecules in the first solvation shell). For
the propertiesRij and Sij

b (calculated only for the solute) the
above approximation implies neglecting the contributions from
the nuclear motion in the solute. According to past calculations17

of polarizabilities on isolated molecules in the visible range of
photon energies, the nuclear contributions have rarely been
found substantial. This is, however, not quite true for hyper-
polarizabilities. For pNA our value (as well as Luo et al.’s6

RPA value) for the polarizability agrees fairly well with
experiment.18

Our MSOS calculations are carried out with a double-ú basis
with polarization (DZP) with d (0.2). In Table 1 we present the
excitation energies and polarizabilities (under static conditions
and for the photon energy of 0.06 hartrees), and in Table 2, the
second-order transition moments for various solvents. We
compare the calculated excitation energies with those available
from experiments wherever available. TheRav values (shown
in the third column) represent the mean radii of the cavities as
obtained ab initio from the calculations on the ground state of
pNA in the various solvents (whose dielectric constants appear
in the second column). They vary significantly from solvent to
solvent. However, in general, the cavities retain an ap-
proximately spherical shape except for a few small regions
whereR deviates fromRav quite markedly (as much as 30%),
which represents the purely reaction field contributions to the
charge-transfer excitation energy. The fifth column in Table 1
represents the total lowering of the excitation energy as solvents
of increasing polarity are considered, with the reaction field
contributions calculated in the present work shown in brackets.
It is to be noted that, with regard to the direct electrostatic effect
contributions, these are calculated with the first solvation shell
constructed around the solute molecule for the ground state
without the continuum around it. The same solvation shell in
terms of the nuclear positions was used in calculating the
contribution for the excited state. In other words, we have
assumed that the direct effects are small except for the nearest-

φ(r - 0) ) φ(r + 0)

(∂φ∂n)-
) ε(∂φ∂n)+

(20)

∂φ

∂nr
)

∂φ0

∂nr
+ ε - 1

4πε
∫CS

∂φ

∂nR

∂

∂nr

1
|r - R| dS (21)

φ0 ) ∑
a

Za - Qa

|r - Ra|

= µ‚R
R3

(22)

∂φ

∂n
) - 6ε

2ε + 1
µ‚n
R3

(23)

Rij ) ∑
a

[〈0|µi|a〉〈a|µj|0〉

∆Ea - ω
+

〈0|µj|a〉〈a|µi|0〉

∆Ea + ω ]
Sij

b ) ∑
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lying solvent molecules and that in accordance with the Franck-
Condon principle all the nuclei are frozen in their ground-state
positions.

The starred numbers represent the multiconfiguration RPA
excitation energies. The sixth and the seventh columns show
the polarizabilities (static and dynamic with a photon energy
of 0.06 hartrees, respectively) in the ground state.

We note that the RPA6 excitation values are in general larger
than the MSOS values (most likely because of the choice of a
smaller cavity radius than those derived in the preset work),
both of which are larger than the experimental18,19 values.

Moreover, while the RPA calculations only consider the reaction
field, in our calculations for solvated cases, on the other hand,
the reaction field contributions reflect only a small part of the
total excitation energies, a major part coming directly from the
interaction between the solute and the solvent molecules of the
first solvation shell. The experimental solvated excitation
energies19 are based onλmax values and probably represent
vibronic transitions and should not be taken too literally,
although correlation seems to improve the agreement somewhat,
as exhibited by the multiconfiguration RPA values. The RPA-
based polarizabilities are much more sensitive to solvent
environments than ours, probably because of the larger reaction
field. According to our calculations, while the polarizabilities
are quite weakly influenced by the presence of the solvents,
the effect on the two-photon amplitudes is quite strong.
Furthermore, there is an approximate inverse relationship
between the polarity of the solvent and the two-photon intensi-
ties.

It is to be pointed out that the above calculations are
preliminary in nature and are aimed at introducing the concept
of ab initio cavity surface and demonstrating the importance of
various effects not necessarily included or differentiated in
earlier formulations, specially those that result from the direct
electrostatic interaction between the solute molecule and the
first solvation shell. A more detailed study covering a broad
range of molecules and based on a more sophisticated descrip-
tion of the wave function is currently in progress. Since a direct
comparison with experiment at this stage is clearly too ambitious
for the properties we are interested in, our first attempt will be
to carry out supermolecular calculations on smaller systems and
compare the results based on the simplified approach presented
here.
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TABLE 1: Excitation Energies and Polarizabilities of
p-Nitroaniline for Various Solventsa

Rsolvent/
method ε0

Rav
(bohrs)

Eexc
(cm-1) ∆Eexc (cm-1) ω ) 0.0 ω ) 0.06

gas 1.0
PWb 38432 104.5 107.5
RPAc 41802* 93.9
expd 35090

benzene 2.21
PWb 12.3 -1822 (-659) 104.7 107.9
RPAc 9.8 -1234 100.8

hexanol 13.3
PWb 12.5 -2459 (-780) 104.6 107.7
RPAc 9.8 -2727 108.9

acetone 20.7
PWb 11.3 -2283 (-1076) 104.7 107.9
RPAc 9.8 -2880 109.7

-3646*
expe -7900

methanol 32.6
PWb 10.9. -2689 (-1405) 104.9 108.1
RPAc 9.8 -2969 110.3

-3780*
expe -8061

DMF 36.7
PWb 11.8 -2634 (-1120) 104.7 107.9
RPAc 9.8 -2985 110.4

-3806*
expe -8849

water 78.5
PWb 10.1 -2700 (-1603) 105.0 108.3
RPAc 9.8 -3074 110.9

a Polarizabilities are in atomic units, photon enrgies in hartrees. The
numbers in parentheses correspond to the reaction field contributions
in the present calculations. The starred values are based on multicon-
figuration RPA in ref 6.b Present work.c Reference 6.d Reference 18.
e Reference 19.

TABLE 2: Second-Order Transition Moments for Various
Solvents (au) for the Two Strongest Two-Photon Statesa

medium ∆Eexc

root
no. Sxx Sxy Syy ∆Eexc

root
no. Sxx Sxy Syy

gas 0.088 2 -14.9 3.1 142.2 0.113 5 -3.9 2.9 141.7
benzene 0.086 2 -18.2 3.2 160.0 0.112 5 -2.4 3.1 150.0
3-hexanol 0.087 2 -18.1 3.1 153.5 0.112 5 -2.8 3.0 147.1
acetone 0.086 2 -18.1 3.2 156.7 0.112 5 -2.6 3.1 148.6
methanol 0.087 2 -18.1 3.1 153.0 0.112 5 -2.9 3.0 146.8
DMF 0.087 2 -18.1 3.0 150.2 0.112 5 -3.1 3.0 145.5
water 0.087 2 -18.1 3.0 149.0 0.112 5 -3.2 3.0 144.9

a Excitation energies are in hartrees.

Solvent Effects in Organic Molecules J. Phys. Chem. A, Vol. 104, No. 20, 20004771


