Ground State of 1,6-Bridged [10] Annulenes: Infrared and Raman Spectra and Density Functional Calculations

Cristina Gellini and Pier Remigio Salvi*

Laboratorio di Spettroscopia Molecolare, Dipartimento di Chimica, Universitá di Firenze, via Gino Capponi 9, 50121 Firenze, Italy

Emanuel Vogel

Institut für Organische Chemie, Universität zu Köln, Greinstrasse 4, 50939 Köln, Germany Received: October 29, 1999; In Final Form: January 11, 2000

The infrared and Raman spectra of 1,6-methano[10]annulene and 1,6-epoxy[10]annulene, higher homologues of benzene with 10 π electrons, have been measured at room temperature in solution and in the solid phase. Density functional calculations using the B3-LYP functional and the 6-31G** basis set have been performed on the aforementioned molecules, on the 11,11-dicyano and 11,11-dimethyl derivatives of 1,6-methano[10]-annulene, and on naphthalene. In general, the calculated molecular structures are in good agreement with X-ray data. The calculation of the vibrational frequencies and intensities of 1,6-methano[10]annulene and 1,6-epoxy[10]annulene allows a complete assignment of their spectrum in terms of bridge and ring modes. A correlation is attempted with the modes of naphthalene.

I. Introduction

According to Hückel MO theory, [10]annulenes possessing a planar (or near planar) ring skeleton are supposed to represent the next higher aromatic homologues of benzene.^{1,2} However, all-*cis*- and mono-*trans*-[10]annulene, the two known simple [10]annulenes, do not meet the steric criterion for aromaticity, since they exist in pronouncedly nonplanar conformations.³ As a consequence, both of these molecules are highly reactive polyolefins. Di-*trans*-[10]annulene which, due to the presence of two sterically interfering inside hydrogen atoms, starkly deviates from planarity has never yielded to synthesis.

In line with theory, 1,6-methano-, 1,6-epoxy-, and 1,6-imino-[10]annulene (**1**, **2**, and **3** of Figure1, respectively), in which the 10-membered ring has been forced into an approximately planar conformation by replacement of 1,6-positioned hydrogen atoms by CH₂, O, or NH groups, are found to be aromatic.^{4–10} Similarly, 1,5-methano[10]annulene and the totally planar 1,6didehydro[10]annulene, derived from [10]annulene by introduction of acetylene–cumulene bonds,¹¹ constitute "Hückel aromatics".

It is a special feature of 1,6-bridged [10]annulenes that they may be in rapid equilibrium with norcaradiene-type tautomers. While the parent hydrocarbon is present as the aromatic [10]annulene **1**,¹² its derivatives in which the two bridge hydrogen atoms have been substituted by π acceptor groups predominantly or exclusively exist as norcaradienic tautomers (structure **5** of Figure 2).^{13–15} Interestingly, apart from aromatic also olefinic 1,6-methano[10]annulenes are known (structure **4** of Figure 2). A case in point is 2,5,7,10-tetra(trimethylsilyl)-1,6-methano-[10]annulene, where the bulky substituents next to the bridge bring about distortion of the 10-membered ring leading to a [10]annulene with fluctuating π bonds.¹⁶ Structural information on 1,6-epoxy[10]annulene (**2**) is scarce.¹⁷

 \ast To whom correspondence should be addressed. E-mail: salvi@chim.unifi.it.

Figure 1. Molecular structures of 1,6-methano- (1), 1,6-epoxy- (2), and 1,6-imino[10]annulene (3).

Figure 2. (top) Atomic numbering of bridged[10]annulenes and molecular reference system. (bottom) Structures of bridged[10]annulenes: 1, aromatic; 4, polyolefinic; 5, norcaradienic.

1,6-Bridged[10]annulenes, specifically **1** and **2**, stand out among the diverse types of [10]annulenes hitherto described in that they can be synthesized on preparative scale and, moreover, are stable compounds.¹⁸ Over the years, this type of [10]annulenes has thus been subject to intense structural,^{12–15} spectroscopic,^{19–24} and chemical¹⁸ scrutiny. Strange to say, however, detailed investigations of the vibrational spectra of these molecules have as yet not been forthcoming. In view of the valuable information vibrational properties may provide, we have initiated a research program aimed at the analysis of the infrared and Raman spectra of [4n + 2]annulenes ($n \ge 2$), starting with **1** and **2**, according to normal mode calculations based on the density functional (DF) approach. A related study has been recently performed on tetraazaannulenes.²⁵ The present study is intended to characterize the molecular force field of such annulenes in terms of vibrational frequencies and intensities. The vibrational analysis is made easier in the solid phase where only one conformation is usually present while it may become difficult in solution if a tautomeric equilibrium occurs.

II. Experimental Section

The synthesis of **1** and **2** has been described elsewhere.^{4,18} The purity of both samples was checked by gas chromatographic analysis. Despite their chemical stability, the compounds were stored at -10 °C in the dark.

Solutions 10^{-1} M of **1** and **2** in CS₂ and CCl₄ were prepared for infrared measurements at room temperature. Infrared spectra of thin polycrystalline films were taken at room temperature by melting the material (**1**, mp 302 K; **2**, mp 325 K) between two KBr windows (3500–400 cm⁻¹) or two CsI windows to extend the spectral range of investigation to \approx 200 cm⁻¹. The infrared spectra were measured on a FTIR interferometer (Bruker Model IFS 120 HR) with medium resolution conditions, \approx 2 cm⁻¹.

The Raman spectra were measured in the range of 150-1700 cm⁻¹ on a micro Raman instrument consisting of a Jobin-Yvon double monochromator coupled with an Olympus BH2 microscope and 100× objective for simultaneous excitation and collection. A notch filter was inserted along the optical collection system for stray light rejection. The Kr⁺ laser line at 647.1 nm with typical power ≤ 1 mW at the sample was used for excitation. The detection system is a liquid nitrogen cooled CCD (charge coupled device) with an integration time of 300 s per spectral portion ($\approx 500 \text{ cm}^{-1}$). These spectra were normalized each to the other using conventional software. The Raman spectra were also measured between 20 and 3500 cm⁻¹ with standard instrumentation (Ar⁺ laser, 514.5 nm; double monochromator, $\Delta \nu \approx 2 \text{ cm}^{-1}$; red-extended cooled photomultiplier), placing the polycrystalline sample on the hollow tip of an holder and mildly focusing the excitation beam on the sample. With a laser power of 30 mW no sample damage was noticed and the spectra did not show change with the irradiation time. The intensities of the Raman lines were found substantially constant with the excitation wavelength.

The infrared and Raman measurements were performed also on naphthalene (Carlo Erba) under the same experimental conditions.

III. Results

A. MO ab Initio Calculations. In the past years several calculations have been made on the ground state of 1,6-methano-[10]annulene.^{24,26–32} Three different extrema were found in the RHF approximation, corresponding to structures **1**, **4**, **5** of Figure 2.^{24,30} Two of them, i.e., **4** and **5**, are local minima while **1** is a saddle point on the S_0 energy surface.²⁴ Correlation effects, taken into account with MP2 corrections to RHF results, reverse the energy ordering and favor the aromatic structure **1**. Further, DF calculations show that structures **4** and **5** converge to **1** through optimization and therefore that **1** is the only minimum on S_0 .²⁴

For the purpose of the present paper, additional DF calculations using the B3-LYP exchange-correlation functional^{33,34} and

TABLE 1: Experimental and Calculated (DF/B3-LYP Results, 6-31G** Basis Set) Distances (Å) of Naphthalene (NA), 1,6-Methano[10]annulene (1) and 1,6-Epoxy[10]annulene (2)^{*a*}

	NA		1	L	2^b		
	expt ^c	calcd	expt ^d	calcd	expt ^e	calcd	
$C_1 - C_2$	1.425	1.421	1.402	1.410	1.39	1.400	
$C_2 - C_3$	1.377	1.376	1.378	1.393	1.39	1.396	
$C_3 - C_4$	1.417	1.417	1.417	1.426	1.39	1.416	
$C_1 - C_{11}$			1.484	1.493			
$C_1 - O$					1.43	1.392	
$C_1 \cdots C_6$	1.424	1.434	2.235	2.284	2.22	2.214	

^{*a*} Atom pairs in the first column are numbered as in Figure 2. ^{*b*} The calculated distances of C₁, or C₆, and of the oxygen atom from the plane defined by the eight ring carbon atoms, 2, 3, 4, 5 and 7, 8, 9, 10 in Figure 2, are 0.36 and 1.21 Å (0.35 and 1.25 Å, experiment), respectively. ^{*c*} From ref 33. ^{*d*} From ref 11. ^{*e*} From ref 15.

 TABLE 2: Experimental and Calculated (DF/B3-LYP

 Results, 6-31G** Basis Set) Distances (Å) of

 1,6-Methano[10]annulene (1) and its 11,11-Dicyano (CNMA)

 and 11,11-Dimethyl (MeMA) Derivatives^a

	1	1		CNMA	MeMA		
	expt ^b	calcd	expt ^c	$calcd^d$	calcd ^e	expt ^f	calcd
$C_1 - C_2$	1.402	1.410	1.474	1.478	1.413	1.459	1.426
$C_2 - C_3$	1.378	1.393	1.334	1.348	1.386	1.357	1.382
$C_3 - C_4$	1.417	1.426	1.439	1.455	1.425	1.432	1.427
$C_1 - C_{11}$	1.484	1.493	1.566	1.580	1.521	1.510	1.515
$C_1 \cdot \cdot \cdot C_6$	2.235	2.284	1.542	1.558	2.253	1.827	2.167

^{*a*} Atom pairs in the first column are numbered as in Figure 2. ^{*b*} From ref 11. ^{*c*} From ref 14. ^{*d*} Calculated type **5** or "norcaradienic" minimum of CNMA, E = -609.5843 hartrees. ^{*e*} Calculated type **1** or "aromatic" minimum of CNMA, E = -609.5849 hartrees. ^{*f*} From ref 12.

an extended basis set, 6-31G**, have been performed on 1,6methano[10]annulene, its 11,11-dicyano and 11,11-dimethyl derivatives, 1,6-epoxy[10]annulene, and naphthalene with the GAUSSIAN 98 suite of programs.⁸⁵ As to the bridged unsubstituted [10]annulenes, only one stable, i.e., corresponding to all real vibrational frequencies, C_{2v} geometry is found. In particular, all of the C atoms of 2, except C_1 and C_6 (see Figure 2 for numbering) belong to the same plane, as observed experimentally,¹⁷ and the distances of the C_1 (or C_6) and the oxygen atoms from this plane are 0.36 and 1.21 Å, respectively (0.35 and 1.25 Å, experimental values). In contrast with 2, the C_2 , C_5 and C_3 , C_4 atom pairs of 1 are calculated at different z coordinates and the molecule appears slightly bent downward along z, in agreement with X-ray data.¹² The C–C bond lengths of 2 are almost constant and close to the reported 1.39 Å value.¹⁷ The relevant structural parameters of 1, 2, and naphthalene³⁶ are collected in Table 1.

It is however known that bond-equalized structures such as **1** are preferred at the correlation level of theory.^{37–39} DF calculations have been therefore performed on the 11,11-dicyano and 11,11-dimethyl derivatives whose molecular structures, as derived from X-ray diffraction data on the crystals^{13,15} are of norcaradienic type **5**. It may be seen from Table 2 that the DF calculation predicts correctly the norcaradienic minimum (all associated frequencies being real) of the dicyano system with C_1-C_6 distance 1.542 Å (experimental value 1.558 Å). A second 1-type minimum, almost degenerate with the norcaradienic **5**, is also found from the calculations. Only one minimum is calculated for the 11,11-dimethyl derivative. The ring C–C distances are in fair agreement with experiment.¹³ However, the transannular length $C_1\cdots C_6$, 2.167 Å, differs largely from the observed value, 1.827 Å.¹³ According to calculations, the

Figure 3. Infrared spectra of naphthalene (lower, NA), 1,6-methano-[10]annulene (middle, 1), and 1,6-epoxy[10]annulene (upper, 2) as polycrystalline films between KBr windows at room temperature in the range 600-1700 cm⁻¹.

molecule is more similar to a strongly perturbed aromatic than to a norcaradienic system.

B. The Vibrational Spectra of Bridged [10]Annulenes. Under C_{2v} symmetry (with *x* and *y* the through-bond and through-atom axes, respectively; see Figure 2) the vibrational modes of 1, 57, are classified into 16A₁, 13A₂, 14B₁, and 14B₂, and those of 2, 51, into 14A₁, 12A₂, 12B₁, and 13B₂. Assuming the interaction between ring and bridge internal coordinates to be small, three modes of 2 may be approximately classified as hindered oxygen translations (A₁ + B₁ + B₂), six of 1 as hindered CH₂ translations and rotations (A₁ + A₂ + 2B₁ + 2B₂), and three of 1 as localized CH₂ modes of bending (A₁) and stretching (A₁, B₁) character. In this approximation the remaining, 13A₁, 12A₂, 11B₁, and 12B₂, are ring modes. For the sake of simplicity our vibrational analysis does not consider the eight C-H stretchings of the ring (2A₁, 2A₂, 2B₁, and 2B₂).

The infrared and Raman spectra of polycrystalline naphthalene, 1,6-methano[10]annulene, and 1,6-epoxy[10]annulene are reported in Figures 3 and 4, respectively, naphthalene representing the system unaffected by the structural distortion. On inspection, the similarity of the infrared spectra of naphthalene and 1,6-methano[10]annulene is apparent. Due to symmetry lowering, the spectrum of 1 shows a larger number of bands than naphthalene. Both spectra are dominated by a single band, 790 cm⁻¹ in naphthalene and 755 cm⁻¹ in **1**. The infrared solution spectra of 1 and 2 (see Figures 6 and 8) have a similar spectral pattern, the band around 750 cm⁻¹ being in both cases much stronger than all the others. In contrast with 1, most infrared bands of the epoxy system 2 in the crystal phase are of comparable strength. The Raman spectra of the two bridged annulenes show intense peaks in the low energy region, $\nu \leq$ 700 cm⁻¹. The lines at 193, 318, and 600 cm⁻¹ (1) and 176, 189, 318, 411, and 623 cm⁻¹ (2) are the strongest. The same modes of 1 are active also in the fluorescence spectrum at low temperature.²⁴

The vibrational assignment is based on DF/B3-LYP calculations (6-31G** basis set) of vibrational frequencies and infrared and Raman intensities. The harmonic frequencies have been scaled by an uniform factor, which corrects for the anharmonicity of the molecular vibrations. Since no scaling factor is reported for the DF/B3-LYP (6-31G**) combination,^{40,41} a calculation was performed on naphthalene, with the purpose of

Figure 4. Raman spectra of polycrystalline naphthalene (lower, NA), 1,6-methano[10]annulene (middle, 1), and 1,6-epoxy[10]annulene (upper, 2) at room temperature in the range 150–1700 cm⁻¹. The relative intensities of the three spectra are normalized to the respective strongest peaks.

Figure 5. Experimental and calculated (DF/B3-LYP, 6-31G** basis set) vibrational spectra of naphthalene. Lower: Raman (R) spectrum. Upper: infrared (ir) spectrum. Calculated spectra, Lorentzian full band width, 2Γ , equal to 5 cm⁻¹. Relative intensities on the vertical axis are scaled to make the strongest peaks match in appearance.

determining the appropriate factor and transferring it to the bridged annulenes. It turns out that the vibrational frequencies of naphthalene are multiplied, on the average, by 0.989 below 1000 cm⁻¹ and by 0.972 above 1000 cm⁻¹ for best fit to experiment. For simplicity a single scaling factor, 0.979, has been assumed. This makes the scaled C–C frequencies slightly overestimated. Despite this, an overall excellent agreement with the observed spectra of naphthalene is found, as shown in Figure 5. The factor has therefore been considered to be sufficiently reliable for use also in the vibrational calculations of **1** and **2**.

Crystal field effects may affect the spectra. **1** and **2** crystallize in the orthorhombic system, space group $Fdd2(C_{2v}^{19})$ and *Pbca*- (D_{2h}^{15}) , respectively, with four and eight molecules in the primitive unit cell located on C₁ sites.^{12,17} As a result, each vibration of **2** is split into eight components (A_g, B_{1g}, B_{2g}, B_{3g}, A_u, B_{1u}, B_{2u}, B_{3u}), the "g" members of the multiplet being Raman while the "u" (except A_u) being infrared active. No coincidence between infrared and Raman bands is expected. In

Figure 6. Experimental and calculated (DF/B3-LYP, 6-31G** basis set) infrared spectra of 1,6-methano[10]annulene. Lower: polycrystalline film (cryst) between KBr windows. Middle: solution (sol), 10^{-1} M in CS₂ (600–1300 cm⁻¹) and CCl₄ (800–1700 cm⁻¹). Upper: calculated spectrum (calc), Lorentzian full band width, 2 Γ , equal to 5 cm⁻¹. Relative intensities on the vertical axis are scaled to make the strongest peaks match in appearance.

Figure 7. Experimental and calculated (DF/B3-LYP, 6-31G** basis set) Raman spectra of 1,6-methano[10]annulene. Lower: polycrystalline sample. Upper: calculated spectrum, Lorentzian full band width, 2Γ , equal to 5 cm⁻¹. Relative intensities on the vertical axis are scaled to make the strongest peaks match in appearance.

the case of **1**, each vibration is split into four components (A₁, A₂, B₁, B₂), all of them Raman and only three, except A₂, infrared active. Experimentally most infrared and Raman bands of both systems are single and not coincident. Exceptions, by comparison with solution spectra, are the infrared doublets 686/691, 753/760, 844/851, 1147/1151, and 1191/1195 cm⁻¹ for **2** and 831/838 and 1245/1248 cm⁻¹ for **1**. Possibly, the Raman peaks 193/198 cm⁻¹ of **1** are a crystal doublet. The observed spectra are compared with calculations in Figures 6–9. The two sets of data match well on frequency and satisfactorily on intensity grounds. It may be seen that the infrared intensities of **1** and **2** are in very good agreement with solution data. Also

Figure 8. Experimental and calculated (DF/B3-LYP, 6-31G** basis set) infrared spectra of 1,6-epoxy[10]annulene. Lower: polycrystalline film (cryst) between KBr windows. Middle: solution (sol), 10^{-1} M in CS₂ (600–1300 cm⁻¹) and CCl₄ (800–1700 cm⁻¹). Upper: calculated spectrum (calc), Lorentzian full band width, 2Γ , equal to 5 cm⁻¹. Relative intensities on the vertical axis are scaled to make the strongest peaks match in appearance.

Figure 9. Experimental and calculated (DF/B3-LYP, 6-31G** basis set) Raman spectra of 1,6-epoxy[10]annulene. Lower: polycrystalline sample. Upper: calculated spectrum, Lorentzian full band width, 2Γ , equal to 5 cm⁻¹. Relative intensities on the vertical axis are scaled to make the strongest peaks match in appearance.

the calculated Raman intensities (see Figures 7 and 9) compare fairly well with experiment, although the peaks below 400 cm^{-1} are weaker than observed. Therefore the calculated data may be taken as a guideline for the vibrational assignment.

The approximate classification of normal modes into bridge and ring vibrations is confirmed by our calculations. Modes with the largest amplitude along *x*, *y*, and *z* on the oxygen atom of **2** are calculated at 401, 993, and 868 cm⁻¹, respectively, and assigned as hindered oxygen translations B₁ (*x*), B₂ (*y*) and A₁ (*z*). These correspond to 402 (IR)/400 (R), 982 (IR), 862 (IR)/ 865 (R) cm⁻¹ bands of **2** (see Figures 8 and 9). The equivalent modes of **1** are at 425, 933, and 878 cm⁻¹ (419 (R), 931 (IR)/ 934 (R), 874 (IR)/873(R) experimental values). Modes classified as hindered CH₂ rotations are calculated at 1011 (R_y, B₁), 1103 (R_z, A₂) and 1268 (R_x, B₂) cm⁻¹ and observed at 1006 (IR), 1081 (R), and 1245, 1248 (IR) cm⁻¹. The CH₂ bending mode of A₁ symmetry occurs at 1475 cm⁻¹ and is observed at 1447 (IR)/1453 (R) cm⁻¹. The calculated infrared and Raman intensities of these modes are in agreement with observations.

According to calculations, the strongest infrared and Raman bands of **1** and **2** are assigned to A_1 ring modes. These include the 755 (IR), 600 (R), and 318 (R) cm⁻¹ peaks for **1** and the 753, 760 (IR), 623 (R), and 318 (R) cm⁻¹ peaks for **2**. These vibrations are calculated at 762, 620, and 325 cm⁻¹ (**1**) and at 753, 642, and 312 cm⁻¹ (**2**). The A_1 butterfly motion is observed at 193, 198 (R, **1**) cm⁻¹ and at 189 cm⁻¹ (R, **2**) and calculated at 190 cm⁻¹ (**1**) and 174 cm⁻¹ (**2**).

The ring modes can be divided into three groups of bands, $\approx 150-500$, $\approx 600-1000$, and $\approx 1100-1650$ cm⁻¹, as suggested experimentally and by the calculations. In the first interval eight modes are predicted. All of them are assigned in the spectrum of 2 and six in the spectrum of 1 (see Tables 3 and 4). In addition to the 307 cm⁻¹ (B₁) mode, calculated weak in both the infrared and Raman spectra, the relatively intense Raman mode 175 cm⁻¹ (A_2) is absent in the spectrum of **1**. In the second interval $(\approx 600-1000 \text{ cm}^{-1})$ 16 vibrations must be considered according to calculations. Three (out of four) A2 modes, 607, 963, and 870 cm^{-1} for **1** and 601, 958, and 796 cm⁻¹ for **2**, are too weak to be observed in the Raman spectrum. One B_1 mode (939 cm⁻¹) of 1 and one B_1 (845 cm⁻¹) plus one B_2 (766 cm⁻¹) of 2, predicted with small intensity in both spectra, are not observed. All others are easily assigned on the basis of frequency and intensity data (see again Tables 3 and 4). Finally, all 16 fundamentals of the third region have been identified on the spectra, except two 2 modes, 1266 and 1558 cm⁻¹ of B_2 symmetry, and one, belonging to 1, 1268 cm⁻¹ of A₂ symmetry. The root-mean-square deviation, i.e., $[(1/n)\sum_{i=1}^{n}(v_{obs,i})]$ $v_{\text{calc},i}$ ²]^{1/2}, of this assignment, not considering the C–H stretching vibrations, is ≈ 14 cm⁻¹ for **1** and ≈ 13 cm⁻¹ for **2**.

IV. Discussion

A correlation between the modes of naphthalene and the ring modes of 1 and 2 may be attempted on the basis of our DF results. With reference to the coordinate system of Figure 2, the correlation diagram $D_{2h} \rightarrow C_{2\nu}$ implies the following correspondence between symmetry species: $(A_g, B_{1u}) \rightarrow A_1$, $(B_{1g}, A_u) \rightarrow A_2, (B_{2g}, B_{3u}) \rightarrow B_1, (B_{3g}, B_{2u}) \rightarrow B_2$. Due to the loss of the molecular symmetry plane, the separation of naphthalene vibrations into in-plane (Ag, B1g, B2u, B3u) and outof-plane $(B_{2g}, B_{3g}, A_u, B_{1u})$ modes no longer holds for 1 and 2 and, as a consequence, all internal coordinates contribute in principle to each normal mode of bridged [10]annulenes. By careful inspection of their displacement vectors, it may be seen, however, that in most cases the overall character of the vibration is conserved on going from naphthalene to 1,6-bridged [10]annulenes. Following these considerations the correspondence summarized in Table 5 is proposed. General comments are

1. The structural distortion of the decagon ring along z induces a π delocalization less extended in **1** and **2** than in naphthalene, thus weakening on the average diagonal and interaction force constants of the ring coordinates.

2. CH_2 and O bridges affect mainly vibrational modes with small or negligible displacements on the H atoms, i.e., C–C stretchings, CCC bendings, and CCCC out-of-plane torsions.

3. The largest frequency shift is found for modes localized on the C_1 and C_6 atoms of naphthalene.

TABLE 3: Observed Infrared (IR; cryst, Polycrystalline Film; sol, Solution) and Raman (R; Microcrystal) Frequencies (cm⁻¹) of 1,6-Methano[10]annulene (1) at Room Temperature; Calculated Frequencies (ω , cm⁻¹), Infrared and Raman Intensities ($I_{\rm ir}$ and $I_{\rm R}$, Respectively, in Km mol⁻¹ and Å⁴ amu⁻¹); Mode Symmetry (sym) and Approximate Description;^{*a*} DF/B3-LYP, 6-31G** Calculation Using a Scale Factor 0.979 (See Text for Details)^{*b*}

IR			calcd				
cryst	sol	R	ω	$I_{\rm IR}$	IR	sym	
			175	0	6.3	A_2	$ au_{ m c}$
		${193 \\ 198}$	190	0.01	6.8	A_1	butterfly
			307	0.1	0.07	B_1	$ au_{ m c}$
		318	325	0.1	11.6	A_1	$C_1C_{11}C_6$ bend, $\tau_{\rm H}$
		339	340	0.2	3.8	B_2	b _c
		368	370	0	3.6	A_2	b _c
		419	425	0.1	2.1	B_1	T_x
445		443	453	4.5	0.1	B_2	$ au_{ m c}$
474		473	481	4.2	6.1	A_1	bc
		589	607	0	1.1	A_2	$ au_{ m c}$
599	602	600	620	23.9	49.6	A_1	$C_1C_{11}C_6$ bend, $\tau_{\rm H}$
642	642	642	633	0.5	1.8	B_2	$ au_{ m c}$
655	655		654	0.6	2.4	B_1	b _c
683	682	684	690	0.003	6.1	B_1	$ au_{ m H}$
751			761	1.4	1.7	B_2	b _c
755		760	762	66.0	15.7	A_1	$ au_{ m H}$
6004		792	793	0	0.02	A_2	$ au_{ m H}$
831 838			842	19.6	2.6	B_2	$ au_{ m H}$
850		851	857	0.2	0.1	B_1	$ au_{ m H}$
			870	0	0.02	A_2	b _c
874	876	873	878	3.5	11.4	A_1	T_z
902		902	914	0.2	9.3	A_1	$ au_{ m H}$
931	932	934	933	2.7	4.7	B_2	T _y
			939	1.2	0.4	B_1	s _c , b _H
0.61	064	0.00	963	0	0.08	A_2	$ au_{ m H}$
961	964	966	966	4.5	0.2	B_2	$ au_{ m H}$
1000	1007	974	9/3	0.001	23.3	A_1	D _H , S _c
1006	1007	1001	1011	4.9	0.5	B_1	K _y
1127	1121	1081	1105	0	0.5	A ₂ D	K _Z
1127	1151	1120	1174	2.1	15.5	D2	D _H
1105	1176	1105	11/4	51	0.1	A2 D.	D _H
11/4	1170	1200	1207	0.01	1.0	D1 A.	b _H
		1200	1267	0.01	1.0	Δ ₁	b _H
[1245			1200	0	1.04	112	UH
1243	1239		1268	4.9	0.6	B_2	\mathbf{R}_{x}
		1261	1274	0.1	3.5	B_1	bн
1305	1306		1316	0.5	0.09	$\dot{B_2}$	b _H , s _c
1343	1345		1352	0.5	1.8	$\tilde{A_1}$	$C_1 - C_{11}, C_6 - C_{11}$
1355	1355	1356	1372	2.9	11.5	B_1	$b_{\rm H}$, $s_{\rm c}$
1398	1401		1410	2.5	0.0004	$\dot{B_2}$	$b_{\rm H}, s_{\rm c}$
1431	1434	1432	1450	0.02	47.2	A_1	b _H , s _c
		1467	1471	0	11.9	A_2	b _H , s _c
1447	1448	1453	1475	8.3	6.6	$\overline{A_1}$	CH ₂ bend
1483	1485	1483	1510	1.9	27.3	A_1	Sc
1510 1533	1514		1537	3.8	1.6	B_1	b _H , s _c
1544	1545		1561	3.0	1.9	B_2	S _c
		1645	1602	0	5.6	$\tilde{A_2}$	Sc

^{*a*} s_c = C–C ring stretching; b_c = CCC ring bending; b_H = CCH ring bending; $\tau_{\rm H}$ = out-of-plane CCCH bending; $\tau_{\rm c}$ = CCCC torsion; T_x, T_y, T_z = hindered CH₂ translations; R_x, R_y, R_z = hindered CH₂ rotations (see text for details). ^{*b*} Frequency values in braces are crystal components of the molecular vibrations.

As a result, most in- and out-of-plane vibrations of naphthalene correlate with vibrations of 1 and 2 of lower frequency. However, in the case of the butterfly mode (173 cm⁻¹, naphthalene; 174 cm⁻¹, 2; 190 cm⁻¹, 1) the trend is reversed, suggesting a nonvanishing interaction of bridge atoms with the ring. Also for several in-plane modes, notably some B_{3u} modes, the change is opposite.

TABLE 4: Observed Infrared (IR; cryst, Polycrystalline Film; sol, Solution) and Raman (R; Microcrystal) Frequencies (cm⁻¹) of 1,6-Epoxy[10]annulene (2) at Room Temperature; Calculated Frequencies (ω , cm⁻¹), Infrared and Raman Intensities (I_{IR} and I_R , Respectively, in km mol⁻¹ and Å⁴ amu⁻¹); Mode Symmetry (sym) and Approximate Description;^{*a*} DF/B3-LYP, 6-31G** Calculation Using a Scale Factor 0.979 (See Text for Details)^{*b*}

IR				calcd			
cryst	sol	R	ω	$I_{\rm IR}$	IR	sym	
		176	145	0	5.6	A_2	τ_c
		189	174	1.2	3.7	A_1	butterfly
		309	325	0.02	0.5	B_1	$ au_{\rm c}$
321		318	312	1.0	10.9	A_1	$C_1 O C_6$ bend, $\tau_{\rm H}$
352		351	349	1.1	1.9	B_2	$ au_{ m c}$
402		400	401	3.4	1.3	B_1	T _x
		411	412	0	5.5	A_2	b
450			455	2.1	0.3	$\bar{B_2}$	τ_{c}
491		492	488	2.9	12.6	$\tilde{A_1}$	b _c
			601	0	1.5	A_2	τ_{c}
619	618	623	642	23.5	55.4	$\tilde{A_1}$	$C_1 O C_6$ bend, $\tau_{\rm H}$
637	633	641	657	0.1	1.6	B_2	τ_c
∫686	682	687	687	0.2	5.0	- 2 D	τ.
l 691	085	007		0.2	5.9	<i>D</i> ₁	ι _H
745			744	6.9	0.5	B_1	b _c
753 760		760	753	62.3	12.6	A_1	$ au_{ m H}$
			766	0.1	0.8	B_2	b _c
5 044		807	796	0	0.01	A_2	$ au_{ m H}$
844 851		846	844	21.1	3.6	B_2	$ au_{ m H}$
			845	1.1	0.1	B_1	$ au_{ m H}$
862	867	865	868	24.0	9.7	A_1	T_z
885		883	880	0	0.3	A_2	b _c
		912	904	0.1	7.9	A_1	$ au_{ m H}$
			958	0	0.02	A_2	$ au_{ m H}$
946	946		961	0.9	0.3	B_2	$ au_{ m H}$
959	960	960	963	4.1	0.001	B_1	s _c , b _c
972	973	973	978	2.3	33.2	A_1	$b_{\rm H}, b_{\rm c}$
982	987		993	6.6	1.3	B_2	T_{v}
1115	1118	1116	1124	13.3	0.01	B_2	b _H
		1148	1142	0	5.2	A_2	b _H
∫1147	1148		1166	7.0	03	R.	bu
L1151	11-0		1100	7.0	0.5	D_1	uн
∫1191	110/	1103	1201	36	1.4	Δ.	hu
l1195	11)4	1175	1201	5.0	1.7	11	0 _H
		1220	1227	0	10.9	A_2	b _H
1236	1239		1243	4.4	0.3	B_1	b _H
			1266	0.01	3.1	B_2	$b_{\rm H}$
1319	1315	1319	1336	1.1	6.9	B_1	b _H , s _c
1326	1331		1341	12.8	2.1	A_1	$C_1 - C_6, C_6 - C_{11}$
1399	1398		1410	0.5	0.03	B_2	b _H
1441	1442	1442	1459	2.1	36.5	A_1	s _c , b _H
		1458	1471	0	20.5	A_2	s _c , b _H
1498		1497	1529	0.5	32.8	A_1	Sc
			1558	4.7	1.0	B_2	Sc
1535	1537		1564	16.0	0.3	B_1	Sc
		1634	1612	0	1.65	A_2	Sc

^{*a*} s_c = C–C ring stretching; b_c = CCC ring bending; b_H = CCH ring bending; $\tau_{\rm H}$ = out-of-plane CCCH bending; $\tau_{\rm c}$ = CCCC torsion; T_x, T_y, T_z = hindered O translations (see text for details). ^{*b*} Frequency values in braces are crystal components of the molecular vibrations.

In the following we consider interesting points of our correlation table according to the symmetry species.

$$(A_{g}, B_{1u}) \rightarrow A_{1}$$

One B_{1u} , 482 cm⁻¹, and three A_g modes, 759, 1385, and 1594 cm⁻¹, have the largest displacements on the C_1 , C_6 atom pair of naphthalene and are thus expected to be particularly sensitive to bridging. The two modes at lower frequency shift to 325 cm⁻¹ (1), 312 cm⁻¹ (2) and to 620 cm⁻¹ (1), 642 cm⁻¹ (2),

TABLE 5: Calculated Ring Frequencies (cm⁻¹; DF/B3-LYP Results, 6-31G** Basis Set; 0.979 Scale Factor) of 1,6-Methano[10]annulene (1), 1,6-Epoxy[10]annulene (2), and Naphthalene (NA)^{*a*}

1 July 1	unantin								
sym	1	2	NA		sym	1	2	NA	
A_1	481	488	509	$A_{\rm g}$	A_2	370	412	507	B_{1g}
	620	642	759	A_{g}		870	880	928	B_{1g}
	973	978	1032	A_{g}		1174	1142	1153	B_{1g}
	1207	1201	1164	$A_{\rm g}$		1268	1227	1246	B_{1g}
	1352	1341	1386	A_{g}		1471	1471	1470	B_{1g}
	1450	1459	1471	A_{g}		1602	1612	1651	B_{1g}
	1510	1529	1594	$A_{\rm g}$					U
	190	174	173	B_{1u}		175	145	186	$A_{\rm u}$
	325	312	482	B_{1u}		607	601	620	A_{u}
	762	753	786	B_{1u}		793	796	836	$A_{\rm u}$
	914	904	948	B_{1u}		963	958	969	$A_{\rm u}$
B_1	654	744	622	B_{3u}	B_2	340	349	357	B_{2u}
	939	963	1021	B_{3u}		761	766	791	B_{2u}
	1189	1166	1153	B_{3u}		1137	1124	1130	B_{2u}
	1274	1243	1215	B_{3u}		1316	1266	1265	B_{2u}
	1372	1336	1378	B_{3u}		1410	1410	1395	B_{2u}
	1537	1564	1529	B_{3u}		1561	1558	1621	B_{2u}
	307	325	388	B_{2g}		453	455	471	B_{3g}
	690	687	720	B_{2g}		633	657	767	B_{3g}
	857	845	932	B_{2g}		842	844	880	B_{3g}
				2		966	961	976	B_{3g}

^{*a*} The symmetry labels on the left refer to $C_{2\nu}$ symmetry of **1** and **2** while those on the right refer to D_{2h} symmetry of NA, using the reference system of Figure 2.

strongly active in the Raman spectrum, assigned as symmetric and antisymmetric combinations of the methylenic (epoxide) bending with out-of-plane CCC-H ring bendings, respectively. The 1385 cm⁻¹ C_1 - C_6 stretching, the strongest peak in the Raman spectrum of naphthalene, is correlated with the symmetric (C1, C6)-O and (C1, C6)-C11 stretchings, 1341 and 1352 cm⁻¹, respectively, with much lower Raman intensity. The 1594 cm^{-1} mode, i.e., the simultaneous elongation of C₃-C₄, C₁- C_6 and C_8-C_9 bonds, is damped by the insertion of the bridge and corresponds in 1 and 2 to weakly interacting C_3-C_4 and C_8-C_9 stretchings, 1510 and 1529 cm⁻¹. The strongest infrared band of naphthalene, 786 cm⁻¹, assigned as out-of-plane H-bending of B_{1u} symmetry, and the relatively intense Raman peak, 509 $\mbox{cm}^{-1},$ the symmetric A_g CCC in-plane bending, do not involve C_1 and C_6 displacements. They shift less than previous modes, to 762 and 481 cm^{-1} in 1, to 753 and 488 cm^{-1} in 2, as expected. The 762 and 753 cm^{-1} modes are also the strongest in the infrared spectrum of 1 and 2, respectively.

$$(B_{2g}, B_{3u}) \rightarrow B_1$$

 B_1 modes show weakly in the 1 and 2 spectra, in close agreement with the spectral behavior in naphthalene. Three B_{3u} modes, 622, 1215, 1529 cm⁻¹, for which the C_1 and C_6 atoms move along *x*, are correlated with modes of 1 and 2 of higher frequency. The vibrational analysis indicates that the *x* coordinate of these atoms is replaced by bending $C_2C_1C_{11}$ (or C_2C_1O). Out-of-plane B_{2g} modes, conserving substantially their out-ofplane character in 1 and 2, shift appreciably to lower frequencies probably due to mass effect.

$$(B_{1g}, A_u) \rightarrow A_2; \quad (B_{3g}, B_{2u}) \rightarrow B_2$$

A₂ ring modes are inactive in the infrared and only weakly active in the Raman spectrum of **1** and **2**. Also the B₂ ring modes, though infrared and Raman active, do not contribute significantly to the spectra. The $(B_{1g}, A_{1u}) \rightarrow A_2$ and $(B_{3g}, B_{2u}) \rightarrow B_2$ correlations are good examples of the general behavior.

In fact, C1 and C6 displacements are found for the B1g 507 and 1651 cm⁻¹ modes, which are CCC bending and CC stretching, respectively, and for the $B_{3g}\ 767\ cm^{-1}$ mode, a CCCC out-ofplane torsion. Their frequency decreases on going to 1 and 2 (see Table 4). CCH bendings are much less influenced by bridging.

Finally, the excellent agreement between the solution and the calculated infrared spectrum of 2 (see Figure 8) should be emphasized. Since the DF calculation method correctly predicts the structures of 1 (aromatic annulene) and of its 11,11-dicyano derivative (norcaradiene tautomer), we feel confident that the absence of norcaradienic or polyolefinic minima in the S₀ energy surface of 2, as it results from our DF calculations, is correct. The two points may be taken as a good indication, though not conclusive in view of the calculation deficiencies relative to the 11,11-dimethyl system, in favor of the $C_{2\nu}$ symmetry for 2 in solution and of the nonoccurrence of a tautomeric equilibrium between forms 1 and 5.

V. Conclusions

In this paper we have reported on the infrared and Raman spectra of 1,6-methano[10]annulene and 1,6-epoxy[10]annulene and presented a detailed vibrational analysis based on DF/B3-LYP calculations with the 6-31G** basis set.

The two major results of this study are

1. A complete assignment of their vibrational modes, conveniently classified as ring and bridge modes, is obtained. The correlation with naphthalene modes helps identify the ring modes more sensitive to bridging.

2. The aromatic form is the only stable structure of 1,6-epoxy and 1,6-methano[10]annulene in the ground state. The excellent agreement of the calculated with the solution spectrum supports the conclusion.

Since annulenic substructures occur in more complex geometries such as methano- and epoxyfullerene,42-44 the present analysis may be useful to further investigate the vibrational properties of these systems⁴⁵ and their derivatives.

Acknowledgment. This work was supported by the Italian Consiglio Nazionale delle Ricerche (CNR) and Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST).

References and Notes

(1) Garratt, P. Aromaticity; John Wiley and Sons: New York, 1986.

(2) Choi, C. H.; Kertesz, M. J. Chem. Phys. 1998, 108, 6681-6688.

(3) Masamune, S.; Hojo, K.; Hojo, K.; Bigam, G.; Rabenstein, D. L. J. Am. Chem. Soc. 1971, 93, 4966-4968.

(4) Vogel, E.; Roth, H. D. Angew. Chem., Int. Ed. Engl. 1964, 3, 228. (5) Masamune, S.; Brooks, D. W. Tetrahedron Lett. 1977, 3239-3240.

(6) Scott, L. T.; Brunsvold, W. R.; Kirms, M. A.; Erden, I. Angew. Chem., Int. Ed. Engl. 1981, 20, 274.

(7) Scott, L. T.; Brunsvold, W. R.; Kirms, M. A.; Erden, I. J. Am. Chem. Soc. 1981, 103, 5216-5220.

(8) Masamune, S.; Brooks, D. W.; Morio, K.; Sobezak, R. L. J. Am. Chem. Soc. 1976, 98, 8277-8279.

(9) Gilchrist, T. L.; Tuddenham, D.; McCague, R.; Moody, C. D.; Rees, C. W. J. Chem. Soc., Chem. Commun. 1981, 657-658.

(10) McCague, R.; Moody, C. D.; Rees, C. W. J. Chem. Soc., Chem. Commun. 1982, 497-499.

(11) Meyers, A. G.; Finney, N. S. J. Am. Chem. Soc. 1992, 114, 10986-10987

- (12) Bianchi, R.; Pilati, T.; Simonetta, M. Acta Crystallogr. 1980, B36, 3146-3148
- (13) Bianchi, R.; Morosi, G.; Mugnoli, A.; Simonetta, M. Acta Crystallogr. 1973, B29, 1196-1208.

(14) Bianchi, R.; Pilati, T.; Simonetta, M. Acta Crystallogr. 1978, B34, 2157-2162.

- (15) Vogel, E.; Scholl, T.; Lex, J.; Hohlneicher, G. Angew. Chem., Int. Ed. Engl. 1982, 21, 869-870.
- (16) Neidlein, R.; Wirth, W.; Gieren, A.; Lamm, V.; Hubner, T. Angew. Chem., Int. Ed. Engl. 1985, 24, 587.

(17) Bailey, N. A.; Mason, R. Chem. Commun. 1967, 1039-1040. (18) Vogel, E. Pure Appl. Chem. 1982, 54, 1015-1039.

(19) Briat, B.; Schooley, D. A.; Records, R.; Bunnenberg, E.; Djerassi,

C.; Vogel, E. J. Am. Chem. Soc. 1968, 90, 4691-4697. (20) Klingensmith, K. A.; Puttmann, W.; Vogel, E.; Michl, J. J. Am. Chem. Soc. 1983, 105, 3375-3380.

(21) Dewey, H. J.; Deger, H.; Frolich, W.; Dick, B.; Klingensmith, K. A.; Hohlneicher, G.; Vogel, E.; Michl, J. J. Am. Chem. Soc. 1980, 102, 6412-6417.

(22) Dorn, H. C.; Yannoni, C. S.; Lumbach, H.-H.; Vogel, E. J. Phys. Chem. 1994, 98, 11628-11629.

(23) Catani, L.; Gellini, C.; Salvi, P. R.; Marconi, G. J. Photochem. Photobiol. A 1997, 105, 123-127.

(24) Catani, L.; Gellini, C.; Salvi, P. R. J. Phys. Chem. A 1998, 102, 1945-1953.

(25) Bell, S.; Crayston, J. A.; Dines, T. J.; Ellahi, S. B. J. Phys. Chem. **1996**, 100, 5252-5260.

(26) Sabljic, A.; Trinajstic, N. J. Org. Chem. 1981, 46, 3457-3461.

(27) Farnell, L.; Kao, J.; Radom, L.; Schaefer, H. F., III J. Am. Chem.

Soc. 1981, 103, 2147-2151. (28) Farnell, L.; Radom, L. J. Am. Chem. Soc. 1982, 104, 7650-7654. (29) Cremer, D.; Dick, B. Angew. Chem., Int. Ed. Engl. 1982, 21, 865-

866.

(30) Haddon, R. C.; Raghavachari, K. J. Am. Chem. Soc. 1985, 107, 289-298.

(31) Sironi, M.; Raimondi, M.; Cooper, D. L.; Gerratt, J. J. Mol. Struct. (THEOCHEM) 1995, 338, 257-265.

(32) Espinosa-Muller, A.; Meezes, F. C. J. Chem. Phys. 1978, 69, 367-372

(33) Becke, A. D. Phys. Rev. A 1988, 33, 3098-3100.

(34) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789. (35) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Gill, P. M. W.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Cui, Q.; Morokuma, K.; Nanayakkara, A.; Challacombe, M.; Malik, D. K.; Rabuk, A. D.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 98, Revision A.1; Gaussian Inc.: Pittsburgh, PA, 1998 (36) Brock, C. P.; Dunitz, J. D. Acta Crystallogr. 1982, B38, 2218-2228.

(37) Schweig, A.; Thiel, W. J. Am. Chem. Soc. 1981, 103, 1420-1425.

(38) Jug, K.; Fasold, E. J. Am. Chem. Soc. 1987, 109, 2263-2265.

(39) Yoshizawa, K.; Kato, T.; Yamabe, T. J. Phys. Chem. 1996, 100, 5697 - 5701

(40) Rauhut, G.; Pulay, P. J. Phys. Chem. 1995, 99, 3093-3100.

(41) Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502-16513.

(42) Suzuki, T.; Li, Q.; Khemani, K. C.; Wudl, F. J. Am. Chem. Soc. 1992, 114, 7301-7302.

(43) Smith, A. B., III; Strongin, R. M.; Brard, L.; Furst, G. T.; Romanow, W. J.; Owens, K. G.; King, R. C. J. Am. Chem. Soc. 1993, 115, 5829-5830

(44) Creegan, K. M.; Robbins, J. L.; Robbins, W. K.; Millar, J. M.; Sherwood, R. D.; Tindall, P. J.; Cox, D. M.; Smith, A. B., III; McCauley, J. P., Jr.; Jones, D. R.; Gallagher, R. T. J. Am. Chem. Soc. 1992, 114, 1103-1105

(45) Cardini, G.; Bini, R.; Salvi, P. R.; Schettino, V.; Klein, M. L.; Strongin, R. M.; Brard, L.; Smith, A. B., III J. Phys. Chem. 1994, 98, 9966-9971.