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The recently formulated quantum transition state theory (QTST) in which the quantum projection operator is
approximated by its parabolic barrier limit and the symmetrized thermal flux is evaluated numerically exactly,
is applied to the collinear hydrogen exchange reaction. The results are found to bound the exact results from
above for temperatures ranging fromT ) 200 K to T ) 1000 K. The QTST rate is almost exact at high
temperature and is a factor of 3.7 greater than the exact rate atT ) 200 K, where there is extensive tunneling.
Contour plots of the quantum transition state theory reactive flux reveal that the theory accounts well for the
“corner cutting” observed in the collinear hydrogen exchange reaction at low temperatures. These results
demonstrate that one may estimate quantum rates of bimolecular reactions, using only thermodynamic
information.

I. Introduction

Almost thirty years have passed since the first publication of
numerically exact quantum rates for the collinear hydrogen
exchange reaction.1 Many articles have been published on
approximate theories for this benchmark model (see for example
refs 2-5). Why then is it still justified to publish yet another
paper, when presumably, this model system is well understood?
The collinear hydrogen exchange reaction is arguably the most
severe test for a quantum transition state theory. Simple
vibrationally adiabatic theories fail2 due to the rapid change of
curvature of the ground-state adiabatic potential in the vicinity
of the saddle point. It is only through the use of tailor-made
tunneling paths,6 whose generality is doubtful and whose
accuracy is uncontrollable,7 that good agreement has been
obtained between an approximate theory5 and numerically exact
results.

This state of affairs should be contrasted with classical
transition state theory4,7 which is a well-defined theory. It is
guaranteed to give an upper bound to the rate. Most approximate
quantum theories are usually greater than the exact rate at high
temperature but lower at low temperature. Although quantum
rate expressions that do bound the exact rate exist,8-12 they are
especially poor in the tunneling regime where they typically
go as the square root of the tunneling probability. This state of
affairs has almost convinced the community that the search for
a quantum transition state theory is doomed to failure.13

The past decade has seen though a revival of interest in the
formulation of a thermodynamic theory of rates which would
be applicable to condensed phase systems.14 One recent
development has been made by Gillan15 and Voth and
coworkers16-18 who use the quantum centroid density to
formulate a thermodynamic rate theory. To the best of our
knowledge, the centroid method has yet to be tested on the
collinear hydrogen exchange reaction. A different thermody-
namic approach has been suggested by Hansen and Andersen,19

who extrapolate short time thermodynamic coefficients of the
flux-flux correlation function20 to long times. This approach
has recently been tested successfully on the(J ) 0) 3D D+H2

reaction by Thompson,21 but only for temperatures greater than
T ) 300 K, where tunneling is not very important.

We have formulated and developed yet a different theory
which is based on the Miller-Schwartz-Tromp flux side
correlation function expression for the exact quantum rate20 k(T)
at temperature T:

where QR is the partition function of reactants,Ĥ is the
Hamiltonian operator, and the symmetrized thermal flux operator
F̂(â, qds) is defined as

q̂ and p̂ denote the reaction coordinate position and conjugate
momentum operators andqds is the position of an arbitrary
dividing surface. The projection operatorP̂ in eq 1.1 is the long
time limit of the time-evolved Heaviside function

Quantum transition state theory (referred to as QTST
throughout the rest of this paper) is derived22,23 by noting that
the trace in eq 1.1 can be written exactly as a phase space
integral over the Wigner phase space representations of the two
operators,P̂ and F̂ (â, qds). The symmetrized thermal flux
operator in phase space is calculated using Monte Carlo methods
while, as suggested by Voth et al.,24 the exact projection operator
is replaced by its parabolic barrier limit. The accuracy of QTST
has been thus far tested for symmetric22 and asymmetric23 one-
dimensional Eckart barriers, and for a model two-dimensional
system in which a harmonic oscillator is bilinearly coupled to
a symmetric Eckart barrier in ref 25. In all cases studied thus
far QTST bounded the exact quantum rate from above and was
within factors of 2-3 of the exact rate even for tunneling factors
of 103.* Corresponding author.

k(T) ) QR
-1Tr(F̂(â, qds)P̂) (1.1)

F̂(â, qds) ) e-âΗ̂/2F̂(qds)e
-âΗ̂/2 (1.2)

F̂(qds) ) 1
2m

[δ(q̂ - qds)p̂ + p̂δ(q̂ - qds)] (1.3)

P̂ ) lim
t)∞

eiĤt/pĥ(q̂)e-iĤt/p (1.4)
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QTST can be systematically improved.23 Because of the
approximate harmonic projection operator, the QTST expression
for the rate depends on the location of the dividing surface.
Varying the location and choosing the minimal flux leads to
significant improvement of the rate estimate in asymmetric
systems.23 Moreover, the parabolic barrier expression for the
projection operator is just the leading term in an expansion of
the exact projection operator in terms of the nonlinear part of
the potential. Adding in the leading order correction term gives
a systematic improvement for the rate estimate.23 A semiclassical
study of variational QTST has also been presented in ref 26.

The purpose of this paper is to apply QTST to theH + H2

system. We shall provide a comparison between QTST and the
numerically exact results of Bondi et al.5 based on the LSTH
potential energy surface.27-29 We find that QTST bounds the
exact rate from above for all temperatures studied. At low
temperatures (T ) 200 K) QTST gives an estimate which is a
factor of 3.7 greater than the exact rate. It becomes increasingly
accurate as the temperature is increased. These results present
a significant improvement over previous work in which the
dividing surface was chosen to be the planar symmetric stretch
surface. Perhaps not less interesting is the structure of the QTST
reactive flux in the configuration space. At low temperatures
one finds extensive “corner cutting”3 and the flux oscillates
between positive and negative values that almost cancel each
other out. As the temperature is increased, the flux becomes
more localized in the saddle point region and is positive almost
everywhere.

The arrangement of this paper is as follows. The QTST
formalism for systems with two degrees of freedom is reviewed
and applied to the collinearH + H2 system in Section II.
Numerical results are presented in Section III. We end in Section
IV with a discussion on the implications of these results for
future applications to 3D H+H2 and its isotopic derivatives, as
well as larger systems.

II. QTST for the Collinear H + H2 System

A. QTST for Systems with Two Degrees of Freedom.The
Hamiltonian of the system is assumed to take the form

whereq is the (mass weighted) unstable normal mode at the
saddle point of the potential energy surface andy is the stable
mode. Without loss of generality, the saddle point is assumed
to be located atq ) y ) 0. pq, py are the momenta conjugate to
q, y, respectively, andwq, wy are the harmonic frequencies of
the normal modes at the saddle point.

With these preliminaries, the exact rate expression may be
written as

where the multidimensional symmetrized quantum thermal flux
operator is written as

and F̂(0, yds) is

QTST implies replacing the exact projection operator with
its parabolic barrier approximation. The Wigner representation
of the parabolic barrier projection operator is22,30

The QTST rate expression is thus

where the (reduced) Wigner representation of the thermal flux
operator in the phase space of the reaction coordinate is

The matrix element of the flux operator is31

where we used the shorthand notation

Using the Fourier expansion of the Heaviside function:

one may write the QTST estimate for the rate constant as

where the symbolF (q′′, q′) denotes a bath-integrated flux
function

which can be evaluated using the path integral Monte Carlo
method. In practice, we used the same harmonic representation
of the paths as given in detail in ref 25 to evaluate the imaginary
time matrix elements.

B. Specifics for the Collinear H+H2 Reaction.The LSTH
potential surface27-29 is given in terms of the bond coordinates
RHAHB andRHBHC and collinearity is assured by the relationRHAHC

) RHAHB + RHBHC. The saddle point is located atRHBHC

‡ , RHAHB

‡ .

H ) 1
2

(pq
2 + py

2 - wq2q2 + wy
2y2) + V1(q, y) (2.1)

k(T) ) QR
-1 ∫∞

-∞
dydsTr[F̂(â, qds ) 0, yds)P̂] (2.2)

F̂(â, qds ) 0, yds) ) e-âĤ/2 F̂(0, yds)e
-âĤ/2 (2.3)

F̂(0, yds) ) 1
2

δ(ŷ - yds)[p̂qδ(q̂) + δ(q̂)p̂q] (2.4)

PW
(pb) (p, q) ) 1

2πp
h(p + w‡q) (2.5)

kQTST(T) ) 1
QR

∫-∞

∞
dp∫-∞

∞
dqh(p + w‡q)FW((â, qds )

0); p, q) (2.6)

F̂W((â, qds ) 0); p, q) ) 1
2πp

∫-∞

∞
dyds∫-∞

∞
dy∫-∞

∞
dê

eiêp/p 〈q - ê/2, y|F̂((â, qds ) 0, yds); q, y)|q + ê/2, y〉 (2.7)

〈q′′, y|F̂(â, qds ) 0, yds)|q′, y〉 )
ip
2 ∫-∞

∞
dyds [〈q′′, y|e-âĤ/2|qds, yds〉 〈 ∂

∂qds
, yds|e-âĤ/2|q′, y〉 -

〈q′′, y|e-âĤ/2| ∂

∂qds
, yds〉 〈qds, yds|e-âĤ/2|q′, y〉]qds)0

(2.8)

〈q′′, y|e-âĤ/2| ∂

∂qds
, yds〉 t [ ∂

∂q′ 〈q′′, y|e-âĤ/2|q′, yds〉]q′)qds

(2.9)

h(p + w‡q) ) 1
2πi ∫-∞

∞ dk
k

eik(p+w‡q) (2.10)

kQTST(T) )

QR
-1 p

4π ∫-∞

∞
dq∫-∞

∞
dê

cos(w‡qê
p )

ê
F (q - ê/2, q + ê/2)

(2.11)

F (q′′, q′) ) ∫-∞

∞
dy∫-∞

∞
dyds [〈q′′, y|e-âĤ/2|qds, yds〉

〈 ∂

∂qds
, yds|e-âĤ/2|q′, y〉 - 〈q′′, y|e-âĤ/2| ∂

∂qds
, yds〉

〈qds, yds|e-âĤ/2|q′, y〉] (2.12)

1800 J. Phys. Chem. A, Vol. 104, No. 9, 2000 Letters



To apply QTST one must transform to the mass weighted
normal modes at the saddle point. Because of symmetry these
are the symmetric (y) and the antisymmetric (q) stretch
coordinates. Denoting the mass of the hydrogen atom asmH,
these may be expressed in terms of the bond coordinates as.32

With these preliminaries the (LSTH) collinear potential
energy surface is expressed as

whereV‡ is the energy of the saddle point, the frequencieswq,
wy are given by the square root of the second derivatives of the
potential with respect to the antisymmetric and symmetric stretch
coordinates at the saddle point, respectively, andV1 is the
anharmonic remainder of the full potential. The saddle point
energy, location, and harmonic frequencies of the LSTH
potential surface are given in Table 1.

III. Numerical Results

Details of the Monte Carlo method have been presented in
refs 25, 33. Here we just note that to aid the convergence,
especially at low temperatures wherepâwq g 2π we used a
suitable harmonic reference potentialVref(q, y) with an anti-
symmetric stretch frequency which is lower than the true
frequency. This just causes a redefinition of the nonlinear part
of the potentialV1 which includes the difference between the
true saddle point frequencies and the reference ones used.

As shall be shown further on, especially at low temperatures,
it is crucial that the configuration space which is sampled is
sufficiently large to include the full range of the rather
delocalized flux function. The coordinates were sampled in the
region 0.95a0 e RHBHC, RHAHB e 3.52a0. The maximal order of
the harmonic decomposition of the paths we used was 40 forT
) 200 K and 15 forT ) 1000 K. A sampling of 106 points was
taken forT ) 200 K and 5× 104 points forT ) 1000 K. For
further computational details see also ref 25.

The reactants partition function is

where µ ) 2/3 mH is the translational reduced mass ofHA

relative toHBHC andQV is the vibrational partition function of
the (one dimensional) H2 molecule. The computed values of
QV are given in Table 2.

The QTST estimates for the collinear rate constants are
compared in Table 2, with the numerically exact results of ref
5 and are plotted as an Arrhenius plot in Figure 1. ForT )
1000 K, QTST overestimates the exact result by∼6% while at

T ) 200 K the overestimate is by a factor of 3.7. The error
bars on the computation (estimated from the standard deviation
of a few independent runs at the same temperature) are small
at high temperatures (1% forT ) 1000 K) but increase as the
temperature is lowered (∼20% atT ) 200 K).

To obtain a deeper understanding for the increasing difficulty
in computing the QTST rate at low temperatures we plot the
configuration space representationF(q, y) of the QTST flux,
defined by

Contour plots of the QTST reactive fluxF(q, y) are shown in
panels a-c of Figure 2 for T ) 1000, 400, and 200 K,
respectively.

At T ) 1000 K, the reactive flux distribution is positive and
localized in the saddle point region. This is the typical high
temperature behavior, found also in our previous studies of the
one-dimensional Eckart potential.23 As the temperature is
lowered, the reactive flux becomes increasingly oscillatory and
delocalized, with extensive corner cutting at positive values of
the symmetric stretch coordinatey. It is the combination of
delocalization and oscillatory structure which makes the com-
putation increasingly more difficult. The delocalization implies
that a larger region of configuration space must be sampled.
But the real difficulty comes from the oscillatory structure. The
cancellation of positive and negative flux leads to only a small
net reactive flux. The positive and negative parts must be
evaluated sufficiently accurately so that the difference between
them remains numerically significant.

TABLE 1: Saddle Point Parameters of the LSTH Potential
Energy Surface

V‡(kcal/mol) 9.802
RHBHC

‡ (a0) 1.757
wq(cm-1) 1505
wy(cm-1) 2056

q ) xmH

6
(RHAHB

- RHBHC
) (2.13)

y ) xmH

2
[(RHAHB

- RHAHB

‡ ) + (RHBHC
- RHBHC

‡ )] (2.14)

V[RHAHB
(q, y), RHBHC

(q, y)] t V‡ - 1
2

wq2q2 + 1
2

wy
2y2 +

V1(q, y) (2.15)

QR ) x µ
2πp2â

QV (3.1)

TABLE 2: Rate Constants for the Collinear H + H2
Reaction on the LSTH Potential Energy Surfacea

T QV
b kex

c kQTST
d

200 1.54× 10-7 6.20× 10-2 (2.3( 0.4)× 10-1

300 2.87× 10-5 4.81 9.2( 0.7
400 3.92× 10-4 5.46× 101 (7.9( 0.2)× 101

600 5.36× 10-3 7.26× 102 (8.3( 0.2)× 102

1000 4.35× 10-2 6.68× 103 (7.1( 0.1)× 103

a QTST rate constants (incm molecule-1 s-1) are compared with
the numerically exact rates.b QV are the computed values of the
vibrational partition function of the H2 diatomic molecule as obtained
from the LSTH potential energy surface.c The numerically exact results
are taken from ref 5.d Error bars are the standard deviation.

Figure 1. Comparison of QTST with the numerically exact quantum
rates for the collinear hydrogen exchange reaction using an Arrhenius
plot.

kQTST(T) t
1

QR
∫-∞

∞
dq∫-∞

∞
dyF(q, y) (3.2)
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Interestingly, the QTST accounts well for the corner cutting,
even though no special effort was made, such as the use of
special tunneling paths. The fact that the thermal flux operator
matrix elements are computed numerically exactly suffices for
getting the right “physics”. The only source of error is in the
use of the parabolic barrier projection operator.

IV. Discussion

We have demonstrated that QTST provides a reasonable
estimate for the thermal collinear rate constant of the hydrogen
exchange reaction. Even though we use the simple parabolic
barrier projection operator, QTST does account well for the
extensive corner cutting found in this reaction at low temper-
atures.

In QTST the dividing surface, taken to be the surface
perpendicular to the unstable mode at the saddle point is by
definition planar. The results of QTST should thus be compared
to other transition state theory like approximations in which
the same planar dividing surface is used. In fact, all previous
planar dividing surface theories gave worse results. Even
introduction of curvature to the reaction coordinate such as in
the ICVT/MEPSAG prescription34 gives a result which is a
factor of almost 7 smaller than the numerically exact result at
T ) 200 K.5 Computations on other potential energy surfaces
also give results whose quality is worse than QTST.35 One of
the reasons why QTST is superior is that the thermal flux is
treated exactly, it includes in it the full Hamiltonian. In contrast
to the older prescriptions, there isn’t any need to “optimize”
the curved coordinate system to include the “correct” dynamical
effects. They are automatically included in QTST.

A second noteworthy and nontrivial aspect is that the QTST
estimates are found to bound the exact rate from above for all
temperatures considered. All other approximate expressions,
including ICVT/MCPSAG give results which are sometimes
above and sometimes below the true rate. We do not have a
rigorous proof that QTST will always bound the rate from above
but can rationalize the result. At high temperatures, the thermal
flux is positive (for positive momenta) and localized in the
vicinity of the dividing surface. Classical recrossings would
reflect themselves as structure and delocalization of the projec-
tion operator. Therefore at sufficiently high temperatures, QTST
bounds the true rate from above.

The only error in QTST is in the parabolic barrier approxima-
tion for the projection operator. The exact quantum projection
operator in phase space, differs from the parabolic barrier
projection operator in two aspects. The nonlinearity of the
potential causes the exact classical projection operator to be
more delocalized and structured than the parabolic barrier
approximation. Thus, at low temperatures, where the thermal
flux delocalizes, QTST underestimates the contribution from
the negative (delocalized) portion of the flux23 and so gives an
enlarged estimate for the rate. Secondly, the exact projection
operator in phase space is not a discontinuous function such as
the Heaviside function but as noted in ref 23, resembles the
integral of an Airy function. The leading order correction terms
resulting from this oscillatory behavior also lead to a reduction
of the rate and come from the negative parts of the exact
projection operator. Since the negative region is typically distant
from the saddle point, it becomes important only when the
thermal flux is delocalized, this occurs at low temperatures, as
shown in Figure 2.

These observations imply that an improved estimate for the
rate could be obtained by replacing the parabolic barrier
projection operator with the exact classical projection operator.

Figure 2. Contour plots of the QTST reactive flux distribution in
configuration space. Panels a-c correspond to the temperatures of
T ) 1000, 400, and 200 K, respectively. Contours of the LSTH
potential energy surface are given for every 3 kcal/mol, from 6 to 90
kcal/mol.
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The ensuing mixed quantum classical rate theory (MQCLT)
indeed does improve the rate estimates as shown for a model
system with two degrees of freedom studied in detail in ref 33.
MQCLT becomes though exceedingly difficult to apply as the
number of degrees of freedom of the system increases, since it
involves a determination of the Wigner representation of the
symmetrized thermal flux operator in the full phase space. In
N dimensions, this calls for anN-dimensional Fourier transform,
making a Monte Carlo evaluation almost as difficult as an exact
quantum computation.

The present QTST results at low temperatures are not as close
to the exact results as the ICVT-MCPSAG results of ref 5.
However, the same ICVT-MCPSAG prescription is not fool-
proof either; for example, it fails at low temperatures for the
asymmetric Mu+ D2 reaction on the Porter-Karplus potential
energy surface.5,7 The Marcus-Coltrin path is a useful construct
but it does not lead to a well-defined thermodynamic rate theory,
in the sense that one can evaluate a leading term in an expansion
and if necessary also further correction terms. QTST is well
defined and we know how to improve it systematically if we
so desire. As already mentioned the first step would be obtained
by replacing the parabolic barrier projection operator with the
classical projection operator.23,33 A second step would be
obtained by including the leading order correction term in the
nonlinearity to the parabolic barrier projection operator. A third
improvement would be to use a semiclassical initial value
representation for the projection operator, as implemented on
some model problems by Sun et al. in ref 36.

Perhaps the major disadvantage of QTST, as compared to
the ICVT class of prescriptions34 is that the numerical effort
involved in QTST is substantially larger. Numerical computation
of the symmetrized thermal flux operator matrix elements does
involve path integral Monte Carlo methods which are compu-
tationally expensive. But with present day fast computers these
are becoming routine and have not yet presented us with a major
stumbling block.

The fact that QTST depends only on the saddle point normal
modes, means that it is formally easy to generalize it to larger
systems. We did not use any sophisticated approximation based
for example on the Marcus-Coltrin path or the reaction path.
In this sense, QTST mimics classical TST. For example, for
the full 3D hydrogen exchange reaction, it would suffice to use
the Cartesian representation of the symmetric and antisymmetric
stretch coordinates to obtain the QTST estimate for the full
thermal rate. The averaging over angular momentum would be
automatically built in. Since quantum tunneling effects become
smaller as the dimensionality increases, we expect that QTST
will lead to more accurate estimates for the rate, even at low
temperatures.

In this paper we have applied QTST to the symmetric
hydrogen exchange reaction. There is nothing which limits
QTST to symmetric systems. In an asymmetric system, one must
only find the normal modes at the saddle point. On the basis of
our previous studies of one-dimensional asymmetric systems23

it is to be expected that use of the variational version of QTST
will become important as the asymmetry becomes larger.
Whether one can then remain with the unstable mode as the
location of the dividing surface or whether one would have to
resort for example to variation along the minimum energy path,
is a topic for future studies.
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