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Monte Carlo statistical mechanical computer simulations of the electric-field poling of second-order nonlinear
optical chromophores, characterized by large dipole moments, polarizabilities, and hyperpolarizabilities, are
presented. Such theoretical analysis is critical to defining the structure/function relationships that permit
maximization of electro-optic activity forπ-electron chromophore-containing polymeric materials. Polymeric
electro-optic materials may, in turn, be important for high-bandwidth telecommunications, new forms of radar,
and high-speed data processing. The experimentally observed maxima in plots of electro-optic activity versus
chromophore number density (loading) in polymer matrices are theoretically reproduced, as are the shifts of
the maxima to lower loading with increasing chromophore dipole moment. Modification of the chromophore
shape to realize the maximum achievable electro-optic activity for a givenπ-electron structure is discussed,
as is the role of polymer electrical permittivity. Monte Carlo results are compared with the results of equilibrium
statistical mechanical calculations based on the approximation of Piekara. The theoretical results presented
here have led to the production of polymeric electro-optic materials that permit devices with drive voltage
requirements of less than 1 V to befabricated. Polymeric modulators now significantly exceed the performance
capabilities (in terms of bandwidth and drive voltage) of electro-optic modulators based on inorganic materials.

Introduction

Since the 1930s, considerable theoretical attention has been
focused on understanding the role of intermolecular electrostatic
interactions in defining physical properties of matter and,
particularly, of condensed phase matter.1 Two different types
of properties are normally the subject of such considerations.
More commonly, scientists have focused on “aggregation” or
“association” effects involving condensation of particles (atoms,
ions, and molecules) onto surfaces, phase changes of the physical
state of matter, or phase-separation phenomena. Less frequently,
theorists have considered “orientational” effects associated with
the competition between an applied field and intermolecular
electrostatic interactions in defining an orientation-dependent
variable such as the dipole moment. Treating the interaction of
a large ensemble of particles (atoms, molecules, and ions) is,
in general, a formidable undertaking, so it is not surprising that
these two different problems have evoked quite different
treatments (and approximations). For the consideration of field-
independent aggregation or association effects, orientation-
independent potential functions are typically utilized. Use of
such isotropic potential functions is not appropriate when
relevant physical properties depend on the presence of an
externally applied field (such as an electric field, used when
measuring the dipole moment of a material, or a magnetic field,
used when measuring multi-quantum excitations in a dipolar
spin system). For modeling such physical properties, theorists
are faced with the additional complexity of how a multiplicity
of orientational variables (relating particles to the applied field
and to each other) should be treated. Because of the additional

computational complexity and the reduced frequency with which
field-dependent phenomena are encountered in the physical
world, it is not surprising that the theoretical “maturity” or
“sophistication” of treating field-dependent (or orientation-
dependent) phenomena is less than that of treating field-
independent phenomena. Nevertheless, an understanding of a
number of important physical phenomena, ranging from pho-
torefractivity of organic materials to thresholdless antiferro-
electric liquid crystallinity, relies on an appropriate consideration
of the orientational dependence of intermolecular electrostatic
interactions and molecule-applied field interactions.2 Indeed, it
has recently been observed that addition of high-dipole moment
molecules to liquid crystalline materials can lower switching
voltages; the addition of such molecules to organic light-emitting
diode (OLED) materials can be used to tune the color of
emission across the visible spectrum. Such technologically
important observations provide a new incentive for understand-
ing orientational effects dependent on both externally applied
fields and intermolecular electrostatic interactions. Here, we
attempt to understand one such technologically important
application: the dependence of the macroscopic electro-optic
activity on the density or loading into polymer matrices of
molecules that have large hyperpolarizabilities and dipole
moments. This is an example of competition between an
externally applied electric field and the internal intermolecular
dipolar interactions to create an acentric order of dipoles within
the material.

Why is this a technologically important theoretical undertak-
ing? For more than a decade, organic electro-optic materials
have held the promise of having a dramatic impact on a number
of technologies, including, for example, satellite and fiber
telecommunications, new forms of radar, optical gyroscopes for
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guidance systems, radio frequency distribution, ultrafast com-
putation, and data processing (e.g., analog-to-digital conversion).
Organic electro-optic materials have been touted as having
unprecedented bandwidths, being easy to integrate with both
semiconductor VLSI chips and silica optical transmission fibers,
and being compatible with devices with sub-1-V drive voltage
requirements.3 Because of modest and frequency-independent
dielectric constants and indices of refraction (both determined
by theπ-electron nature of organic electro-optic chromophores),
the ultrahigh-bandwidth capabilities of organic electro-optic
materials have been quite easily realized. Devices exhibiting
operational (flat response) bandwidths of greater than 100 GHz
have been demonstrated, and pulsed techniques have been used
to establish that fundamental material bandwidths exceed 350
GHz (for a 1-cm device).3,4 Efficient integration with VLSI
semiconductor electronics and silica fibers (also with semicon-
ductor lasers) has permitted “opto-chip” packages to be fabri-
cated.5 Indeed, sophisticated three-dimensional passive/active
circuits3,5 and novel devices3-6 are now routinely fabricated.
Phased-array radar systems7 have been fabricated, and 100
Gbit/s analog-to-digital conversion8 has been achieved. The
thermal and photochemical stability of polymeric electro-optic
modulators can be excellent for modulators operating at
telecommunication wavelengths (1.3 and 1.55µm). Modulators
have been operated by companies such as TACAN Corporation
(Carlsbad, CA) for periods of more than 4 years with no
degradation in performance.3,9 With appropriate lattice-hardening
chemistry, polymeric electro-optic modulators can be heated to
200 °C before electro-optic activity is observed to decrease
because of randomization of molecular orientation.3,9-11 With
appropriate attention to materials processing during device
fabrication, the insertion loss of polymeric electro-optic modula-
tors can be comparable to that of lithium niobate and greatly
superior to that of gallium arsenide electro-absorptive modula-
tors.3 Cross talk between polymeric electro-optic modulators
in high-density, multi-modulator packages is immeasurably low
(<50 dB).6 Bias voltage stability, radiation hardness, and other
auxiliary properties of polymeric electro-optic modulators are
excellent; they are clearly suitable for satellite (space) applica-
tions and other applications in moderately harsh environ-
ments.3,10

The most severe, and unanticipated, problem encountered in
fabricating polymeric electro-optic modulators is that of translat-
ing the large hyperpolarizability of organic chromophores into
large macroscopic electro-optic activity in chromophore-
containing polymeric materials. If intermolecular electrostatic
interactions do not come into play, macroscopic optical non-
linearity should scale asµâ/MW, whereµ is the chromophore
dipole moment,â is the molecular first hyperpolarizability, and
MW is the chromophore molecular weight (mass). During the
preceding decade, quantum mechanical calculations helped guide
greater than 250-fold improvement inµâ values of chro-
mophores being considered for electro-optic applications.3,11

However, until recently, electro-optic coefficients for polymeric
electro-optic materials have remained relatively static and have
failed to surpass that of lithium niobate (30-35 pm/V). This
has posed a severe problem for the application of polymeric
materials, as drive voltages (Vπ, the voltage required for a phase
shift of π) for devices fabricated from polymeric materials have
remained high (6-20 V). Such high drive voltages are
incompatible with semiconductor electronics. The use of high
drive voltage polymeric electro-optic modulators requires the
utilization of low noise amplifiers (LNAs) to boost the voltage
to an appropriate level. The bandwidth limitations of LNAs

eliminate the high-bandwidth advantage of polymeric electro-
optic modulators. Table 1 summarizes the bandwidth and drive
voltage requirements for several well-known applications of
electro-optic modulators. Clearly, electro-optic materials capable
of yielding sub-1-V modulators are required for wide com-
mercial applications of electro-optic modulator technology.

Fortunately, just as quantum mechanical calculations have
guided the development of improved electro-optic chro-
mophores, statistical mechanical considerations of intermolecular
electrostatic interactions have provided a breakthrough in
translating large microscopic hyperpolarizability to large mac-
roscopic electro-optic activity. Recently, researchers at TACAN
Corporation have demonstrated (with chromophore/polymer
materials obtained from our laboratory) polymeric electro-optic
modulators characterized by drive voltages of 0.8 V, material
optical loss of 1 dB/cm, and thermal stability to 120°C.12 The
TACAN results have recently been equaled by researchers13 at
Lockheed-Martin (Palo Alto, CA) using a different, but similar,
chromophore/polymer material (also from our laboratory).
Moreover, the Lockheed-Martin device has shown no degrada-
tion in performance over a period of 3 months. Device
bandwidths of 100 GHz have been straightforwardly realized,
and now, 100-GHz modulators are commercially available from
Pacific Wave Industries (Los Angeles, CA). These modulators
and modulator packages (e.g., 12 modulators per wafer) meet
or exceed the performance specifications of the new Lucent 35-
GHz-bandwidth lithium niobate modulators (6-V drive voltage
requirement, thermal stability specified to 85°C). In this article,
we review the theory that has permitted the impressive improve-
ments in polymeric electro-optic materials during the past year
and that suggests that 0.1-V polymeric electro-optic modulators
are an attainable goal.

The fundamental nature of the problem of translating
microscopic molecular first hyperpolarizability,â, into large
macroscopic electro-optic activity,r33, is illustrated in Figures
1 and 2 for the CLD and FTC chromophore/polymer systems.
A CLD-type chromophore [in poly(methyl methacrylate)] was
used by TACAN to construct the first sub-1-V electro-optic
modulator. An FTC chromophore [in APC, polybisphenol A
carbonate-co-4,4′-(3,3,5-trimethylcyclohexylidene)diphenol] was
used by Lockheed-Martin to fabricate their 1-V electro-optic
modulators. As shown for the CLD/PMMA and FTC/PMMA
chromophore/polymer matrix systems of Figures 1 and 2 (and
observed for every chromophore-containing material with
chromophores of dipole moments greater than 7 D; e.g., see
Figure 3 and Table 2), a maximum is observed in the plot of
the macroscopic electro-optic coefficient,r33, versus chro-
mophore loading (or number density,N). Moreover, the position
of this maximum is observed to depend on such electrostatic
parameters as the chromophore dipole momentµ. The position
of the maximum electro-optic coefficient shifts to lower loading
with increasing chromophore dipole moment (see Figure 3). The
position of the maximum also depends on chromophore shape,
even for chromophores in which theπ-electron framework is
the same (see Figures 1 and 2). Removal of the isophorone group
protecting the polyene bridge of CLD results in a lowering of

TABLE 1: Drive Voltage and Bandwidth Requirements for
Several Anticipated High-Volume Applications of
Electro-Optic Modulators

application
bandwidth

requirement
drive voltage
requirement

cable TV & datacom lower GHz 5-10 V
telecom higher GHz 2-3 V
RF photonics higher GHz 0.1-1.0 V
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the maximum achievable electro-optic activity, as is evident
from a consideration of Figure 1 and as noted recently by Gunter
and co-workers.14

The above observations argue for the role of chromophore-
chromophore intermolecular electrostatic interactions in defining
achievable macroscopic electro-optic properties. Indeed, we have
carefully ruled out other concentration-dependent phenomena
such as ionic conductivity.3

From a theoretical standpoint, the problem of explaining
experimental observations can be envisioned as an issue of
computing the orientational distribution (or the order parameter,
<cos3 θ>, describing that distribution) for an ensemble of

Figure 1. Variation of material electro-optic activity (r33) with
chromophore number density (N) for composite materials consisting
of the CLD chromophores in poly(methyl methacrylate). Circles are
for the variant (referred to as CLD) with an isophorone group protecting
the polyene bridge structure (see Table 2). Diamonds are for the variant
with no isophorone protection, i.e., a simple polyene bridge. Note that
the maximum achievable electro-optic activity for the simple polyene
bridge structure is smaller and is shifted to lower loading than that for
the isophorone variant. This clearly indicates the shape dependence
discussed in the text. Data are shown for a measurement wavelength
of 1.06 µm, and measurements were carried out using a modified
attenuated total reflection (ATR) technique.3

Figure 2. Variation of material electro-optic activity (r33) with
chromophore number density (N) for composite materials consisting
of the FTC chromophores in poly(methyl methacrylate). Circles are
for the variant (called FTC) with butyl groups attached to the thiophene
of the bridge (see Table 2). Diamonds are for the variant (referred to
as FTC-2H) in which the Bu groups have been replaced by H groups.
Note that the maximum achievable electro-optic activity for the simple
unprotected bridge structure is smaller and is shifted to lower loading
than that for the bridge with butyl derivatization. This clearly indicates
the shape dependence discussed in the text. Also shown are three
equilibrium statistical mechanical theoretical results. The straight line
represented by long dashes corresponds to the noninteracting chro-
mophore model.3 The line consisting of short dashes corresponds to
full treatment of intermolecular electrostatic interactions within the
framework of treating chromophores as spheres (see text).3,9 The solid
line corresponds to full consideration of intermolecular interactions
within the framework of treating chromophores as hard (non-
interpenetrating) ellipsoids.3,9 Experimental data are shown for a
measurement wavelength of 1.06µm, and measurements were carried
out using a modified attenuated total reflection (ATR) technique.3

Figure 3. Variation of normalized electro-optic activity (r33/r33,MAX)
as a function of chromophore loading (wt/wt %) for three chromophores.
DR stands for Disperse Red, which is a chromophore consisting of an
aniline donor connected by an azo bridge to a nitrobenzene acceptor.3

Data for DR are represented by triangles. The dipole moment of this
material is 7.0-7.5 D. The DR chromophore structure undergoes rapid
trans-cis-trans interconversion under poling conditions, so that its
shape approximates that of a sphere. The structure of the ISX
chromophore3 is given in Table 2, along with its dipole moment (theory
and experiment are in reasonable agreement). Modifying ISX to make
it more spherical (see JH chromophore of Table 2) leads to 4-fold
improvement in the maximum achievable electro-optic activity, and
the maximum in the curve is shifted to significantly higher loading.
Removal of the polyene-protecting isophorone group of the JH
chromophore leads to a reduction in the maximum achievable electro-
optic activity, in quantitative agreement with theory.3 The TCI
chromophore3 is intermediate between the ISX and FTC series in terms
of electrostatic interactions. Experimental data are shown for a
measurement wavelength of 1.06µm, and measurements were carried
out using a modified attenuated total reflection (ATR) technique.3

TABLE 2: Structures and Calculated Dipole Moments

*Dipole moment values (in D) were calculated using Spartan
(Wavefunction, Inc.); theoretical values are in reasonable agreement
with experimental values.
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interacting chromophores in the presence of an applied electric
(poling) field and existing in a medium of uniform dielectric
constant. For dipolar chromophores in an electric poling field,
the electro-optic coefficient in the direction of the applied field
(r33) is related to the molecular first hyperpolarizability (â) by15

whereN is the chromophore number density (molecules/cm3)
in the polymer host,n is the index of refraction of the
chromophore-containing polymeric material, andF(ω) is the
product of local-field (Debye-Onsager) factors.15 The acentric
order parameter,<cos3 θ>, relevant to calculation of electro-
optic activity (r33) can be computed from a consideration of all
forces (enthalpic contributions) affecting the Gibbs distribution
function (or statistical mechanical partition function) according
to the general prescription for calculating an order parameter
of ordern.16

where G(Ω,Ep) is the Gibbs distribution function (partition
coefficient) given by

and whereEp is the electric poling field,k is the Boltzmann
constant, andT is the Kelvin (poling) temperature.U is the total
electrostatic potential energy, i.e., the sum of the chromophore
dipole moment-electric poling field interaction and the chro-
mophore-chromophore intermolecular electrostatic interactions.
If intermolecular electrostatic interactions are neglected or ifN
is sufficiently small,U ) -µF cos θ [where F is the poling
field felt by the chromophores,F ) f(0) Ep, andθ is the angle
between the poling field and the chromophore principal axis].
The general expression for order parameters becomes

whereLn is the nth-order Langevin function1 and f ) µF/kT.
Whenf is small,<cos1 θ> ) -f/3 and<cos3 θ> ) -f/5. When
f ) 0, <cosn θ> ) δn,even/(n + 1). Neglect of intermolecular
electrostatic interactions results in the following expression in
the low field limit (f , 1) for the electro-optic coefficient

wherew is the weight fraction of chromophore in the polymer
lattice, MW is the molecular weight (mass) of the chromophore,
F is the material density, andNA is Avogadro’s number. Clearly,
when the intermolecular electrostatic interactions are neglected,
the electro-optic coefficient (r33) should increase linearly with
weight fraction (w) and with dipole moment (µ).

In this article, our focus is the explicit treatment of intermo-
lecular electrostatic interactions and their competition with
molecular dipole-poling field interactions to determine<cos3

θ>. There are two logical statistical mechanics approaches to
this problem. The first is the general prescription of equilibrium
statistical mechanics given by eq 2. The second is to follow a
Monte Carlo or molecular dynamics approach. The latter
approach has the advantages of permitting all order parameters
to be obtained in a single calculation and of providing more
insight into the details of the distribution of chromophores. For
example, nonequilibrium phenomena such as phase separation
can be observed more directly with a Monte Carlo approach.

There is an advantage in pursuing both approaches to the
problem in that the results of the two methods can be compared,
thereby providing insight into the validity of approximations
employed. In the following sections of this article, we introduce
and compare the two approaches to understanding electro-optic
activity arising from interacting chromophores existing in the
presence of a poling field. To facilitate comparison of the
methods and to illustrate that even the simplest treatments
qualitatively reproduce the essential features of experimental
data, we initially restrict our consideration to spherical chro-
mophores and neglect medium effects. At the end of our
discussion, we briefly consider shape effects. We also initially
limit our consideration to dipole-dipole interactions, neglecting
induced dipole and dispersion interactions. The effects of the
chromophore shape, the dielectric nature of the host medium
(polymer), and the full electrostatic chromophore interactions
have been treated elsewhere using an equilibrium statistical
mechanics approach.17 Also in this article, we present a
quantitative simulation of data for a CLD/PMMA-type material.
The agreement between theory and experiment demonstrates
that shape effects can be appropriately taken into account and
that quantitative simulation of experimental data can be achieved
without adjustable parameters.

Before we review our computational approaches, it is
appropriate to review the theoretical efforts of others aimed at
understanding poling-induced electro-optic activity. Katz and
co-workers18 have applied an equilibrium thermodynamical
treatment to the problem of nonlinear behavior of electro-optic
activity with chromophore loading. They assume a two-state
equilibrium consisting of free and aggregated chromophores.
For the system studied in their work, they conclude that such a
model does not represent an improvement in the simulation of
experimental data. We have applied the model of Katz and co-
workers to a number of high-µâ chromophore systems without
success. The theoretical results presented in the following
sections of this article explain why the model of Katz and co-
workers does not work for most systems but suggest that there
may be cases where it can be successfully applied.

Marks, Ratner, and co-workers19 have performed elegant
quantum mechanical analyses of the problem of dimer formation
involving zwitterionic chromophores. This class of materials
represents an extreme of the situation considered here. As the
data presented in the following sections indicate, most high-µâ
chromophores do not exist experimentally in a regime where
aggregation is favored. Our theoretical results can be viewed
as providing the bridge between the independent-particle regime
and the strong-pairing (aggregation) regime studied by Mark,
Ratner, and co-workers.

Kim and Hayden20 have recently published the results of fully
atomistic modeling of an electric-field-poled, guest-host non-
linear optical polymer system. Their work provides considerable
insight into the interaction of chromophores with various
segments of a polymer host. Results are given for temperatures
above and below the glass transition temperature of the material,
and the effects of side-chain and main-chain polymer segments
on chromophore order are found to differ for these two regimes.
Kim and Hayden succeeded in modeling the behavior of
materials described by small to modest dipole moments. Their
model is not adequate for describing the large dipole moment
materials considered here. Like the work presented in the
following paragraphs, the calculations of Kim and Hayden
illustrate the advantages of the Monte Carlo approach for gaining
detailed information about molecular distributions.

r33 ) |2NF(ω)â<cos3 θ>/n4| (1)

<cosn θ> ) ∫cosn θ G(Ω,Ep) dΩ/∫G(Ω,Ep) dΩ (2)

G(Ω,Ep) ) exp[-U(Ω,Ep)/kT)] (3)

<cosn θ> ) Ln(f) (4)

r33 ) 2µâN f(0) Ep f(ω)/5kTn4 andN ) wFNA/MW (5)
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Equilibrium Statistical Mechanical Treatment

A crucial difficulty in treating intermolecular electrostatic
interactions is illustrated by Figure 4. Our problem is to compute
(in a self-consistent manner) the resultant field felt by a given
chromophore, which we label as 1 in Figure 4. The resultant
field is the vectorial combination of fields from the applied
electric field (Ep or F, corrected for medium dielectric effects)
and the fields contributed by surrounding chromophores (dipolar
molecules) 2 throughn. It is clear that a very large number of
orientational variables must be considered in the general
formulation of this problem; not only must the rotational matrix
relating chromophore 1 to the applied field be considered but
also all rotational matrices relating chromophore 1 to chro-
mophores 2 throughn and the rotational matrices relating
chromophores 2 throughn to the applied-field (laboratory-axis)
direction. The problem can be somewhat simplified, as shown
in Figure 2, by placing all chromophores interacting with
chromophore 1 along a “director” axis. The problem then
becomes one of computing the effective field produced at
chromophore 1 by chromophores 2 throughn for each orienta-
tion of the director axis defined by the angleφ.

An analytical solution for relevant order parameters can be
obtained by following the approach of Piekara1 in which the
mean field at chromophore 1 due to chromophores 2 ton is
taken to be-W cosφ. In Piekara’s approximation, the detailed
interaction is replaced by the mean field,-W cosφ. We take
W to be proportional to the average intermolecular electrostatic
interaction energy, which is approximated by the pairwise
particle interaction energy computed by London according to

W/kT is on the order of the square of the norm of the nearest-
neighbor interactions in the intermolecular interaction

whereEDD is the nearest-neighbor dipole-dipole interaction
energy andr is the average separation of chromophores,
assuming a uniform distribution. With this approximation, the
total electrostatic interaction of eq 3 becomesU ) -µF cosθ
-Wcosφ. The angles relating the principal axis of chromophore
1 to the poling field (θ), the principal axis of chromophore 1 to
the director axis (φ), and the director axis,Ω, to the poling
field are not independent. Making use of a well-known
trigometric identity permits the number of orientational integra-

tion variables to be reduced from three to two. After some
algebraic manipulation,17 the general expression for order
parameters whenf , 1 can be reduced to

wheref ) µF/kT. Evaluating the integrals of eq 8, we obtain

whereL1 is the first Langevin function, which is now a function
of W/kT, the ratio of intermolecular electrostatic energy (W) to
the thermal energy (kT). The intermolecular electrostatic interac-
tion energy appears as an “attenuation factor”,{1 - [L1(W/
kT)]2}, that acts to oppose electric field poling-induced acentric
chromophore order. The fundamental picture of the Piekara
approach is an effective field from surrounding chromophores
that act vectorially to oppose the applied electric poling field.
Reasoning from eq 2, we find that, forf > 1, the acentric order
parameter of eq 9 relevant to electro-optic activity becomes

Equation 10 can be substituted into eq 1 to obtain

From eq 11, the electro-optic coefficient,r33, will depend in a
much more complex way onN andµ than suggested by eq 5.
A maximum is expected in the plot ofr33 versusN, and the
position of the maximum will depend onµ. We emphasize that,
to obtain eq 11, we have neglected the effects of chromophore
shape, i.e., nuclear repulsive interactions that act to inhibit close
approach. Such interactions can be included in numerical
calculations either in the “hard sphere or object” approximation
or in the “soft sphere or object” approximation that includes
r12 repulsive interactions.17 However, such considerations of
molecular shape effects generally preclude the achievement of
analytical expressions.

Monte Carlo Treatment

For most of the following Monte Carlo simulations [of the
effect of a poling field interacting with the second-order
nonlinear optical chromophores in inert polymer matrices such
as poly(methyl methacylate); PMMA; and amorphous poly-
(carbonate), APC], we consider only dipole-poling field and
intermolecular dipole-dipole electrostatic interactions. More-
over, we initially neglect the dielectric constant of the matrix
and the polarizability of the chromophores, and we assume that
all chromophores are spherical in shape. With these approxima-
tions, quantitative simulation of experimental data is impossible.
However, our focus here is to compare predictions of an
equilibrium statistical mechanical treatment based on Piekara’s
approximation with those of a Monte Carlo statistical mechanical
treatment. Our objective is to understand experimental observa-
tions within the framework of the simplest possible model. After
we have compared equilibrium and Monte Carlo results for this
simple model, we will briefly discuss the quantitative simulation
of experimental results by explicitly considering shape effects.

We restrict our theoretical calculations to an investigation of
the following range of variables. Chromophore dipole moments
are restricted to the range 6< µ < 14 D and chromophore

Figure 4. Shown is a series of dipoles on a one-dimensional lattice.
The dipole labeled 1 is the test dipole, and the other dipoles are labeled
2 throughn. The orientation angles for each are shown, as well as the
director and external field axes.

<cosn θ> ) -f(<<cosn+1 θ>θ>Ω -

<cos1 θ>θ<cosn θ>Ω) (8)

<cosn θ> ) -f/5{1 - [L1(W/kT)]2} (9)

<cos3 θ> ) L3(f) {1 - [L1(W/kT)]2} (10)

r33 ) NL3(f) {1 - [L1(W/kT)]2}2âf(ω)/n4 )

NL3(f){1 - L1[(Nµ2/kT)2]2}2âf(ω)/n4 (11)

W/kT ) 〈E〉/kT ) ∫(E/kT) exp(-E/kT)

dE/∫exp(-E/kT) dE ) 2/3(µ
2/r3kT)2 (6)

|EDD/kT| ) µ2/r3kT ) Nµ2/kT (7)
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number densities to the range 0< N < 20 × 1020 molecules/
cm3. We are interested in poling fields of magnitudes in the
range 100< F < 600 V/µm; such poling fields are obtained
by corona poling and by electrode poling when conducting
cladding layers are employed. For smaller poling fields, acentric-
(ferroelectric)/centric(antiferroelectric) second-order phase trans-
formations are experimentally and theoretically found to be a
potential problem.

With a Monte Carlo approach, the results will be numerical;
an analytical solution is not possible. The approach has the
advantage of permitting detailed visualization of the distribution
of an ensemble of chromophores and changes in that distribution
with experimental conditions. All order parameters (completely
specifying the chromophore distribution) are computed with no
additional computational effort. No approximations are made,
but only finite systems can be considered. The results presented
here are for a collection of 1000 chromophore molecules.

Our model system consists of 1000 spherical chromophore
molecules (dipoles) positioned in a simple (body-centered cubic)
three-dimensional (10× 10 × 10) lattice. Each dipole resides
at a lattice site, and the distance between nearest-neighbor
dipoles isN-1/3. The orientation of a dipolei is described by
the anglesθi andφi. We consider all nearest- and next-nearest-
neighbor pairwise interactions and use re-entrant boundary
conditions, so that the lattice is embedded in multiple copies of
itself. We begin with a uniform random distribution of dipolar
molecules, so that<cos1 θ> ) <cos3 θ> ) 0, <cos2 θ> )
1/3, and<cos4 θ> ) 1/5.

The evolution of the lattice of particles is accomplished in
the following manner. We choose a dipolei and move cosθi

andφi by δ(cosθi) andδ(φi), respectively. The step sizes,δ-
(cos θ) and δ(φ) were adjusted so that the rejection ratio for
the move was∼1/2. We then calculate the energy change
resulting from the reorientation of theith dipole,∆Ei. If ∆Ei <
0, we keep the move. If∆Ei > 0, we compare the value of
exp(-∆Ei/kT), which is in the range 0-1, with a random
number generated uniformly over the interval 0-1. If the move
is not very large in∆E, as the uniform random number suggests,
then we keep the move. It is well-known that this procedure
guarantees a Boltzmann distribution.21

Typically, computations begin with chromophore number
densities sufficiently low that intermolecular electrostatic in-
teractions are unimportant (see Figure 5). The set of chro-
mophore orientations of the lattice members then evolves for a
number of steps (say 200) sufficiently great to ensure that
“equilibrium” has been obtained. The last 75 steps out of the
200 steps are averaged. Results are compared with the analytical
theory (which, for noninteracting particles, is well-known and
is shown by triangles in Figure 5). The number density is
increased, and the moments,n, of <cosn θ> are computed.
Taking advantage of the detailed picture of the distribution
provided by Monte Carlo methods, we look at various “snap-
shots” during the evolution process.

From a consideration of the results presented in Figure 5, it
is clear that Monte Carlo calculations (steps 0-200) reproduce
well the known analytical results for electric-field poling of
noninteracting particles. The distribution snapshot shown in
Figure 6 indicates that the most probable orientation of a
chromophore dipole is collinear with but opposing the applied
electric field (hence negative values for<cos3 θ> and<cos1

θ>, as expected for the sign conventions of theµ‚E interaction).
When the chromophore number density increases, the magni-
tudes of the order parameters decrease in a manner consistent
with the analytical theory of Piekara. A distribution snapshot,

shown in Figure 7, indicates that the most probable orientation
of a chromophore dipole is no longer along the applied electric
poling field but rather tilted with respect to the applied field. If
the magnitude of the applied electric poling field is decreased
or if the concentration of chromophores is increased, then the
tilt angle for the most probable dipole orientation further
increases (see Figure 8). The distributions shown in Figures 7
and 8 are consistent with the view that the applied electric field
and the fields from surrounding dipoles add vectorially at a given
chromophore to produce an effective field that defines the
orientation of that chromophore in space. This is in contrast to
the picture in which phase separation of centric (antiferroelectric)
and acentric (ferroelectric) chromophore domains occurs. Phase
separation (the detailed phase diagram) depends on the applied
electric field, the chromophore number density, and the dielectric
permittivity of the medium. Theory suggests that the second-
order phase transition to a centric (antiferroelectric) order
structure is not a problem for the high poling fields and moderate
to large dipole moments considered here. We have identified
conditions under which phase separation is important, but that
discussion is deferred to another publication.

In Figure 9, we show graphs ofN<cos3 θ> (which is linearly
related to the electro-optic coefficient,r) versus chromophore
number density,N, for different values ofµ. The results of
experiment and of the analytical theory of eq 11 are reproduced
(certainly at least qualitatively). The role of intermolecular
dipole-dipole interactions in attenuating acentric order and
electro-optic activity becomes apparent: Not only is a maximum

Figure 5. First four moments of the distribution of dipoles plotted as
a function of the number of steps in the Monte Carlo calculation. The
initial position is consistent with a random distribution. The external
field is set to 600 V/µM, and each dipole moment is taken to be 13 D.
The system consists of 1000 dipoles arrayed on a 10× 10× 10 lattice.
The number of steps to achieve equilibrium is around 50-70. The
rejection ratio is about 0.5, as suggested elsewhere.21 For the first 200
steps, the number density isN ) 1017 molecules/cm3, a very low value
(intermolecular interactions are unimportant). Then, the number density
is increased to 1021 molecules/cm3. The error bars of the calculation
are the standard errors averaged over the last 75 steps. The diamonds
are the analytic answers for each of the four moments, assuming no
dipole-dipole interactions. The negative signs for<cosθ> and<cos3

θ> reflect the sign of theµ‚E interaction.
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predicted in the plotsN<cos3 θ> versusN but the position of
the maximum shifts to lowerN with increasingµ (in agreement
with experiment and with analytical theory). The standard error
of the calculation is shown with each datum; the larger-scale
oscillations in the calculations indicate a response to being

kinetically trapped in local minima. This was demonstrated by
noting that the results were dependent on the step size of the
chromophore density and the direction of density change. In
Figure 10, we illustrate a more detailed comparison of the
predicted functional dependence ofN<cos3 θ> onN for Monte
Carlo and analytical theories. The two different loading curves
(which were computed for two different poling field strengths
that differ by a factor of 2) show how each of the theories scales
with poling field. Clearly, there is reasonable agreement in the
functional dependence predicted by the quite different theoretical
methods. We believe that, among other points, the comparison
shown in Figure 10 provides important support for the physical
reasonableness of the approximation advanced by Piekara.

Figure 11 compares the Monte Carlo generated loading curves
for two different lattice geometries. The curve that extends to
higher loading values is that for a uniform lattice. The lower
two curves are two separate calculations of the loading curve
for a lattice in which the spacing of lattice points in the direction
of the poling field is three times that of the spacing of the lattice
points in the other two directions. This distorted (tetragonal)
lattice is intended to simulate the effect of considering prolate
ellipsoids with a 3:1 aspect ratio. However, at high loading, no
evidence in the histograms was seen of centrosymmetric
(antiferroelectric) ordering. The predominant orientations of the
chromophores were perpendicular to the poling field. Hence,
even under extreme conditions that could promote the formation
of centrosymmetric aggregates, no such aggregates were formed.

In Figure 12, we explicitly take chromophore shape and
nuclear repulsive interactions into account by treating the
chromophores as hard-shell ellipsoids with the ellipsoidal shape
determined from quantum mechanical calculations. The calcula-
tions were carried out under the restriction that no two
chromophores could occupy the same space at the same time.
At low chromophore concentrations, shape effects are unim-
portant. Chromophore distributions are homogeneous and can

Figure 6. Histogram of the orientation of 1000 chromophores after
the 400th step, plotted as a function of the cosine of the angle from
the poling field. The density isN ) 1017 molecules/cm3. Parameters
are given in the Figure 6 legend. The solid line is the analytic form,
assuming no dipole-dipole interactions. The histograms of Figures 6-8
are plotted on the same scales and are all normalized to 1000 counts.

Figure 7. Histogram of the orientation of the 1000 chromophores after
400 steps of evolution from the configuration of the previous figure,
plotted as a function of the cosine of the angle from the poling field.
The density isN ) 5 × 1020 molecules/cm3. The histograms of Figures
6-8 are plotted on the same scales and are all normalized to 1000
counts.

Figure 8. Histogram of the orientation of 1000 chromophores after
the 400th step from the configuration shown in the previous figure,
plotted as a function of the cosine of the angle from the poling field.
The density isN ) 15× 1020 molecules/cm3. The histograms of Figures
6-8 are plotted on the same scales and are all normalized to 1000
counts.
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be described as a cubic lattice. As chromophore average
intermolecular distances approach chromophore long-axis lengths,
a transition to a tetragonal lattice occurs. Chromophore rotational
motion becomes restricted in the high-concentration regime. In
addition to showing the simulation (solid line) of experimental
data (diamonds) for the CLD-OMet chromophore in PMMA,
we also show in Figure 12 the deconvolution of the total
theoretical curve into electronic and nuclear repulsive (shape)
effects. The electronic effect (short dashes) is what would be
observed if the chromophores were spherical. The nuclear
repulsive contribution (long dashes) sets in at higher concentra-
tions than does the electronic electrostatic effect but clearly is
important at high concentrations.

The agreement between theory and experiment shown in
Figure 12 is good but less than exact. Note that the theoretical
results shown in this figure were computed without using
adjustable parameters and without considering higher-order
effects, as discussed. When higher-order interactions are con-
sidered in a self-consistent manner, excellent agreement between
theory and experiment is obtained (see Figure 2 for an example
of the level of agreement that is obtained). An important
observation to be derived from Figure 12 is that such higher-
order treatment is not necessary to understand experimental
trends or to design improved chromophores. Part of the reason
for the good agreement of the more approximate theory with
experiment is serendipitous because of the partial cancellation
of higher-order contributions of different signs. For example,
the host dielectric constant influences both the poling field felt
by a given chromophore and the field from surrounding

chromophores felt by that chromophore, but the effects have
opposite influences on the value of<cos3 θ>.

Conclusions

The calculations presented in this article establish a consis-
tency between the Monte Carlo method and analytical theory
based on Piekara’s approximation. This consistency is quite
important, as these two calculation methods represent quite
different theoretical approaches to the same problem. An
important result is that even this simple picture of interacting
chromophores (in which the polarizability, shape of the chro-
mophore, and the dielectric nature of the medium are neglected)
qualitatively reproduces most of the essential features of
experiment. The essential features are the following: (1) A
maximum value is found in the graph of the electro-optic
coefficient (r33) as a function of chromophore number density
(N). (2) The maxima in graphs ofr33 versusN shift to lower
values ofN with increasing chromophore dipole moment (µ).
(3) The detailed shape of the functional form of the dependence
of r33 on N is qualitatively reproduced by the calculations.

The Monte Carlo method has the advantage, relative to
equilibrium statistical mechanical methods, of providing detailed
insight into the distribution of molecules (dipoles). It is thus
more physically intuitive. A subtle, but important, observation
of the calculations presented here is that phase separation into
acentric and centric domains (aggregates) is not observed for
the model systems considered. The competition of the poling
field and intermolecular electrostatic interactions can, thus, be
viewed from the standpoint of an “effective field” picture in
which the most probable chromophore orientation is defined
by the vectorial resultant of the poling field with fields
contributed by surrounding dipolar molecules. This result is
consistent with a variety of experimental observations, including
the detailed functional dependence ofr on N, the absence of

Figure 9. Graph of{N<cos3 θ>} (which is linearly related tor33) as
a function of N, chromophore number density, for the following
different values ofµ: µ ) 6 (solid line), 8 (dash-dot), and 13 (dash)
D. The error bars are the standard errors of each value, obtained by
averaging 75 steps in the Monte Carlo simulations. The dashed straight
lines are the analytic theory, assuming no dipole-dipole interactions
(see eq 4). We chose to plot{N<cos3 θ>}, rather thanr33, because
the dependence of the latter on the molecular first hyperpolarizability,
â, and the host dielectric constant,ε, obscures the trends that we wish
to emphasize. That is,{N<cos3 θ>} more directly illustrates the
attenuating role of intermolecular electrostatic interactions.

Figure 10. Graph of{N<cos3 θ>} as a function ofN, chromophore
number density, forµ ) 13 D and external poling fields of 300 and
600 V/µM. The straight, dashed lines show results from eq 4. The two
solid lines use the analytic theory of Piekara for the third moment of
the distribution (see eq 10).
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light scattering from aggregates, the relationship between
electro-optic activity and birefringence, and the results of pulsed
poling field experiments. Even more encouraging, the present
results help to identify the small number of systems in which
phase separation into centric and acentric (noncentrosymmetric)
phases has been observed. The Monte Carlo method provides
an attractive formalism for theoretically exploring such effects.

The simple model and Monte Carlo calculations presented
here can be executed on most personal computers. The Monte
Carlo method is a facile way of qualitatively (and even
semiquantitatively) exploring the dependence of the electro-
optic coefficient for a new chromophore material on chro-
mophore number density, applied electric field, and the dipole
moment of the chromophore. With greater computational
capability, the method is readily adapted to incorporate con-
siderations of chromophore shape, the dielectric nature of the
medium, the details of the sample and poling configuration, etc.
These activities, which rely on Piekara’s fundamental ap-
proximation of interacting dipolar molecules,17 have already
been executed within the framework of numerical equilibrium
statistical mechanics. Monte Carlo calculations not only provide
support for such calculations but also provide a more intuitive
approach for treating higher-order effects.

Relation of Theory to Future Experiments.The theoretical
and experimental results unequivocally refute the concept that
µâ/MW is a useful scaling parameter for predicting the utility
of newly prepared second-order nonlinear optical chromophores.
Expectations for ultrafast “purely electronic” electro-optic
activity must be correspondingly lowered. With existing chro-
mophores, it is unrealistic to think of constructing neat chro-

mophore lattices that exhibit electro-optic activity that will
compete with liquid crystalline materials in beam-steering
applications. There is simply no way to avoid experiencing some
reduction in macroscopic electro-optic activity associated with
intermolecular electrostatic (electronic and nuclear) interactions.
Theory fortunately tells us how to minimize such attenuation
of electro-optic activity. One approach to minimizing the
attenuation is to control chromophore shape. While a detailed
discussion of this topic is outside the realm of the present
discussion, we note that there are a number of approximate
methods for considering chromophore shape (e.g., see Figures
2, 11, and 12).17 Each of these methods supports the fundamental
conclusion that prolate ellipsoidal chromophore shapes are
undesirable. Electro-optic activity is theoretically predicted and
experimentally observed to be considerably improved (e.g., by
factors of 2 or more) by adding inert (sterically bulky)
substituents to inhibit close side-by-side (along the minor axes
of the prolate ellipsoids) approach of chromophores. A synthetic
scheme well suited to such chromophore modification is that
of dendrimer synthesis, but even simple derivatization with alkyl
and alicyclic substituents can be effectively employed.3 The ideal
chromophore shape is that of a sphere. Theory can provide
useful guidance for the most appropriate modification of a given

Figure 11. Plot of {N<cos3 θ>} as a function ofN, chromophore
number density, forµ ) 8 D and for two different lattice geometries.
The plot labeled Spherical uses a uniform lattice. The two plots labeled
3:1 Elliptic Lattice use a lattice in which the distance between dipoles
is three times larger in the poling field direction than in the other two
directions. The two plots are two separate calculations, which differ in
the number of nearest neighbors included in the interaction energy of
each chromophore. In one calculation, 26 nearest neighbors were
included, and in the other calculation, 125 nearest neighbors were
included. The results are essentially identical.

Figure 12. Experimentally observed (diamonds) and theoretically
predicted (solid line) variation of electro-optic coefficient versus
chromophore number density for the CLD-OMet chromophore in
PMMA. CLD-OMet involves replacement of the H with the methoxy
group. The theoretical curve was computed as discussed in the text
with the restriction that chromophores are treated as hard-shell (non-
interpenetrating) ellipsoids. At high concentrations, some rotational
motions for a given chromophore become restricted by the requirement
that two chromophores cannot occupy the same space at the same time.
This figure also shows the deconvoluted functional dependence of the
electrostatic effect (purely electronic, denoted charge effect, short
dashes) and nuclear repulsive effect (denoted shape effect, long dashes).
The purely electronic effect is what would be observed for a spherical
chromophore. Note that the scale to the right of the figure applies only
to the experimental data and theoretical curve (solid line) corresponding
to the total contributions of electronic and shape effects. As expected
and as is evident from this figure, the electronic effect is longer range
and sets in at a lower chromophore concentration than the shape effect,
but the shape effect makes an important contribution at higher
concentrations.
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π-electron backbone structure. Such derivatization can also be
used to control solubility and processability, to improve chemical
and photochemical stability, to facilitate lattice-hardening
schemes carried out after electric-field poling, and to minimize
optical loss due to vibrational absorption by exploiting selective
halogenation and isotopic substitution.

Theory can also provide more subtle guidance. For example,
cases in which pulsed poling techniques can be effectively
utilized can be identified, the role of the host dielectric constant
can be clarified, etc. Note that the role of the polymer host
dielectric constant (dielectric permittivity) is more complex in
the presence of large intermolecular electrostatic interactions.
In the absence of such interactions, the dielectric nature of the
host polymer acts only to attenuate the magnitude of the applied
electric poling field felt by the dipolar chromophores of the
sample. The prediction of independent particle theory is that
the lower the dielectric constant of the medium, the better.
Indeed, the very high dielectric constant of crystalline lithium
niobate (ε ) 28-80, depending on crystal orientation) is a
distinct disadvantage.22 However, a modest dielectric constant
for a polymer host is an advantage for chromophores experienc-
ing large intermolecular electrostatic interactions, as the dielec-
tric nature of the medium acts to attenuate these interactions.
For example, dissolving the CLD chromophore into amorphous
poly(carbonate), APC [polybisphenol A carbonate-co-4,4′-
(3,3,5-trimethylcyclohexylidene)diphenol], rather than PMMA
increases the maximum observed electro-optic coefficient by
approximately 10 pm/V. Of course, all theories predict that the
higher the poling field strength, the better. Unfortunately,
dielectric breakdown limits the magnitude of the applied electric
fields that can be employed in electric-field poling. We should
also indicate that the phase transition from a “homogeneous or
effective field” chromophore lattice to phase-separated centric/
acentric domains depends onN, F, andε. The high electric fields
produced by corona poling or by electrode poling with conduct-
ing cladding layers23 oppose phase separation, but even for such
experiments, phase separation is observed for a small number
of materials and conditions.

We emphasize that the theory developed here is also relevant
to the understanding of electro-optic materials fabricated by self-
assembly methods such as the Langmuir-Blodgett film fabrica-
tion method. For such assembly, the orientation of chromophores
with respect to the substrate surface is influenced by intermo-
lecular electrostatic interactions. Chromophores tilt away from
the normal to the substrate surface under the influence of
intermolecular electrostatic interactions. This tilting reduces the
electro-optic activity. The same observations concerning chro-
mophore shape and number density apply to this situation as to
electric-field poling. The only difference is that surface forces
replace the poling field in driving acentric order. Because
anchoring forces of sequential synthesis methods can be very
large (e.g., because of covalent bond formation), this is an
argument for the ultimate potential advantage of these techniques
over poling methods.

Theoretical calculations have already helped guide the
development of polymeric electro-optic materials characterized
by electro-optic coefficients of greater than 100 pm/V, yielding
devices with drive voltage requirements ofe 1 V.12,13 With
continued minor modifications of existing chromophore struc-
tures, it is now clear that device drive voltages can be reduced
to less than 0.5 V. Indeed, chromophores with extended polyene
bridges protected by two or three fused alicyclic ring systems
have been prepared, yielding electro-optic coefficients greater
than 100 pm/V.3 The two-ring version, referred to as GLD, is

already being used in the fabrication of prototype devices with
improved electro-optic activity. Exceptional electro-optic activity
(>100 pm/V) and excellent thermal stability have also been
obtained by the inclusion of dithiophene units into protected
polyene bridge structures.3,14 Replacement of the furan oxygen
of CLD with a variety of functionalities has led to improved
chromophores, and promising results are being obtained for a
variety of dendrimer materials based on CLD, GLD, and related
chromophores.3 With expected continued improvement in chro-
mophore hyperpolarizability and with theoretically guided design
of optimum chromophore shapes, it is reasonable that drive
voltages of 0.1-0.4 V will be achieved in the not too distant
future. With the limitations imposed by intermolecular electro-
static interactions, drive voltages of 0.01 V will be extremely
difficult, if not impossible, to achieve. Thus, the future of
polymeric electro-optic materials is extremely bright for satellite-
and optical fiber-based telecommunications, phased-array radar,
electronic counter measures (ECM), land mine detection, optical
gyroscopes (guidance systems), information processing (ultrafast
analog-to-digital conversion), switching at nodes in local area
optical networks, and remote high-voltage sensing (transformer
voltage fluctuations). However, direct sensing of weak electro-
magnetic fields (e.g., semiconductor diode replacement for broad
bandwidth magnetic resonance) and large-angle beam-steering
applications appear unlikely. It is conceivable that spatial light
modulation will be achieved by making use of new polymeric
electro-optic materials incorporated into photonic band-gap
structures.

As noted in the Introduction, the theory developed here is
also relevant to a number of other technologically significant
observations, including those involving photorefractive, liquid
crystalline, and organic light-emitting diode materials.
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