
Reorganization Parameters of Electronic Transitions in Electronically Delocalized Systems.
1. Charge Transfer Reactions

Dmitry V. Matyushov* ,† and Gregory A. Voth*
Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, UniVersity of Utah,
315 South 1400 East, Salt Lake City, Utah 84112

ReceiVed: NoVember 2, 1999; In Final Form: March 3, 2000

This paper addresses the problem of calculating the free energy surfaces of charge transfer (CT) reactions in
electronically delocalized systems involving direct electronic overlap of the donor and acceptor units. The
model includes two electronic states of the solute linearly coupled to a linearly responding solvent in both the
diagonal and off-diagonal terms of the Hamiltonian matrix. The exact solution for the adiabatic free energy
surfaces along the CT reaction coordinate is derived as a function of the reorganization parameters invariant
to the extent of electron delocalization and the parameter of electron delocalization. For dipolar solutes, the
latter is defined through adiabatic differential and transition dipoles measured by optical spectroscopy. The
invariant reorganization energy is the real, observable reorganization energy determining the vertical transition
energy, bandwidth, and the activation energy of self-exchange transitions. The Golden Rule expression for
the ET rate constant is obtained in the adiabatic electronic basis of the solute by treating the non-Condon
off-diagonal coupling to the solvent as a perturbation. The ET matrix element entering the rate constant is
fully determined in terms of the adiabatic vacuum splitting of the electronic levels and the delocalization
parameter. The CT energy gap law is very asymmetric with a shallow branch in the inverted region due to
the dependence of the delocalization parameter on the CT driving force.

1. Introduction

Localization is a central concept in understanding and
describing electron transfer (ET) reactions. The very definition
of ET assumes the existence of two or more localized states
separated by a potential barrier. Occupation of empty states
occurs as underbarrier tunneling when the localized state
energies equalize by absorption of energy from a thermal bath
or radiation. The electron density can never be fully transferred
unless the donor and acceptor electronic states do not overlap
after the reaction. A direct electronic overlap of the donor and
acceptor moieties should thus result in a partial charge transfer
(CT) characteristic of electronic transitions in coupled donor/
acceptor pairs (intramolecular transitions).1

The importance of partial CT was recognized already in the
classical Marcus-Hush theory.2,3 It was suggested that delo-
calization of the electron between the donor and acceptor states
affects the solute field acting on the solvent,4-6 so that the
solvent reorganization energy of a delocalized CT complex,
λs

ad, scales quadratically with the amount of charge∆z actually
transferred

Here, λs
d is the reorganization energy of any diabatic (super-

script “d”) solute configuration assuming complete localization
of the transferred electron. A delocalized solute configuration
involving redistribution of the charge density between the donor
and acceptor is referred to as the adiabatic configuration
(superscript “ad”). Throughout this paper, the electronic basis
diagonalizing the solute vacuum Hamiltonian is set as the
adiabatic representation.

Hush defined electronic delocalization through the CT band
intensity3a so that the Marcus-Hush delocalization parameter
∆z can be assessed via the relation3-5

whereHab is the off-diagonal matrix element of the diabatic
Hamiltonian matrix (ET matrix element) andνmax stands for
the frequency of the intervalence transition. Spectroscopic
techniques characterize intensity of the donor-acceptor overlap
in terms of the transition dipole of the optical transition. The
delocalization parameter then becomes7-9c

Here m12
max is the adiabatic transition dipole and∆m12

max is the
adiabatic ground-excited state dipole-moment difference (dif-
ferential dipole). Both parameters refer to the equilibrium
configuration of the solvent probed by absorption (“max”)
“abs”) or emission (“max”) “em”) transitions. The transition
dipole is commonly extracted from integrated absorption/
emission intensities or from the rate of spontaneous radiation.10,11

The differential dipole can be measured by Stark spec-
troscopy,7-9,12 time-resolved microwave13a,band pulsed dc13c,d

conductivity, and microwave absorption.13e

As defined by eqs 2 and 3,∆z is a complex function of the
solute energetics and the solvent effect (it is also different for
absorption and emission transitions). This results in a few major
difficulties in constructing theoretical treatments of reaction
kinetics and optical spectra in electronically delocalized sys-
tems: (i) the solvent effect enters the observables in a very
complicated fashion, (ii) vacuum quantum calculations of the
electronic parameters of the donor-acceptor complexes cannot
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λs
ad ) (∆z)2λs

d (1)

∆z2 ) 1 - 4R2, R ) Hab/hνmax (2)

∆z ) [1 +
4(m12

max)2

(∆m12
max)2]-1/2

(3)
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be applied to estimating∆z and less reliable models involving
solvent field should be used, and (iii) a connection between the
adiabatic reorganization energy given by eq 1 and optical
observables (optical width, Stokes shift, etc.) is not specified.
Furthermore, the CT activation energy includes, apart from
λs

ad, the equilibrium free energy gap∆F0
ad. The Marcus-Hush

formulation2,3 does not address the question of scaling of∆F0
ad

with the extent of electron delocalization14 thus leaving open
the question of a general scaling law of the CT activation barrier.

In view of the mentioned difficulties of incorporating∆z into
the CT theory, our present formulation is based on the
delocalization parameter defined solely in terms of the vacuum
solute dipoles

wherem12 is the vacuum, adiabatic transition dipole and∆m12

) m2 - m1 is the vacuum, adiabatic differential dipole. The
obvious advantage of∆e over∆z is that it does not depend on
the solvent and can be obtained from vacuum quantum
calculations or gas-phase measurements. In fact the transition
dipole m12 can also be extracted from condensed phase
measurements when the vacuum transition frequencyν0 is
known, sincem12 ) νmaxm12

max/ν0 in the two-state model (see
below for details). In view of its experimental, and potentially
theoretical, availability, the parameter∆e can now be directly
incorporated into the description of radiationless and optical
electronic transitions.

The motivation of this and companion15 studies is to develop
a theory of thermally activated and optical electronic transitions
in terms of the delocalization parameter∆e instead of∆z. The
formulation involves two steps. The first step (the present paper)
aims at constructing the free energy surfaces of partial CT along
the reaction coordinate reflecting the strength of coupling of
the two-state solute to a classical, linearly responding solvent.
As the second step (the companion paper),15 the Franck-
Condon envelope16 of electronic and vibrational excitations in
electronically delocalized CT complexes is constructed to
connect the theory parameters to optical observables.

The adiabatic free energy surfaces obtained in the present
paper reflect charge delocalization through the vacuum transition
dipole and the vacuum energy gap between the adiabatic states.
The free energy surfaces are functions of the reorganization
parameters invariant in respect to the unitary transformations
of the solute basis (thus equal in the adiabatic and diabatic
representations) and the delocalization parameter∆e (section
3.1). The non-Condon coupling of the solute transition dipole
to the solvent field is considered as a perturbation in the Golden
Rule calculation of the reaction rate (section 3.3). The ET matrix
element entering the rate preexponent is fully defined in terms
of adiabatic parameters and is connected to the absorption band
intensity (section 4). The dependence of the extent of electron
delocalization on the energy gap results in a nonparabolic energy
gap law with a shallow branch in the inverted ET region (section
3.4). The results of the current model are compared to traditional
treatments of ET in section 5, with conclusions drawn in section
6.

2. CT Free Energy Surfaces

2.1. Model. Here we calculate the CT free energy surfaces
along the reaction coordinate reflecting the strength of coupling
of the difference of the solute electric fields in the initial and

final adiabatic states,∆E12, to the nuclear electric polarization
of the solventPn

17

The scalar product of two calligraphic letters throughout below
denotes the integral of the two fields depending on the position
in the solventr over the solvent volumeV

This form does not assume a macroscopic solvent polarization
that, in microscopic terms, is given by the density of permanent
dipoles in the solvent

where the sum runs over all molecules in the solvent with
coordinatesr j and the dipole momentsmj. The microscopic
definition of the solvent polarization in eq 7 allows an extension
of the present analytical theory to computer experiment with
the microscopic fieldPn[r ,{r j}] generated by condensed phase
simulations.

The CT free energyF(X) along the reaction coordinateX is
given by the constrained trace of the system density matrix

whereH is the system Hamiltonian,â ) 1/kBT, and the trace
runs over the nuclear and electronic degrees of freedom of the
solvent and the electronic populations of the two CT states
(Appendix A). The latter feature generates delocalization of the
electronic density between the two CT states at each nonequi-
librium configuration of the solvent characterized by the reaction
coordinateX. The system Hamiltonian includes the vacuum part
H0, the solute-solvent interactionH0B, and the Hamiltonian of
the solvent thermal bathHB:

In eq 8,

is the partition function of the pure solvent.
For the quantum part of the Hamiltonian, one needs to define

the basis set of electronic wave functions. Two adiabatic states,
{Ψ1,Ψ2}, diagonalizing the two-state vacuum HamiltonianH0,
are considered here

In eq 11,ai
+ andai are the Fermionic operators of creation and

annihilation of the electron in theith adiabatic state. The
adiabatic basis set is used in favor to traditionally employed
diabatic, localized states{Ψa,Ψb} for two reasons: (i) the basis
{Ψ1,Ψ2} takes into account directly the delocalization of the
electronic density between the donor and acceptor for intramo-
lecular ET and (ii) the matrix elements of the operators entering
H can be given by quantum mechanical algorithms operating
in terms of adiabatic states. The energiesEi are, therefore, the
true electronic energies of the CT system in a vacuum that are
split by the gap

X ) ∆E12‚Pn (5)

∆E12‚Pn ) ∫V
∆E12(r )‚Pn[r ,{r j}]dr (6)

Pn[r ,{r j}] ) ∑
j

mjδ(r - r j) (7)

exp[-âF(X)] ) (âQB)-1Tr(δ(X - ∆E12‚Pn)exp[-âH]) (8)

H ) H0 + H0B + HB (9)

QB ) Tr(exp[-âHB]) (10)

H0 ) ∑
i)1,2

Eiai
+ ai, H0Ψi ) EiΨi (11)

∆e ) [1 +
4m12

2

∆m12
2 ]-1/2

(4)
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This gap is nonzero even for self-exchange transitions due to
the symmetry-breaking donor-acceptor overlap. The energies
Ei do not include the solvent effect. They are the Born-
Oppenheimer (BO) electronic terms depending on the intramo-
lecular nuclear modes of the solute. Since the consideration of
vibrational excitations of the solute is postponed to the
companion paper,15 each energyEi refers to the electronic state
in equilibrium with the nuclear coordinates. It means that the
vacuum gap∆E corresponds to the 0-0 transition energy in
the gas phase that can be measured by means of optical
spectroscopy. The energies of CT absorption and emission in a
vacuum are given ashνabs,em

(0) ) ∆E ( λv, where “+” and “-”
refer to absorption and emission, respectively, andλv is the
intramolecular, vibrational reorganization energy. The parameter
∆E entering our equations below is thus∆E ) h(νabs

(0) + νem
(0))/2.

The diabatic basis set is commonly used as a starting point
in describing the solvent effect on ET. The ET reaction
coordinate is then defined through thediabaticdifferential field
of the solute,∆Eab ) Eb - Ea

in place of theadiabaticfield in eq 5. The two approaches are
compared in section 5.1. The adiabatic and diabatic basis sets
are connected by the unitary transformation

Three theorems important for the following discussion can
be derived from eqs 14 and 15. First, if an operatorÂ that
generally does not commute withH0 is diagonal in the basis
{Ψa,Ψb}, the off-diagonal elements ofÂ andH0 are connected
by the relation

whereAjk ) 〈Ψj|Â|Ψk〉, ∆Ajk ) Ak - Aj; j,k ) 1,2 or j,k ) a,b,
andHab ) 〈Ψa|H0|Ψb〉. Here and below, for simplicity,Aj )
Ajj. Equation 16 is used to construct the generalized Mulliken-
Hush (GMH) basis18 that diagonalizes the matrix of the solute
dipole operator (Â ) m̂) and allows an exact connection between
the adiabatic transition dipole moment and the diabatic matrix
elementHab.18 Second, any unitary transformation connecting
{Ψ1,Ψ2} and{Ψa,Ψb} generates two invariants5

and

Third, there are two relations significant for self-exchange
transitions. IfHa ) Hb, one obtains

The adiabatic energy gap∆E (eq 12) is related to the diabatic
energy parameters as

and is invariant in respect to the unitary basis transformations
according to eq 17. For self-exchange transitions withHa )
Hb,

In the present approach, both the adiabatic and diabatic basis
sets refer to a solute in the vacuum. An alternative approach
would be to use the condensed phase electronic states of the
solute in equilibrium with the solvent, the approach employed
in the polaron problem.19 In this way, however, all matrix
elements entering the formulation (e.g., dipole moments) gain
solvent dependence. One then loses the advantage of employing
vacuum quantum calculations and gas-phase measurements to
define the system parameters and linear response for the solvent
effect.

The solute-solvent interaction Hamiltonian is the scalar
product of the electric field operator of the solute and the solvent
polarization integrated over the solvent volume

The adiabatic basis{Ψ1,Ψ2} consequently generates the Hamil-
tonian matrix including coupling to the solvent polarization in
both the diagonal (the first summand in eq 23) and the off-
diagonal (the second summand in eq 23) terms

The off-diagonal coupling is responsible for the solvent-induced,
non-Condon mixing of the vacuum adiabatic states.20-22 Note
that the non-Condon mixing considered here differs from the
non-Condon effect often considered for vibronic transitions
where it is caused by the dependence of the transition dipole of
thesoluteon its nuclear coordinates.23 Here, we do not include
such effects considering the off-diagonal coupling to the
collective solvent mode of the nuclear polarization.

The nuclear polarization is a part of the overall solvent
polarization P that, additionally, includes the electronicPe

component

The bath Hamiltonian is assumed to be a bilinear form inPn

andPe

In eq 25, the kinetic energy of the classical nuclear polarization
is omitted (the BO approximation) and is retained only for the
electronic polarization treated as a quantum field with the
characteristic frequencyωe.20d The response functionsøe and
øn of the pure liquid can be defined through corresponding
correlators of the polarization fluctuations.24

To simplify the consideration below and reduce the number
of independent parameters, the off-diagonal, adiabatic matrix
element of the solute field operator and the differential, adiabatic
field of the solute are assumed to be linearly connected

Such a linear relation holds exactly when the solute field is
approximated by that of a point dipole yielding

∆E ) E2 - E1 (12)

Y ) ∆Eab‚Pn (13)

Ψa ) x1 - fΨ1 + xfΨ2 (14)

Ψb ) -xfΨ1 + x1 - fΨ2 (15)

|A12|/∆Aab ) |Hab|/∆E, ∆E ) E2 - E1 (16)

∆A12
2 + 4A12

2 ) ∆Aab
2 + 4Aab

2 (17)

A1 + A2 ) Aa + Ab (18)

∆A12 ) 2Aab, 2A12 ) ∆Aab (19)

∆E ) [(Hb - Ha)
2 + 4|Hab|2]1/2 (20)

∆E ) 2|Hab| (21)

H0B ) -Ê‚P (22)

H0B ) - ∑
i)1,2

Ei‚P ai
+ ai - E12‚P (a1

+ a2 + a2
+ a1) (23)

P ) Pn + Pe (24)

HB ) HB[Pn] + HB[Pe] )
1
2

Pn‚øn
-1‚Pn + 1

2
(ωe

-2 Ṗe‚Ṗe + Pe‚øe
-1‚Pe) (25)

E12 ) R12∆E12 (26)

6472 J. Phys. Chem. A, Vol. 104, No. 27, 2000 Matyushov and Voth



Basilevsky et al.25 used two separate reaction coordinates for
the diagonal and off-diagonal couplings to the solvent polariza-
tion. Our approach thus produces a one-dimensional cross
section of their two-dimensional CT surfaces along the line
defined by eq 26.

2.2. Free Energies.The HamiltonianH, as defined by eqs
11, 23, and 25, is a bilinear form in the quantum and classical
coordinates of the solute and the solvent. The trace in eq 8 thus
can be taken exactly under the following conditions of separation
of the characteristic time scales: (i) the solvent electronic
polarization is the fastest system mode withpωe . ∆E26 and
(ii) the nuclear polarization is the classical mode with the
characteristic frequencyνn such thatνn , νmax. The condition
(i) allows adiabatic elimination of the quantum electronic
polarization of the solvent. The trace overPe retains the two-
state form of the system Hamiltonian with the diagonal and off-
diagonal matrix elements renormalized due to solvation by the
solvent electronic polarization (eqs A6 and A7).20 Then, the
trace over the nuclear polarization generates the free energy
composed of the ground (“-”) and excited (“+”) CT surfaces
(Appendix A)

Here,27

and

The adiabatic solvent reorganization energy in eqs 29 and 31
is

The free energy gap

is composed of the adiabatic vacuum splitting∆E ) E2 - E1

and the solvation free energy

Here,Eav ) (E1 + E2)/2 andø ) øe + øn is the total response
function of the solvent.

3. CT Rates

3.1. Reorganization Parameters.Equations 28-34 define
the CT free energy surfaces in terms of adiabatic parameters
depending on the donor-acceptor electronic overlap. The theory
can, however, be reformulated in terms of the reorganization
parameters independent of delocalization, and invariant in
respect to the unitary basis transformations, and the delocal-
ization parameter

Specifically, one obtains

with

The invariant solvent reorganization energy is28

and the invariant solvent component of the free energy gap is
given by

The invariance ofλs
I and ∆Fs

I in respect to the unitary
transformations of the solute basis follows from eqs 17 and 18.
For R12 given by eq 27 the delocalization parameter∆e in eq
35 is equivalent to that in eq 4. At∆e ) 1, eq 36 reduces to
two diabatic parabolas

Here and throughout below the upper and lower signs in “(”
refer to i ) 1 and toi ) 2, respectively;F0i

d ) F0i
ad(∆e ) 1) is

the diabatic free energy of thei th state referring to zero donor-
acceptor overlap.

The comparison of eqs 32-34 with eqs 38-39 yields the
scaling laws for the reorganization parameters with∆e. The
adiabatic reorganization energy is a quadratic function of the
delocalization parameter

The solvent component of the equilibrium, adiabatic free energy
gap scales linearly with∆e

Equation 36 and the above scaling relations are exact and are
limited only to the model of a two-state solute in a linearly
responding solvent.

Comparison of eq 40 to standard expressions for the diabatic
ET activation barrier suggests that the invariant reorganization
energyλs

I should be considered as an analogue of the diabatic
reorganization energyλs

d of the diabatic ET theories2,3

Indeed, the Marcus-Hush formulation assumes that the off-
diagonal matrix element of the solute fieldEab does not affect
the barrier thermodynamics, and according to eqs 17 and 38,

R12 )
m12

∆m12
(27)

F(X) ) -â-1 ln[e-âF-(X) + e-âF+(X)] (28)

F((X) ) X2

4λs
ad

(
∆E(X)

2
+ C (29)

∆E ) [(∆F0
ad - X)2 + 4R12

2 (∆F s
ad - X)2]1/2 (30)

C )
F01

ad + F02
ad

2
+

λs
ad

4
(31)

λs
ad ) 1

2
∆E12‚øn‚∆E12 (32)

∆F0
ad ) F02

ad - F01
ad ) ∆E + ∆Fs

ad (33)

∆Fs
ad ) -Eav‚ø‚∆E12 (34)

∆e ) [1 + 4R12
2 ]-1/2 (35)

F((X) ) X2

4∆e2λs
I

( 1
2

∆E(X) + C (36)

∆E(X) )
[∆E2 + 2∆E(∆e∆Fs

I - X) + (∆Fs
I - X/∆e)2]1/2 (37)

λs
I ) 1

2
(∆E 12

2 + 4E 12
2 )1/2‚øn‚(∆E 12

2 + 4E 12
2 )1/2 (38)

∆Fs
I ) -1

2
(∆E 12

2 + 4E 12
2 )1/2‚ø‚(E1 + E2) (39)

Fi(X) ) F0i
d +

(X ( λs
I)2

4λs
I

(40)

λs
ad ) (∆e)2λs

I (41)

∆Fs
ad ) ∆e∆Fs

I (42)

λs
d ) 1

2
∆Eab‚øn‚∆Eab (43)

λs
I =

1
2

∆Eab‚øn‚∆Eab (44)
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The above approximation may well fulfill for unsymmetrical
CT systems, but becomes questionable for self-exchange reac-
tions defined by the condition∆Iab ) Hb - Ha ) 0. In this
case, from eq 19,

and neglect of the off-diagonal diabatic matrix element of the
solute field operator is hardly justified. We, however, will
assumeλs

d = λs
I in the numerical illustrations below as this is

the only way to compare the predictions of the present model
to diabatic theories.

Figure 1 shows the lower and upper adiabatic free energy
surfaces for a CT reaction with∆Fs

I ) 0. The positions of two
minima atX 1

- andX 2
- indicate the initial and final equilibrium

states. They are strongly affected by both the vacuum adiabatic
splitting ∆E and the delocalization parameter∆e. When∆E/λs

I

f 0, the common picture of diabatic free energy surfaces with
equal energies of the initial and final states2 is recovered (Figure
1, upper part). The energies of the lower surface minima split
with increasing∆E (Figure 1, lower part) and the positions of
the minima shift linearly with∆e at ∆E/λs

I , 1

Therefore, even for self-exchange CT, the adiabatic representa-
tion predicts a nonzero energy gap equal to∆e∆E at ∆E/λs

I ,
1 (see discussion in section 5.1 below). The barriers of the
forward (i ) 1, “+”) and backward (i ) 2, “-”) reactions then
differ

Here, because of a nonzero driving force, two absorption
transitions are present (Fiure 1, lower part)15

3.2. Delocalization Parameters.The free energy surfaces
in eq 36 can be used to calculate the Marcus-Hush delocal-
ization parameter∆z as the difference in the equilibrium
occupation numbers in the final and initial electronic states. The
occupation number of theith adiabatic state at a particular value
of the reaction coordinateX is defined as

Here,

is the Fermi-Dirac thermal occupation number and

are the occupation numbers of the lower and upper ET surfaces
without thermal excitations between them. The lower CT surface
has two minima,X 1

- andX 2
-, in the normal CT region (Figure

1). The Marcus-Hush delocalization parameter∆z is then the
difference in the occupation numbersni(X) taken at correspond-
ing minima. Since the impact of thermal excitations on the

occupation numbers is negligible atâ∆E(X i
-) . 1, ∆z is given

by the relation

For CT in the inverted region (Figure 2), the lower and the
upper surface has only one minimum each,X- andX+. Hence,
∆z is obtained from the occupation numbers taken at the upper
and lower minima

Figure 3 illustrates the dissimilarity in the dependence of the
transferred charge on the delocalization parameter∆e in the
normal and inverted CT regions. For small ratios|(∆E +

Figure 1. The upper,F+(X), and lower,F-(X), free energy surfaces
for a CT reaction with∆Fs

I ) 0 at three values of the delocalization
parameter∆e: 0.5 (dashed lines), 0.7 (dot-dashed lines), 0.9 (solid
lines). The upper and lower parts correspond to∆E/λs

I equal to 0.02
and 0.2, respectively;λs

I ) 1 eV. In the lower panel,hνabs
(1) and hνabs

(2)

indicate two absorption transitions;X 1,2
- are the positions of the

minima of the lower ET surface.

Figure 2. CT free energy surfaces for the inverted CT region at∆e )
0.9 (solid lines),∆e ) 0.7 (dot-dashed lines), and∆e ) 0.5 (dashed
lines); ∆E ) 3.0 eV,∆Fs

I ) 1.0 eV,λs
I ) 1.0 eV.X- andX+ indicate

the minima of the lower and upper surfaces, respectively.

∆z ) |n-(X 1
-) - n-(X 2

-)| (52)

∆z ) |n-(X -) - n+(X +)| (53)

Eab ) ∆E12/2 (45)

X i
- = -∆eλs

I (46)

Fi
act =

hνabs
(i)

4
( ∆e

4
∆E - ∆E

2
x1 - ∆e2 (47)

hνabs
(i) ) λs

I ( ∆e∆E (48)

ni(X)) ∂F(X)/∂Ei

) n-(X)njF(∆E(X)) + n((X)[1 - njF(∆E(X))] (49)

njF(∆E(X)) ) [1 + eâ∆E(X)]-1 (50)

n((X) ) 1
2

(
∆E + ∆e∆Fs

I - X

2∆E(X)
(51)
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∆e∆Fs
I)/λs

I| < 1 in the normal CT region, the parameters∆z
and∆e are close to each other (solid and dot-dashed lines in
Figure 3). The equilibrium charge is localized on the lower CT
surface for the inverted CT configuration (dashed line in Figure
3). A CT reaction from an excited CT state in the inverted region
hence results in a practically full transfer of the electron density.
This shows that delocalization and the difference in equilibrium
occupation numbers should not be equated to each other. A high
magnitude of the transition dipole implying strong coupling
between the CT states for vertical electronic transitions may
exist along with a large energy gap resulting in a nearly complete
CT between the equilibrium electronic configurations.

3.3. Golden Rule Reaction Rate.The adiabatic surfaces
F((X) are eigenstates of the two-state matrix

with

If ∆e is close to unity (R12 , 1), the off-diagonal terms can
be treated as a perturbation leading to transitions between the
diagonal energy levels.29 The standard Golden Rule procedure
then applies resulting in the following equation for the rate
constant

with the Franck-Condon factor

In eq 56, the ET matrix element

is fully defined in terms of adiabatic vacuum parameters: the
energy gap and the differential and transition dipoles. The
quantity 2|HET| is, however, larger than the minimum splitting
Emin between the adiabatic ET surfaces

commonly associated with the ET matrix element. The differ-
ence between the minimum splitting and the ET matrix element
entering the rate constant arises due to the dependence of the
off-diagonal matrix element on the reaction coordinateX. The
diagonal matrix elements in the two-state Hamiltonian matrix
(eq 54) equalize at the transition point

This point does not coincide with the coordinate of the minimum
splitting of the lower and upper ET surfaces

resulting in a difference between 2|HET| and Emin (Figure 4).
The minimum splittingEmin is equal to 2|Hab

GMH| calculated
in the GMH basis proposed by Cave and Newton.18 The GMH
basis is constructed to diagonalize the matrix of the solute dipole
operator withf in eqs 14 and 15 obeying the relation

where

is the diabatic vacuum energy gap30 such that

The ET matrix element in the GMH basis is connected to
that entering the adiabatic Golden Rule rate constant through
the delocalization parameter (see also eq 50 in ref 20d)

Equation 62 is a specific case of the general rule:∆e is equal
to the difference in the occupation numbers of the two vacuum
adiabatic states in respect to the basis diagonalizing the matrix
of the solute field operator. Only in that basis is the delocal-
ization parameter directly related to the system energetics. For
any other basis set related to the adiabatic basis by a unitary
transformation (eqs 14 and 15) the delocalization parameter
defined through the adiabatic transition and differential dipoles
cannot be directly related to the diabatic energetic parameters.

The Golden Rule approximation is more traditionally used
within the diabatic representation. With the non-Condon cou-
pling to the solvent retained in the Hamiltonian, the perturbation
expansion is performed over the solvent-dependent ET matrix
element

The transition point is then located at

and the rate constant is20d

Here,

Figure 3. Dependence of the charge∆z transferred in a CT reaction
on the delocalization parameter∆e at ∆E/λs

I ) 0.2, ∆Fs
I ) 0 (solid

line), ∆E/λs
I ) 0.5, ∆Fs

I ) 0 (dot-dashed line),∆E/λs
I ) 3.0, ∆Fs

I )
-1.0 (dashed line).

(V1(X) + X/2 R12(∆e∆Fs
I - X)

R12(∆e∆Fs
I - X) V2(X) - X/2 ) (54)

Vi(X) ) F0i
ad + X2

4∆e2λs
I

+
∆e2λs

I

4
(55)

kET
(i) ) p-1|HET|2FCad

(i) (56)

FCad
(i) ) ( πâ

∆e2λs
I)1/2

exp[-â
(∆F0

ad ( ∆e2λs
I)2

4∆e2λs
I ] (57)

|HET| )
x1 - ∆e2

2∆e
∆E )

m12

∆m12
∆E (58)

Emin ) ∆Ex1 - ∆e2 ) 2|Hab
GMH| (59)

Xq ) ∆F0
ad (60)

Xmin ) ∆F0
ad - ∆E(1 - ∆e2), ∆e e 1 (61)

∆e ) 1 - 2f ) ∆Iab
GMH/∆E (62)

∆Iab
GMH ) Hb

GMH - Ha
GMH (63)

∆E2 ) (∆Iab
GMH)2 + 4|Hab

GMH|2 (64)

|Hab
GMH| ) ∆e|HET| (65)

Hab[P ] ) Hab - Eab‚P (66)

Yq ) ∆F0
d ) F02

d - F01
d (67)

kET
(i) ) p-1|Hab

MH|2 FCd
(i) (68)
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is the diabatic Franck-Condon factor and

is the Mulliken-Hush (MH) ET matrix element;Rab ) Eab/
∆Eab. In the dipolar approximation for the solute field, one
obtains

Equations 68 and 69 make a considerable improvement
compared to traditional theories of nonadiabatic (NA) ET3e

considering transitions between diabatic states{Ψa,Ψb} induced
by the ET matrix element|Hab| independent of the solvent. The
NA rate constant is then

Equations 68 and 72 coincide for self-exchange ET when∆Iab

) 0. In this case also, from eq 19,∆m12 ) 2mab and 2m12 )
∆mab.

Figure 5 compares three Golden Rule solutions: the adiabatic
(AD, eq 56), the diabatic with the GMH basis (GMH, eq 68),
and the nonadiabatic (NA, eq 72). The AD and GMH solutions
are directly comparable as the GMH basis generates invariant
solvation free energies: the solvent reorganization energy and
the solvent component of the equilibrium energy gap

The AD and CMH rate constants are generated in Figure 5
by varyingHab

GMH at ∆e ) const31 and using eqs 62-65. The
NA rate results from eq 72 with|Hab| ) ∆E/2 andλs

d ) λs
I. All

three approximations give different results, with the AD solution
predicting the highest rate. The difference results from different
placement of the transition state in each approximation. For self-
exchange transitions, the transition states areXq ) 0, Xq )
∆e2∆E, andXq ) ∆E for the NA, GMH, and AD solutions,
respectively. For self-exchange reactions, the GMH approxima-

tion gives the best solution for the transition state among the
three approximations (Figure 6). Although the GMH ap-
proximation gives the exact value of the minimum splitting
between the upper and lower free energy surfaces, this point
does not coincide with the maximum of the lower surface. This
happens because the maximum of the lower and the minimum
of the upper surface are generally shifted relative to each other
coinciding only whenF-(X 1

-) ) F-(X 2
-) (Figure 7). The

distinction between the maximum of the lower surface and the
transition points in the AD and GMH perturbation schemes
changes with the reaction exothermicity. Figure 7 shows the
dependence of the maximum position and the transition points
on the free energy gap between theX 2

- andX 1
- minima of the

lower surface in the normal CT region.

Figure 4. Adiabatic free energies (solid lines, eq 36), diagonal energies
in the two-state matrix in eq 54 (long-dashed lines), and diabatic free
energy surfaces (dash-dotted lines, eq 40) for self-exchange CT at
∆Fs

I ) ∆Fs
d ) 0, ∆E/λs

I ) 0.2, and∆e ) 0.7 The two vertical arrows
indicate: the point of intersection of the diagonal energies at which
the splitting of adiabatic surfaces is 2|HET| (longer arrow) and the
position of minimum splittingEmin ) 2|Hab

GMH| (shorter arrow). All
curves are vertically shifted to pass through zero at the left minimum.

FCd
(i) ) (πâ

λs
d )1/2

exp[-â
(∆Iab + ∆Fs

d ( λs
d)2

4λs
d ] (69)

Hab
MH ) Hab - Rab∆Iab (70)

Hab
MH )

m12

∆mab
∆E (71)

kET
(i) ) p-1|Hab|2 FCd

(i) (72)

λs
GMH ) λs

I, ∆Fs
GMH ) ∆Fs

I (73)

Figure 5. Golden Rule rate constant calculated in the adiabatic (eq
72, upper curves), GMH (eqs 68-71, middle curves), and nonadiabatic
(eq 72, lower curves) approximations for∆e ) 0.7 (solid lines) and
∆e) 0.9 (dashed lines). The curves marked “act.” refer to the activation
barrier -âF1

act determined as the difference in free energies of the
lower-surface maximum and the first minimumX1

-. A CT reaction
with λs

I ) 0.5 eV and∆Fs
I ) 0 is considered. For the nonadiabatic

approximation,∆Iab ) 0 and|Hab| ) ∆E/2.

Figure 6. Position of the CT transition state in the NA (Xq ) 0, NA,
eq 72), GMH (Xq ) Xmin, eq 68), and AD (Xq ) ∆E, AD, eq 56)
representations for self-exchange CT with∆Fs

I ) ∆Iab ) 0 and∆Iab
GMH

) ∆e∆E. The arrow indicates the transition state associated with the
maximum of the lower free energy surface.

Figure 7. Dependence of the maximum of the lower free energy
surface (“max(-)”) and the minimum of the upper free energy surface
(“min(+)”) on the gap∆F0 ) F-(X2

-) - F-(X1
-) in the normal CT

region (Figure 1). AD and GMH indicate the transition points of the
Golden Rule rates in the adiabatic and diabatic GMH representations,
respectively;∆Fs

I ) -1.0 eV,λs
I ) 0.5 eV,Hab

GMH ) 0.1 eV.
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Nonperturbative solutions for the two-state dynamics32 are
required to test the accuracy of each perturbation scheme. A
qualitative estimate of the validity range of the Golden Rule
solution can be gained from the Landau-Zener (LZ) adiabaticity
parameter,γLZ.33 The first-order perturbation expansion holds
whenγLZ < 1. The solution of the classical LZ problem33 with
the two-state matrix given by eq 54 leads to the following
expression:34

The LZ parameter is determined by the minimum splitting of
the adiabatic surfaces and not by the ET matrix element|HET|.
The non-Condon mixing thus enhances the range of applicability
of the Golden Rule approximation for the ET rates by the factor
∆e-2 (eq 65).

3.4. Energy Gap Law.Theories descending from the Marcus
picture of ET2 predict a bell-shaped, parabolic dependence of
the ET rate constant on the diabatic driving force∆F0

d for a
reaction driven by classical solvent modes. This prediction is
modified by the inclusion of the solute intramolecular vibrations
that conserve the bell-shaped form of the energy gap law, but
make the energy gap dependence shallower in the inverted ET
region.16 This generic behavior has indeed been documented
for charge shift,35 charge separation,36 and charge recombina-
tion37 reactions in organic CT complexes.

Experimental studies of the energy gap law of CT reactions35-37

are commonly performed by chemical modification of the donor
and/or acceptor moieties. The usual assumption is that such a
modification keeps the solvation parameters of the CT complex
reasonably constant, changing considerably only the diabatic
vacuum splitting∆Iab by varying the ionization potential and/
or electron affinity of the donor and acceptor units. In modeling
the energy gap law, we accept the same picture assuming the
reorganization energyλs

I and the solvation stabilization∆Fs
I to

be constant when varying∆Iab. An important factor that needs
inclusion is the dependence of the delocalization parameter on
the diabatic energy gap. Since such a connection is available
only in the GMH basis, we will vary∆Iab

GMH and use eq 62 to
calculate∆e. In doing this we will also assume that the GMH
matrix elementHab

GMH does not change with∆Iab
GMH.

Transitions in the normal CT region occur between the two
wells of the lower adiabatic surfaceF-(X) with the transmission
coefficient 1- exp(-γLZ) close to unity atγLZ . 1 (adiabatic
limit). The activation free energy is then defined as a barrier
from a lower surface minimum to the maximum point. The
dependence of this barrier on the diabatic splitting (b) and the
free energy gap (c) are given by the right branches of the energy
gap laws shown in Figure 8.

The adiabatic splitting between the CT surfaces leads to a
fundamental distinction between reactions in the normal and
inverted CT regions. Transitions in the inverted region proceed
between different adiabatic surfaces, each having only one
minimum, with the transmission coefficient exp(-γLZ) tending
to zero atγLZ . 1. There is, therefore, no classical transition
point and the splitting is overcome by quantum tunneling
mechanisms. Solvent quantum modes38 or intramolecular quan-
tum skeletal excitations16 can participate in this process. The
transition is possible whenm quanta of, for example, intramo-
lecular vibrational excitation with the frequencyνv have enough
energy to overcome the minimum adiabatic splitting,mhνv g
Emin. The Golden Rule Franck-Condon factor for such transi-
tions is easy to calculate,15 but an infinite order summation of
the perturbation terms is necessary for large ET couplings.39 In

the absence of such a solution we confine ourselves to a
qualitative modeling of the energy gap law in the inverted ET
region emphasizing the importance of the dependence of the
delocalization parameter on the energy gap. Only the energy
invested to achieve the crossing pointXq of the diagonal terms
in eq 54 is considered to generate the left branches of the energy
gap in Figure 8. At this point, the occupation numbersn((X*)
of the lower and upper CT surfaces (eq 51) are both equal to
1/2.

The outcome for the energy gap law depends on the parameter
experimentally accepted as a probe of the equilibrium energy
gap. The most fundamental approach is to define the equilibrium
reaction gap as the difference in the free energies at the minima
of the CT free energy curve

in the ET normal region (Figure 1) and

in the inverted region (Figure 2). This equilibrium energy gap
is in fact measured by the ratio of the forward and backward
reaction rates.36b An alternative approach commonly used in
experimental setup is to measure the equilibrium energy gap as

Figure 8. Plot of the activation energy of forward CT 1f2 on the (b)
equilibrium diabatic gap and the (c) equilibrium free energy gap at
Hab

GMH ) 0.1 eV. Also shown (a) is the dependence of the free energy
gap∆F0 calculated as the difference in the free energies of the surface
minima vs∆F0

ad. In (b), 1 indicates the diabatic free energy surfaces
(eq 40) and 2 indicates the adiabatic free energy surfaces (eq 36). The
dashed lines show the results of calculations with constant delocalization
parameter∆e ) 0.9. Other parameters are∆Fs

I ) -1.0 eV andλs
I )

0.5 eV.

∆F0 ) F-(X 2
-) - F-(X 1

-) (75)

∆F0 ) F-(X -) - F+(X +) (76)

γLZ ) 2π
p|Ẋ||Hab

GMH|2 (74)
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a difference in redox potentials of the separate donor and
acceptor units. This energy gap is not affected by the donor-
acceptor overlap and is reflected by the diabatic equilibrium
free energy gap∆F0

d. In view of these two approaches used in
experimental studies, we plotted in Figure 8 the energy gap
curve against∆F0

d (b) and against∆F0 (c). Both curves,
although bell-shaped, are very asymmetric with a much steeper
dependence in the CT normal region, as it is usually observed
in experiment.35-37 The dotted line in Figure 8b shows the same
results obtained with the fixed delocalization parameter∆e )
0.9. The curve is much more symmetric indicating that the
dependence of the delocalization parameter on the diabatic
energy gap is the crucial source of the curve asymmetry.

The discontinuity between the normal and inverted branches
of F1

act(∆F0) is due to the switch from the inverted to the
normal CT regions resulting in a gap in the∆F0 values of about
2|HET| (Figure 8a). It arises due to adiabatic splitting of the
lower and upper CT surfaces (Figures 1 and 2). Figure 8a shows
that the free energy difference∆F0

ad entering the free energy
surfacesF((X) is not the real equilibrium gap measured by the
ratio of the rate constants. The actual gap∆F0 is a discontinuous
function of ∆F0

ad that should be determined according to eqs
75 and 76 from the free energy surfaces.

4. Absorption Intensity

The ET matrix element, entering the Golden Rule reaction
rate, is usually measured from absorption intensities5 or rates
of spontaneous radiation.10 The equation for the extinction
coefficient of CT absorption following from the present model
is derived here. Optical absorption results from electronic
transitions between the lower adiabatic surfaceF-(X) and the
upper adiabatic surfaceF+(X). Transitions are driven by the
interaction of the solute electronic density with the electric field
of the radiation. In the dipolar approximation, the interaction
Hamiltonian reads

where m̂ is the solute dipole operator. The parameterf(nD)
accounts for the deviation of the local field acting on the solute
dipole from the external fieldE0; nD is the solvent refractive
index. Dielectric theories40 predict for spherical cavities

The first order perturbation theory over the solute-radiation
interaction is commonly applied to derive the one-photon
transition probability and absorption intensity.41 As the transi-
tions occur between the adiabatic free energy surfacesF((X),
the unperturbed basis set is built on the wave functions
{Ψ̃1(X),Ψ̃2(X)} diagonalizing the two-state Hamiltonian matrix
in eq 54. The standard perturbation theory then yields for the
extinction coefficientε(ν) (cm-1 M-1)

wherem̃12(X) ) 〈Ψ̃1(X)|m̂|Ψ̃2(X)〉 and

In eq 80,NA is the Avogadro number andc is the velocity of
light in a vacuum. The average in eq 79 is given by

and the transition moment is

There is some confusion in the literature concerning the
dependence of the extinction coefficient on the solvent refractive
index.10,42The correct equation for the absorption intensity (eq
79) was given by Lax17a in the classical representation of the
radiation field that is also reproduced in the formalism of
quantum electrodynamics.41

Integration over the absorption band in eq 79 gives for the
adiabatic transition dipole (in debye)

whereνj is the wavenumber (cm-1) andνj0 is the wavenumber
of the 0-0 transition in a vacuum,∆E ) hcνj0. A relation similar
to eq 83 was derived previously10 by employing the first-order
quantum mechanical perturbation theory limited to small
delocalization (class II Robin-Day complexes43). The present
treatment is exact for a two-state solute indicating that eq 83 is
in fact valid for an arbitrary electronic delocalization including
fully delocalized CT systems (Robin-Day class III43).

Equation 83 gives theVacuumtransition dipole through the
integrated absorption intensity. In contrast to this, the transition
dipole at an equilibrium solvent configuration

is often considered in applications.5,7-9c,11,42It is this transition
dipole that is used in eq 3 for the delocalization parameter∆z.
The condensed phase transition dipolem12

max may significantly
differ from the vacuum dipolem12, especially for self-exchange
CT when νj0/νjmax = 2|Hab|/λs

I , 1. However, due to the
invariance of the productm12

max νjmax, the magnitude of the ET
matrix element extracted from the integrated absorption intensity
is not affected by this distinction. A somewhat corrected MH
relation then follows from eqs 58 and 83

where|HET| is in cm-1 and∆m12 in debye. Here, the product
f(nD)∆m12 is directly measured by means of Stark spectroscopy
in nonpolar liquids withεs ) nD

2 .12 Defining the adiabatic
separation between the centers of charge localization as (e is
the elementary charge)

one gets for a Gaussian absorption band

In eq 87,νjabs
(1) (cm-1) and∆νj1/2

(1) (cm-1) are the maximum and
half-intensity width of the “reduced” spectrumνjε(νj); εabs

(1) is the

〈...〉- ) ∫...e-âF-(X)dX/∫e-âF-(X)dX (81)

|m̃12(X)| ) |m12| ∆E
∆E(X)

(82)

|m12| ) 9.585× 10-2 xnD

νj0 f(nD)
[∫νjε(νj)dνj]1/2 (83)

m12
max ) m12νj0/νjmax (84)

|HET| ) 9.585× 10-2 xnD

∆m12 f(nD)
[∫νjε(νj)dνj]1/2 (85)

r12 ) ∆m12/e (86)

|HET| ) 2.06× 10-2 xnD

r12 f(nD)
[νjabs

(1)
εabs

(1) ∆νj1/2
(1)]1/2 (87)

-f(nD)m̂‚E0 (77)

f(nD) )
3nD

2

2nD
2 + 1

(78)

ε(ν)
ν

) A
f 2(nD)

nD
〈|m̃12(X)|2δ(∆E(X) - hν)〉- (79)

A )
8π3NA

3000 ln(10)c
(80)
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extinction coefficient (cm-1 M-1) at the maximum ofνjε(νj).
The effective adiabatic separationr12 is in Ångstroms and|HET|
is in cm-1. Equation 87 assumes a Gaussian band shape. The
electronic overlap of the donor and acceptor states results in
two absorption transitions for self-exchange CT (Figure 1).
When the higher-energy state has a nonvanishing population,
the absorption line gains asymmetry15 and the sum

should be used in the square root in eq 87;ê is the ratio of
populations of the minima atX 1

- andX 2
- (Figure 1).

5. Discussion

Traditional formulations of the ET theory invoke diabatic
electronic states of the donor and acceptor defined as distinct
electronic states corresponding to complete redistribution of the
electronic density with the electronic transition. The diabatic
states are naturally determined forintermolecular ET when the
reactants and the products are separated before and after the
reaction or internal rotation eliminates the electronic overlap.
The definition of diabatic states becomes, however, obscure for
intramolecular transitions with substantial mixing of the donor
and acceptor wave functions both before and after the reaction.
In view of the absence of a generally accepted definition, various
diabatic basis sets are used for computing the diabatic activation
parameters.18,44 All definitions of diabatic states have the
common feature that the diabatic wave functions are connected
by a unitary transformation to the adiabatic wave functions
diagonalizing the vacuum Hamiltonian. In this sense, the present
theory unifies different approaches to describe localized and
delocalized electronic transitions. The free energy surfaces of
partial CT (eq 36) are given in terms of the energetic parameters
(the vacuum splitting, the solvent reorganization energy, and
the equilibrium free energy gap) that areinVariant in respect to
a unitary basis transformation. Therefore, they have the same
magnitudes in the adiabatic basis and any diabatic basis
constructed from the adiabatic wave functions. Note that the
traditional definition of the solvent reorganization energy2

λs
d ∝ ∆Eab‚∆Eab (eq 43) allows its dependence on a basis

transformation thus rendering this important parameter rather
poorly defined.

Another parameter of the theory is the extent of electron
delocalization∆e. This parameter is given in terms of the
diagonal and off-diagonal vacuum, adiabatic matrix elements
of the solute field operator. When the solute field is ap-
proximated by that of a point dipole,∆e is expressed through
the differential and transition adiabatic dipole moments (eq 4)
and thus is amenable to experimental determination by spec-
troscopic techniques. In the basis diagonalizing the matrix of
the solute field,∆e is the difference in the occupation numbers
of the two adiabatic states and is represented through the
diagonal and off-diagonal matrix elements of the Hamiltonian
operator (eqs 62 and 64). In view of the substantial effect of
the delocalization parameter on the ET free energy surfaces
(Figures 1 and 2), all major results of the ET theory and optical
spectroscopy15 need revision and extension to the case of
∆e < 1.

5.1. Free Energy Surfaces.The standard approach to
construct the CT adiabatic free energies starts with the diabatic
vacuum states{Ψa,Ψb}. Linear coupling of these localized states
to a linearly responding solvent results in the diabatic free energy
surfaces

with i ) a (“+”) and b (“-”) and Y denoting the ET reaction
coordinate defined through the diabatic solute field difference
(eq 13). The two diabatic surfaces are then assumed to be
coupled by the ET matrix elementHab independent of the solvent
configuration. This latter assumption simplifies the two-state
Hamiltonian matrix that becomes

A linear combination of the diabatic states

diagonalizing the above matrix forms the condensed phase
adiabatic states. The corresponding adiabatic energies are
then3c-f,6

with

and

The above free energy surfaces are defined by four parameters
Hab, ∆Iab, ∆Fs

d, andλs
d.

A different approach is accepted here. The derivation starts
from the adiabatic vacuum basis diagonalizing the vacuum
Hamiltonian. The total two-state matrix including the solute-
solvent coupling in its off-diagonal term (eq 23) is used to
construct the free energy surfaces which are exact solutions in
the framework of the present model based on the following
assumptions: (i) a two-state solute, (ii) linear coupling of the
solute electronic states to a linearly responding solvent bath,
and (iii) adiabatic elimination of the fast subsystem of the solvent
electrons.20,26 We also use the one-electron approximation and
issues involved in this approach are discussed in ref 45. The
present solution is more general than that given by eqs 92 and
93 as it involves the non-Condon solute-solvent coupling in
the Hamiltonian off-diagonal term. However, the solution is still
determined by four parameters:∆E, ∆Fs

I, λs
I, and ∆e. The

equal number of model parameters is achieved due to the
simplification of the Hamiltonian in the Marcus-Hush descrip-
tion. The same form ofF((X) as in eqs 36-39 follows from a
diabatic basis with the solvent-dependent ET matrix element
(eq 66). The diabatic formulation then defines the solution in
terms of five model parameters:∆Iab, Hab, λs

d, ∆Fs
d, andRab )

Eab/∆Eab.
The different number of parameters in the diabatic and

adiabatic representations makes it fundamentally difficult to
compare them. The GMH basis18 resolves this problem by
defining the diabatic states to obey the conditionEab ) 0. In
this case,X ) ∆eY, λs

I ) λs
d, ∆Fs

I ) ∆Fs
d and the diabatic and

adiabatic representations can be compared to each other. The
same condition is in factassumed18a in the standard Marcus-

Fi(Y) ) F0i
d +

(Y ( λs
d)2

4λs
d

(89)

(Fa(Y) Hab

Hab Fb(Y) ) (90)

Ψ1,2(Y) ) ca(Y)Ψa ( cb(Y)Ψb (91)

F((Y) ) Y 2

4λs
d

( 1
2

∆Ed(Y) + Cd (92)

∆Ed(Y) ) [∆E2 + 2∆Iab(∆Fs
d - Y) + (∆Fs

d - Y)2]1/2 (93)

Cd )
F01

d + F02
d

2
+

λs
d

4
(94)

(1 + ê)-1(νjabs
(1)

εabs
(1) ∆νj1/2

(1) + êνjabs
(2)

εabs
(2) ∆νj1/2

(2)) (88)
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Hush formulation. Although this assumption makes the two
models inequivalent, we compare here the solution given by
eqs 36-39 to the solution given by eqs 92-93 in order to
demonstrate the new features arising in the present model.

Figure 9 compares the free energy surfaces given by eqs 36-
37 to those from eqs 92-93 for self-exchange CT (∆Iab ) 0,
∆Fs

d ) ∆Fs
I ) 0). Several important distinctions between the

two adiabatic formulations can be emphasized. (1) The positions
of transition points do not coincide. The maximum ofF-(X) in
the present formulation deviates from the position of resonance
of the diagonal elements of the two-state Hamiltonian matrix,
Xq ) 0, and is approximately equal toXq ) (∆e)2∆E when
∆E/λs

I , 1 and∆Fs
I ) 0 (Figures 6 and 7). (2) The splitting of

the lower and upper adiabatic surfaces is larger in the Marcus-
Hush formulation (eqs 93 and 93) than in the present model.
For self-exchange CT, the splitting is 2|Hab| ) ∆E in the former

case and∆Ex1-∆e2 in the latter case. (3) The Marcus-Hush
formula involves the diabatic equilibrium free energiesF0i

d

without donor-acceptor overlap. The gap∆F0
d is therefore

zero for self-exchange reactions. The adiabatic representation
considered here includes explicitly the donor-acceptor overlap
that results in a symmetry-breaking splitting of the vacuum
electronic states to the energy∆E. Electronic transition in a
vacuum thus proceed from the lower stateE1 to the upper state
E2. In condensed phases, these states are of course “dressed”
by a solvating environment, but at∆Fs

I ) 0 one gets a nonzero
equilibrium driving force approximately equal to∆e∆E )
∆Iab

GMH * 0 when ∆E/λs
I , 1 (Figure 9). The origin of the

factor ∆e in the free energydriving force can be understood
from eq 49. The free energy represents the work done to transfer
the charge∆e over the energy barrier∆E that results in∆e∆E
for small splittings∆E.

5.2. Delocalization Parameters.The Marcus-Hush formu-
lation invokes the effect of partial electron delocalization on
the reorganization energy through the magnitude of charge
actually transferred in the reaction∆z.2,3 This parameter can
be defined as the difference in the occupation numbers of the
two condensed-phase adiabatic statesΨ̃1,2 (eq 91) corresponding
to the initial and final equilibrium states. This yields in the
normal ET region

In view of the recent advances of Stark spectroscopy
applications to CT complexes,7-9 the delocalization parameter

is often described in terms of the equilibrium differential
∆m12

max and transitionm12
max adiabatic dipoles of the solute at the

equilibrium solvent configuration. Here, “max” refers to the
equilibrium configurations in the initial states. In the normal
CT region, these correspond to two absorption transitions (Figure
1). In the inverted CT region, “max” refers to absorption (“abs”)
and emission (“em”). If the diabatic transition dipole is zero,
mab ) 0, the delocalization parameter becomes

with

If the dipole moments for absorption and emission are close to
each other, eq 96 transforms to eq 3. For self-exchange
transitions, however,mab ) ∆m12/2 (∆Iab ) 0, eq 19) and the
above representation of the delocalization parameter in terms
of the dipole moments is inaccurate. It is expected to give an
estimate of∆z for unsymmetrical CT complexes only (Table
1).

The∆z parameter, whatever way defined, does not enter the
adiabatic free energy surfaces in the Marcus-Hush formulation
(eqs 92 and 93). The present model is more general as it includes
the non-Condon coupling to the solvent. As a result, the
adiabatic free energy surfaces depend on the vacuum delocal-
ization parameter∆e and, through it, on the transition dipole
(eq 4). The electronic overlap of the donor and acceptor thus
affects the free energy surfaces in two ways: through the
vacuum energy gap and through the vacuum transition dipole.
The first parameter defines the energetic splitting of the energy
levels due to electronic overlap for self-exchange CT. The
second parameter controls the off-diagonal coupling to the
external field of the solvent or radiation. In view of the strong
effect of ∆e on activated transitions and optical spectra,15

estimates of∆emagnitudes characteristic of CT complexes are
pertinent here. These are listed in Table 1. The transition dipoles
m12 are obtained fromm12

max according to eq 84. The require-
ment to know the vacuum frequencyν0 considerably narrows
the list of chromophores for which∆e can be evaluated and
Table 1 includes those unsymmetrical CT systems for which
this correction is possible.

The parameter∆e can be rewritten in an alternative way for
self-exchange transitions. In this case, 2m12 ) ∆mab and one
obtains

If the overlap of the diabatic donor and acceptor states results
in a binding MO state, one can expectr12 < rab, whererab )
∆mab/e is the distance between the centers of localization of
the diabatic states. The upper limit for∆e is then (also see Table
1 in the companion paper15)

As mentioned above, eqs 3 and 96 are not very dependable
for self-exchange CT due to the assumptionmab ) 0 involved.
This is illustrated by the last entry in Table 1. Equation 3 results
in ∆z ) 0.98, whereas eq 98 yields∆e ) 0.55 with rab ) 7.0
Å estimated as twice the metal-ligand separation measured by

Figure 9. Adiabatic free energy surfacesF((X) in the present model
(solid lines, eqs 36 and 37) and in the Marcus-Hush formulation (long-
dashed lines, eqs 92 and 93) for self-exchange CT with∆Fs

I ) ∆Fs
d )

0, λs
I ) λs

d ) 1 eV, ∆E ) 0.2 eV, and∆e ) 0.7. All free energy
surfaces are vertically shifted to have zero value (dotted line) at the
position of the left minimum.

∆z ) |ca(Y 1
-)2 - cb(Y 2

-)2| (95)

∆z ) 1
2[∆m12

abs

Mabs
+

∆m12
em

Mem ] (96)

Mmax ) [(∆m12
max)2 + 4(m12

max)2]1/2 (97)

∆e ) [1 +
rab

2

r12
2 ]-1/2

(98)

∆e e 1/x2 (99)
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metal-ligand absorption spectra.8a This discrepancy seems to
contradict to Figure 3 predicting close magnitudes of∆z and
∆e for self-exchange reactions. The latter prediction can be
tested for the case of Ru2+(NH3)5(4,4′-bpy)Ru3+(NH3) 5

5+ by
using eq 52 with the parameters∆Fs

I ) 0, ∆E ) 2|Hab| ) 0.22
eV,8b and λs

I ) 0.95 eV. The solvent reorganization energy
follows from hνabs) 1.21 eV,λv ) 0.18 eV,8b and the relation
hνabs ) λv + λs

I + ∆e∆E (eq 48). From these parameters one
obtains∆z ) 0.52 from eq 52 with∆e ) 0.55 in support of the
conjecture that dipole moments measured at an equilibrium
solvent configuration do not provide an accurate estimate of
equilibrium delocalization for self-exchange reactions in terms
of eq 3.

5.3. ET Matrix Element. The fundamental MH46 relation
establishes a connection between the ET matrix element and
spectroscopic parameters of electronic transitions

Equation 100 is exact for a two-state solute5,18c with collinear
m12 and∆m12.20d The MH ET matrix element enters the Golden
Rule rate of ET when the non-Condon coupling to the solvent
is included in the diabatic Hamiltonian (eqs 66 and 68). The
electronic couplingHab

MH derives from the integrated spectral
intensity according to eq 87 withr12 replaced byrab ) ∆mab/
e.3,5 The latter is usually unknown and is estimated in practical
calculations through the distance of donor-acceptor separation.

This complication is eliminated in the GMH18 or adiabatic
representations. The former defines the diabatic differential
dipole in eq 100 as∆mab ) [∆m12

2 + 4m12
2 ]1/2. The later

replaces∆mab in eq 100 with∆m12. Both matrix elements are
defined solely in terms of adiabatic vacuum parameters. The
diabatic GMH and adiabatic representations provide two
alternative routes to calculate the Golden Rule rate constant
resulting in, respectively,Hab

GMH and HET matrix elements in
the rate preexponent. The former gives the activation barrier
independent of delocalization, whereas the latter generates the
barrier decreasing with delocalization. This difference leads to
the predictions for the reaction rates diverging with increasing
ET coupling (Figure 5). Among various choices of the diabatic
basis set preference should be given to the GMH basis. It
generates the invariant reorganization parametersλs

I and ∆Fs
I

in the activation barrier (eq 73), correctly positions the transition
state for self-exchange transitions (Figure 6), and provides a
simple connection between the MH and adiabatic ET matrix
elements (eq 65). Both matrix elements enter rate constant
preexponents in corresponding perturbation schemes only if the
non-Condon coupling to the solvent is retained in the Hamil-
tonian.

5.4. Reorganization Energy.The present solution for the
adiabatic free energy surfaces of partial CT provides two
important insights concerning methods of calculation of the
solvent effect on the reorganization parameters. First, the

Marcus-Hush relation (eq 1) in combination with eq 2 or eq 3
suggests that the solvent effect enters the reorganization energy
in a rather complicated way: through the delocalization
parameter and through the diabatic reorganization energy. On
the contrary, the present formulation reestablishes the “diabatic
paradigm”: the solvent effect enters the adiabatic reorganization
energy only linearly through the linear response functionøn (eqs
32 and 38). Second, the establishment of the invariant reorga-
nization energyλs

I allows to use electrostatic models for the
reorganization energy based on solvation of fixed charges
located at molecular sites47 instead of using a more complicated
algorithm through the delocalized electronic density.25

The invariant reorganization energy sets up the characteristic
length between centers of charge localization to be used in
electrostatic models of solvent reorganization18

For self-exchange transitions it becomes (eq 45)48

For instance, for the CT complex Ru2+(NH3)5(4,4′-bpy)Ru3+-
(NH3) 5

5+ (Table 1), one obtainsrCT ) 8.3 Å with rab ) 7 Å.
With this estimate and the radii of the donor and acceptor units
ra ) rd ) 4.0 Å,5b the two-sphere dielectric-continuum
formula3d,e yields a reasonable estimate for the reorganization
energyλs

I = 0.98 eV in water (experimentally, 0.95 eV). Note
that both molecular solvation49a and quantum-SCRF49b calcula-
tions give the results close to the continuum model for this solute
configuration.

In diabatic theories of ET,2,3 the diabatic solvent reorganiza-
tion energy is the universal parameter determining the activation
barrier, absorption energy, and spectral width for self-exchange
ET3d,e

Here, λs
∆ ) |X 2

- - X 1
-|/2 is half the distance between the

coordinates of the minima of the diabatic free energy surfaces,
and λabs

w is the reorganization energy extracted from the
Gaussian width of absorption spectraσabs, via the relationλabs

w

) âσabs
2 /2. In the above relation, the vertical energy gaphνabs

and the spectral widthλabs
w are experimental observables that

may serve to determine the reorganization energy. Furthermore,
2λs

∆ is identically the Stokes shift in the inverted ET region
and thus gives an alternative definition of the reorganization
energy in that case. For partial CT in electronically delocalized
systems, the Marcus-Hush theory suggests quadratic scaling
of the reorganization energy with∆z, eq 1. In view of eq 103,
a quadratic scaling law may be expected to apply equally to
the activation and optical parameters of self-exchange CT. This
does not, however, happen for the optical and activation
observables.

TABLE 1: Delocalization Parameters ∆e and ∆z

compound νj0
a νjmax

a (m12)b (m12
max)b (∆m12)b,c ∆ed ∆ze

Ru2+(NH3)5-py 38.0f 24.5f 2.48 3.84g 3.36g 0.56 0.40
Ru2+(NH3)5-pz 32.6f 21.2f 3.09 4.80g 3.36g 0.47 0.36
coumarin-153 25.4h 21.7i 4.94 5.79i 7.8h 0.62 0.56
Ru2+(NH3)5(4,4′-bpy)Ru3+(NH3) 5

5+ 2.4 21.4 0.55j 0.98

a In 103 cm-1. b In debye.c Measurements of differential dipoles are commonly performed in low-polarity media and the measured differential
dipole is assumed to be close to its vacuum value.d From eq 84.e From eq 3.f From ref 7b.g From ref 8b.h From Mühlpfordt, A. et al.Phys.
Chem. Chem. Phys.1999, 1, 3209. i Emission in c-hexane, from ref 32b.j Calculated from eq 98 withrab ) 7.0 Å.

|Hab
MH| )

m12

∆mab
∆E (100)

rCT ) e-1[∆m12
2 + 4m12

2 ]1/2 (101)

rCT ) [r12
2 + rab

2 ]1/2 (102)

λs
d ) λs

∆ ) λabs
w ) hνabs (103)
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The Marcus-Hush theory and the present model can be
compared for self-exchange CT with∆E < λs

I as∆z = ∆e in
this case (Figure 3). The two wells of the lower ET surface
have indeed the curvatures that scale quadratically with∆e. This
quadratic scaling is, however, accompanied by a linear scaling
of λs

∆ (Figure 1, eq 46). The resulting activation energy= λs
I/4

(eqs 47 and 48) is given in terms of the reorganization energy
λs

I invariant in respect to the unitary basis transformations. The
activation barrier is thus essentially independent of∆e and∆z.
The same is true for the absorption width that is invariant in
∆e.15 Consequently, instead of equality 103, the following
inequality holds

which transforms to equality only at∆e) 1. The last inequality
is due to the shift of the energy of the light-induced donor-to-
acceptor transition (eq 48)

by the solvent-independent contribution∆e∆E. The fact that
the absorption energy is essentially independent of the extent
of electron delocalization has been noticed previously.5 The
vacuum term∆e∆E has not been, however, included in the
previous studies. Despite the correction terms, it is the invariant
reorganization energyλs

I that is primarily probed by the
absorption energy, spectral width, and the activation barrier for
self-exchange CT. Therefore,λs

I, and notλs
d or λs

ad, is thereal,
obserVable reorganization energyfor both localized (ET) and
delocalized (CT) transitions.

5.5. Approximations and Extensions.The basic assumption
of this study is that the BO approximation is globally valid for
the nuclear, solute and solvent, subsystems. This implies that
the energiesEi ) Ei(Qj) (eq 11) are vacuum BO electronic terms
depending on inramolecular solute modesQj. By using the
harmonic approximation for a single effective modeQ, we build
in the following paper15 the Franck-Condon envelope on the
basis of the vibrational overlap integrals16,17a

whereøm are the harmonic wave functions of the nuclear mode
Q. As is seen, this equation involves the Condon principle for
the intramolecular modes23 and a non-Condon transition dipole
for the solvent nuclear modes (eq 79). To summarize, our model
involves the BO approximation for the solvent nuclear modes
and the BO-Condon approximation for the solute intramolecu-
lar vibrations.

The BO and harmonic approximations are known to break
down for some mixed-valence compounds resulting in a
vibrational coupling of the electronic terms.50,51Although there
are no exact criteria of such breakdown, the physical conse-
quence of the BO approximation is to overestimate the tunneling
splitting between the adiabatic surfaces.51dThe error is, however,
small if the ratio of the vibrational reorganization energyλv to
the characteristic vibrational energyhνv is large.51d This is in
fact the common situation especially for organic optical chro-
mophores for which the vibrational reorganization is distributed
over many vibrational modes.52 The present model is thus
limited to such systems. In fact the vibronic analysis employed
in the companion paper15 has been successfully used for many
mixed-valence compounds as well53 and the limits of the BO
approximation for such systems are not well established. When

the BO approximation fails, the crude adiabatic approximation23

is used for the basis set with subsequent numerical diagonal-
ization of the vibronic matrix.50,51Despite quite different physics,
there is an interestingmathematicalanalogy between the present
model and the methods used in solving the vibronic problem
for mixed-valence CT.50,51 The crude adiabatic approximation
generates the delocalized diabatic basis51a,b diagonalizing the
Hamiltonian matrix at zero nuclear displacements of the ligands.
Similarly, our vacuum adiabatic basis corresponds to zero
solvent polarization. The two-state Hamiltonian matrices are also
very similar in the two problems: they are linear in the nuclear
displacements (polarization) in the off-diagonal positions and
bilinear in the nuclear displacements (polarization) in the
diagonal positions.51c,dThis close mathematical analogy suggests
a numerical extension of the model to the case when the BO
approximation fails and the vibrational wave functions become
anharmonic. Such extension would also enable to relax the
Condon approximation for the intramolecular solute modes.50

6. Conclusions

An exact solution for the adiabatic free energy surfaces of
CT is derived. The free energies are represented as functions
of reorganization parameters invariant in respect to electronic
delocalization and the delocalization parameter. Electronic
delocalization thus affects the solution through two param-
eters: the vacuum, adiabatic energy gap and the vacuum,
adiabatic transition dipole. The invariant reorganization energy
entering the free energy surfaces is the true, observable
reorganization energy for both localized and delocalized reac-
tions as it determines the vertical transition energy, bandwidth,
and the activation barrier for self-exchange transitions. The
equilibrium energy gap between the initial and final states is a
discontinuous function of the adiabatic free energy difference
showing a jump in its magnitude when going from the normal
to inverted CT region. The adiabatic free energy surfaces of
partial CT deviate considerably from those used in the Marcus-
Hush adiabatic formulation showing a much weaker dependence
of the activation barrier on delocalization. The inclusion of the
non-Condon coupling to the solvent is the necessary condition
for obtaining the Golden Rule reaction rate (GMH or adiabatic)
with the preexponent connected to the integrated absorption
intensity.
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A. Appendix

The trace in eq 8 is carried out by functional integration over
the solvent fieldsPn and Pe as well as over the quantum
operators of the solute electronic states

Here,

is the Eucledian action of the solvent bath. The actionS0B is

λs
ad e λs

∆ e λabs
w e hνabs

(1) (104)

hνabs
(1) ) λs

I + ∆e∆E (105)

〈Ψ̃i(X)øk|m̂|Ψ̃j(X)øm〉 = 〈Ψ̃i(X)|m̂|Ψ̃j(X)〉〈øk|øm〉,
i,j ) 1,2 (106)

Tr(...e-âH) )
∂

∂ze
∫... exp[-p-1(S0B + SB)]DMDPe(r ,τ)DPn(r )|ze ) 0

(A1)

SB ) âpHB[Pn(r )] + ∫0

âp
HB[Pe(r ,τ)]dτ (A2)
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built on the vacuum solute and solute-solvent Hamiltonians

The trace over the quantum electronic states of the solute
electrons in eq (A1) is performed in the holomorphic representa-
tion in which the Fermionic operators are replaced byc-numbers
obeying the rules of the Grassmann algebra.54 The integral
measureDM in eq A1 denotes integration over the Grassmann
fields. It reads

with the Fermionic boundary conditionsai(0) ) -ai(âp).
The direct integration in the holomorphic representation

produces the grand partition function as the number of electrons
in the system is not fixed. To obtain the canonical partition
function, differentiation over the fugacityze ) exp(âµe) is
performed in eq A1. The chemical potentialµe of the two-state
system ensures correct Fermi statistics of the electronic sub-
system at finite temperatures. The value ofµe is derived from
the condition that only one electron occupies the two levels of
the solute:20c 〈N̂〉 ) 1, N̂ ) a1

+ a1 + a2
+ a2. This condition

determines the magnitude of the integration constantC in eq
31. The formalism used here can be directly extended on
electrochemical discharge55 and many-electron ET.

The derivation of the ET free energy surfaces assumes the
electronic polarization to be the fastest mode in the system. In
this case, the memory effects of solvation by the electronic
polarization disappear and the Eucledian Green’s function of
the electronic polarization can be represented by aδ-correlation
on the Eucledian timeτ (ωm ) 2πm/âp)20c

This assumption, corresponding to the Pekar adiabatic elimina-
tion of the electronic polarization modes,19a,20greatly simplifies
the calculation of the trace overPe. The bilinear form of the
HamiltonianHint is conserved after taking the trace overPe.
The vacuum energiesEi renormalize to the energiesẼi due to
equilibrium solvation of the CT electronic states by the solvent
electronic polarization20

The off-diagonal element inHint transforms to

With the effective diagonal and off-diagonal matrix elements
of the two-state matrix given by eqs A6 and A7, the Gaussian
Euclidean integral over the Grassmann fieldsai

*(τ), ai(τ) is
easy to calculate. It generates the partition function of the spin-
boson system56 depending on the nuclear solvent polarization20c

with

and ∆Ẽ ) Ẽ2 - Ẽ1. The calculation of the ET free energy
surfaces therefore reduces to the functional integral over the
classical fieldPn(r )

This, with the linear connection between the diagonal and off-
diagonal matrix elements of the solute field (eq 26), transforms
to eqs 28-31.
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