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This paper addresses the problem of calculating the free energy surfaces of charge transfer (CT) reactions in
electronically delocalized systems involving direct electronic overlap of the donor and acceptor units. The
model includes two electronic states of the solute linearly coupled to a linearly responding solvent in both the
diagonal and off-diagonal terms of the Hamiltonian matrix. The exact solution for the adiabatic free energy
surfaces along the CT reaction coordinate is derived as a function of the reorganization parameters invariant
to the extent of electron delocalization and the parameter of electron delocalization. For dipolar solutes, the
latter is defined through adiabatic differential and transition dipoles measured by optical spectroscopy. The
invariant reorganization energy is the real, observable reorganization energy determining the vertical transition
energy, bandwidth, and the activation energy of self-exchange transitions. The Golden Rule expression for
the ET rate constant is obtained in the adiabatic electronic basis of the solute by treating the non-Condon
off-diagonal coupling to the solvent as a perturbation. The ET matrix element entering the rate constant is
fully determined in terms of the adiabatic vacuum splitting of the electronic levels and the delocalization
parameter. The CT energy gap law is very asymmetric with a shallow branch in the inverted region due to
the dependence of the delocalization parameter on the CT driving force.

1. Introduction Hush defined electronic delocalization through the CT band
intensity’? so that the MarcusHush delocalization parameter

Localization is a central concept in understanding and . .
P g Az can be assessed via the relation

describing electron transfer (ET) reactions. The very definition
of ET assumes the existence of two or more localized states _ 2 —

separated by a potential barrier. Occupation of empty states AZ'=1- 40, 0= Hyflwng, @)
occurs as underbarrier tunneling when the localized statewhereHy, is the off-diagonal matrix element of the diabatic
energies equalize by absorption of energy from a thermal bath Hamiltonian matrix (ET matrix element) angha stands for

or radiation. The electron density can never be fully transferred the frequency of the intervalence transition. Spectroscopic
unless the donor and acceptor electronic states do not overlagechniques characterize intensity of the deracceptor overlap
after the reaction. A direct electronic overlap of the donor and in terms of the transition dipole of the optical transition. The
acceptor moieties should thus result in a partial charge transferdelocalization parameter then becoiés

(CT) characteristic of electronic transitions in coupled donor/

acceptor pairs (intramolecular transitiofs). 2] -1/
The importance of partial CT was recognized already in the Az=|1+ —A ma 2 3)
classical MarcusHush theory?? It was suggested that delo- (Amy

calzaon of e lcon betusen e S 10 SCESHOr SlEh e 5 he bt wanion dipole T s e
o 9 7 adiabatic ground-excited state dipole-moment difference (dif-
solvent reorganization energy of a delocalized CT complex

ad . . ' ferential dipole). Both parameters refer to the equilibrium
AS s?alesdquadratlcally with the amount of chargeactually configuration of the solvent probed by absorption (“max”
transferre

“abs”) or emission (“max’= “em”) transitions. The transition
dipole is commonly extracted from integrated absorption/
emission intensities or from the rate of spontaneous radi&itn.
The differential dipole can be measured by Stark spec-
troscopy’~212time-resolved microwavé*Pand pulsed décd
conductivity, and microwave absorptiéf.

As defined by egs 2 and 3z is a complex function of the
solute energetics and the solvent effect (it is also different for
absorption and emission transitions). This results in a few major
difficulties in constructing theoretical treatments of reaction
kinetics and optical spectra in electronically delocalized sys-
tems: (i) the solvent effect enters the observables in a very

* Present address: Department of Chemistry and Biochemistry, Arizona COMPplicated fashion, (i) vacuum quantum calculations of the
State University, P.O. Box 871604, Tempe, AZ 85287-1604. electronic parameters of the dor@cceptor complexes cannot

2= (A28 1)

Here,/lg is the reorganization energy of any diabatic (super-
script “d”) solute configuration assuming complete localization
of the transferred electron. A delocalized solute configuration
involving redistribution of the charge density between the donor
and acceptor is referred to as the adiabatic configuration
(superscript “ad”). Throughout this paper, the electronic basis
diagonalizing the solute vacuum Hamiltonian is set as the
adiabatic representation.

10.1021/jp993885d CCC: $19.00 © 2000 American Chemical Society
Published on Web 06/17/2000



Electronically Delocalized Systems. 1 J. Phys. Chem. A, Vol. 104, No. 27, 2008471

be applied to estimatingz and less reliable models involving  final adiabatic state\E;», to the nuclear electric polarization
solvent field should be used, and (iii) a connection between the of the solventP,1”
adiabatic reorganization energy given by eq 1 and optical
observables (optical width, Stokes shift, etc.) is not specified. X=AE;;P, (5)
Furthermore, the CT activation energy includes, apart from
,120" the equilibrium free energy gappgd_ The Marcus-Hush The scalar p_roduct of two calligr_aphic letters _throughout be_lqw
formulatior?-3 does not address the question of scalin@Eﬁd glenotes the integral of the two fields depending on the position
with the extent of electron delocalizatirthus leaving open N the solventr over the solvent volum¥
the question of a general scaling law of the CT activation barrier.

In view of the mentioned difficulties of incorporating into AE ;P,= fVAElz(r)-Pn[r,{rj}]dr (6)
the CT theory, our present formulation is based on the
delocalization parameter defined solely in terms of the vacuum This form does not assume a macroscopic solvent polarization
solute dipoles that, in microscopic terms, is given by the density of permanent

dipoles in the solvent

po= |14z - @)

e= Plrir}l= ) mo( —r) (7)
A, L ]z i i

wheremy, is the vacuum, adiabatic transition dipole atoh,, where the sum runs over all molecules in the solvent with

= m, — my is the vacuum, adiabatic differential dipole. The coordinatesrj and the dipole momentsy. The microscopic
obvious advantage dfe over Az s that it does not depend on definition of the solvent polarization in eq 7 allows an extension
the solvent and can be obtained from vacuum quantum of the present analytical theory to computer experiment with
calculations or gasphase measurements. In fact the transition the microscopic field>[r {r;}] generated by condensed phase
dipole my; can also be extracted from condensed phase simulations.
measurements when the vacuum transition frequencys _The CT free energ¥(X) along the reaction coordinais
known, sincem, = vy, ax'nTQaX/VO in the two-state model (see given by the constrained trace of the system density matrix
below for details). In view of its experimental, and potentially 1
theoretical, availability, the parametae can now be directly ~ €XP=AF(X)] = (8Qg) "Tr(0(X — AE ,*P)exp[-AH]) (8)
incorporated into the description of radiationless and optical
electronic transitions. whereH is the system Hamiltoniar = 1/kgT, and the trace
The motivation of this and companitstudies is to develop ~ runs over the nuclear and electronic degrees of freedom of the
a theory of thermally activated and optical electronic transitions Solvent and the electronic populations of the two CT states
in terms of the delocalization paramete instead ofAz. The (Appendix A). The latter feature generates delocalization of the
formulation involves two steps. The first step (the present paper) €lectronic density between the two CT states at each nonequi-
the reaction coordinate reflecting the strength of coupling of coordinateX. The system Hamiltonian includes the vacuum part
the two-state solute to a classical, linearly responding solvent. Ho, the solute-solvent interactiorHos, and the Hamiltonian of
As the second step (the companion paperhe Franck the solvent thermal batHs:
Condon envelopé of electronic and vibrational excitations in
electronically delocalized CT complexes is constructed to H = Ho+ Hog + Hpg (©)
connect the theory parameters to optical observables.
The adiabatic free energy surfaces obtained in the presen
aper reflect charge delocalization through the vacuum transition
gip%le and the vaguum energy gap betV\?een the adiabatic states. Qs = Tr(exp[=AHg]) (10)
The free energy surfaces are functions of the reorganization.

parameters invariant in respect to the unitary transformations IS "[:he &artltlon tfunctlorl Off ttr?e l_;:ure_ltsol\_/ent. ds to defi
of the solute basis (thus equal in the adiabatic and diabaticth (t))r _equtar} ulm r;ar orthe ‘?m' tc_)nlan,Tone n;ebst_o ;e;ne
representations) and the delocalization parama&ge(section € basis set of electronic wave functions. Two adiabalic states,

3.1). The non-Condon coupling of the solute transition dipole {W1, W}, diagonalizing the two-state vacuum Hamiltonldg

to the solvent field is considered as a perturbation in the Golden are considered here
Rule calculation of the reaction rate (section 3.3). The ET matrix
element entering the rate preexponent is fully defined in terms
of adiabatic parameters and is connected to the absorption band
intensity (section 4). The dependence of the extent of electron
delocalization on the energy gap results in a nonparabolic energy
gap law with a shallow branch in the inverted ET region (section
3.4). The results of the current model are compared to traditional
treatments of ET in section 5, with conclusions drawn in section
6.

tIn eqg 8,

Ho= ) Ea a, H¥,=EY, (11)

i=1,2

Ineq 11,a1-+ andg are the Fermionic operators of creation and
annihilation of the electron in théh adiabatic state. The
adiabatic basis set is used in favor to traditionally employed
diabatic, localized statd3V, Wy} for two reasons: (i) the basis
{W1,¥,} takes into account directly the delocalization of the
electronic density between the donor and acceptor for intramo-
lecular ET and (ii) the matrix elements of the operators entering
H can be given by quantum mechanical algorithms operating

2.1. Model. Here we calculate the CT free energy surfaces in terms of adiabatic states. The enerdigsire, therefore, the
along the reaction coordinate reflecting the strength of coupling true electronic energies of the CT system in a vacuum that are
of the difference of the solute electric fields in the initial and split by the gap

2. CT Free Energy Surfaces
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AE=E,—E; (12) and is invariant in respect to the unitary basis transformations
according to eq 17. For self-exchange transitions with=

This gap is nonzero even for self-exchange transitions due toHs,
the symmetry-breaking doneacceptor overlap. The energies
Ei do not include the solvent effect. They are the Bern AE = 2|H, (21)
Oppenheimer (BO) electronic terms depending on the intramo- . . . ) .
lecular nuclear modes of the solute. Since the consideration of N the present approach, both the adiabatic and diabatic basis
vibrational excitations of the solute is postponed to the sets refer to a solute in the vacuum. An alterna_tlve approach
companion papéf each energyE refers to the electronic state would pe to use the cpndensed phase electronic states of the
in equilibrium with the nuclear coordinates. It means that the Solute in equilibrium with the solvent, the approach employed
vacuum gapAE corresponds to the-00 transition energy in in the polaron_probler#? In thl_s way, hoyvever, all matrix _
the gas phase that can be measured by means of Opticaplements entering the formulation (e.g., dipole moments) gain

spectroscopy. The energies of CT absorption and emission in asolvent dependence. One Fhen loses the advantage of employing
vacuum are given a9, . = AE + A,, where “" and “—" vacuum quantum calculations and gas-phase measurements to
Vs

abs,em™ 1 R
refer to absorption and emission, respectively, ands the gl?fglgte the system parameters and linear response for the solvent

intramolecular, vibrational reorganization energy. The parameter . . e
The solute-solvent interaction Hamiltonian is the scalar

; i ; — () (0)
AE entering our equations below is thag = h(vgp, + ver)/2. product of the electric field operator of the solute and the solvent

abs
The diabatic basis set is commonly used as a starting po'mpolarization integrated over the solvent volume

in describing the solvent effect on ET. The ET reaction
coordinate is then defined through tti@baticdifferential field Hos = —E-P (22)
of the solute AEap = Ep — Ea

The adiabatic basig¥1,W,} consequently generates the Hamil-
tonian matrix including coupling to the solvent polarization in

. ) o both the diagonal (the first summand in eq 23) and the off-
in place of theadiabaticfield in eq 5. The two approaches are diagonal (the second summand in eq 23) terms
compared in section 5.1. The adiabatic and diabatic basis sets

Y = AE;P, (13)

are connected by the unitary transformation Hog = — E-P ai+ a — E,P (af a,+ a;“ a) (23)
|
i=1,2
v =V1-fw, + Vi, (14)

The off-diagonal coupling is responsible for the solvent-induced,
w, = Vv, + V1- W, (15) non-Condon mixing of the vacuum adiabatic st&fe$? Note
that the non-Condon mixing considered here differs from the
Three theorems important for the following discussion can Non-condon effect often considered for vibronic transitions
be derived from eqs 14 and 15. First, if an operalothat where it is cgused by the dep_endence of the transition dipole of
generally does not commute withy is diagonal in the basis the soluteon its nucl_ear_coordmaté%.l—!ere, we do not include
{W, Wy}, the off-diagonal elements @ andH are connected such gffects considering the off-diagonal _ coypllng to the
by the relation collective solvent mople pf th'e nuclear polarization.
The nuclear polarization is a part of the overall solvent
IALIIAA,, = |HyJ/AE, AE=E,—E, (16) polarization P that, additionally, includes the electronke.
component
whereAy = W) AW AA = Ac— A; k=12 0rj k=a,b,
and Hap = [W4Ho|Wull Here and below, for simplicitydy =
j- Equation 16 is used to construct the generalized Mulliken S o .
ﬁ;]ushq(GMH) basi¥ that diagonalizes thg matrix of the solute The bath Hamiltonian is assumed to be a bilinear forriPin
dipole operatorA = i) and allows an exact connection between andPe
the adiabatic transition dipole moment and the diabatic matrix | — [P] + Hg[PJ =
elementHa»18 Second, any unitary transformation connecting ©  B- " B

P=P,+P, (24)

{W, W} and{W¥,W¥y} generates two invariarits %Pn'xEl'Pn + %(w;Z PP+ pe.xgl.pp) (25)
2 2 __ 2 2
AR T AR, = ARy, + 4G, a7 In eq 25, the kinetic energy of the classical nuclear polarization
is omitted (the BO approximation) and is retained only for the
and electronic polarization treated as a quantum field with the
ieti 20d i
A+A=A+A (18) characteristic frequency..2°d The response functiong and

xn Of the pure liquid can be defined through corresponding
correlators of the polarization fluctuatioffs.
To simplify the consideration below and reduce the number
of independent parameters, the off-diagonal, adiabatic matrix
_ _ element of the solute field operator and the differential, adiabatic
A= 2Ry 21p= Ay (19) field of the solute are assumed to be linearly connected

Third, there are two relations significant for self-exchange
transitions. IfH; = Hp,, one obtains

The adiabatic energy gapE (eq 12) is related to the diabatic E,, = 0 ,AE, (26)
energy parameters as

5 21/ Such a linear relation holds exactly when the solute field is
AE=[(H, — H)" + 4[H ] (20) approximated by that of a point dipole yielding



Electronically Delocalized Systems. 1 J. Phys. Chem. A, Vol. 104, No. 27, 2008473

m — 21-1/2
_ Mo @7) Ae=[1+ 4ai,] (35)
Am,

(L)

Specifically, one obtains
Basilevsky et af® used two separate reaction coordinates for 5
the diagonal and off-diagonal couplings to the solvent polariza- F.(X) = X + EAE(X) +C (36)
tion. Our approach thus produces a one-dimensional cross + ANEY) T 2
section of their two-dimensional CT surfaces along the line
defined by eq 26. with

2.2. Free EnergiesThe HamiltonianH, as defined by eqgs

11, 23, and 25, is a bilinear form in the quantum and classical AE(X) =
coordinates of the solute and the solvent. The trace in eq 8 thus [AE2 + ZAE(AeAF' —X) + (AF' _ X/Ae)z]llz 37)
can be taken exactly under the following conditions of separation S S
of the characteristic time scales: (i) the solvent electronic The invariant solvent reorganization energifis
polarization is the fastest system mode whthe > AE?6 and
(ii) the nuclear polarization is the classical mode with the
characteristic frequency, such that, < vmax The condition
(i) allows adiabatic elimination of the quantum electronic
polarization of the solvent. The trace oJ@g retains the two- ~ and the invariant solvent component of the free energy gap is
state form of the system Hamiltonian with the diagonal and off- given by
diagonal matrix elements renormalized due to solvation by the
solvent electronic polarization (eqs A6 and A?)Then, the AFIs: —E(AE fz + 4E 52)1/2-)(-(El +E) (39)
trace over the nuclear polarization generates the free energy 2
composed of the ground ") and excited (*+”) CT surfaces
(Appendix A)

[
s

1
A= 5(AE o+ 4E 1)y (AE L, +4E )™ (38)

The invariance ofd, and AF} in respect to the unitary
transformations of the solute basis follows from eqs 17 and 18.

_ _p1 —BF_(X) —BF.(X) For a2 given by eq 27 the delocalization paramefes in eq
F9 p~Inle Te | (28) 35 is equivalent to that in eq 4. Afe = 1, eq 36 reduces to
Here2’ two diabatic parabolas
X2 AEX) (X £ 29*
F.(X) = 275 +——+C (29) F(X) =F5 + Y (40)
S s

AE = [(AF3— X)* + 4od(AF 29— x)3?  (30) Here and throughout below the upper and lower signstih
refer toi = 1 and toi = 2, respectiverFgi = FS{’(Ae =1)is
and the diabatic free energy of th¢h state referring to zero doner
acceptor overlap.
The comparison of eqs 3284 with egs 3839 yields the
scaling laws for the reorganization parameters wiia The

adiabatic reorganization energy is a quadratic function of the
The adiabatic solvent reorganization energy in egs 29 and 31delocalization parameter
is

AR

2 4 (31)

d_
L1 2$7= (Ae)As (42)
A = SAE 1w Ay, (32)
2 The solvent component of the equilibrium, adiabatic free energy

The free energy gap gap scales linearly witihe

ad _ |
AR = F2 — F29= AE + AFY (33) AFs"= AeAF, (42)

Equation 36 and the above scaling relations are exact and are

limited only to the model of a two-state solute in a linearly

responding solvent.

Ade = —E,4-AE,, (34) Com_par_ison of eq 40 to standard exp_ressi_ons for the d_iabgtic
activation barrier suggests that the invariant reorganization

ET activation b ts that th t t

Here,Eqy = (E1 + E2)/2 andy = ye + yn is the total response energy/l's should be considered as an analogue of the diabatic

is composed of the adiabatic vacuum splitting = E, — E;
and the solvation free energy

function of the solvent. reorganization energj of the diabatic ET theori@$
1
3. CT Rates Ad= SAEa 10 A, (43)

3.1. Reorganization ParametersEquations 2834 define
the CT free energy surfaces in terms of adiabatic parameters |ndeed, the MarcusHush formulation assumes that the off-
depending on the doneacceptor electronic overlap. The theory  diagonal matrix element of the solute fieidy, does not affect
can, however, be reformulated in terms of the reorganization the barrier thermodynamics, and according to eqs 17 and 38,
parameters independent of delocalization, and invariant in
respect to the unitary basis transformations, and the delocal- "
o Y As = SAE ;12 A, (44)
ization parameter 2
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The above approximation may well fulfill for unsymmetrical 05 1
CT systems, but becomes questionable for self-exchange reac- \ \
tions defined by the conditioily, = Hy — Ha = 0. In this
case, from eq 19,

o
w

I
s

E.,= AE, /2 (45)

(F.)-Cy/A

and neglect of the off-diagonal diabatic matrix element of the
solute field operator is hardly justified. We, however, will
assumel! =~ AL in the numerical illustrations below as this is
the only way to compare the predictions of the present model
to diabatic theories.

Figure 1 shows the lower and upper adiabatic free energy
surfaces for a CT reaction withF, = 0. The positions of two
minima atX ; andX indicate the initial and final equilibrium
states. They are strongly affected by both the vacuum adiabatic
splitting AE and the delocalization paramette. WhenAE//l'S
— 0, the common picture of diabatic free energy surfaces with
equal energies of the initial and final stetesrecovered (Figure
1, upper part). The energies of the lower surface minima split
with increasingAE (Figure 1, lower part) and the positions of
the minima shift linearly withAe at AE/A, < 1

1
s

(F.(X)-C)/A

- [
X = FAel (46) X/k:
T.herefore, even for Self'eXChange CT, the adlaba’[IC rePresenta‘Figure 1. The uppeerJr(X), and |ower7F7(X), free energy surfaces
tion predicts a nonzero energy gap equaleAE at AE/A, < for a CT reaction withAF, = 0 at three values of the delocalization
1 (see discussion in section 5.1 below). The barriers of the parameterAe: 0.5 (dashed lines), 0.7 (detlashed lines), 0.9 (solid
forward ( = 1, “+") and backwardi(= 2, “—") reactions then lines). The upper and lower parts correspondﬂ?ﬂ's equal to 0.02
differ and 0.2, respectivelyl, = 1 eV. In the lower panelw(), and hv),
_ indicate two absorption transitions{;, are the positions of the
hv(')b Ae AE minima of the lower ET surface.
Foole 224 =SAE — V1 — A€ 47
: 4 4 2 (7)
45
Here, because of a nonzero driving force, two absorption 35
transitions are present (Fiure 1, lower ptrt) - as
< .
0 — )
hvyi = A = AeAE (48) 7 15
o X 05
3.2. Delocalization ParametersThe free energy surfaces w
in eq 36 can be used to calculate the Maredsish delocal- — -05
ization parameterAz as the difference in the equilibrium 15
occupation numbers in the final and initial electronic states. The
. . . . . -25
occupation number of théh adiabatic state at a particular value —25 -15 -0.5 0.5 1.5 25
of the reaction coordinatX is defined as X/A,
n(X)= aF(X)/0E, Figure 2. CT free energy surfaces for the inverted CT regioAat=

0.9 (solid lines)Ae = 0.7 (dot-dashed lines), ande = 0.5 (dashed

N " _ lines); AE = 3.0 eV,AF. = 1.0 eV,A, = 1.0 eV.X~ andX* indicate
=n" (X)N(AE(X)) + n"(X)[1 — n(AE(X))] (49) the minima of the Iowesr and upperssurfaces, respectively.

Here, occupation numbers is negligibleAE(X ;) > 1, Azis given

by the relation
NHAE()) = [1 + 59 (50)
. . : Az=|n (X1) —n (X;)| (52)
is the Fermi-Dirac thermal occupation number and
For CT in the inverted region (Figure 2), the lower and the
(51) upper surface has only one minimum eaxh,andX*. Hence,
Azis obtained from the occupation numbers taken at the upper

) and lower minima
are the occupation numbers of the lower and upper ET surfaces

o 1iAE+AeAF'S— X
) =3 2AE(X)

without thermal excitations between them. The lower CT surface Az=|n"(X")—n"(X") (53)
has two minimaX ; andX,, in the normal CT region (Figure
1). The Marcus-Hush delocalization parametaz is then the Figure 3 illustrates the dissimilarity in the dependence of the

difference in the occupation numbeTéX) taken at correspond-  transferred charge on the delocalization paramageiin the
ing minima. Since the impact of thermal excitations on the normal and inverted CT regions. For small ratigdE +
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Figure 3. Dependence of the charge transferred in a CT reaction
on the delocalization parametée at AE/A, = 0.2, AF, = 0 (solid
line), AE/A, = 0.5, AFL = 0 (dot-dashed line) AE/AL = 3.0, AF. =
—1.0 (dashed line).

AeAFY)/Y < 1 in the normal CT region, the parametexs
andAe are close to each other (solid and ddashed lines in
Figure 3). The equilibrium charge is localized on the lower CT
surface for the inverted CT configuration (dashed line in Figure
3). A CT reaction from an excited CT state in the inverted region
hence results in a practically full transfer of the electron density.
This shows that delocalization and the difference in equilibrium

J. Phys. Chem. A, Vol. 104, No. 27, 2008475

E,.,= AEV1— Ae” = 2|HSM|

commonly associated with the ET matrix element. The differ-
ence between the minimum splitting and the ET matrix element
entering the rate constant arises due to the dependence of the
off-diagonal matrix element on the reaction coordingt& he
diagonal matrix elements in the two-state Hamiltonian matrix
(eq 54) equalize at the transition point

(59)

X' = AFY (60)
This point does not coincide with the coordinate of the minimum
splitting of the lower and upper ET surfaces
Xpin=AF3?— AE(1 — A€), Ae=<1 (61)
resulting in a difference betweentg| and Eqin (Figure 4).
The minimum splitingEmi, is equal to ZHS| calculated
in the GMH basis proposed by Cave and Newtbiithe GMH
basis is constructed to diagonalize the matrix of the solute dipole
operator withf in eqs 14 and 15 obeying the relation

occupation numbers should not be equated to each other. A higr\/vhere

magnitude of the transition dipole implying strong coupling

between the CT states for vertical electronic transitions may
exist along with a large energy gap resulting in a nearly complete

CT between the equilibrium electronic configurations.
3.3. Golden Rule Reaction RateThe adiabatic surfaces
F.(X) are eigenstates of the two-state matrix

Vi (X) + X/2 o, (AeAF, — X) (54)
o (AGAFL — X)  Vy(X) — X/2
with
211
. NG Y=/
Vi(X) =Fq + p Aezi.:r 2 (55)

If Aeis close to unity ;2 < 1), the off-diagonal terms can
be treated as a perturbation leading to transitions between th
diagonal energy levef. The standard Golden Rule procedure
then applies resulting in the following equation for the rate
constant

k(EI)T = h71|HET|2FCg():l (56)
with the Franck-Condon factor
1/2 ad 2112
A€ ANEA,
In eq 56, the ET matrix element
CN1I-AE, . My
[Heql = SAG AE = AmleE (58)

is fully defined in terms of adiabatic vacuum parameters: the
energy gap and the differential and transition dipoles. The
quantity 2Hg7| is, however, larger than the minimum splitting
Emin between the adiabatic ET surfaces

Ae=1-2f= AIS™MAE (62)
AIG = HEMH — {oMH (63)

is the diabatic vacuum energy géjuch that
AE? = (AIG"™) + AHG™ (64)

The ET matrix element in the GMH basis is connected to
that entering the adiabatic Golden Rule rate constant through
the delocalization parameter (see also eq 50 in ref 20d)

IHSMM) = AelHg| (65)
Equation 62 is a specific case of the general rulesis equal
to the difference in the occupation numbers of the two vacuum

adiabatic states in respect to the basis diagonalizing the matrix
of the solute field operator. Only in that basis is the delocal-

8zation parameter directly related to the system energetics. For

any other basis set related to the adiabatic basis by a unitary
transformation (egs 14 and 15) the delocalization parameter
defined through the adiabatic transition and differential dipoles
cannot be directly related to the diabatic energetic parameters.

The Golden Rule approximation is more traditionally used
within the diabatic representation. With the non-Condon cou-
pling to the solvent retained in the Hamiltonian, the perturbation
expansion is performed over the solvent-dependent ET matrix
element

HatIP] = Hab_ Eab'P (66)
The transition point is then located at

Y =AFS=F, — FJ, (67)
and the rate constant?f§

K =R HY ” FCY (68)

Here,
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Figure 4. Adiabatic free energies (solid lines, eq 36), diagonal energies Figure 5. Golden Rule rate constant calculated in the adiabatic (eq
in the two-state matrix in eq 54 (long-dashed lines), and diabatic free 72, upper curves), GMH (eqgs 681, middle curves), and nonadiabatic
energy surfaces (dastuotted lines, eq 40) for self-exchange CT at (eq 72, lower curves) approximations fae = 0.7 (solid lines) and
AF'S = AFg =0, AEMIS = 0.2, andAe = 0.7 The two vertical arrows Ae= 0.9 (dashed lines). The curves marked “act.” refer to the activation
indicate: the point of intersection of the diagonal energies at which barrier —gF;” determined as the difference in free energies of the
the splitting of adiabatic surfaces igH+| (longer arrow) and the lower-surface maximum and the first minimuKy. A CT reaction
position of minimum splittingEmin = 2|HS™| (shorter arrow). All with AL = 0.5 eV andAF, = 0 is considered. For the nonadiabatic
curves are vertically shifted to pass through zero at the left minimum. approximation Ala, = 0 and|Hay = AE/2.

12 d o2 - . 2
i T (Al + AFg £ 4y) transition point=0 Ae’AE AE
FCY = _g expg—f— ds : (69) | Ly |
22 42 1 | |
X
NA GMH AD

is the diabatic FranckCondon factor and Figure 6. Position of the CT transition state in the NX#(= 0, NA,

eq 72), GMH K* = Xmn, €q 68), and AD X* = AE, AD, eq 56)

Hap' = Hap — 0l (70) representations for self-exchange CT wkR, = Al., = 0 andAIS"™
= AeAE. The arrow indicates the transition state associated with the
is the Mulliken—Hush (MH) ET matrix elemento, = Eaf maximum of the lower free energy surface.
AEgs In the dipolar approximation for the solute field, one
obtains 04 ' ' -
-
Mo i AD\)’/ _
Hy =-—AE (72) 0.2 s
Amab /_/' ////’
_ _ _ ~ s -7 min(+)
Equations 68 and 69 make a considerable improvement & O Z¥
compared to traditional theories of nonadiabatic (NA)SET P
considering transitions between diabatic stét¥g Wy} induced o2l = GMH |
by the ET matrix elemenrHay independent of the solvent. The
NA rate constant is then max(-)
i _ i 040, ry o 0.3
K= R H 2 FCY (72) o ",
Equations 68 and 72 coincide for self-exchange ET whkp Figure 7. Dependence of the maximum of the lower free energy

_ ; _ _ surface (“max{)") and the minimum of the upper free energy surface
0. In this case also, from eq 1&mz = 2mep and 2, “min(+)") on the gapAF, = F_(X;) — F_(X;) in the normal CT

Am@}b . . . region (Figure 1). AD and GMH indicate the transition points of the
Figure 5 compares three Golden Rule solutions: the adiabaticogen Rule rates in the adiabatic and diabatic GMH representations,

(AD, eq 56), the diabatic with the GMH basis (GMH, eq 68), respectivelyAF. = —1.0 eV, 1. = 0.5 eV,HS™ = 0.1 eV.

and the nonadiabatic (NA, eq 72). The AD and GMH solutions

are directly comparable as the GMH basis generates invariantt

solvation free energies: the solvent reorganization energy and

the solvent component of the equilibrium energy gap

ion gives the best solution for the transition state among the
three approximations (Figure 6). Although the GMH ap-
proximation gives the exact value of the minimum splitting
JOMH — 91 AFGMH _ AF! (73) between the upper and lower free energy surfaces, this point
s s s s does not coincide with the maximum of the lower surface. This
5 happens because the maximum of the lower and the minimum
GMH

by varying HSV™ at Ae = cons® and using eqs 6265. The of the upper surface are generally shifted relative to each other
a .

NA rate results from eq 72 witfHap = AE/2 andA2 = 1L All coinciding only whenF(X,) = F-(X;) (Figure 7). The
three approximations give different results, with the AD solution distinction between the maximum of the lower surface and the
predicting the highest rate. The difference results from different transition points in the AD and GMH perturbation schemes
placement of the transition state in each approximation. For self- changes with the reaction exothermicity. Figure 7 shows the
exchange transitions, the transition states Xfe= 0, X* = dependence of the maximum position and the transition points
A€AE, and X* = AE for the NA, GMH, and AD solutions, on the free energy gap between %g andX; minima of the
respectively. For self-exchange reactions, the GMH approxima- lower surface in the normal CT region.

The AD and CMH rate constants are generated in Figure
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Nonperturbative solutions for the two-state dynarfficae
required to test the accuracy of each perturbation scheme. A
qualitative estimate of the validity range of the Golden Rule
solution can be gained from the LandaZener (LZ) adiabaticity
parametery, z.33 The first-order perturbation expansion holds
wheny 7z < 1. The solution of the classical LZ probléawith
the two-state matrix given by eq 54 leads to the following
expressior#?

AF L]

_ 2n
_h|>'<||H

YLz St;w H|2 (74)

The LZ parameter is determined by the minimum splitting of
the adiabatic surfaces and not by the ET matrix elerftégt|.

The non-Condon mixing thus enhances the range of applicability
of the Golden Rule approximation for the ET rates by the factor
Ae2 (eq 65).

3.4. Energy Gap Law.Theories descending from the Marcus
picture of ET predict a bell-shaped, parabolic dependence of
the ET rate constant on the diabatic driving forsES for a
reaction driven by classical solvent modes. This prediction is
modified by the inclusion of the solute intramolecular vibrations
that conserve the bell-shaped form of the energy gap law, but
make the energy gap dependence shallower in the inverted ET
regionl® This generic behavior has indeed been documented

act

for charge shif£® charge separatiott,and charge recombina- o2} .
tion%” reactions in organic CT complexes. +

Experimental studies of the energy gap law of CT reactfops -3F ]
are commonly performed by chemical modification of the donor
and/or acceptor moieties. The usual assumption is that such a 4.5 - Y o 0.5
modification keeps the solvation parameters of the CT complex AFO/xS‘

reasonably constant, changing considerably only the diabatic Figure 8. Plot of the activation energy of forward CT-2 on the (b)

vacuum splittingAlap by varying the ionization potential and/  equilibrium diabatic gap and the (c) equilibrium free energy gap at
or electron affinity of the donor and acceptor units. In modeling HS" = 0.1 ev. Also shown (a) is the dependence of the free energy

the energy gap law, we accept the same picture assuming theyapAF, calculated as the difference in the free energies of the surface

reorganization energj/, and the solvation stabilizationF to
be constant when varyinyl,, An important factor that needs
inclusion is the dependence of the delocalization parameter on
the diabatic energy gap. Since such a connection is available
only in the GMH basis, we will vanAIS™ and use eq 62 to
calculateAe. In doing this we will also assume that the GMH
matrix elemenHa"" does not change withl5".

Transitions in the normal CT region occur between the two
wells of the lower adiabatic surfaée (X) with the transmission

minima vsAng. In (b), 1 indicates the diabatic free energy surfaces
(eq 40) and 2 indicates the adiabatic free energy surfaces (eq 36). The
dashed lines show the results of calculations with constant delocalization

parameterAe = 0.9. Other parameters afeFL = —1.0 eV andl, =

the absence of such a solution we confine ourselves to a
qualitative modeling of the energy gap law in the inverted ET

region emphasizing the importance of the dependence of the
delocalization parameter on the energy gap. Only the energy

coefficient 1— exp(~y.z) close to unity a > > 1 (adiabatic  invested to achieve the crossing poifitof the diagonal terms
limit). The activation free energy is then defined as a barrier in eq 54 is considered to generate the left branches of the energy
from a lower surface minimum to the maximum point. The gap in Figure 8. At this point, the occupation numbet6X™)
dependence of this barrier on the diabatic splitting (b) and the of the lower and upper CT surfaces (eq 51) are both equal to
free energy gap (c) are given by the right branches of the energy?/,.
gap laws shown in Figure 8. The outcome for the energy gap law depends on the parameter
The adiabatic splitting between the CT surfaces leads to aexperimentally accepted as a probe of the equilibrium energy
fundamental distinction between reactions in the normal and gap. The most fundamental approach is to define the equilibrium
inverted CT regions. Transitions in the inverted region proceed reaction gap as the difference in the free energies at the minima
between different adiabatic surfaces, each having only oneof the CT free energy curve
minimum, with the transmission coefficient expf.z) tending

to zero aty.z > 1. There is, therefore, no classical transition AFy=F_(X;) — F_(X;) (75)
point and the splitting is overcome by quantum tunneling

mechanisms. Solvent quantum modes intramolecular quan-  in the ET normal region (Figure 1) and

tum skeletal excitatiort can participate in this process. The

transition is possible whem quanta of, for example, intramo- AF,=F_(X") = F,(X™) (76)

lecular vibrational excitation with the frequengyhave enough
energy to overcome the minimum adiabatic splittingy, >
Emin. The Golden Rule FranekCondon factor for such transi-
tions is easy to calculafé,but an infinite order summation of
the perturbation terms is necessary for large ET coupffis.

in the inverted region (Figure 2). This equilibrium energy gap
is in fact measured by the ratio of the forward and backward
reaction rated® An alternative approach commonly used in
experimental setup is to measure the equilibrium energy gap as
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a difference in redox potentials of the separate donor and In eq 80,Na is the Avogadro number andlis the velocity of

acceptor units. This energy gap is not affected by the denor
acceptor overlap and is reflected by the diabatic equilibrium
free energy gapAFg. In view of these two approaches used in

experimental studies, we plotted in Figure 8 the energy gap

curve againstAFS (b) and againstAFq (c). Both curves,

although bell-shaped, are very asymmetric with a much steeper
dependence in the CT normal region, as it is usually observed

in experiment>-37 The dotted line in Figure 8b shows the same
results obtained with the fixed delocalization paraméter=
0.9. The curve is much more symmetric indicating that the

dependence of the delocalization parameter on the diabatic

energy gap is the crucial source of the curve asymmetry.

The discontinuity between the normal and inverted branches

of F¥(AFo) is due to the switch from the inverted to the
normal CT regions resulting in a gap in thé values of about
2|He7| (Figure 8a). It arises due to adiabatic splitting of the

light in a vacuum. The average in eq 79 is given by

0.0 = [.e"™dx [eNdx (81)
and the transition moment is
. AE
X)| = —_— 82

There is some confusion in the literature concerning the
dependence of the extinction coefficient on the solvent refractive
index1942The correct equation for the absorption intensity (eq
79) was given by La%?2in the classical representation of the
radiation field that is also reproduced in the formalism of
quantum electrodynamics.

Integration over the absorption band in eq 79 gives for the
adiabatic transition dipole (in debye)

lower and upper CT surfaces (Figures 1 and 2). Figure 8a shows

that the free energy dil‘ferena@eFSd entering the free energy
surfaced~.(X) is notthe real equilibrium gap measured by the
ratio of the rate constants. The actual g€y is a discontinuous
function of AF¢2d that should be determined according to eqs
75 and 76 from the free energy surfaces.

4. Absorption Intensity

The ET matrix element, entering the Golden Rule reaction
rate, is usually measured from absorption intensitasrates
of spontaneous radiatidf. The equation for the extinction
coefficient of CT absorption following from the present model
is derived here. Optical absorption results from electronic
transitions between the lower adiabatic surf&c€X) and the
upper adiabatic surfacE(X). Transitions are driven by the
interaction of the solute electronic density with the electric field
of the radiation. In the dipolar approximation, the interaction
Hamiltonian reads

—f(ng)Mm-E, (77)

where m is the solute dipole operator. The paramei@p)
accounts for the deviation of the local field acting on the solute
dipole from the external fieldo; np is the solvent refractive
index. Dielectric theori¢® predict for spherical cavities

2
3n5

2 +1

f(np) = (78)

The first order perturbation theory over the solute-radiation
interaction is commonly applied to derive the one-photon
transition probability and absorption intenstyAs the transi-
tions occur between the adiabatic free energy surfacéX),
the unperturbed basis set is built on the wave functions
{¥1(X),¥(X)} diagonalizing the two-state Hamiltonian matrix

/o

Im,,| = 9.585x 10 -
v Vo f(np)

[ [Pe(@)an]'?  (83)

wherev is the wavenumber (cm) andvg is the wavenumber
of the 0-0 transition in a vacuum\E = hcyg. A relation similar
to eq 83 was derived previousfyby employing the first-order
guantum mechanical perturbation theory limited to small
delocalization (class Il RobinDay complexe¥). The present
treatment is exact for a two-state solute indicating that eq 83 is
in fact valid for an arbitrary electronic delocalization including
fully delocalized CT systems (RobirDay class IIf3).

Equation 83 gives theacuumtransition dipole through the
integrated absorption intensity. In contrast to this, the transition
dipole at an equilibrium solvent configuration

max

My = My Vo/v (84)

max
is often considered in applicatio”g:9¢11.42|t is this transition
dipole that is used in eq 3 for the delocalization paramater
The condensed phase transition dipofE* may significantly
differ from the vacuum dipolen,, especially for self-exchange
CT when 7g/Tmax = 2|Hap/AL < 1. However, due to the
invariance of the produatiy;” 7max the magnitude of the ET
matrix element extracted from the integrated absorption intensity
is not affected by this distinction. A somewhat corrected MH
relation then follows from eqs 58 and 83

[He | = 9.585x 10 2 ————— [7e()dv]*? (85)

- A ()

where|Hgq| is in cnmm! and Amy, in debye. Here, the product
f(np)Amy 2 is directly measured by means of Stark spectroscopy
in nonpolar liquids withes = n3.12 Defining the adiabatic
separation between the centers of charge localizatior &s (

in eq 54. The standard perturbation theory then yields for the the elementary charge)

extinction coefficiente(v) (cm™1 M~1)

2
@ A" ,(ED) gm0 POAE(X) — hw) (79)
where(X) = [Wy(X)|rh|¥z(X)Oand
3
87°N, &0

A=—— 2 _
3000 In(10¥

rp,=Amjfe (86)

one gets for a Gaussian absorption band

AN
|HET| =2.06x 10—2 f—D[T/ngeggsAT/f/-)Z] v (87)
12 f(np)

In eq 87,7 (cm™1) and A%}), (cm™1) are the maximum and

half-intensity width of the “reduced” spectruma(v); eglgsis the
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extinction coefficient (cm! M~1) at the maximum ofve(v). (Y £ 29?2
The effective adiabatic separatiop is in Angstroms andHer]| F.(Y)=F§ + ds (89)
is in cnrl. Equation 87 assumes a Gaussian band shape. The s

electronic overlap of the donor and acceptor states results in o o . )
two absorption transitions for self-exchange CT (Figure 1). Withi =a (*+”) and b (“*~") and Y denoting the ET reaction

When the higher-energy state has a nonvanishing population,coordinate defined through the diabatic solute field difference
the absorption line gains asymmeéfrand the sum (eq 13). The two diabatic surfaces are then assumed to be

coupled by the ET matrix elemeht, independent of the solvent

_ configuration. This latte ti implifi -
1+ 8) 1(1_/(1) D AT/%)Z + 51_/(2) @ A’_’(lz/) 88) g r assumption simplifies the two-state

abs™abs abs~abs Hamiltonian matrix that becomes
should be used in the square root in eq 87s the ratio of FAY) Hgy
populations of the minima & ; andX, (Figure 1). (Hab Fb(Y)) (90)
5. Discussion A linear combination of the diabatic states
Traditional formulations of the ET theory invoke diabatic W, A(Y) =c (N, £ (VP (91)

electronic states of the donor and acceptor defined as distinct

electronic states corresponding to complete redistribution of the diagonalizing the above matrix forms the condensed phase

electronic density with the electronic transition. The diabatic adiabatic states. The corresponding adiabatic energies are

states are naturally determined fotermolecular ET when the  ther#e ¢

reactants and the products are separated before and after the vz 1

reaction or internal rotation eliminates the electronic overlap. _ Y i d

The definition of diabatic states becomes, however, obscure for () 479 * ZAE M+C (92)

intramolecular transitions with substantial mixing of the donor ®

and acceptor wave functions both before and after the reaction.with

In view of the absence of a generally accepted definition, various

diabatic basis sets are used for computing the diabatic activation AE%(Y) = [AE? + 2A1(AFY — Y) + (AF? — v)3*2  (93)

parameterd®44 All definitions of diabatic states have the

common feature that the diabatic wave functions are connectedand

by a unitary transformation to the adiabatic wave functions

diagonalizing the vacuum Hamiltonian. In this sense, the present d Fgl+ ng lg

theory unifies different approaches to describe localized and C=—%—+7 (94)

delocalized electronic transitions. The free energy surfaces of

partial CT (eq 36) are given in terms of the energetic parametersThe above free energy surfaces are defined by four parameters

(the vacuum splitting, the solvent reorganization energy, and Hu, Ala, AFS, andAC.

the equilibrium free energy gap) that aneariant in respect to A different approach is accepted here. The derivation starts

a unitary basis transformation. Therefore, they have the samefrom the adiabatic vacuum basis diagonalizing the vacuum

magnitudes in the adiabatic basis and any diabatic basisHamiltonian. The total two-state matrix including the sotute

constructed from the adiabatic wave functions. Note that the solvent coupling in its off-diagonal term (eq 23) is used to

traditional definition of the solvent reorganization enérgy construct the free energy surfaces which are exact solutions in

zg O AEarAEa, (eq 43) allows its dependence on a basis the framework of the present model based on the following

transformation thus rendering this important parameter rather assumptions: (i) a two-state solute, (ii) linear coupling of the

poorly defined. solute electronic states to a linearly responding solvent bath,
Another parameter of the theory is the extent of electron and (iii) adiabatic elimination of the fast subsystem of the solvent

delocalizationAe. This parameter is given in terms of the electrong®26We also use the one-electron approximation and

diagonal and off-diagonal vacuum, adiabatic matrix elements issues involved in this approach are discussed in ref 45. The

of the solute field operator. When the solute field is ap- present solution is more general than that given by egs 92 and

proximated by that of a point dipoléye is expressed through 93 as it involves the non-Condon solutsolvent coupling in

the differential and transition adiabatic dipole moments (eq 4) the Hamiltonian off-diagonal term. However, the solution is still

and thus is amenable to experimental determination by spec-determined by four parametersAE, AF'S, /1'5, and Ae. The

troscopic techniques. In the basis diagonalizing the matrix of equal number of model parameters is achieved due to the

the solute field Ae is the difference in the occupation numbers simplification of the Hamiltonian in the MarcudHush descrip-

of the two adiabatic states and is represented through thetion. The same form of.(X) as in eqs 3639 follows from a

diagonal and off-diagonal matrix elements of the Hamiltonian diabatic basis with the solvent-dependent ET matrix element

operator (eqgs 62 and 64). In view of the substantial effect of (eq 66). The diabatic formulation then defines the solution in

the delocalization parameter on the ET free energy surfacesterms of five model parametersslap, Han, ,12, AFS, andogp =

(Figures 1 and 2), all major results of the ET theory and optical E /AEap

spectroscopy need revision and extension to the case of  The different number of parameters in the diabatic and

Ae < 1. adiabatic representations makes it fundamentally difficult to
5.1. Free Energy Surfaces.The standard approach to compare them. The GMH ba&isresolves this problem by

construct the CT adiabatic free energies starts with the diabaticdefining the diabatic states to obey the conditiy = 0. In

vacuum state§W, Wy} . Linear coupling of these localized states this caseX = AeY, A, = A%, AF, = AF{ and the diabatic and

to a linearly responding solvent results in the diabatic free energy adiabatic representations can be compared to each other. The

surfaces same condition is in facissume#f2in the standard Marcus
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Figure 9. Adiabatic free energy surfac€s.(X) in the present model
(solid lines, eqs 36 and 37) and in the Maretitush formulation (long-
dashed lines, eqgs 92 and 93) for self-exchange CT sz AFg =
0,1l =1=1 eV, AE = 0.2 eV, andAe = 0.7. All free energy
surfaces are vertically shifted to have zero value (dotted line) at the
position of the left minimum.

Hush formulation. Although this assumption makes the two

models inequivalent, we compare here the solution given by

egs 36-39 to the solution given by eqs 9®3 in order to

demonstrate the new features arising in the present model.
Figure 9 compares the free energy surfaces given by egs 36

37 to those from eqs 9293 for self-exchange CTAl. = O,

AF¢ = AF., = 0). Several important distinctions between the

Matyushov and Voth

is often described in terms of the equilibrium differential
Am3*and transitionm;  adiabatic dipoles of the solute at the
equilibrium solvent configuration. Here, “max” refers to the
equilibrium configurations in the initial states. In the normal
CT region, these correspond to two absorption transitions (Figure
1). In the inverted CT region, “max” refers to absorption (“abs”)
and emission (“em”). If the diabatic transition dipole is zero,
My = 0, the delocalization parameter becomes

A Ant
AZZE Mabs Me™ (96)
with
M= [(AMER) + 4(mi")] (97)

If the dipole moments for absorption and emission are close to
each other, eq 96 transforms to eq 3. For self-exchange
transitions, howevem, = Amy2/2 (Alap = 0, eq 19) and the
above representation of the delocalization parameter in terms
of the dipole moments is inaccurate. It is expected to give an
estimate ofAz for unsymmetrical CT complexes only (Table

The Az parameter, whatever way defined, does not enter the
adiabatic free energy surfaces in the Marehisish formulation
(egs 92 and 93). The present model is more general as it includes

two adiabatic formulations can be emphasized. (1) The positionsthe non-Condon coupling to the solvent. As a result, the

of transition points do not coincide. The maximumFof(X) in

adiabatic free energy surfaces depend on the vacuum delocal-

the present formulation deviates from the position of resonancezation parametene and, through it, on the transition dipole

of the diagonal elements of the two-state Hamiltonian matrix,
X¥ = 0, and is approximately equal % = (A€)2AE when
AE/LL < 1 andAFL = 0 (Figures 6 and 7). (2) The splitting of
the lower and upper adiabatic surfaces is larger in the Marcus
Hush formulation (egs 93 and 93) than in the present model.
For self-exchange CT, the splitting iy = AE in the former

case and\Ev/1—A€” in the latter case. (3) The Marcusiush
formula involves the diabatic equilibrium free energilé%
without donor-acceptor overlap. The gang is therefore
zero for self-exchange reactions. The adiabatic representatio
considered here includes explicitly the doraicceptor overlap
that results in a symmetry-breaking splitting of the vacuum
electronic states to the energdyE. Electronic transition in a
vacuum thus proceed from the lower st&igto the upper state

(eq 4). The electronic overlap of the donor and acceptor thus
affects the free energy surfaces in two ways: through the
vacuum energy gap and through the vacuum transition dipole.
The first parameter defines the energetic splitting of the energy
levels due to electronic overlap for self-exchange CT. The
second parameter controls the off-diagonal coupling to the
external field of the solvent or radiation. In view of the strong
effect of Ae on activated transitions and optical speéfra,
estimates ofAe magnitudes characteristic of CT complexes are

ppertinent here. These are listed in Table 1. The transition dipoles

my, are obtained fromm>* according to eq 84. The require-

ment to know the vacuum frequeney considerably narrows
the list of chromophores for whiche can be evaluated and
Table 1 includes those unsymmetrical CT systems for which

E,. In condensed phases, these states are of course “dressedhis correction is possible.

by a solvating environment, but AF'S = 0 one gets a nonzero
equilibrium driving force approximately equal tAeAE =

AISM™ = 0 when AE/A, < 1 (Figure 9). The origin of the
factor Ae in the free energydriving force can be understood

from eq 49. The free energy represents the work done to transfer

the chargeAe over the energy barriekE that results ilAeAE
for small splittingsAE.

5.2. Delocalization ParametersThe Marcus-Hush formu-
lation invokes the effect of partial electron delocalization on

The parameteAe can be rewritten in an alternative way for
self-exchange transitions. In this casey2= Amy, and one
obtains

2 1-1/2

ab|
1+

r

Ae (98)

If the overlap of the diabatic donor and acceptor states results
in a binding MO state, one can expegt < ran, Wherery, =

the reorganization energy through the magnitude of charge Amy/e is the distance between the centers of localization of

actually transferred in the reactiohz.?2 This parameter can

the diabatic states. The upper limit fae is then (also see Table

be defined as the difference in the occupation numbers of the 1 in the companion pap®}

two condensed-phase adiabatic stélfes (eq 91) corresponding
to the initial and final equilibrium states. This yields in the
normal ET region
Az=|c(Y 1)* — &Y ,)? (95)
In view of the recent advances of Stark spectroscopy
applications to CT complex€s? the delocalization parameter

Ae < 12 (99)

As mentioned above, eqs 3 and 96 are not very dependable
for self-exchange CT due to the assumptimgp = 0 involved.
This is illustrated by the last entry in Table 1. Equation 3 results
in Az= 0.98, whereas eq 98 yieldse = 0.55 withra, = 7.0
A estimated as twice the metdigand separation measured by
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TABLE 1: Delocalization Parameters Ae and Az

compound Vo? Vmat (my2)° (Mo (Amyp)Pe Aé? AZ
RU2*(NHa)s-py 38.0 24.5 2.48 3.84 3.3 0.56 0.40
R (NHa)s-pz 32.6 21.2 3.09 4.80 3.36 0.47 0.36
coumarin-153 250 21.7 4.94 5.79 7.8 0.62 0.56
RU2*(NHa)s(4,4-bpy)RE*(NH3) 2F 24 21.4 0.55 0.98

a|n 10° cmL. ° In debye.c Measurements of differential dipoles are commonly performed in low-polarity media and the measured differential
dipole is assumed to be close to its vacuum vaftgom eq 84 From eq 3. From ref 7b.9 From ref 8b." From Mthlpfordt, A. et al.Phys.
Chem. Chem. Phy4999 1, 3209.| Emission in c-hexane, from ref 32bCalculated from eq 98 withy, = 7.0 A.

metal-ligand absorption spectfa.This discrepancy seems to Marcus-Hush relation (eq 1) in combination with eq 2 or eq 3
contradict to Figure 3 predicting close magnitudesAafand suggests that the solvent effect enters the reorganization energy
Ae for self-exchange reactions. The latter prediction can be in a rather complicated way: through the delocalization
tested for the case of RU(NH3)s(4,4-bpy)RIF(NH3) 2F by parameter and through the diabatic reorganization energy. On
using eq 52 with the parametem:'s =0, AE = 2|Ha = 0.22 the contrary, the present formulation reestablishes the “diabatic
eV and A, = 0.95 eV. The solvent reorganization energy Paradigm™: the solvent effect enters the adiabatic reorganization
follows from hvaps= 1.21 eV,4, = 0.18 eV&and the relation ~ €nergy only linearly through the linear response funcfio(eqs
hvaps = Ay + ;Lls + AeAE (eq 48). From these parameters one 32 and 38). Sec?nd, the establishment of the invariant reorga-
obtainsAz = 0.52 from eq 52 wittAe = 0.55 in support of the nization_ engrgyls allows to use electrost_atic models for the
conjecture that dipole moments measured at an equilibrium "€organization energy based on solvation of fixed charges
solvent configuration do not provide an accurate estimate of located at molecular sitésinstead of using a more complicated
equilibrium delocalization for self-exchange reactions in terms algorithm through the delocalized electronic density.

of eq 3. The invariant reorganization energy sets up the characteristic
5.3. ET Matrix Element. The fundamental MEf relation length between centers of charge localization to be used in
establishes a connection between the ET matrix element andelectrostatic models of solvent reorganizatfon
spectroscopic parameters of electronic transitions 1 1
For =€ [AME, + 4ni)] (101)
mH, _ M2 o
Hap | = AmabAE (100) For self-exchange transitions it becomes (ecf45)
; - . : for=[r%,+ rzdl/z (102)
Equation 100 is exact for a two-state sofif# with collinear cT 12" la

miz andAm;2.2°dThe MH ET matrix element enters the Golden , ) .

Rule rate of ET when the non-Condon coupling to the solvent FOT miance, for the CT complex RUNHz)s(4,4-bpy)RUF"-

is included in the diabatic Hamiltonian (egs 66 and 68). The (NHs) 5" (Table 1), one obtainscr = 8.3 A withras =7 A,
H derives from the integrated spectral With this estimate and the radii of the donor and acceptor units

electronic couplingHy' IS €s Ao \ : :
intensity according to eq 87 with, replaced byra, = Amyy/ ra = rq = 4.0 A> the two-sphere dielectric-continuum
adeyields a reasonable estimate for the reorganization

e35The latter is usually unknown and is estimated in practical formula : .

calculations through the distance of dorarcceptor separation. ~ €Nergyis = 0.98 eV in water (experimentally, 0.95 eV). Note
This complication is eliminated in the GMfior adiabatic  that both molecular solvatiéff and quantum-SCR# calcula-

representations. The former defines the diabatic differential ions give the results close to the continuum model for this solute

dipole in eq 100 asAmw, = [AM?, + 4nZ]Y2 The later ~ configuration. o _
replacesAmu, in eq 100 withAmy,. Both matrix elements are In diabatic theories of E¥:3 the diabatic solvent reorganiza-
defined solely in terms of adiabatic vacuum parameters. The tion energy is the universal parameter determining the activation

diabatic GMH and adiabatic representations provide two barrier, absorption energy, and spectral width for self-exchange

g d,
alternative routes to calculate the Golden Rule rate constantET3 ¢
resulting in, respectivelyHSM" and Her matrix elements in 4 A
ab Ae =g = /1ng= hv ps (103)

the rate preexponent. The former gives the activation barrier
independent of delocalization, whereas the latter generates the A _ o )
barrier decreasing with delocalization. This difference leads to Here, 4s = [X, — X,|/2 is half the distance between the
the predictions for the reaction rates diverging with increasing coordinates of the minima of the diabatic free energy surfaces,

ET coupling (Figure 5). Among various choices of the diabatic and Az is the reorganization energy extracted from the
basis set preference should be given to the GMH basis. It Gaussian width of absorption spectras via the relatiom,
generates the invariant reorganization parametgeend AF. = Pod2. In the above relation, the vertical energy dafs
in the activation barrier (eq 73), correctly positions the transition and the spectral widtfi,,; are experimental observables that
state for self-exchange transitions (Figure 6), and provides amay serve to determine the reorganization energy. Furthermore,
simple connection between the MH and adiabatic ET matrix 2/15A is identically the Stokes shift in the inverted ET region
elements (eq 65). Both matrix elements enter rate constantand thus gives an alternative definition of the reorganization
preexponents in corresponding perturbation schemes only if theenergy in that case. For partial CT in electronically delocalized
non-Condon coupling to the solvent is retained in the Hamil- systems, the MarcasHush theory suggests quadratic scaling
tonian. of the reorganization energy withz, eq 1. In view of eq 103,
5.4. Reorganization Energy.The present solution for the  a quadratic scaling law may be expected to apply equally to
adiabatic free energy surfaces of partial CT provides two the activation and optical parameters of self-exchange CT. This
important insights concerning methods of calculation of the does not, however, happen for the optical and activation
solvent effect on the reorganization parameters. First, the observables.
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The Marcus-Hush theory and the present model can be the BO approximation fails, the crude adiabatic approximétion
compared for self-exchange CT witkE < l's asAz = Aein is used for the basis set with subsequent numerical diagonal-
this case (Figure 3). The two wells of the lower ET surface ization of the vibronic matrix®*!Despite quite different physics,
have indeed the curvatures that scale quadratically AéthThis there is an interestingnathematicalinalogy between the present
quadratic scaling is, however, accompanied by a linear scalingmodel and the methods used in solving the vibronic problem
of A2 (Figure 1, eq 46). The resulting activation energyll/4 for mixed-valence CP%51 The crude adiabatic approximation
(egs 47 and 48) is given in terms of the reorganization energy generates the delocalized diabatic b#3isdiagonalizing the
ALinvariant in respect to the unitary basis transformations. The Hamiltonian matrix at zero nuclear displacements of the ligands.
activation barrier is thus essentially independentefandAz. Similarly, our vacuum adiabatic basis corresponds to zero
The same is true for the absorption width that is invariant in solvent polarization. The two-state Hamiltonian matrices are also
Ael5 Consequently, instead of equality 103, the following Very similarin the two problems: they are linear in the nuclear
inequality holds displacements (polarization) in the off-diagonal positions and

bilinear in the nuclear displacements (polarization) in the
/12" < ;@ < AN < hV.%)s (104) diagonal position8'°9This close mathematical analogy suggests
a numerical extension of the model to the case when the BO
which transforms to equality only #&te= 1. The last inequality ~ approximation fails and the vibrational wave functions become
is due to the shift of the energy of the light-induced donor-to- anharmonic. Such extension would also enable to relax the
acceptor transition (eq 48) Condon approximation for the intramolecular solute mddes.

h).= AL+ AeAE (105) 6. Conclusions

abs™
An exact solution for the adiabatic free energy surfaces of

) ) . X CT is derived. The free energies are represented as functions
the absorption energy is essentially independent of the extentyt roqrganization parameters invariant in respect to electronic

of electron delocalization has been noticed previofsthe delocalization and the delocalization parameter. Electronic

‘[;E:gl{gms tsetrn(;%iAgeg?)stent?ltebc?)er:]éc?g\r/lvfgr?:]’s ir_'tc_lsu?r?:ri]”;:‘;mdelocalization thus affects the solution through two param-

vious studies. [ i it invari . : ;

reorganization energyl. that is primarily probed by the slers: _the va(_:l_Jum,_adlabatlc_ener_gy gap an(_i th_e vactum.
gan ¥ts s p y probed by 1 adiabatic transition dipole. The invariant reorganization energy

absorption energy, spectral width, and the activation barrier for gntering the free energy surfaces is the true, observable

by the solvent-independent contributidveAE. The fact that

d_ . ad ) ; .

self-exchange CT. Thereforg, and noti or AS", is thereal, reorganization energy for both localized and delocalized reac-
obsewable reorganization energfor both localized (ET) and  tions as it determines the vertical transition energy, bandwidth,
delocalized (CT) transitions. and the activation barrier for self-exchange transitions. The

5.5. Approximations and ExtensionsThe basic assumption  equilibrium energy gap between the initial and final states is a
of this study is that the BO approximation is globally valid for  discontinuous function of the adiabatic free energy difference
the nuclear, solute and solvent, subsystems. This implies thatshowing a jump in its magnitude when going from the normal
the energie&; = E(Q) (eq 11) are vacuum BO electronic terms  to inverted CT region. The adiabatic free energy surfaces of
depending on inramolecular solute mod®s By using the  partial CT deviate considerably from those used in the Mafcus

harmonic approximation for a single effective md@ewe build  Hush adiabatic formulation showing a much weaker dependence
in the following papet® the Franck-Condon envelope on the  of the activation barrier on delocalization. The inclusion of the
basis of the vibrational overlap integréid’a non-Condon coupling to the solvent is the necessary condition

< . ~ . for obtaining the Golden Rule reaction rate (GMH or adiabatic)
mji(x)mm'lpj(x)?fmug Blli(x)|m|‘Pj(X)E[@5k|me with the preexponent connected to the integrated absorption

i,j=1,2 (106) intensity.

whereyny, are the harmonic wave functions of the nuclear mode
Q. As is seen, this equation involves the Condon principle for munications with Prof. M. D. Newton. This research was
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involves the BO approximation for the solvent nuclear modes ’

and the BG-Condon approximation for the solute intramolecu- - A - Appendix
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The BO and harm0n|c approx|mat|0ns are known to break The trace in eq 8 IS Cal’rled out by funCtlonal |ntegrat|0n over
down for some mixed-valence compounds resulting in a the solvent fieldsP, and Pe as well as over the quantum
vibrational coupling of the electronic ter5L Although there ~ Operators of the solute electronic states
are no exact criteria of such breakdown, the physical conse- o
quence of the BO approximation is to overestimate the tunneling Tr(...e A )=
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splitting between the adiabatic surfaé&The error is, however, 9 -1
small if the ratio of the vibrational reorganization enegyto a_zef expih (S + SB)]DMDPe(r’T)DPn(mZe:O
the characteristic vibrational enerdpy, is large>d This is in (A1)

fact the common situation especially for organic optical chro-
mophores for which the vibrational reorganization is distributed a0
over many vibrational modéZ. The present model is thus

limited to such systems. In fact the vibronic analysis employed h
in the companion pap¥rhas been successfully used for many Ss = PhHE[P,()] + fo Hg[P(r,7)]dz (A2)
mixed-valence compounds as weéland the limits of the BO

approximation for such systems are not well established. Whenis the Eucledian action of the solvent bath. The actsis
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built on the vacuum solute and solutsolvent Hamiltonians with

Sela &, is, P = AE,, = [(AE) + 4(H,,)"? (A9)
Jo By a da+ Y (. — E)al & — Hogl dr (A3) o _
T T and AE = E, — E;. The calculation of the ET free energy

) surfaces therefore reduces to the functional integral over the
The trace over the quantum electronic states of the solute .|assical fieldP(r)

electrons in eq (Al) is performed in the holomorphic representa-

tion in which the Fermionic operators are replaceaimnumbers AR _

obeying the rules of the Grassmann algeffrahe integral -

measurdDM in eq A1 denotes integration over the Grassmann JO(X = AE,;P) Z[P Je "=PIDP () (A10)
fields. It reads

N This, with the linear connection between the diagonal and off-
da;'(z) day(z) diagonal matrix elements of the solute field (eq 26), transforms

DM = e (A4) 0 eqgs 2831
i=1,0<7<ph 27
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