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This is a modification of the condensed-phase band shape analysis of optical spectra to treat electronically
delocalized systems. It incorporates the dependence of the optical observables on the optical transition dipole.
Absorption and emission band shapes are calculated on the basis of adiabatic free energy surfaces defined as
the functions of the reorganization parameters invariant to electronic delocalization and the parameter of
electronic delocalization. The latter is given through the ratio of the transition and differential chromophore
dipoles. The linear response relations commonly used to connect optical observables to reorganization
parameters of electron transfer reactions break down for electronically delocalized systems. The optical Stokes
shift depends strongly on the delocalization parameter deviating downward from twice the adiabatic
reorganization energy with electronic delocalization. The Stokes shift is a rising function of solvent polarity
for localized systems. An inverted solvent dependence develops for delocalized complexes: the Stokes shift
decreases with solvent polarity. The spectrum of permissible solvent fluctuations is limited from the low-
energy side by the adiabatic splitting of the free energy terms inducing narrowing of the emission optical
bands compared to the absorption bands.

1. Introduction

Classical theories of optical band shapes in condensed phases
consider electronic transitions between distinct electronic states,
each characterized by a distribution of the electronic density.1

The electronic density changes instantaneously, on the nuclear
time scale, with electronic transition (the Franck-Condon
principle).2 The interaction of the differential charge distribution
in the two states with the nuclear modes equilibrated to the solute
in the initial electronic state generates the nuclear component
of the steady-state spectral band shape. Because nuclear
configurations are statistically distributed, spectral lines get
inhomogeneously broadened.3

This basic picture of optical band shapes in condensed phases
involves the important assumption that the electronic charge
distributions characteristic of the ground and excited states do
not change with fluctuations of the solvent field.1 This model
is isomorphic to the diabatic (localized) description of electron
transfer (ET) reactions embodied in the Marcus-Hush theory
of ET.4 It suggests that the transferred electron is fully localized
in one state until it hops to another state when the resonance of
the electronic levels is reached through the fluctuations of the
nuclear coordinates coupled to the electronic states (Robin-
Day class II5). Not surprisingly, the isomorphism of physical
models is projected into isomorphism of theoretical descriptions
of thermally activated ET reactions and optical transitions.6

Coupling of the solute electronic states to the solvent is
fundamentally based on electrostatic interactions between the
solute electronic density and charges localized on the solvent
molecules. Because this interaction is long-ranged, many solvent
molecules are involved in the solvent response. The solvent
response can be characterized by a number of Gaussian

collective modes coupled to the solute,7 producing an essentially
Gaussian distribution of the solute electronic density of states.
The solvent is then said to be linearly responding.

Several very general relations between optical observables
can be obtained for linearly responding (Gaussian) solvents
interacting with a fixed charge distribution of the solute. The
energetic intensity of the solvent nuclear fluctuations coupled
to the solute can be characterized by the single parameter, the
solvent reorganization energy,λs

d.4 Here, the superscript “d”
refers to the diabatic representation implying that the charge is
fully localized in each electronic state. Several spectroscopic
observables can be related toλs

d. The solvent-induced compo-
nent of the Stokes shifth∆νs

st generates the reorganization
energy

The solvent-induced absorption,σabs, and emission,σem, spectral
widths also yield the solvent reorganization energies

where â ) 1/kBT and, in eq 1,∆νv
st is the solute vibronic

component of the Stokes shift.8

When each electronic state is characterized by a certain charge
distribution unchanged with solvent configurations (diabatic or
localized representation), the reorganization energies from
optical spectroscopy are equal to the diabatic reorganization
energyλs

d entering the activation barrier of ET reactions6

and
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λs
st ) h∆νs

st/2, ∆νs
st + ∆νv

st ) νabs- νem (1)

λabs
w ) âσabs

2 /2, λem
w ) âσem

2 /2 (2)

λs
d ) λs

st (3)
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In addition, the free energy gap between the initial and final
electronic states is the mean of the optical transition energies

Equations 3-5 are exact for any fixed charge distribution of
the solute in a linearly responding solvent. Several attempts have
been undertaken to challenge the representation of the solvent
response by a collection of Gaussian modes.9 Although some
deviations from the linear behavior do exist, they are usually
relatively small. The basic result of these studies is that the
action of a dense solvent on a fixed charge distribution of a
solute is indeed well represented by the linear solvent response.
The next question that arises is what would be the effect of
relaxing the assumption of a fixed charge distribution of the
solute. Addressing this problem is the motivation of the present
study. We approach the question of what happens when the
electronic density is allowed to flow between the initial and
final states, i.e., the effect of electronic delocalization.

Delocalization of the electronic density between the initial
and final states alters the solute electric field, thus modifying
the solute-solvent coupling and the line shift. But the strongest
effect of delocalization is expected to occur on the inhomoge-
neous broadening and the observed optical width. This is
because, in an electronically delocalized solute, the charge
distribution changes instantaneously with solvent configuration,
so that each configuration “sees” a different charge distribu-
tion.10 This self-consistent action results in essentially nonlinear
features of the solvent effect (e.g., the self-energy of the solute
electronic subsystem changes with solvent fluctuations).11

Therefore, despite the fact that solvent fluctuations are still
Gaussian, solute electronic self-consistency destroys the linear
response regime and relations 3-5 break down. The present
paper quantifies this effect.

In the preceding paper,12 the CT adiabatic free energy
surfaces,F((X), along the reaction coordinateX coupling a two-
state solute to the nuclear solvent polarization of the solvent
have been derived. The lower,F-(X), and upper,F+(X),
adiabatic surfaces are functions of the reorganization parameters
that are invariant in respect to the unitary transformations of
the solute wave function basis (and thus invariant to electronic
delocalization) and the delocalization parameter∆e. The latter
is defined through the vacuum transition,m12, and differential,
∆m12, adiabaticsolute dipoles as

The dependence on∆e incorporates the dependence ofF((X),
and with that of optical observables, on the transition dipole.

Optical absorption and emission result from Franck-Condon
transitions between the lower and upper adiabatic ET surfaces.
They are, therefore, used to construct the absorption and
emission band profiles (section 2). With inclusion of the
intramolecular vibrational excitations, this provides an extension
of the classical band shape analysis of optical spectra13,14 to
electronically delocalized systems (section 2.3). In section 3,
the effect of electronic delocalization on optical spectra in the
normal (section 3.1) and inverted (section 3.2) regions of ET
are analyzed. It turns out that eqs 3-5 hold only in a very
narrow range of∆evalues close to unity. Especially the Stokes
shift is a strongly decaying function of∆e. It depends on solvent

polarity as the reorganization energy for∆e close to unity and
then reverses its solvent dependence with decreasing delocal-
ization parameter. Also the widths of the absorption and
emission lines differ substantially when∆e < 1. These results
are discussed and compared to traditional theories in section 4.
Finally, section 5 concludes.

2. Absorption and Emission Intensities

2.1. Free Energy Surfaces.In the preceding paper,12 we have
considered a two-state solute which electric field interacts with
the polarization of the solventP. The system Hamiltonian is

whereHB[P ] is the Hamiltonian of a linearly responding solvent
andai

+ andai are the operators of creation and annihilation in
the adiabatic vacuum statesΨi with the energiesEi, i ) 1, 2.
The energiesEi refer to the Born-Oppenheimer electronic terms
in a vacuum at equilibrium configuration of the intramolecular
nuclear modes of the solute. The operator of the solute electric
field Ê has the diagonalEii ) Ei and off-diagonalE12 matrix
elements. Throughout below we will consider a dipolar solute
for which Eij ) mij‚T, whereT is the dipolar tensor andmij )
〈Ψi|m̂|Ψj〉.

The CT free energy along the reaction coordinateX ) ∆E‚
Pn (∆E ) E2 - E1, Pn is the nuclear component of the solvent
polarization) can be separated into the lower and upper CT
surfaces which are the eigenvalues of the two-state matrix12

with R12 ) m12/∆m12 and

Here,∆Fs
I andλs

I are the solvent-induced component of the
free energy gap and the solvent reorganization energy, respec-
tively. Both are invariant to the unitary transformations of the
solute basis thus keeping the same values in the adiabatic and
diabatic representations. Diagonalization of eq 8 results in the
lower “-” and upper “+” CT free energy surfaces

with

and

In eq 9,F0i
ad is the adiabatic, equilibrium free energy in the

ith state so that the adiabatic free energy gap is∆F0
ad ) F02

ad -
F01

ad ) ∆E + ∆e∆Fs
I. Here,∆E ) E2 - E1 refers to the 0-0

vacuum transition energy that can be determined through the

λs
d ) λabs

w ) λem
w (4)

∆F0
d ) hνm ) h(νabs+ νem)/2 (5)

∆e ) [1 +
4m12

2

∆m12
2 ]-1/2

(6)

H ) HB[P ] + ∑
i ) 1,2

(Ei - Ei‚P )ai
+ ai -

E12‚P (a1
+ a2 + a2

+ a1) (7)

(V1(X) + X/2 R12(∆e∆Fs
I - X)

R12(∆e∆Fs
I - X) V2(X) - X/2 ) (8)

Vi(X) ) F0i
ad + X2

4∆e2λs
I

+
∆e2λs

I

4
(9)

F((X) ) X2

4∆e2λs
I

( 1
2

∆E(X) + C (10)

∆E(X) ) [∆E2 + 2∆E(∆e∆Fs
I - X) + (∆Fs

I - X/∆e)2]1/2

(11)

C )
F01

ad + F02
ad

2
+

∆e2λs
I

4
(12)
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vacuum absorptionhνabs
(0) ) ∆E + λv and emissionhνem

(0) ) ∆E
- λv energies as∆E ) h(νabs

(0) + νem
(0))/2. The vacuum adiabatic

gap∆E is connected to the diabatic gap∆Iab (the difference in
a vacuum electronic energies of noninteracting donor and
acceptor units) and the ET matrix elementHab by the relations

and becomes 2|Hab| for self-exchange transitions with∆Iab )
0. The gap∆F0

ad defines the point of intersection of the
diagonal matrix element in the adiabatic two-state matrix in eq
8. This point does not, however, coincide with the transition
state due to theX dependence of the off-diagonal components
of the Hamiltonian. The true free energy gap∆F0 defined as
the difference between the free energies at the surface minima
then differs from∆F0

ad and is in fact a discontinuous function
of ∆F0

ad when switching between the normal and inverted CT
regions.12

The optical transitions proceed between the adiabatic free
energy surfacesF-(X) and F+(X) that are the eigenvalues of
the two-state matrix in eq 8. Correspondingly, the electronic
states involved in the transitions are those diagonalizing the same
matrix. These wave functionsΨ̃1(X) andΨ̃2(X) depend on the
solvent configuration through the reaction coordinateX. The
extinction coefficient of absorption (cm-1 M-1) then reads2,12

where

and for a reaction coordinateX treated in the classical limit

In eq 15,NA is the Avogadro number andc is the velocity of
light in a vacuum.

The spectral functionsI((ν) involve the average over the
equilibrium distribution of reaction coordinates

with

The transition dipole in eq 16 is given by

The functionf(nD) of the refractive indexnD in eq 14 accounts
for the deviation of the local field acting on a solute from the
external electric field of the radiation. For spherical cavities,
the dielectric theories predict15

The emission rateIem(ν) (number of photons per unit
frequency) is related to the spectral function evaluated on the
upper adiabatic surface

In the next sections, we will be predominantly interested in
the band shapes generated by the spectral functionsI((ν). The
spectral shifts and width are shown to be strongly affected by
the extent of electronic delocalization characterized by the
delocalization parameter∆e. The latter is determined by the
adiabatic differential dipole (measured, e.g., by Stark spectros-
copy16) and by the adiabatic transition dipolem12. Both
absorption and emission intensities can be employed to measure
m12. A relation ofm12 to the integrated extinction coefficient is
given in the preceding paper12 in connection with the calculation
of the ET matrix element. Here, a route through radiative rates
is presented.

2.2. Radiative Rate.The vacuum transition dipolem12 is
extracted from eqs 16 and 19 by noting that the integral
∫ Iem(ν)ν-1dν eliminates the dependence onX in the transition
dipole m̃12(X). This yields form12 (in debye)

whereνj0 ) ∆E/hc is the vacuum transition wavenumber (in
cm-1). When the emission spectrum is not available, the
radiative rate

can be used;Φem andτem are the quantum yield and emission
lifetime. By defining the average frequency

one gets

Equation 25 is not a very practical one as an accurate definition
of the average wavenumberνjav ) νav/c demands knowledge of
the emission spectrum for which eq 22 provides a direct route
to the transition dipole. It can be used though in approximate
calculations by assumingνjav ) νjem.

Equation 25 is exact for a two-state solute, but differs from
the traditionally used connection between the transition dipole
and the emission intensity by the factorνj0/νjav.17 The commonly
used combinationm12νj0/νjav can be associated with the condensed
phase transition dipole in the two-state approximation.18 The
difference between the present and traditional formulations arises
from the common assumption of independence of the transition
dipole of the solvent configuration. The exact solution for a
two-state solute makes the transition dipole between the
adiabatic free energy surfaces be inversely proportional to the
energy gap between them. This dependence is, however,
eliminated when the emission intensity is integrated with the
factorν-1. The necessity of this correction was noticed already
by Gould et al.19a Their results were obtained by employing
the first-order quantum mechanical perturbation theory (weak
delocalization). The present formulation indicates that eqs 22
and 25 are valid for an arbitrary extent of electronic delocal-
ization. Also note thatm12 in eqs 22 and 25 is theVacuum

∆E ) [∆Iab
2 + 4|Hab|2]1/2 (13)

ε(ν)
ν

) A
f 2(nD)

nD
I-(ν) (14)

A )
8π3NA

3000ln(10)c
(15)

I((ν) ) 〈|m̃12(X)|2δ(∆E(X) - hν)〉( (16)

〈...〉( ) (Q()-1∫-∞

∞
...e-âF((X)dX (17)

Q( ) ∫-∞

∞
dXe-âF((X) (18)

|m̃12(X)| ) |〈Ψ̃1(X)|m̂|Ψ̃2(X)〉|

) |∆m12| ∆E
∆E(X)

(19)

f(nD) )
3nD

2

2nD
2 + 1

(20)

Iem(ν) ) 64π4ν3

3c3
nD f 2(nD)I+(ν) (21)

m12 ) 3.092× 108[νj0xnDf(nD)]-1[∫ Iem(ν)ν-1dν]1/2 (22)

krad ) ∫ Iem(ν)dν ) Φemτem
-1 (23)

νav ) ∫ Iem(ν)dν/∫ Iem(ν)ν-1dν (24)

m12 ) 1.786× 103[ krad

νjavνj0
2 nDf 2(nD)]1/2

(25)
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adiabatic transition dipole. Therefore, emission intensities
measured in different solvents should generate invariant transi-
tion dipoles when treated according to eqs 22 and 25. A
deviation from invariance can be used as an indication of the
breakdown of the two-state approximation and existence of
intensity borrowing from other excited states of the chromophore
(the Murrell mechanism19b,20).

To illustrate the difference between the present and traditional
formulations, Figure 1 shows the dependence ofm12 (circles)
and m12νj0/νjav (squares,νj0 ) 25 400 cm-1)21 on the emission
frequencyνjem for the coumarin-153 (C153) optical dye accord-
ing to the data by Lewis and Maroncelli.17b Most noteworthy
is a pronounced, approximately linear, dependence ofm12 on
the emission frequency. This is indicative of an emission
borrowing to other excited states in contrast to the conclusion
reached in ref 17b. Solvent independence ofm12νj0/νjav points
to of a significant mixing to other states.19b,22

2.3. Optical Band Shape.From eqs 16 and 19, the spectral
functionsI((ν) can be represented as follows

with the absorption (abs, “-”) and emission (em, “+”)
intensities

obeying the normalization condition

The integration overX can be performed directly in eq 27 with
the result

Here

are the two solutions of the quadratic equation∆E(X) ) hV
and

is the minimum splitting of the adiabatic CT surfaces that is
achieved at the coordinate

For a realistic analysis of optical band shapes, one needs to
include the effect of skeletal solute vibrations.2,6,13One effective
vibrational mode with the frequencyνv and the vibrational
reorganization energyλv is commonly considered.14 For un-
coupled intramolecular and solvent nuclear modes, the Franck-
Condon envelope is built on the overlap integrals of the
harmonic vibronic wave function. Equation 29 then generalizes
to13c,d,f

Here, Im(x) is the modified Bessel function,S ) λv/hνv, njB )
[exp(âhνv) - 1]-1 is the boson occupation number,Xkm

/ is
given by eq 30 in whichhν is replaced byhν - mhνv, and

The limiting vibronic frequency is thus shifted for each vibronic
mode to the value

Equation 33 holds for an arbitrary effective frequency of the
skeletal solute vibrations. When the vibrational mode is in the
quantum domain satisfying the conditionâhνv . 2 ln(2S), eq
33 simplifies to the relation similar to that commonly applied
in the band shape analysis14

3. Optical Shifts and Widths

Equation 30 is very important for understanding the optical
band shapes. It indicates that the incident light can produce
electronic transitions between the two CT surfaces only if its
energyhν is higher than the low-energy boundary

The limiting frequencyνmin is equal to zero at∆e ) 1 so that
optical transitions with arbitrary photon energy are allowed for
electronically localized complexes (Robin-Day class II5). The
limiting frequency increases with increasing delocalization
confining the range of energies accessible to optical transitions.
Intensities of absorption and emission transitions are always zero
at ν < νmin. This has a profound effect on optical band shapes.
Whenever an optical line approaches the boundaryνmin, it attains
a nonlinear squeezing from its red wing. The line gets skewed
and the effective spectral width decreases. For positively
solvatochromic dyes with the major multipole higher in the
excited state than in the ground state, emission lines are shifted
stronger to the red side of the spectrum than the absorption lines.
Therefore, the emission lines are closer to the low-energy

Figure 1. The transition dipolem12 according to eq 25 (νjav ) νjem,
circles) andm12νj0/νjem (squares) vsνjem for emission transitions in C153
in different solvents.17b The dashed lines are regressions with the slopes
(squares) 0.02 and (circles) 0.27.

I-(ν) ) 1
h(∆m12∆E

hν )2

Jabs,em(ν) (26)

Jabs,em(ν) ) h〈δ(hν - ∆E(X))〉- (27)

∫-∞

∞
Jabs,em(ν) dν ) 1 (28)

Jabs,em(ν) ) h ∑
k)1,2

|∆E′(Xk
/)Q-|-1 exp[-âF-(Xk

/)] (29)

Xk
/ ) Xmin - ∆ex(hν)2 - ∆Emin

2 (30)

Emin ) ∆Ex1 - ∆e2 (31)

Xmin ) ∆e∆Fs
I + ∆e2∆E (32)

Jabs,em(ν) )
h

Q-

∑
m ) -∞

∞

∑
k ) 1,2

exp[-S(2njB + 1) +

âhνvm/2 - âF-(Xkm
/ )]

|∆E′(Xkm
/ )|-1 Im(2SxnjB(njB + 1)) (33)

∆E′(Xkm
/ ) )

dE(X)
dX

|X ) Xkm* (34)

hνmin
(m) ) (mhνv + ∆Emin (35)

Jabs,em(ν) )
h

Q-

∑
m)0

∞

∑
k)1,2

e-SSm

m!
|∆E′(Xkm

/ )|-1 exp[-âF-(Xkm
/ )]

(36)

hνmin ) Emin (37)
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boundaryνmin and get narrower than the absorption lines (see
section 3.2 below). The opposite trend holds for negatively
solvatochromic dyes with higher major multipoles in their
ground states.

3.1. Normal CT Region.Only absorption transitions can be
observed in the normal CT region (Figure 2). Two vertical
transitions exist: one from the ground CT state and the other
from the adiabatically split, excited state. The origin of two CT
transitions for self-exchange transitions (∆Fs

I ) 0) is illustrated
in Figure 3. The donor and acceptor have equal electronic
energies at the infinite separation. Their coupling in a CT
donor-acceptor complex results in a donor-acceptor electronic
overlap breaking the energy symmetry and resulting in the
vacuum splitting∆E (∆E ) 2|Hab|, |Hab| is the diabatic ET
matrix element). When transferred to a condensed phase, the
initial state of each adiabatically split electronic term is solvated
by the equilibrium (electronic+nuclear) polarization of the
solvent (∆Feq in Figure 3), whereas the final state of the vertical
Franck-Condon transition is solvated by the electronic solvent
polarization only (∆Fe in Figure 3). The difference, together
with the nuclear intramolecular reorganization, brings about the
reorganization component in the spectral transition energy which
for (∆E + ∆Fs

I)/λs
I < 1 becomes

and

The difference between the absorption frequencies is due to the
equilibrium free energy gap between the lower surface minima

The general solution for the absorption band shape composed
of two absorption transitions weighted according to their relative
thermal populations and the intramolecular vibrational excita-
tions of the solute is given by eq 33 or eq 36. From eqs 14, 15,
26, and 36, one then obtains for the extinction coefficient

with

where “-” and “+” refer to k ) 1 andk ) 2, respectively. In
eqs 41 and 42, all the energy parameters (X, kBT, F-(X), λs

I,
and∆E) are in cm-1, m12 in D, andT is in K. The parameterê
in eq 41 is the ratio of populations of in the second (X2

-) and
first (X1

-) minima of the lower adiabatic surface,ê ) exp[-
â∆F0].

If the intramolecular reorganization energy is small, the line
profile is given by two superimposed Gaussian lines, shifted
relative to each other by 2(∆e∆E + ∆Fs

I)

with

The width of each absorption band in eq 43 is determined by
the invariant reorganization energyλs

I. This occurs despite the
fact that the curvatures of two wells of the lower CT surface
(Figure 2) scale quadratically with∆e.12 The elimination of the
scaling with the delocalization parameter in the observable
bandwidth is a result of the cancellation of the quadratic
dependence of the curvatures ofF-(X) at the minimaX1,2

- with
the approximately inverse scaling of the energy gap∆E(X) =
|X|/∆e in the regions close to the well minima. This indicates
that the invariant reorganization energyλs

I (and notλs
d) is the

true observable parameter reflected by the spectral width of the
solvent-induced component in the absorption vibronic envelope.

Equation 41 extends the conventional band shape analysis
of ET in localized systems13,14,23to delocalized CT transitions.
It can thus be employed to extract CT activation parameters
from absorption CT spectra. Application of eq 41 to self-
exchange CT systems studied by Nelsen’s group24 is shown in
Figure 4. The fitting procedure employs the simulated annealing
technique25 in the space of four activation parameters:λs

I, λv,
νv, and∆E. The magnitude of the delocalization parameter∆e
is self-consistently calculated by integrating the absorption
profile (eq 79 in ref 12) at each simulation step in the parameters
coordinates. The fitting parameters are listed in Table 1. Also

Figure 2. CT adiabatic free energy surfaces in the normal CT region.
hνabs

(1) and hνabs
(2) indicate the two adiabatically split absorption transi-

tions; ∆e ) 0.7, ∆Fs
I ) 0, ∆E/λs

I ) 0.2.

Figure 3. A diagram illustrating the origin of two absorption transitions
in delocalized CT complexes. The donor and acceptor energies, equal
at infinite separation, split to the energy gap∆E with formation of the
donor-acceptor complex in the gas phase. In a condensed medium,
the initial state gains the equilibrium free energy of solvation (∆Feq).
The final state of the Franck-Condon transition is solvated by the fast
electronic subsystem only (∆Fe).

∆F0 ) ∆e∆E + ∆Fs
I ) h

2
[νabs

(1) - νabs
(2)] (40)

νjε(ν) ) 36.8
f(nD)2

(1 + ê)nD

(∆m12∆E)2

xTλs
I

∑
m ) 0

∞

∑
k ) 1,2

e-SSm

m!
|∆E′(Xkm

/ )|-1 exp[-âF-(Xkm
/ ) + âF-(X1

-)]

(41)

Xkm
/ ) Xmin - ∆ex(νj - mνjv)

2 - ∆Emin
2 (42)

Jabs(V) ) h(1 + ê)-1[G1(ν) + êG2(ν)] (43)

Gi(ν) ) (4πkBTλs
I)-1/2 exp[-â

(hν - hνabs
(i))2

4λs
I ] (44)

hνabs
(1) ) λv + λs

I + ∆Fs
I + ∆e∆E (38)

hνabs
(2) ) λv + λs

I - ∆Fs
I - ∆e∆E (39)
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included are estimates of the diabatic ET distancerab obtained
from r12 and∆e according to the relation12

valid for self-exchange transitions. The diabatic distances appear
to be close to geometric distances between the centers of
hydrazine units in the donor-acceptor complexes (cf. columns
3 and 4 in Table 1). Also shown are the GMH ET matrix
elements26 obtained through integrated absorption intensity (eq
81 in ref 12). As is seen, the GMH ET matrix elements are
lower than the diabatic matrix element defined for self-exchange
transitions as|Hab| ) ∆E/2. This result is expected as the GMH
basis generates the smallest matrix element among various
choices of diabatic basis sets.26

3.2. Inverted CT Region.Large adiabatic free energy gaps
∆F0

ad produce the inverted CT region (Figure 5) where both the
absorption and emission transitions can in principle be observed.

The positions of the corresponding band maxima are given by
the vertical energy gap∆E(X) evaluated at the positions of the
minima of the lower surface,X-, and the upper surface,X+

(Figure 5). The solvent-induced Stokes shift (eq 1) and the mean
transition energy (eq 5) are then given by the following relations

where the positions of the minima are obtained by solving the
equation

Absorption and emission energies vary substantially with the
delocalization parameter∆e (Figure 6, upper part). Their mean

TABLE 1: Parameters of CT Self-exchange Transitions Extracted from the Fit of Experimental Spectra in Acetonitrile24 to
Equation 41 (Figure 4): All Energy Parameters in 103 cm-1

compounda r12, Åb rab, Åc rN,N, Åd ∆e λs
I λv hνv ∆E/2 |Hab

GMH|e
2+ 4.60 6.63 6.99 0.57 8.89 3.14 1.38 1.66 1.34
3+ 5.25 7.37 7.36 0.58 11.24 2.54 1.25 1.13 0.92

a Donor-acceptor CT complexes according to ref 24: 1,4-Bis(2-tert-butyl-2,3-diazabicyclo[2.2.2]oct-3-yl)benzene-1,4-diyl (2) and its 2,5-dimethyl
derivative (3). b ESR measurements.24 c According to eq 45.d CrystallographicN,N-distance between the t-Bu nitrogens of the hydrazine units
gives an estimate of the geometric separation of the donor and acceptor.e GMH ET matrix element calculated as|Hab

GMH| ) ∆e|HET| from eq 81 in
ref 12.

Figure 4. Fits of experimental spectra in acetonitrile24 (solid lines) to
eq 41 (dash-dotted lines, almost indistinguishable from the experi-
mental spectra on the graph scale). The labeling of the donor-acceptor
complexes is according to ref 24. The fitting parameters are listed in
Table 1.

Figure 5. CT adiabatic free energy surfaces in the CT inverted region;
∆e ) 0.7, ∆Fs

I/λs
I ) -1.0, ∆E/λs

I ) 3.0. X- and X+ indicate the
minima of the lower and upper adiabatic surfaces, respectively.

∆e ) [1 +
rab

2

r12
2 ]-1/2

(45)

Figure 6. Upper panel: the dependence of the absorption (abs.) and
emission (em.) band maxima and their mean (m) on the delocalization
parameter. The dash-dotted line indicates the approximationhνm )
∆E + ∆e∆Fs

I; ∆Fs
I/λs

I ) -1 Lower part: the Stokes shift vs the
delocalization parameter for∆Fs

I/λs
I equal to 0 (1),-1.0 (2), and-1.5

(3). The dashed lines refer to twice the invariant reorganization energy
(2λs

I), the separation of the lower and upper minima (2λs
∆), and twice

the adiabatic solvent reorganization energy (2λs
ad ) 2∆e2λs

I). All
energies are dimensionless in units ofλs

I, ∆E/λs
I ) 3.0.

h∆νs
st ) 2λs

I - ∆e2λs
I(∆E + ∆Fs

I/∆e)( 1

X+ + 1

X-) (46)

hνm )
∆e2λs

I

2
(∆E + ∆Fs

I/∆e)( 1

X+ - 1

X-) (47)

X((∆E(X() ( λs
I) ) (∆e2λs

I(∆E + ∆Fs
I/∆e) (48)
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is a more gently sloping curve that can roughly be approximated
as

(dash-dotted lines in the upper part in Figure 6). The Stokes
shift, on the contrary, is a steeply decaying function of∆e
(Figure 6, lower part), especially at∆eclose to unity. It deviates
strongly from twice the invariant reorganization energy, does
not follow the linear scaling of the difference in the minima
positions

and follows the adiabatic reorganization energyλs
ad only for

∆Fs
I ) 0 (Figure 6, lower part, line 1). The latter situation is,

however, unrealistic for transitions in the inverted ET region
with usually a substantial solvation component of the equilib-
rium free energy gap. The dependence of the Stokes shift on
∆e becomes steeper with more negative equilibrium solvation
energies (Figure 6, lower part, lines 2 and 3). This means that
for ∆e< 1 the Stokes shift does not measure the reorganization
energy alone and the mean of the transition energies provides
only an approximate measure of the equilibrium energy gap.
These two observables should be considered as input parameters
to the nonlinear eqs 47 and 46 that are solved in respect toλs

I

and ∆Fs
I. The solution is, of course, possible only if the

vacuum splitting and the delocalization parameter are both
known from an independent source.

Electron delocalization also affects substantially the band
shapes of the absorption and emission lines. Two basic features
of optical spectra of positively solvatochromic dyes with∆e <
1 are illustrated in Figure 7 (the calculations are performed
according to eq 36): (i) the emission width is increasingly
smaller than the absorption width with decreasing∆e and (ii)
both absorption and emission lines are asymmetric with higher
intensities of their blue wings. As mentioned above, these effects
are caused by the proximity of the lower boundaryνmin of the
energies accessible to optical transitions.

To model the evolution of absorption and emission band
shapes with solvent polarity we consider a model spherical
chromophore of the radiusR0 ) 4 Å immersed in the dielectric
continuum. The adiabatic dipole moments of the chromophore
arem01 ) 5 D andm02 ) 15 D. The high-frequency dielectric

constant of the solvent is held atε∞ ) 2.0 and the static dielectric
constantεs is varied in the range 10-50. In this model, the
adiabatic solvent reorganization energy and the solvation part
of the equilibrium free energy gap are

and

The invariant quantities are then obtained by applying the scaling
laws12

and

The results of calculations of the transition energies and spectral
widths are listed in Table 2.

Table 2 reveals several features of optical transitions in
delocalized systems. Columns 4 and 5 list the reorganization
energiesλs

st obtained from maxima energies (eq 1) and the first
spectral moments

Both Stokes shifts are considerably smaller than the invariant,
λs

I = λs
d, or adiabatic reorganization energies, in contrast to eq

3. The dependence of the Stokes shift on solvent polarity is
much weaker than that of the reorganization energy. Also, the
equalityλs

st ) λabs,em
w valid for the linear response with∆e ) 1

does not hold. The mean of the squared absorption and emission
widths (column 10) correlates better with the Stokes shift.27 The
Stokes shift increases with solvent polarity at∆e ) 0.8, in
accord with traditional theories. At a higher electronic delocal-
ization, ∆e ) 0.7, on the other hand, the inverted solvent
dependence develops: the reorganization energy and the Stokes
shift have the opposite dependence on solvent polarity. This is
the result of the proximity of the emission line to the band

Figure 7. The normalized absorption (abs) and emission (em)
intensities at∆e ) 0.7 (solid lines) and∆e ) 0.8 (long-dashed lines)
vs the reduced frequencyhν/λs

I. The dash-dotted lines indicate the
lower boundary for the energy of the incident lightνmin (eq 31). The
calculations are performed for the model chromophore (see text) in
the dielectric withεs ) 50.

hνm = ∆E + ∆e∆Fs
I (49)

2λs
∆ ) |X+ - X-| (50)

TABLE 2: Spectral Parameters (103 cm-1) of the Model
Chromophore (See Text) with∆E ) 24.2× 103 cm-1

εs λs
I λs

ad λs
st a h∆〈ν〉st/2b ∆F0

c hνm λabs
w d λem

w d λm
w e

∆e ) 0.7
10 3.67 2.08 0.58 0.58 14.56 18.82 0.91 0.34 0.63
20 4.23 2.07 0.56 0.57 13.78 18.55 0.97 0.29 0.63
30 4.43 2.17 0.55 0.56 13.52 18.46 0.98 0.27 0.63
40 4.51 2.21 0.54 0.55 13.37 18.40 0.98 0.26 0.62
50 4.56 2.23 0.53 0.55 13.30 18.39 0.99 0.25 0.62

∆e ) 0.8
10 2.81 1.80 1.03 0.90 15.75 17.76 1.34 0.74 1.04
20 3.24 2.07 1.10 1.09 15.08 17.91 1.51 0.73 1.12
30 3.39 2.17 1.12 1.11 14.87 17.80 1.58 0.72 1.15
40 3.45 2.21 1.12 1.11 14.73 17.72 1.60 0.72 1.16
50 3.51 2.25 1.12 1.12 14.66 17.70 1.61 0.71 1.16

a Difference in the energies of the absorption and emission maxima.
b Obtained as a difference of the first spectral moments, eq 55.c The
gap between the free energy minima of the upper and lower surfaces.
d From half-intensity width according to eq 56.e λm

w ) (λabs
w + λem

w )/2.

λs
ad )

∆m12
2

R0
3 [ εs - 1

2εs + 1
-

ε∞ - 1

2ε∞ + 1] (51)

∆Fs
ad ) -

(m2
2 - m1

2)

R0
3

εs - 1

2εs + 1
(52)

λs
ad ) (∆e)2λs

I (53)

∆Fs
ad ) ∆e∆Fs

I (54)

〈ν〉abs,em) ∫-∞

∞
νJabs,em(ν)dν (55)
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boundaryνmin. With increasing solvent polarity, the absorption
line still shifts to the red whereas the emission line almost does
not change its position (Figure 7). As a result, the Stokes shift
decreases with increasing the reorganization energyλs

I.
The absorption and emission widths in Table 2 were obtained

from the halt-intensity spectral widths according to the relation

For a Gaussian line, eq 56 produces the second spectral cumulant

The direct use of the second spectral cumulant instead of the
half-intensity width gives the results very close to those listed
in Table 2.

The emission lines are narrower than the absorption lines for
all polarities considered, which is characteristic of the positively
solvatochromic dye used in the calculations. For∆e ) 0.8, the
absorption width is a rising function ofλs

st whereas the
emission width decays withλs

st. This type of behavior has
indeed been observed for the C153 optical dye28a (see Figure 8
in ref 28b). C153 possesses a large transition dipole17b and a
substantial delocalization is thus expected. For∆e ) 0.7, due
to the inverted solvent dependence of the Stokes shift, the
emission width increases withλs

st whereas the absorption width
decreases withλs

st. This rich pattern of various types of
relations between the optical observables differs qualitatively
from the simple relation in eq 4 valid only for∆e ) 1.

Intramolecular vibronic excitations produce manifolds of
absorption and emission lines. Their superposition forms the
absorption and emission vibronic envelopes (eq 36, Figure 8).
The spectroscopic parameters of several most intense individual
lines, each corresponding tom quanta of vibrational excitation
of the solute, are listed in Table 3. As is seen, all lines from the
absorption or emission vibronic envelopes have the same widths
and are only shifted relative to each other byνv. The lower
energy boundaryνmin

(m) (eq 35) exists for each vibronic excita-
tion. For the absorption envelope,νmin

(m) shifts to the blue withm
thus enhancing the relative weight of the blue side of the
spectrum. Oppositely, for emission lines,νmin

(m) decreases with
m allowing lower frequency vibronic transitions. The familiar
mirror-symmetry17a profiles of absorption and emission bands
then develop. Still, every solvent-broadened component of the
emission envelope is considerably narrower than the corre-
sponding absorption line and the total emission width is much
smaller than the absorption width (Table 3). Analogously to

the individual vibronic transitions, the emission width of the
whole band decays with solvent polarity and the absorption
width increases with solvent polarity.

A practically important problem is the development of
algorithms yielding parameters characteristic of the 0-0 solvent-
broadened vibronic transition from the parameters of the whole
vibronic envelope. Such a procedure is often referred to as the
band shape analysis.14 From this perspective, eqs 3 and 5 are
often used as a source of the reorganization energy and the
equilibrium free energy gap of ET. Table 3 indicates that the
mean of the absorption and emission lines is indeed a robust
parameter characterizing solely the solvent effect. In contrast,
the Stokes shift is strongly affected by the vibrational excitations
and is not a very dependable source of the solvent reorganization
energy. For instance, as is seen from Table 3, half the Stokes
shift of the 0-0 transition (m ) 0) λs

st ) 1115 cm-1 is
considerably smaller than the adiabatic reorganization energy
λs

ad ) 2176 cm-1. Also, for delocalized systems, the extraction
of the solvent-induced Stokes shift by subtracting its vibrational
component according to eq 3 is applicable only in respect to
the first spectral moments〈ν〉abs,em. As is illustrated in Figure
9, the difference between∆〈ν〉st and ∆νst increases with
delocalization. The gap between the two values is not a
monotonic function of vibrational reorganization and the two
parameters may be close to each other or widely different
depending on the magnitude of∆νv

st. The difference of the first
moments∆〈ν〉st, however, follows eq 1 for all values of the
delocalization parameter.

4. Discussion
Equations 3-5 lay the foundation for connecting optical and

thermal parameters in localized ET systems. They, however,

TABLE 3: Spectral Parameters (all energies are in 103 cm-1) of the Individual Vibronic Excitations Participating in Absorption
and Emission Band Shapes (Calculations Are Performed for the Model Chromophore withλs

I ) 3.4×
103 cm-1, λv ) 3.23× 103 cm-1, hνv ) 1500 cm-1, ∆Fs

I ) -9.33× 103 cm-1, ∆e ) 0.8, and∆E ) 24.2× 103 cm-1)

ma hνabs
b âσabs

2 c hνem
d âσem

2 c h∆νs
st h∆〈ν〉st hνm Im(νabs)e Im(νem)e

0 18.92 3.13 16.69 1.45 2.23 2.21 17.81 0.19 0.29
1 20.42 3.15 15.19 1.45 5.23 5.21 17.80 0.42 0.62
2 21.92 3.15 13.69 1.45 8.24 8.21 17.80 0.45 0.66
3 23.42 3.13 12.19 1.45 11.23 11.21 17.80 0.32 0.47
4 24.92 3.13 10.69 1.47 14.23 14.21 17.80 0.17 0.26
5 26.42 3.13 9.19 1.45 17.23 17.21 17.81 0.07 0.11
∑m 21.66 25.08 13.65 16.86 8.01 8.65 17.65 0.59 0.69

a Index of the vibronic band participating in the optical line∑m denotes the total spectrum obtained by the superposition of the individual
vibronic excitations, as in eq 36.b Energy of the individual vibronic absorption line and of the total absorption spectrum.c Calculated from the
half-intensity width according to eq 56.d Energy of the individual emission vibronic line and the total emission spectrum.e Intensity at the maximum,
the areas under the total absorption and emission lines are normalized to unity.

σabs,em)
σ(1/2)abs,em

(8 ln(2))1/2
(56)

〈(δν)2〉abs,em) ∫-∞

∞
(ν - νabs,em)

2 Jabs,em(ν)dν (57) Figure 8. Absorption (abs.) and emission (em.) vibronic envelopes
vs hν/λs

I. The dashed lines indicate the first five vibrational excitations
with m ) 0 - 4 in eq 36. The parameters of the solute and the solvent
are the same as those in Table 3.
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do not hold in delocalized complexes with∆e < 1. Two
manifestations of this come about. First, the solute-induced
Stokes shift is less than twice the adiabatic reorganization energy
(Figure 6)

The parameterλs
st is in fact a complex function ofλs

ad, ∆Fs
ad,

and∆e (eqs 47 and 46). It does not characterize the reorganiza-
tion energy alone as well as the mean frequency (eq 5) does
not give the equilibrium energy gap. Second, the vibrational
component of the vibronic envelope affects in a complex way
the positions of the spectral maxima. The subtraction of the
vibrational component of the observed Stokes shift in order to
extract its solvent-induced component works only if the first
spectral moments are used as the measure of the shift (Figure
9). The use of maxima positions instead of the first spectral
moments leads to errors increasing with delocalization.

Equation 4 relating spectral widths to the reorganization
energy also does not hold at∆e< 1. The adiabatic free energies
increasingly split with decreasing∆e. The minimum photon
energyhνmin sufficient to cover the gap rises with decreasing
∆e. The boundary of the band of the energy gap fluctuations
of the solute then blue-shifts. As this boundary approaches the
position of an emission line (∆m12 > 0), the emission line
narrows compared to the absorption line (Table 2, Figure 7).
Another manifestation of this effect is the development of the
inverted solvent dependence of the Stokes shift: at∆e close to
unity the Stokes shift increases with solvent polarity whereas
for smaller∆e the Stokes shift starts to decrease with solvent
polarity (Table 2).

The two-state approximation and its multistate extensions are
often considered to model the electronic polarizability of the
solute.10a-c The Drude oscillator model29 is another theoretical
tool for this purpose. We have recently considered electronic
transitions in a polarizable solute within the framework of the
Drude model11 and a comparison of the two approaches seems
pertinent here. A connection between the two-state and Drude
models can be drawn by noticing that a two-state dipolar solute
with the transition momentm12 generates the polarizability

that is positive in the ground state and negative in the exited
state. In Figure 10, the vibronic absorption and emission

envelopes obtained in the present two-state description are
compared to the same spectra following from the Drude model
considered in ref 11 with the ground and excited-state polar-
izabilities given by eq 59. Though not equivalent, the spectra
are nevertheless very close indicating that the two models
produce similar optical band shapes.

Of course, the two-state truncation is very unrealistic in
predicting the solute polarizability that commonly increases with
excitation.16 The Drude oscillator model is thus preferable for
describing the polarizability effects. The Drude model gives,
however, only diabatic free energy surfaces. It does not,
therefore, include the modification of the activation barrier of
thermal CT by electronic delocalization. A two-state description
(with a possible generalization to many states) in terms of
adiabatic CT surfaces is a better choice for describing the
delocalization effects. However, a proper account of polariz-
ability effects is hard to achieve by a multistate extension of
this approach as many states are needed to get the polarizability
right.30 In view of the complications characteristic of each of
the models, a hybrid description can be sought to include both
the delocalization and polarizability effects. The two states
involved in electronic transitions can be treated explicitly in
terms of the two-state model with the Drude model used to
describe the polarizability arising from the virtual transitions
to all other electronic states. A generalization of the current
theory along these lines is presently underway.

5. Conclusions

Classical theories of the solvent effect on optical band shapes1

consider interaction of the charge distribution of the solute with
the solvent as the source of the solvent-induced band-shift and
inhomogeneous broadening. The present development shows
that solvation of the off-diagonal matrix element of the solute
field, represented here by the transition dipole, considerably
modifies optical band shapes. Therefore, in many practical
situations, optical shifts and widths of intense optical lines
should depend not only on the initial and final dipoles of the
chromophore, but, to a large extent, on the transition dipole.
The band shape analysis of optical lines is extended to include
this feature. It turns out that the linear response relations widely
used to connect optical observables to CT activation parameters
(eqs 3-5) break down for electronically delocalized systems
generating essentially nonlinear features of the solvent effect
on optical lines. The CT parameters are thus solutions of

Figure 9. Stokes shift vs the magnitude of its vibrational component
for ∆e ) 0.9 (1) and∆e ) 0.7 (2). The solid lines indicateh∆〈ν〉st )
h(〈ν〉abs - 〈ν〉em), the circles showh∆νst ) h(νabs - νem). The dash-
dotted lines correspond toh∆νs

st. The other solute parameters are as in
Table 3.

λs
st e λs

ad e λs
d (58)

R0i ) (
2m12

2

∆E
(59)

Figure 10. The same vibronic profiles as in Figure 8 (dashed lines)
are compared to the band shapes calculated in the Drude oscillator
model (solid lines, ref 11) with the solute polarizability of the two-
state solute (eq 59). Since there is no direct connection between the
diabatic and adiabatic vacuum gaps, the Drude spectra are shifted by
a constant energy to ensure coinciding maxima of the 0-0 vibronic
transitions of the two absorption vibronic envelopes.
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nonlinear equations involving the absorption and emission
transition energies, the vacuum energy gap, and the delocal-
ization parameter. The optical spectra attain the low-energy
boundary caused by the adiabatic splitting of the free energy
surfaces. This boundary blue-shifts with increasing electronic
delocalization resulting in different widths for absorption and
emission as well as asymmetries of the optical bands.

Acknowledgment. We thank Prof. S. F. Nelsen for useful
comments and for spectral data from ref 24. This research was
supported by the Basic Energy Sciences Branch of the Depart-
ment of Energy through Grant DE-FG03-99ER14963.

References and Notes

(1) Liptay, W. In Modern Quantum Chemistry; Sinano glu, Ed.;
Acedemic Press: New York, 1965. (b) Amos, A. T.; Burrows, B. L. In
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