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A statistical ensemble approach and an ensemble master equation are introduced for the study of concentration
fluctuations in multivariable chemical systems far from equilibrium. The theory describes the stochastic
properties of the numbers of replicas of the system characterized by different compositions. We give a general
analytic solution of the ensemble master equation and investigate the relationships between the ensemble
master equation and the one-system master equation. A condition of mesoscopic time reversal (mesoscopic
reversibility) is introduced for a reference system; mesoscopic reversibility is less restrictive than microscopic
reversibility. For systems with mesoscopic time reversal the general theory turns into a simple form and, in
the thermodynamic limit, we derive an exact expression for the stochastic potential attached to the one-
system master equation. We study the stochastic properties of the numbers of the reaction events both for
system with or without mesoscopic time reversal. The condition of mesoscopic time reversal can be described
by an extremum condition: if the contributions of different reactions to the total number of reaction events
are constant, then the dispersions of the net numbers of the reaction events have minimum values for mesoscopic
reversibility. A set of fluctuation-dissipation relations is derived for multivariable chemical systems, based

on the use of the reaction extents as state variables of the system. We also consider systems that do not obey
the condition of mesoscopic time reversal and measure the departure of a chemical process from mesoscopic
reversibility in terms of a set a functions, which are proportional to the average values of the net numbers of
the reaction events. In terms of these functions we derive a set of fluctuaigsipation relations that establish

a general relationship among the rates and the reaction affinities of the different reactions occurring in the
system. A component of the dissipation function of the process is computed by using these fluetuation
dissipation relations.

1. Introduction thermodynamic potential that determines the stochastic non-
equilibrium stationary state of the syste(x) is a species-
specific reaction affinity,V and T are the volume and the
temperature of the system, akglis Boltzmann'’s constant. The
stochastic potentiakp(x), is related to the probability density
Ps(x) of fluctuations at a stochastic steady state by a relation
S|m|Iar to Boltzmann'’s relation for equilibrium thermodynamics

Fluctuation-dissipation relations play important roles in the
development of statistical mechanical theories of nonequilibrium
processed:they bridge the gap between the microscopic (or
mesoscopic) and macroscopic descriptions of physicochemicalz
systems and make possible the evaluation of the rate coefficients
for various transport processes from microscopic calculations.

Within the framework of a thermodynamic and stochastic ~ (%)
theory of nonequilibrium processe8 we have studied global (X) ;{— E

fluctuation—dissipation relations for chemical systems far from
and the species-specific affinity is given by the derivative of

equilibrium. Our first attempt dealt with one-variable chemical
systems far from equilibrium described by a mesoscopic master . . .

y q y P the stochastic potentigh(x) with respect to the total numbr
= xV of particles of the X species

equatiorf For such systems we derived the following fluctua-
tion—dissipation relatioh

(1.2)

i 5@ 0y A(X) = dD(X)/0X = V" ad(x)/ox (1.3)
x,t) = X) tan X
PO ®ta }‘{ 2kBVT X ( )] The fluctuation-dissipation relation (1.1) has two different
@ ( X) physical interpretation&In the first place it is a relationship
2D™(x) tan 2kBT 1.1) between the macroscopic properties of the system for any
nonequilibrium state, expressed by the net reaction Fgte)
of the species X and the mesoscopic (fluctuation) properties of
the system, for a stochastic stationary state, expressed by the
stochastic potentiatb(x). The second interpretation of the
fluctuation—dissipation relation (1.1) is purely macroscopic: eq
t Stanford University. 1.1 is a force-flux relationship typical for nonequilibrium
* Casa Academiei Romane. thermodynamics, where the net reaction raget) is a ther-

wherex is the volume concentration of a chemical species X,
p(xt) is the net rate of formation of the chemical species X,
D®@(x) is a probability diffusion coefficientp(x) is a stochastic
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modynamic flux and the species-specific affini§(x) is a

thermodynamic force corresponding to a deterministic nonequi- —
librium steady state of the system. By using this second physical

interpretation the fluctuationdissipation relation (1.1) can be

used for computing a component of the rate of dissipation of

the process. We have

dgtCI)(x(t)) = 2vDP(x) A(X) tan?‘{— AN (g

Vlad and Ross
d
—(VI(ED) =
~ . -
VZpu(é,t) J(ED) + VZSIW(B_QJ (g,t)) X
19
[bu(é,t) — 2D (&) tam‘{a g\]*(é,t)” (1.12)

u

For a single reaction the fluctuatiemlissipation relation 1.9

Equation1.4 shows that far away from a steady state thereduces to

contribution of the system to the dissipation function is

proportional to the absolute value of the species-specific affinity, BED) = 2D(E 1) tan

do[x®)])/dt ~ —2VDP(X)AX)| as  |JAX)| —

(1.5)

whereas close to a steady state, the dissipation function is

proportional to the square of the species-specific affinity

k%T D) A%(X)

L) = - as  |A()| —0

(1.6)

We have attempted to extend the global fluctuatidissipation

relations to one-variable disordered systems, based on the use

of characteristic functionals.The resulting fluctuationdis-

19 ...
25 E)
_ [a\ (1.12)
Vsin a—SJ*(E,t))

If the normal stochastic regime is stationary, the normal
chemical actionJ*(&,t) = J*(&) and the probability diffusion
coefficient D(§,t) = D(&) are independent of time and the
fluctuation—dissipation relation (1.12) reduces to a form similar
toeq 1.1:

ﬁ@=m@mﬁiww

3% (1.13)

sipation relations have been used for the study of the fluctuations oy previous attempt of deriving global fluctuatiedissipa-

of the reaction volumé.

Another class of systems for which we developed fluctua-
tion—dissipation relations is a multivariable closed (but not
isolated) chemical system with multiple reactions of the type

z%xi = Z”ixi
I |

and for which, due to environmental variations, the rate
coefficients are functions of time. For this type of system we

u=1,2, .. (1.7)

have shown that, provided that some reasonable assumption
are fulfilled, the system evolves toward a stochastic normal

regime for which the probability of fluctuations evolves toward
a normal form independent of the initial conditiohs:

P(&D) ~ explVI(&,0)] (1.8)

to the chemical processes (1.7) aFi¢,t) is a normal chemical
action which plays the same role as the stochastic potehgid!
for one-variable systems. We have also derived a fluctuation
dissipation relatiohsimilar to eq 1.1:

10 3
A= VZ[ 2D (&) tan?‘(é a—guJ (E,t)) - Pu(S,t)] x
9
sm}‘(a—gu\] (g,t)) (1.9

whereDy(&,t) is a probability diffusion coefficient attached to
the uth reaction 1.7p,(&,t) is the net rate of theth reaction
1.7, and

— O
A= VEI(ED (1.10)

tion relations for multivariable chemical systems has a serious
limitation. Even though the systems of type (1.7) are described
by many state variables, our theory leads to a single fluctuation
dissipation relation. Although this fluctuatieilissipation equa-
tion (egs 1.9, 1.12, and 1.13) has a structure similar to the
fluctuation—dissipation relation, (1.1), derived for one-variable
systems, unlike eq 1.1 it cannot be interpreted as a feftas
relationship. To overcome these limitations of our multivariable
theory, we shall investigate a general feature characteristic for
ultivariable systems, which is the lack of detailed balance.

e shall show that for multivariable chemical systems it is
possible to introduce a condition of mesoscopic time reversal
(mesoscopic reversibility), which is less restrictive than the
condition of microscopic reversibilit}¢~12 The condition of
mesoscopic reversibility leads to semidetailed (mesoscopic)
balance, which is also less restrictive than the condition of
detailed baland&1? derived in the literature for systems with
microscopic reversibility. We shall develop a statistical ensemble
approach for the study of concentration fluctuations in complex
chemical systems. The systems studied do not generally obey
the condition of mesoscopic reversibility; the condition of
mesoscopic reversibility provides a useful reference state that
serves as the starting point of our computations. On the basis
of this idea, we shall introduce a set of functions that measure
the departure of an arbitrary multivariable chemical system from
mesoscopic reversibility. By using these functions as additional
variables, we derive a set of fluctuatiedissipation relations
that can be interpreted as a set of nonlinear flforce
relationship that may serve as a basis for developing a nonlinear
thermodynamic approach for chemical systems far from equi-
librium.

The structure of the paper is the following. In section 2 we
give a general formulation of the problem and in section 3 we
introduce a statistical ensemble description for the study of
concentration fluctuations. In section 4 we introduce the

A component of the dissipation function of the process can be condition of mesoscopic reversibility, show that it leads to the

also computed from eq 1.9. We hdve

condition of semidetailed (mesoscopic) balance and study its
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main consequences. In section 5 we investigate the stochastigossible that two or more of them have the same stoichiometry
properties of the number of reaction events and study the mainfor the active intermediates. A typical example is the well-known

properties of the systems without detailed balance. In section 6 Schlggl model®

we derive the dissipatiorfluctuation relations, and in section
7 we discuss their physical significance.

2. Formulation of the Problem

A, + 2X, = 3X,
A, =X,

2.7)
(2.8)

Chemical fluctuations in systems far from equilibrium are o \hich the stoichiometry of the Xntermediate is the same;

usually described in terms of a chemical master equation. Let ot is

us consider a homogeneous chemical system made & of
stable substances, j =1, 2, ...,S,, andS; active intermediates,
X, j =1, ..., S which are involved irR elementary reactions

St S k' s S
+ v s — _ .
l J j l (2.1)

wherea; andg; are stoichiometric coefficients arif are the

it is characterized by the same variation of the
stoichiometric coefficients of X fi1 =45, — fp=3—-2=1
andfjp, = 1:

0

X, = (2.9)

The reduced reactions with the same stoichiometry of the X
intermediates can be lumped into a single reduced equation of
the type (2.6). The corresponding forward and backward reaction
rates are sums of the individual rates of the reactions lumped

rates of the forward and backward steps, respectively. The ratesogether

of the chemical reactions (2.1) are assumed to obey the

stochastic version of the mass-action Fw:

S AR~ 1. — o +1)

r= VK- D

X
Vel
& [X (X — 1)...0¢ — By + 1)

Vﬂﬁ:

2.2)
L

whereV is the volume of the systemj: andk” are the forward
and backward rates and rate coefficients, respectively,Aand
andX; are the numbers of molecular specgsandX;.

To prevent the approach of the system to chemical equilib-
rium, one assumes that the numbersApfare controlled by

interaction with a system of reservoirs connected to the system

by means of semipermeable walls. If the numbers of Ahe

P = zri i=1,..L<R (2.10)

where the rates; are given by eq 2.4.
The state of the system is described in terms of the com-
position vector of the active intermediates
N = (X, '“’XSZ) (2.112)
From eq 2.10 we can evaluate the transition ¥&ftg, from the
stateN’ to the statéN by adding the contributions of the different
reduced reactions with different stoichiometry:

Wan = ZP%(N £ f)On (st (2.12)
Iy

species are known, a simplified description of the system is where

possible. By removing from eq 2.1 the stable substaAgese
get a set of reduced reactioHs:

S ki S
Zﬁ;xj =YX, i=1..R (2.3)
= k=
The corresponding reaction rates are given by
% [X (X — 1)...04 — B + 1)
M = Vit |‘j - (2.4)
&
= Vﬂjl
where the apparent rate coefficients
S [AA — 1)..( — o5 +1)
- (2.5)

i =kt

depend om;.
If we are interested only in the stoichiometry of the active
intermediates, we can rewrite egs 2.3 in the following fdfm:

v

S
ijiszo i=1,...R f=8 -8 (2.6)
£

Although the reduced reactions are physically distinct, it is

fi = (fy, ...,fszi) (2.13)
are row vectors made up of stoichiometric coefficients.

By assuming that the stochastic process describing the
evolution of the chemical system considered is Markovian, we
can derive a master equation:

0
—G(NtIN".t') =
ot

Z [Wig GIN" N ) — Wi GINLEN'E)] (2.14)
N"=N

with the initial condition

G(N" t=t'|N",t") = O (2.15)

G(N",t|N',t') is the probability that at timéthe state of the
system isN"”, provided that at time' the state of the system
wasN'. The ratesMyn- are generally time-dependent because
of the possible time dependenceAf

As the evolution of the system is assumed to be Marko-
vian, the conditional probabilitgs(N",t|N',t") determines com-
pletely the random time evolution of the composition vector
N. In particular, the joint probability distributionB1(Na,t;),
P2(N1,t1;No,to), ..., are given by
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Pi(N,D) = § G(NLEN't)P,(N' ') (2.16) constant, the numbebd (1) are fluctuating quantities. Fovi 5
Z — oo these fluctuations are negligible and we can approximate
the one-time state probability densiBy(N,t) by a relative

PANEN ) = GINAN)P,(N'E), ete. (217)  frequency

Solving the master equation (2.14) is very difficult. Although PINH)=M /My as My;—owo (3.2
some approximate methods of analytic integration are available,
their application is not easy. Sometimes even the finding of For a finite number of statistical ensembles the sample fluctua-
SUItab|e nume”cal SO|utI0nS IS nontI’IVIaL In the V|C|n|ty Of t|0ns are f|n|te and the One_tlme state probablhty |S to be

equ|l|br|um the prInCIple of deta'led balance a”OWS the reduction interpreted as an average value rather than an instantaneous
of the integration of the master equation to a Hermitian yg|ative frequency

eigenvalue problem. Applied to the reaction network (2.1) the

principle of detailed balané&1? requires that at equilibrium P,(N,)= M ()M M finite (3.3)
the forward rate of each elementary reaction equals the
corresponding backward rate We can formulate the following problem: what is the probability

. _ of fluctuations of the vector
rr=r,  for A=AYX=X i=1,.,R (2.18)

M =My, My, ...) (3.4)
where the rates;” are evaluated in terms of the equilibrium
values of the numbers of molecules. The physical explanation of the numbers of different systems in the ensemble? By using
of the occurrence of detailed balance at equilibrium is related g technique suggested by Ramakrishfane can express the
to microscopic reversibility, i.e., to the fact that the classical or transition rates in the ensemble by the transition rates for a given
guantum Liouville equations attached to the chemical system system, defined by eq 2.12
(2.1) are invariant with respect to the change of the sign of the

time variable. W (M — M)At = 5M'(...M +1,..M ,—1...)'\/I nWinAt
In this paper we are concerned with systems far from N =N NN
equilibrium for which the condition of microscopic reversibility (3.5)

is generally invalid. However, it is useful to introduce a
condition of time reversal for a stochastic nonequilibrium steady
state. Although this condition of time reversal is generally not
fulfilled, it simplifies the computations by providing a standard
reference state. By introducing a set of variables, which measure
the distance of a real system from a nonequilibrium stochastic yhich obeys the master equation
reference state with time reversal, it is possible to define a set
of fluctuation—dissipation relations for chemical systems far 9
from equilibrium. —G(MIM't) = ;W (M"—=M)G(M"tM't) —

To derive a set of fluctuationdissipation relations for
complex chemical system described by eqs2.35, we shall G(MtIM 't ');‘W (M —M") (3.7)
develop a statistical approach comprising the following steps:

1. the development of a statistical ensemble description for o »
the study of chemical fluctuations with the initial condition

2. the introduction of a nonequilibrium standard reference
state that fulfills the condition of time reversal GMt=tIM"t)= |_|5MNM ‘N (3.8)

3. the investigation of the implications of the conditions of N
time reversal

4. the study of the statistics of the numbers of the reaction
events occurring in the ensemble

5. the introduction of a set of functions that measure the
distance between an arbitrary nonequilibrium state and a
reference state obeying the condition of time reversal

Now we can introduce an ensemble probability distribution

G(MtM't)  with EG(M,UM't'):l (3.6)

A detailed description of the ensemble statistics can be given
in terms of the joint probabilities

B,(M,Y) = ;G (MtMot) Bi(Moty)  (3.9)

6. the derivation of a set of fluctuatietdissipation relations B,(M,,t;M 1) =G (M, t,IM t) B;(M 1), etc.
and the study of their main properties (3.10)
3. Dynamics of Reaction Events and Statistical Ensemble By introducing the generating function
Description

— "t M, <
We introduce a statistical ensemble description by considering L) EG (MUM*t) |:| ) Wl =1
a large numbeM s of systems, each system being characterized (3.11)
by different composition vector$y1, Ny, .... Denoting byM -
(t) the number of systems characterized by the composition
vectorN at timet, we have

M, = %M y(b) = constant (3.1) L) = J;I{ U

we can reduce eq 3.7 to a first-order partial differential equation

in L. By solving this equation we come to

ZG<Nu,t|Nu,t)yu]M'”'“'} (3.12)

Although the total numbeMs of systems is by definition ~ from which, we get the following expression fér(M,t|M 't'):
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G(MtM't) = with the initial condition
my
Z Z ﬂ ' | (G(Nu1t|Nﬁ1t )) (313) G*(Z,Nu,t — t’|N"Jv,t') — 6NuNu’ (323)
mys= my,!

Although in general we cannot derive an explicit analytical
where O is the number of possible composition vectors and expression for the joint probabilit3 ;(M,Q;t), the stochastic
the sums ovemy; obey two sets of constraints, which specify properties of the numbers of reaction events can be derived from

the final and initial values of the vectd: egs 3.213.23.
In conclusion, in this section we have developed a statistical
M N, = ;muﬁ (3.14) ensemble approach for the study of concentration fluctuations
in complex chemical systems. We have derived an ensemble

, master equation that describes the stochastic properties of the
N = zmuﬁ (3.15) numbers of replicas of the system characterized by different
. composition vectors. We have derived an analytical solution of
The dynamics of the reaction events can be described in ath® ensemble master equations, which depends on the Green
similar way. Denoting byguy the number of reaction events functions attached to the one-system master equation.
of the typeN — N’ occurring in the ensemble in the time interval
betweent, andt, we can introduce the jump rates 4. Mesoscopic Time Reversal

W*(M,Q—M",Q)At = In statistical mechanics, the condition of microscopic time
Sur S reversal® 12 (microscopic reversibility) expresses the invariance
M (ML M =10 @ Q1 Qe N;NELgN of the microscopic equations of evolution with respect to the
{0 0. }M WAt (3.16) changi_ng o_f the sign of the t_ime variable. For systems without
NN solenoidal fields, the application of the condition of time reversal
leads to the conditions of detailed balance, which states that
for each direct process, there is a reverse process and that at
Q= |lgy .l uu=1..,0 (3.17) equilibrium the rate of each direct process equals the rate of
o the reverse process. For example, in the case of the reduced
The one-time joint probability o andQ, B *(M,Q;t) obeys reactions (2.3) there aR conditions of detailed balance (eqs

: o 2.18).
a master equation similar to eq 3.7 -y -
d d Within the framework of our model, the description of

N,N"=N

where

9 concentration fluctuations is not based on a microscopic
—Bi(M,Q;t) = description, but rather on a mesoscopic description, in terms of
ot the ensemble master equation (3.7). If we impose that the
ZD W*(M",Q"—M,Q)BI(M",Q";t) — ensemble master equation (3.7) is invariant with respect to the

MTQ" change of the sign of the time variable, we obtain a new

W*(M,Q —M",Q") Bi(M,Q;t)] (3.18) condition of time reversal, which is less restrictive than
microscopic reversibility. We suggest the name of “mesoscopic
with the initial condition reversibility” for this new type of condition of time reversal.
Unlike microscopic reversibility, the condition of mesoscopic
B1(M,Q;t =t) = 0qoB1(M;t = ty) (3.19) reversibility is not introduced for equilibrium but for a stationary
stochastic state that is generally far from equilibrium. For
It is easy to show that the generating function of the joint mesoscopic reversibility, the condition of time reversal is

probability B(M,Q;t), generally an assumption rather than a consequence of the
underlying microscopic dynamics. The main reason for which
L*(y,2) = ; Bi(M,Q;t) |‘| (yu)'V'Nul—l (Zy) MM we introduce the condition of mesoscopic reversibility is that it
of\T, u wu provides a useful reference state that may serve as the starting
IVl = 1,12, =1 (3.20) point of our calculations.

For a chemical system, mesoscopic reversibility is less
is the solution of a partial differential equation, which can be restrictive than microscopic reversibility, in the sense that it
solved analytically. After lengthy calculations we obtain (see imposes fewer constraints on the system. For example, for

ref 9 for a similar computation) chemical systems described by the reduced reactions (2.3),
microscopic reversibility leads t&R conditions of detailed
L *(y,z;t) = balance, eqgs 2.18, one condition for each reduced reaction (2.3).

tions, L < R, which requires the equality of the forward and
backward rates (2.10) of tHelumped reactions, which can be

where the modified Green functio®*(z,N.,t|Ny,t)) obeys a derived from theR reduced reactions (2.3)
master equation similar to eq 2.14
q q ol =p e erz S, i=1..L=R
8 o ¢ o ¢
a—tG*(z,Nu,uN'u,,t') = ZN [ W N GH(Z N tING ) — (4.1)

In the following we refer to the conditions of type (4.1) as to
semidetailed (mesoscopic) balance. The difference between

, , M i, Mesoscopic reversibility leads to a smaller number of restric-
% Bl(M 'tO){ I_l [ZG*(ZlNuyﬂNu’ltO)yu] § } (321) i b H y H
, o | £

Wiun, G (2N NG E)] (3.22)
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detailed and semidetailed balance can be illustrated by consider- B (M t), G (MM ")~ BS(M) as t—o

ing the Schigl model, egs 2.7 and 2.8. For this model, detailed (4.6)
balance provides two conditions: st

B,(M,t;M " t')—GM,t—t'|M’',0B](M) as

where
whereas semidetailed (mesoscopic) balance provides only one
condition: o My! o

BI(M) =———TPSN)I™  (48)
ry+ry=r +r, (4.3) Ny VNG U=

and the ensemble Green functiG(M,t—t'|M’',0) is given by

Concerning the possible existence of mesoscopic time reversaleq 3.13 applied for the particular case where the canonical Green
in real systems, we notice that all systems that obey micro- function G(N,t|N'.t') is time-invariant:
scopic reversibility also obey mesoscopic reversibility but the
reverse statement is generally not true. One-variable non- G(N,tIN"t'") = G(N,t—t'|N’",0) (4.9
equilibrium systems, such as the Sdilonodel, obey the
condition of mesoscopic reversibility for any nonequilibrium
steady state, but microscopic reversibility is fulfilled only at
chemical equilibrium. Multivariable chemical systems far from
equilibrium obey mesoscopic reversibility only in special cases,
which are nongeneric. Although for multivariable chemical
systems far from equilibrium the occurrence of mesoscopic

These equations may be used to evaluate the stochastic
properties of the numbeidl v, ..., My, Of systems character-
ized by different composition vectors in the stationary regime.
In particular we get the following expressions for the moments
of first and second order

b __ st,
reversibility is rather rare, its study is useful, because it provides Ly Nu(t)Ij =M;sPi(Ny) (4.10)
a reference state, which is the starting point of our calcula- ,
tions. [AMy (1) AM (t)5 =
In this section we investigate the implications of mesoscopic M PSIN,)[G(N,t—t'N,,0) — PS(N,)] (4.11)

reversibility for the statistical ensemble representation of a

complex chemical process developed in section 3. We shall Now we introduce the condition of mesoscopic reversibility by
customize the methods used in the literature for the study of requiring that

microscopic reversibili}f~12 for the statistical ensemble de-

scription of a multivariable chemical system far from equilib- [AM v () AM ,(t')ﬁtz [AM, (t) AM (t')ﬁ‘ for all

rium that obeys the condition of mesoscopic time reversal. ! ! ! !

The general relationships presented in section 3 are valid even Ny, Ny (4.12)
if the transition rates (i.e., the effective rate coefficietjtsor
the concentrations of the stable intermediatgsare time-
dependent. In most cases_ analyzed in thg literature, _however, G(N,t — t'|N;0) Pit(N') = G(N',t — t|N:0) Pit(N) (4.13)
one assumes that effective rate coefﬁuewf’s are time-
invariant and that the numbers of stable species are held To investigate the significance of the condition of mesoscopic
constant. In this case a stationary probability distribution reversibility (4.13), we shall try to express it in terms of the
eventually emerges provided that all composition vectors are transition rate&\i. For simplicity we attach to each vectr
connected, that is, if for any two composition vectbrandN’ a labelu and use matrix notation. We have
there are at least two patis— N; — ... — N" andN' — N;

— ...~ N for which the corresponding rates are different from N—u, N —u’; P(N,t) = P,1);

zero. We have G(N,tN't') — G, (t—1) (4.14)

Equations 4.11 and 4.12 are simultaneously fulfilled only if

P,(N,t), G(NtIN"t') — Pit(N) as t—oo (4.4) The time reversal condition (4.13) may be rewritten as

P,(N,EN'E) — G(N,t — t'|N';0) Pi‘(N) as 6G=G'o (4.15)
t— oo, etc. (4.5) where
wherePi‘(N) is independent of time and of the initial state of G = |Gyl o= ||5uup3f|| (4.16)

the system an@(N,t—t'|N’;0) depends olN,N’ and on the time
differencet — t'. Such stationary probability distributions exist  On the other hand, the master equation (2.14) becomes
even if the corresponding system of deterministic equations does
not have stationary solutions, for example, in the case of a stable dG(t)/dt =G({)(W — Q)  with  G(t=0)=1 (4.17)
limit cycle. In the literature there are many proofs of eqs 4.4
and 4.5 based on the PerreRrobenius theorem, on the use of
H-functions!’ etc. These proofs rely on the fact that the total W = [|W,,|| W,
numberO of composition vectors, although possibly very large,
is however finite. and

From egs 3.9, 3.10, and 3.13 we notice that the asymptotic
property expressed by eqs 4.4 and4.5 leads to a similar property Q= ‘
for the ensemble probability distributions

where

=0 (4.18)

Ous ) Wy (4.19)

u
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The formal solution of eq 4.17 is and

G(t) = exp{t(W — Q)} (4.20) . S
Kp = V)% 4.32
By taking the time derivative of eq 4.15 at the padirt 0 and “b kbiD(A]N) ( )
using eq 4.20, we come to

N We look for a stationary solution
oW —-Q)=(W"— Q) (4.22)

5 st .
The diagonal terms on both sides of eq 4.21 are equal to zero; P7(x) ~ expl V) as Ve (4.33)
the off-diagonal terms lead to where the stationary actia¥(x) is volume-independent

Wi PT(IN) = Wiy PE(N) (4.22) J(X) ~ VO (4.34)

Equation 4.22 or its matrix version (4.21) is equivalent to the We insert eq 4.33 into eq 4.28 and keep the dominant terms in
time-reversal condition (4.12)4.13). To prove that we evaluate V. We come to a stationary Hamilterdacobi equation id(x)
the general term in the expansion
H(x,V,J(x)) =0 (4.35)
00 tm
oG = ZO—|0(W - Q)" (4.23) In the thermodynamic limit the condition of mesoscopic
= M- reversibility (4.22) can be written in a form similar to eq 4.35.
We note that to each pair of transitiohs— N’ andN' — N
there corresponds a single reduced reaction (2.6). By using eqs
o(W — Q)" = (W — 9)+o(W _ Q)m—l = = 2.12, 4.33, and 4.34, the conditions (4.22) of mesoscopic

[(W— Q)Mo= W' — Q)"0 (4.24) reversibility become

By using eq 4.21 repeatedly we come to

By combining eqs 4.23 and 4.24, we recover eq 4.15. H,(x,V,J(x)) = 0 b=12,..L (4.36)

Equation 4.15 has an important consequence: there is &\ here
similarity transformation oV — Q that leads to a symmetric
matrix a
H,(x,V'V,..)= Z 1—ex :Fv*lz fo—
oW — Q)0 " =[¢"AW — Q)0 V"  (4.25) T X

and thus the eigenvalues &V — @ are all real and the o .
determination of the Green functioB reduces, at least in i the contribution of thebth reduced reaction (2.6) to the

]ﬁbi(x)
(4.37)

principle, to an expansion in eigenfunctiofs? Hamiltonian (4.36). We have
Now we introduce the thermodynamic limit =L
-1 _ -1
X,V—e with  [Ox =X/Vconstant (4.26) HX.V V,..)= ZHb(X,V Vi) (4.38)
=

We define a scaled probability distribution Thus, the mesoscopic reversibility implies that not only the total

P,(N,HAN = |5(x,t) dx with AN =[1] (4.27) Hamiltonian of the system expressed in terms of the chemical
action is equal to zero for a stationary solution, but also each
and use a method due to Kubo, Matsuo, and Kitahara (K)K  individual contribution of the reduced reaction to the Hamil-
In the thermodynamic limit we can write the master equation tonian must be equal to zero.

for P(x,t) in a form similar to a Schidinger equation Equation 4.36 are quadratic equations in the functions
0~ _ —1 = aJ(X)
ﬁP(x,t) = —H(x,V "V, )P(x,t) (4.28) C,= exp(z fub@ (4.39)
u
where the Hamiltonian operatsi(x,V~1V,) is given by
By solving these equations i@, and keeping the physically
H(x,V_lvx...) = significant solutions, we get a set of first-order partial differential
b=L P equations inJ(x)
Z [1 —expFV? z fp— ] Pr(X) (4.29) i,
b=Ti+ T 0% aJ(x) Pb
qub—zln — b=1,..L (4.40)
The quantitiesﬁbi(x) are the scaled forms of the reaction rates ] X, Py

(2.10) in the thermodynamic limit
. - . The equations (4.40) are redundant: we have many equations
P, ~ Vo (X) = VZrba(x) as V—oo (4.30) for only one unknown function. This fact shows clearly that
o the mesoscopic reversibility is not generally valid: it holds only
if among the different reaction ratek, there are some
relationships so that the different solutions of eqs 4.40 are
S ) equivalent to each other.
T (X) = /”cbi |_|(x‘-)ﬁjb (4.31) Each of the eqs 4.40 can be solved analytically. They are
= first-order partial differential equations and for this type of

with
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equations the general solution is related to the solution of the

system of characteristic equations

d, B g
E_ aee ™ f

—=—0 .= 1=1..5 b=1 ..,
s IN[py/py]

(4.41)

The solution of each of the equations (4.40) can be represented
implicitly as an arbitrary function of the integrals of motion of

Vlad and Ross

PE)=BexpVJE)] as V—ow (4.48)
whereB is a normalization factor
B ={ [expVI§)] d&} * (4.49)

In terms of concentrations, we have

P = [i[]0( = %00 = Z fufp) P(&) dE =

the system of characteristic equations (4.41). Considering a set
of characteristic equations (4.41) for a givenwe note that fe—"l_lé(xu —%,(0) — Z fuusn) expVI(E)] df/
u
JexplVI(E)] dE (4.50)

the firstS, — 1 equations

) ) o ) ) These equations allow us to clarify the relations between the
define a straight line in the concentration space. Introducing & condition of mesoscopic reversibility used in this article and
coordinateZy along this straight line, we have semidetailed (mesoscopic) balance. The macroscopic steady
states correspond to the maximum value®Bfthat is, to the
maximum values of the chemical actigh The stationarity
condition forJ

i/, = .. = s ffs), (4.42)

A&, = dx/fy, = ... = Ak ffs), (4.43)

& is the intensive reaction extent attached to ke reduced

reaction. Cons_idering the ef_fect of all reactions, We_notic_e that dl= S (0J/9&,) d&, =0 (4.51)
the concentration vectoi(t) will not move along a straight line,
but in anL-dimensional subspace of the concentration space.
We have implies that
(4.44) pe=py b=1,..L (4.52)

Xy = X%,(0) + Z fuebo
This condition is less restrictive than the condition of detailed

Now the necessary and sufficient conditions for the validity of balance (eq 2.18), which requires that all forward and backward
mesoscopic reversibility are clear. Equations 4.40, which are individual processes making up a lumped reduced reaction are
equivalent to the mesoscopic reversibility, provide a set of equal to each other, respectively.
expressions for the partial derivatives of chemical action with ~ For a given steady state (or &) the differenceAd = J(§)
respect to the reaction extents. In order that these partial — J(&s) is a Lyapunov function of the macroscopic evolution
derivatives are generated by the same expression of the chemicagquations

actionJ = J(x) = J(x(§)), it is necessary and sufficient that

déjdt=p, —p, b=1,..L (4.53)

~t ~t
L S PoS) N Pe &) b.=1 L for the domain of attraction afs. The proof of this property is
9o, | | pp(8) o, | |pn(8) v o straightforward. For a stable steady stajethe state probability
! : (4.45) and the chemical action have a local maximum and therefore

for

=&
AJ

These conditions ensure that the expressions (4.40) are thedJ <0
derivatives of a potential; they are an alternative form of the §=E&, (4.54)
condition of mesoscopic reversibility. Indeed, starting from

equations 4.45 and 4.33, we can recover eq 4.28 and then edon the other hand by using eqgs 4.45 and 4.53, we have
4.22. If the conditions (4.45) are fulfilled, then the evaluation

=0 for

et
of the chemical action reduces to a path integration. The path AJ= Z(Pb — bp) In(py/pp,) (4.55)
can be arbitrary; however, the simplest choice is
from which we get
(E0), & 0) = (&1 - E.0) — , g
Ep & 5 O0)— o~ (5 &) (446)  AJZ0 for o g=gg
AJ=0 for §&=§&, (4.56)

By using the path (4.46) we get

P, (E1,E2(0),.-£.(0)) g
Pp,(61,65(0),...£,(0))
P (Er&ar-£)

The formulation (4.45) of mesoscopic reversibility has an
advantage: unlike the alternative formulations (4.36) or (4.22),
it can be easily checked. Given a particular model we should
express the ratef, in terms of the reaction extents and
verify whether the partial derivatives (4.45) are equal to each
other. By expressing the conditions (4.45) in terms of concentra-

3(E) = IEO) + [ yIn

3

L

O P (E1Epren ) de. (447) tions we come to
~+ ~+
It follows that for a system with mesoscopic reversibility the i Zn p_bz L o 9 In p_bl (4.57)
state probability can be evaluated analytically in the thermo- z byu X, |5 Z bou X, |3 )
dynamic limit. In terms of the reaction extents, we have ! P, ! Po,
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By recalling the definition of the lumped raté§ (4.30) we
notice that eq 4.57 is automatically fulfilled at least in two cases.

1. For each distinct reduced reaction (2.6) the corresponding

reaction ratesaff depend only on one concentration of the
active intermediates, denoted Ry,
~t o~k
o = P (%) (4.58)

and is independent of the other concentratipsh’ = b, which

enter the expressions of other reduced reactions. A special case

corresponds to the conditid® = L andu, = uy for b = b'.
This situation is fulfiled when the elementary processes

corresponding to a lumped reduced reaction with a given label

b involve only the intermediate,,. In this case in eq 4.57 both
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In particular, ifx(0) = xs, wherexs is the composition vector
corresponding to a steady state, we have

W[ =1 (4.66)

and we get the following expression for the Lyapunov function

AJ(E)
AJ(E) = Z(XU(O) Y fub&b) x
[In(l + Z«fubfsbyxuw») - ] (4.67)

The main results obtained in this section are the following.

sums are equal to zero. As the numheof reaction extents is  We have used the statistical ensemble approach for investigating
the same as the numb@rof reaction intermediates, the passage the implications of the condition of mesoscopic time reversal.
from reaction extents to concentrations and vice versa is very \We have shown that the time reversal condition leads to a

easy. By applying eq 4.47 we get

Py (X,)

J(x) = J(x(0)) + Z flego) In dx, (4.59)

Fo(x,)

In particular, forL = 1 eq 4.59 reduces to an equation derived
by Ross, Hunt, and Hunt for one-variable open chemical
systems.

2. A lumped reduced reaction 2.6 is made up either of a
unique autocatalytic reaction or of multiple noncatalytic reac-
tions with the same stoichiometric coefficienfs;, of the
active intermediates and with possible different stoichiometric
coefficients o, for the stable substances. In this case the
ratios of lumped rates can be written in the form

PolBy = W, [ 00)"™ (4.60)
u
where
W, = ki licy (4.61)
for autocatalytic processes and
W= (S| wo, (4.62)
[z

a

condition of semidetailed balance for the probability fluxes,

which connect two different states of the statistical ensemble.
We have made a connection between these semidetailed balance
conditions and the eikonal approximation of the solutions of

the one-system master equations in the thermodynamic limit.
We obtained an analytical solution for the stochastic stationary
solution of the one-system master equation for systems with
semidetailed balance in the thermodynamic limit. Further
implications of mesoscopic reversibility, related to the statistics
of reaction events, are investigated in the following section.

5. Statistics of Reaction Events

In this section we discuss the ensemble statistics in terms of
the number of reaction everi&The purpose of our analysis is
to investigate the differences between systems with or without
mesoscopic reversibility and to use these results for the
development of a set of multivariable master equations. We have
shown in section 3 that the dynamics of the reaction events is
described by a modified Green functi@*(z,Ny,t|Ni,to), which
is the solution of eqs 3.22 and 3.23. In matrix notation egs 3.22
and 3.23 become

for nonautocatalytic processes. By inserting eq 4.60 into eq 4.57where

we get

S funfun =Y fus,fun /s (4.63)
u u

which is an identity. The line integral (4.47) can be evaluated
analytically. After some calculations we get

3(E) = I(E©) +
z(xu(O) +y fub&b)[ln(l W AEO) B

Z‘sb{ln[wbﬂ(xu(m) “Il (469)

Here we use the convention that the initial integration point is
the reference concentration vectd0) with respect to which

dG*/dt = G*(W — Q) + G*E (5.2)

with the initial condition
G*(0) =1 (5.2)
G* = |Gyl E = [Why(Zoy — DI Ep, =0 (5.3)

It is easy to check that the solution of eq 5.1 with the initial
condition (5.2) is also the unique solution of the integral equation
G () =G + [[GX(t)EG(t—t)dt  (5.4)

The exact perturbative solution of eq 5.4 is

G*(nH =GO+ z{[G(t)E]®"'® [G(t)E]}l® G(H (5.5)

q=1

g times

where® denotes the temporal convolution product. The series

the reaction extents are evaluated. This convention correspond$5-5) has an important property; thh term contains the matrix

to

£0)=0 (4.65)

E gtimes and thus it is a homogeneous functiomjtbf order in
Zy — 1. It follows that this term determines completely the
derivatives ofgth order of G*(t) with respect to the variables
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Zyy in the pointzyy — 1. By evaluating these derivatives, we G* = exp[At(W — Q + E)] ~ | + At(W — Q + E) (5.15)
can compute, at least in principle (cf. egs 3.20 and 3.21), the

values of all the moments of the reaction events. In particular, For a stationary ensemble described by the distribuBgM )

we get the following expressions for the moments of first and (eq 4.8), the generating function of the probability distribution
second order of the number of reaction events in stationary of reaction eventd, *(y = (1),z:t), may be evaluated as follows

conditions:
} L*(y=(1),zt)=
(B, ( = tM 5P (D)W, (5.6) B (M (0))|_|[1 _QAt+ szbwmlAt]Mm(O) _
mkC‘Iblml(t)Ac‘bzmz(t)Dz M (0) m
tM P (B)W 1 (06, Omym, — PR (D)W 1) + {1 - 3 PYme,At+ Z zb;nbpit(m)wmbm} M: (5.16)

t
M sWo, 0 Wh,m, fo(t = E)[PY(DL) Gy (1) + | .
St N dit Now we introduce the net numbers of the reaction events
P1(by) szbl(t )t (5.7) from an initial stateb to a final statem

We consider a given reduced reaction (2.6) and two composition Oom = %om — Ymb (5.17)
vectorsNp andNy, = Ny + fp and evaluate with the help of eqs
5.7 the correlations between the forward and backward reactionFor a proces®N, — Ny, with Ny, = Ny + f,, corresponding to

events a given reduced reaction 2.6, is the difference between the
5 . ) forward and backward reaction events occurring in the time
[AQ,()° 0= tM P (0)W,, (1 — tP(b)W,,) + interval At. The variablesg,m are somewhat similar to the

2 (U st N extensive reaction extents,. The difference between these
2M 5(Wor) b/c‘)(t )P1(b) Grryft) dt (5.8) two functions is thalv&, are overall variables attached to the

2 " ot reactions (2.6), whereapmn are mesoscopic variables attached
(A1) AGg(t) = —t"M sPT(0) WP (M) Wy, + to the same reactions and to the two sets of initial and final

t it —
MW, W t — t)YPS(b) G..(t') + P(m) G (t')] dt’ composition vector&, andNm = Np + fp.
=om mbfo( JP1(0) Grslt) (M) Gon(t)] We analyze the behavior of the stochastic varialgigsin

(5.9) both continuous and discrete time. In continuous time the
I Aqmb(t))2D= tM zpit(m)me(l _ tpit(m)wm )+ generating function of the probability distribution g,
2M (W) fO‘(t — t)P3(m) G,,(t') dt' (5.10) E(gAt)  with ZE(g,At) =1 (5.18)

g
If mesoscopic reversibility does not exist, then the dispersions can be derived from eq 5.16 by means of the substitutigr-

of the forward and backward reaction events are generally "1 After lenathy calculations we get the following expres
different. Mesoscopic reversibility leads to the equality between gzilé)nl’? fc;rT(g At)'g y uiati weg Wing expres-

the two dispersions. This fact suggests that the mesoscopic
reversibility is characterized by an extremum condition. A Z(g,At) =
simplified analysis of this effect is possible by evaluating the '

number of reaction events occurring in a time interalthat My!
is smaller than the chemical relaxation time of the system, (1 — ZPit(m)QmAt)MEZ"‘Z"*”‘qm' X
At<1t,, (5.11) q"“”('\/'z - sz qmb)! "
m m
but large enough so that the total number of reaction events is (W, PS{m) At
a large number ! [0 1 (
_— _ 5.19)

0= Z mebmmz AtMEZ szil(b)wbm >1 (5.12)
m= = The cumulants of first and second order corresponding to the

The total number of replicas (systems) in the ensemble is Probability distribution (5.19) are given by

assumed to be much bigger than the total number of reaction
@A) = AM [PT(MW,,, — PI(b)W,,] (5.20)

events
M, > 0> 1 (5.13)  Omp,(AD Oy (ADE=
The restrictions (5.11)(5.13) are consistent with each other. AMS(PTMYW,,, + PI(B) Wy, 1) (O O, —
The_ SUM 353 me=bP5 (0) Worm ir_1 eq 5.12 _is s_maller than the 6b1mzém1b2)] + (At)ZMZ(Mz - 1)(Pil(m1)Wmlbl
o age 5,41 and 5,42 lows that PO, )Py, — PO ) (520
OIM; < At/t,, <1 (5.14) We can also analyze the evolution of the random variapgs

by using the total number of reaction events
which is equivalent to eq 4.13. If these conditions are fulfilled,
then the modified Green functio®*(z,Nyt|Ni,to)) can be q= Z qub
approximated by m B=m
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as a discrete time variable. The generating function of the
probability distribution of the discrete time varialilemay be
obtained from eq 5.16 by means of the substituficay, — z
After some calculations we come to a binomial distribution for
this probability:

% Z B,(M,q;At) =
Oaq, q—constant

(ZP (m)QmAt)( zp (m)QmAt)ME q

Mz — o)tat!
(5.22)
We introduce the probability distribution
W(g;g)  with (5.23)

Y WEg =1
[

that after the occurrence daf reaction events the random
variablesg,m have given values. We come to

W(g,q) = E(g;At)/% B,(M.q;Al) (5.24)

Og,g=constant

By combining egs 5.19, 5.22, and 5.24, we have

W(g:0) = gq'ﬂrl)[ e

where

|_| I_l[ oG] (2-29)

Hom = PO Wo, /(ZP?‘(b)vvbm) (5.26)

is the probability that a reaction eveNt, — Ny, takes place.
The cumulants of first and second ordergodire given by two
relationships similar to eqs 5.20 and 5.21:

Ore(D = Al mp = Mol
Gy, (D) Gy, (D=

01[(77m1b1 + nblml)(amlmzéblbz -

A = D) 7mp

(5.27)

6blmzémlb2)] +
- 771)1"”1)(}7mzbz o nbzmz) (528)

The condition of mesoscopic reversibility (4.18) can be

expressed in terms afy,m by means of the relation
Mom— Mmb (5'29)

From egs 5.20 and 5.21 and 5.27 and 5.28 it follows that at
mesoscopic reversibility the average valueggfare equal to

zero. If the total contribution of a procell == N, to the total
number of reaction events is constant, that is, if

P (b)W,,, + P3(m)W, ., = constant (5.30)
which is equivalent to
Nom T Mmp = CONStant (5.32)
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[AG,{(At))*T= minimum for P{{b)W,,,,= P5(m)W,
(5.32)

[IAG,,(9))°C= minimum fory,,, = (5.33)

Mmb

Equations 5.32 and 5.33 may be considered as “variational
principles” that characterize the mesoscopic reversibility. The
corresponding minimum values of the dispersions are equal to

Ay AD) Ly = 2AtM ;P (D)W,

HAGy (AT =

The cross-correlation functions can be analyzed in a similar way.
From egs. 5.21 and 5.28 it follows that two distinct random
variables gp,m, andgu,m,, With by = by, my = m, or by = my, by

Z my are generally correlated. At mesoscopic reversibility,
however, they become uncorrelated

(5.34)

200 om (5.35)

[AGp m,(A) AGy (D= [AG, o, (AY) Agy (A= 0 for

b, =b,, my=m,orb,=m,b,=m;,  and
OPT(0)Wyp, = P(MW,, (5.36)

Equation 5.36 suggests that at mesoscopic reversibility it might
be possible that the two distinct variablggm, and go,m, are

not only uncorrelated but also independent. By using the
continuous time description, we can prove that this is indeed
the case in the limit on an infinity of replicadl — co. At
mesoscopic reversibility the generating function of the prob-
ability Z(g;t) is given by

{1 + 5 Y APz + () L~ 2]}“”2

m b>m

— exp{ M Z z APM)[Z+ ) " — as

m b>m

Mg — o (5.37)

which corresponds to a product of independent modified Bessel
probability distributions

E((@n) = [ {expl-2AtMPT(m)

mb>m

W x
(2AtMEP (m)W »} (5.38)

where

00

1(X) = ZOWZV”‘“/ [MIMm+v+1)] (5.39)

is the modified Bessel function ofth order. Each term in the
product (5.38) is a probability distribution corresponding to a
given random variablgmp.

The main results of this section are the following. We have
derived an ensemble master equation for the numbers of the
reaction events and have shown that the solution of this master
equation can be expressed in terms of the modified Green
function of the ensemble master equation for the numbers of
statistical ensembles. An infinite order perturbation theory has
been developed that makes possible the exact evaluation of the
moments of the numbers of reaction events. We have shown

then for mesoscopic reversibility the dispersions of the variables that the condition of semidetailed balance is characterized by

Obm have minimum values

an extremum condition for the fluctuations of the net numbers
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of reaction events: at semidetailed balance the dispersions of

the net numbers have minimum values.

6. Fluctuation—Dissipation Relations for Multivariable
Systems

To derive the fluctuatiordissipation relations for multivari-

able chemical systems we resume the study of the eikonal

approximation for the chemical master equation, by using the
reaction extents as state variables. We rewrite the Satger
form of the master equation, eq 4.23, in terms of the reaction
extentsés, ..., & of the lumped reactions, resulting in

Dby = HEVVIPED (6

where the chemical Hamiltonian operatdg(&,V-1Ve) is made
up of the contributionsH{(£,V-1Vs), u = 1, 2, ...,L of the
different lumped reactions
L
lk@N*%F=ZH?@N*%) (6.2)
&

with

HOEV V). = —exp[ \—1/%“]}[ 0.1+
{1—em{ %fﬂ}wa&ol(sa

and

(6.4)

PuED = DT

o8

o[

We rewrite the master equation (6.1) in the form of a
hydrodynamic continuity equation of a probability fluid:

9 & _
EP(E,t) + V1 (EH=0 (6.5)

where theL-dimensional vectod (&,t) = [1y(&,)]u=1.., IS @
probability current. By comparing eqs 6.1 and 6.5 it follows

that the component$ (&t), u = 1, ..., L of the probability
currentl (£,t) can be evaluated from the differential equations

0 1 -
a_«EUIU(g’t) = [1 - EXP[— \—/gﬂ[ (€D PED] +

l ~— D —
{ 1- exp[+ \_/B_Eu]} [6, (§:1) P(ED)] =

ST
(DD PED} (6.6)
BV

where

D(m)(ét)——[ JEDF (DB ED] u=1, L

(6.7)

are generalized probability diffusion coefficients of different
ordersm=1, 2, ... attached to different lumped reactioms;

1, ..., L. In particular, form = 1, these probability diffusion
coeff|C|ents are equal to the net ratggs,t) of the lumped
reactionsu =1, ...,L:

Vlad and Ross

PUED =Pi(ED — B (ED=DPED  (6.8)
By integrating Egs.(6.6) we come to
N G N A .
1,0 = constanf+ {Dy(&.) PE D}
=AVA u —1
(6.9)

that is, the componentk,(&,t), u = 1, ...,L of the probability
current I (§,t) can be evaluated up to a set of integration
constants, constaptu = 1, ...,L. To avoid the ambiguities
generated by undetermined integration constants, it is more
advantageous to use the derivatives of the components of the
probability currentl (&,t) with respect to the reaction extents
&, u=1, ...,L of the lumped reactions

(ED  u=1,..L

u

£ED =5 (6.10)

To evaluate the functiong;(&,t), u = 1, ...,L, we use the
eikonal approximation applied to the state probabif¥f,t)
expressed in terms of the reaction extents of the lumped
reactions. We look for a solution similar to (4.33)

P(£D) ~ exp{ VIE D)}

where the chemical actiod(&,t) is generally time-dependent.
By inserting eq 6.11 into the master eq 6.1 and keeping the
dominant terms in the thermodynamic lifMt— o, we come

to a Hamiltor-Jacobi equation for the chemical actid{z,t):

L n 5
2 [pu (E,t){ 1- eXP[— 8—&3(51) } +

9
p;(g,t)[ 1- exp[a—gua(g,t)”] =0 (6.12)

Similarly, by combining eqs 6.6, 6.10, and 6.11, we get the
following asymptotic expressions for the function(.t),
valid in the thermodynamic limi¥/ — co:

as V—o (6.11)

Oyen +
at(’)

LED = 5 1ED =

VB, t){ NG t){ - exp[— %J(g,t)]} v

ﬁu(é,t){ 1- exp[+ %J(g,t)]}} as V—ow (6.13)

The functionsy(&,t) play an important role in the further
development of the theory. In the following section we shall
show thaty}(&,t) is a measure of how far away is theh
lumped reaction from the mesoscopic reversibility and that these
functions are closely connected to the net average numbers of
the reaction eventsgmu(At)C] given by eq 5.20. In particular,

for mesosopic reversibility, all functiong(&,t), u=1, 2, ...

are equal to zero:

rEY=0u=1,2,.. for mesoscopic reversibility

(6.14)

To derive the fluctuatiordissipation relations, we try to
express the net reaction raf@gs,t) of the lumped reactions in
terms of the probability diffusion coefficients of second order,
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2 N . rium. As expected, the fluctuatierdissipation relations (6.18)
Df, )(‘S't) o é[pu (&0 + 5, (E0] (6.15) are compatible with the single fluctuatiodissipation relation
(1.9) derived in ref 9 (eq 1.9 can be easily derived from eq
and of the chemical actiod(,t). By eliminating ﬁj(&,t) and 6.18). By combining the continuity equation for the probability
By (&.1) from eqgs 6.8, 6.12, and 6.14 after some calculations we fluid, eq 6.5, with the definition (6.10) of the functiopd(&,t)
come to and with the scaling condition (6.17) for the normal probability
densityP*(&,t), we get the following identity:

Mm=mﬂmmﬂ%%@w+
G I
VPEDY sinr{g‘l(at)] where

VPHEDAED + D xiED =0 (6.19)

_ 9
For a rather general class of chemical systems the state AlEH = atJ (&0 (6.20)

probability d~ensitie§>(x,t) andP(&,t) tend toward normal forms
P*(x,t) and P*(&,t), independent of the initial conditions. To By solving eq 6.18 with respect tg;(&,t) and inserting the
each of these normal probability density corresponds a normalresulting equations into eq 6.19 we come to eq 1.9.

chemical actionJ*(x,t) and J*(&,t), respectively. We have The fluctuation-dissipation relations make it possible to
_ compute a component of the dissipation function of the process.
P*(&t) ~ exp[VI(ED]  and In terms of the normal form of the chemical action, a component

P*(x,t) ~ exp[VI*(x,t)] (6.17) of the dissipation function is given by

Various conditions for the emergence of the normal solutions _ g
of the chemical master equations have been given in the oM = dt(VJ*(g’t)) (6.21)
literature. In this article we do not give details concerning these
conditions. We only mention that there are two different types We introduce the affinity of theth lumped reaction
of normal solutions:

1. Stationary normal stochastic solutions, for which the normal AED=— i‘]*(g t) (6.22)
probability densitie$*(x,t) andP*(&,t), and the corresponding o &, 7
chemical actiongd*(x,t) and J*(&,t), are independent of time.
We emphasize that a stationary normal probability density may and evaluate the time derivative of the normal chemical action,
correspond to a time-dependent attractor of the deterministic J*(&,t). We have
kinetic equations. A well-known example is a chemical system
for which the deterministic kinetic equations have an attractor, 0 9Sy\ 3
which is a stable limit cycle. For such a chemical system the O(t) = — —(VF(&Y) — Z(—)—(VJ*(SI)) (6.23)
normal probability densities are stationary and have the shape ot T\ 9t/ 95,
of a volcano, and the rim of the volcano corresponds to the
deterministic limit cycle.

2. Variable normal stochastic solutions, for which the normal -
probability densitie$*(x,t) andP*(,t) and the corresponding pu(ED) = 95 fot (6.24)
chemical actiong*(x,t) andJ*(&,t), are dependent on time. An

example is a closed chemical system with time-dependent rate@nd use the fluctuationdissipation relations (6.18). After some
coefficients? calculations we come to

We apply eq 6.16 to the particular case where the state
probability and the chemical action correspond to a stochastic . @ 1
normal regimeP(& 1) = P*(&1) andJ(E ) = J(ED). We come @0 =~V ZZDu (EDAED tan EAU(&'E) +
to a general set of fluctuatierdissipation relations, which !
establish a connection among the net reaction ragést), the 1 ceol1t AYED (6.25)
- ili i i ioi (2) ~ Xk, —_—— .
second-order probability diffusion coefficient3,”(,t), of the P*(&,t)z u sinh=A(E,D)]

different lumped reactions, the normal chemical actiégé,t),
the normal probability densityP*(&,t), and the measures, . S .

P y yPH(ED We notice that the component of the dissipation function can
be expressed as the sum of two different subcomponents:

Now we take into account that

(&), of the departure of the different lumped chemical
reactions from mesoscopic reversibility.

O(t) = O4(t) + Ot 6.26
Mm=mﬂmmﬂ%?@ﬂ+ () = ©,(t) + Ot (6.26)
’ « where
xu(é,t)a 6.18) 1
VP& L) sinr{gy(é,t) O, =-V ZzD‘uz>(g,t)Au(§,t) tan}‘{EAu(g,t)] (6.27)

By using the functionsg(£,t) as additional variables, we is a main contribution that is different from zero both for systems
have managed to derive a set of many fluctuatidissipation with or without detailed balance. The second subcomponent of
relations for multivariable chemical systems far from equilib- the dissipation function
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1
O,t) =——S KEN 1+
a1) ﬁ*(g’t)qu@ t)[

A&

—} (6.28)
sinh[-A(&,)]

is different from zero only for systems without detailed balance. x(ED=1[p
The asymptotic behavior of these two subcomponents for small

or large affinities is given by
as all

©4(t) = =V Y 2DPEHIA(ED)?
IALEDI— 0 (6:29)

O,(t) = -V 22052>(g,t)|Au(§,t)| as all
IAUED] — = (6.30)
O,(1) = DAL I
0= 5 oy SHHENAL ) asa
IALEDI—0 (6.31)
O,(t) = —qu(é-‘ ) =VAEYH  asall
IAUED] — = (6.32)
In the linear thermodynamic regime, as [@,(&,t)] — 0, both

subcomponents of the dissipation are quadratic functions of the
reaction affinities. In the other extreme of very large reaction

affinities, as all|Ay(&,t)] — o, both components display a
saturation effect: the main contributié@(t) is a linear function

of the absolute values of the reaction affinities, whereas the

secondary contributio®,(t), due to the violation of the detailed
balance, does not depend directly on the reaction affinities.

7. Physical Significance of Dissipatior-Fluctuation
Relations

For simplicity in this section we limit ourselves to the

Vlad and Ross

9, = [0/, u=1,..L (7.4)

By comparing eqgs 7.2 and 7.3, we notice that

G (E) + B EIPEY — By (6 + ) PE + 9,0 —
pu(& — 9y) P(E —vt) (7.5)

By using the label notation for the master equation developed
in section 3, we can rewrite eq 7.5 in the following form

X&) = [Wm(g)rﬂ(u)Pl(m(g) t) = Wi mez Po(m (U);0)]

(7.6)

wherem(§) is the label attached to the state characterized by
the reaction extent vect@grandm'(u) are the labels attached to
the states that can be reached from the st(tg, when one
step of theuth lumped reaction occurs, that is, the lab®lgu)
correspond to the states characterized by the extent vegtors
+ 9y and& — 9y, respectively.

For a system with time-independent rate coefficients, the
normal probability distributiorP,*(m(&);t), and the transition
ratesWinemw, Wiwme) are stationary and thus the functions
%.(&) are also stationary

28 = ~ Wrmee P (W)]
m

[WoreyniwP3(M(E))
R (7.7)

By comparing eqgs 5.20 and 7.7, we notice that

Xu(g) = lim ——

(g (AHO
ALOATM By O

(7.8)

Now the physical interpretation of the functiong(&) is
straightforwardy(€) is the ratio between the rate of variation
of the average net number of reaction events from the sigle

particular case where the rates of the lumped reactions do notto the statesn'(u), compatible with the occurrence of one step

depend directly on time.

P&t = pa(é) (7.1)

of the lumped reactionu, and the numbeMs of statistical
ensembles. Since the average values of the net numbers of
reaction events vanish for mesoscopic reversibility, it follows
that x(§) can be considered as a normal function that is a

We assume that these rates can depend only indirectly on timemeasure of how far away the lumped reactionis from
since the vector of the reaction extents is generally time- mesoscopic reversibility.

dependentf = &(t).

Concerning the probability diffusion coefficients of second

We start out by discussing the physical meaning of two sets order, fo)(g,t), we can consider a physical interpretation

of functions in the fluctuationdissipation relations, the func-
tionsy(&,t) and the probability diffusion coefficients of second
order, fo)(g,t). To clarify the physical meaning of the func-
tions yu(&,t), we rewrite the master equation (6.1) and the
continuity equation (6.5) in the following forms:

0. .
atP(E,t) = Z{pu E+0)PE+ D, +
Pu(E = 0) PE = 0,0} — S [5,(8) + 5, (DIPED (7.2)

and
0.
§P(§.t) + qu(&t) =0 (7.3)

where

similar to the one introduced in our former study of one-variable
fluctuation—dissipation relation$.In this case too, we limit
ourselves to the particular case for which the lumped reaction
ratespy(&,t) depend only on the reaction extents and do not
depend directly on timegy(&,t) = pu(&). Under these circum-
stances the probability diffusion coefficients of second order,
fo)(g,t), depend only on the extent vector:

DPEH =D =3[ + @] (7.9)

In the following® we try to make a connection between
D@(&t) and the statistics of the total numbers of reaction
eventsgy, ..., €. of the different lumped reactions, occurring in

a time interval of length, in a single system. We emphasize
that these numbers of reaction events are different from the
number of reaction events studied in the preceding sections,
which refer to an ensemble of systems.
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For one system we introduce the joint probability density of
the vectoré of the reaction extents and the vector (ey, ...,

€.) of the total numbers of reaction events, corrsponding to a

J. Phys. Chem. A, Vol. 104, No. 14, 2008173
In particular

[2,(t) = A€, (1)]*0= 2vDP(E)t (7.19)

stochastic steady-state characterized by a one-system probability

density Psi(&):

AGen  with Y JAGer) dE=1 (7.10)

and the corresponding conditional probability density density
of the vectore = (ey, ..., €L)

U(elst) = AGaDPE)  with S U(&) =1

(7.12)
The probability densitA(&,e;t) obeys the master equation
d
VIAGet) == Y[Ry (E) + By (OIAGe) +
ot T
> (1= 0. By (€ + 9IAE + Dy — V1) +

Pu (& = DA — Dy — 031 ] (7.12)

We insert eq 7.11 into eq 7.12, take into account B¥E) is
the solution of

> [Bu(Ey) + By (OIPTE) = Y [By (6 + 0) PUE+ ) +

pu(E— ) PYE— D)) (7.13)
and notice that in the thermodynamic limit we have

U (el + 0,1) = U (el&) (7.14)

From eqs 7.127.14 we come to

8U( [31))

—U(el&t) =

at
Y (1= 0,92VDP(EU (€ — B, 1Ex) —
u

U (el&)y 2vDP(E) (7.15)

By solving eq 7.15 with the initial condition

U (€1&:0) = [0 (7.16)
u
we obtain a multivariate Poissonian distribution
[2vD{(&)q
U (&0 =TT exp[-2vD(E)]f (7.17)
u €,

Equations 7.19 are similar to the well-known Einstein equation
for the mean square displacement of a Brownian particle
confined in a one-dimensional systemX?(t)(J= 2Dt. From
this similarity between egs 7.19 and the Einstein equation for
the dispersion of a Brownian particle, it follows tI‘[:)ff)(&) are
probability diffusion coefficients in the space of reaction
extents: fo)(g) is a measure of the strength of fluctuations of
the number, of reaction events of typa. This interpretation

is a generalization of the original interpretation of the probability
diffusion coefficient for the particular case of first-order
reactions at equilibriun?

Now we can proceed to give a physical interpretation of the
fluctuation—dissipation relations as a whole. We rewrite the
fluctuation—dissipation relations (6.18) for the particular case
of time-independent rate coefficients.

O =200 w52 70| +

xu(8)
VPSi(E) sink{%ﬁt@)]

(7.20)

or

&) = 20((&) tani] - ZA@)] +
2%ul&)
VN explVF(@)] sinh[—A, (@)

where we have assumed the existence of a stationary stochastic
solution of the eikonal type:

P(€) = N exp[VI(&)]

(7.21)

with
N={ f explVF(&)]dE} * (7.22)

and Ay (&), u=1, ...,L are the reaction affinities attached to
the different lumped reactions, defined by eqgs 6.22.

From the kinetic and thermodynamic point of view the
fluctuation—dissipation relations 7.20 and 7.21 establish a
connection between the net rafgé), u=1, ...,L, attached to
the different lumped reactions and the corresponding reaction
affinities Ay(§), u = 1, ...,L. They may be compared to the
classical rate affinity relationship of elementary reactiofs:

F=7T1— exp—AkgT)] =7 [exp@kgT) — 1] (7.23)

wheref is the net reaction raté&t are the forward and backward
reaction rates, and\ is the reaction affinity. Between our
fluctuation—dissipation relations (7.20) and (7.21) and the

The physical interpretation of this result is simple. In the ¢jassical rate affinity relations (7.23) there is an important
thermodynamic limit for a stochastic steady state the reaction gitference. Equationss 7.23 are asymmetric with respect to the
system behaves as a chemical clock that measures the time iforyard and backward rates. This is why there are two equations
a uniform way: the numbers of reaction eveats (e, ..., €1) (7.23), one depending on the forward réteand the second
behave as count events that obey Poissonian statistics. Th%lepending on the backward rate, respectively. On the
cumulantsc{"(t) of the numbers of reaction events are all contrary, in our fluctuationdissipation relations (7.20) and
equal to the parametefis(t) = 2VDP(&)t of the multivariate  (7.21) the individual forward and backward rates of the lumped
Poissonian distribution (7.17) reactions,p, (€) and p, (&), enter in the form of symmetric
combinations, expressed by the probability diffusion coefficients,
DP(&) = Yof pi(E) + B, (E)], u= 1, ..., L. Therefore, from the

<ty =2vD@Et  u=1,..,L, m=1,2,.. (7.18)
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kinetic and thermodynamic points of view, the fluctuation By comparing egs 7.3 and 7.31, one can express the functions

dissipation relations (7.20) and (7.21) are symmetric with respect y,(&,t) as the sum of the contributions generated by the

to the forward and backward rates of the lumped reactions. symmetric and antisymmetric components of the transition rates,
The stochastic interpretation of the fluctuatiedissipation Xff)(g,t) and Xff‘)(g,t), respectively:

relations is simple: they express the connection of fluctuation

dynamllc_s, c;lesc!rlbed in terms of the cheml_cal action _and PG =Xﬁs)(§,t) +xﬁa)(§,t) (7.32)

probability diffusion coefficients and the dynamics of chemical

dissipation, expressed in terms of the net reaction rates of theynere

lumped reactions. The symmetric role played by the forward

and backward rates is also important in connection with the (s) _ (S) & =nE By ,
stochastic interpretation of our fluctuatiedissipation relations. wis) = IW v (&SNP — PE Dl A (7.33)
O hi istent with the Kili tovich tati N/ = s ’

ur approach is consistent wi e Klimontovich representation xﬂa)(é,t) _ fW ff‘)(é,é)[P(E B+ BED] dE (7.34)

of a master equatiof, which is based on the symmetry

properties ,Of the transition rates. To apply Klimontovich's |, 4y particular case of a stochastic stationary state, character-
representation, we rewrite the master eq 7.2 in the standard form, by the state probability densiF(E) = N exp[VF(&)]

the component;gff)(g,t) and xff‘)(g,t) can be computed explic-

d - : 0
P = P&, J(E—E) dE — itly. By combining eqgs 7.4, 7.22, 7.25, 7.29, 7.30, 7.33, and
8tP(§ ) UZLJ‘P(S DWEE) o 7.34 and keeping the dominant terms in the size of the system,
) L j‘ we obtain
PEY ) JW(E—E) dE (7.24)
2 158 =
where —VD‘?@)[eXP(\—l, %) + exp(‘ %%) - 2] P =
W (E—E) = Bi(8) o —&— v,) + — DR smre[% 25| (7.39)
Pu() 0 — £+, (7.25) S

and express the transition raé,(:—&') as the sum of two @) = %,au(g)[exp(1 i) — exF{— li)] Pl(e)

additive contributions, a symmetric on&/ ff’(g,g'), and an Vg, Vg,

antisymmetric oneW @(&,£'), respectively: Vbu(g)ﬁﬁt(;;-) Sin)"{iJSt(S). (7.36)

9,
W (E—E) =W EE) +WRE e (7.26)

The fluctuation-dissipation relations can be recovered by
where the componem l(JS)(é:’g') is Symmetric inserting the eXprESSionS (735) and (736), @(S,t) and

Xf,a)(é,t), into eq 7.32, applied for a stochastic stationary state.

W E8) =w P8 (7.27)  We have
and the componeitV (&' &) is antisymmetric 28 = 1@ + 226 =
—avD@(£) B £ sint?| L 05
W Ela)(glgr) =_W fja)(gr,g) (728) 4VDu (g) P (S) sml‘?[z BéuJ (g)] +
We have VB,(&) PE) sim{%ﬁ(&)] (7.37)
u

N1 . .
W EE) = E[Wu(‘g_'g) TW(E—El  (7.29) It is easy to check that eq 7.37 is an alternative form of the
fluctuation—dissipation relations (7.20). The fluctuatiedis-

w ﬁa)(& &)= E[WU(E—f’) — W, (E—E)] (7.30) sipation relations (7.37) outline the contributions of the fluctua-

2 tion (symmetric) and dissipation (antisymmetric) components
of the functiongy(€). Equation 7.37 also shows that for systems
with mesoscopic reversibility, for whici,(§) = 0, the fluctua-
tion and dissipation components compensate each other: they
‘have the same absolute values but different signs.
Our fluctuation-dissipation relations are global; for example,
r a system with multiple deterministic stable attractors, e.g.,
multiple stable stationary states, there is only one set of

According to Klimontovich! the antisymmetric components
of the transition rates express the dynamics of dissipation,
whereas the symmetric components are related to fluctuations
In the following we shall try to compute the contributions of
the dissipative (antisymmetric) and fluctuational (symmetric) fo
components of the transition rates to the fluctuatidissipation

rel‘?ﬂgnniéster equation (7.24) can be rewritten in the followin fluctuation—dissipation relations for all states. Other fluctua-
form: g ' 9 tion—dissipation relations developed in the literature are lo-

cal??23that is, for each stable attractor there is another set of
3 L fluctuation—dissipation relations. We conclude this section by
—PEy = ZIW EJS)@,E’)[P(E',I) — P dE — examining th_e rela}tlo_nsh]ps betvv_een our global t_heory a_md the
at & local fluctuation-dissipation relations developed in the litera-

L ture. For simplicity we limit ourselves to the study of small
ZIW ff‘)(g,g')[ﬁ(g',t) + P(ED] dE (7.31) fluctuations in the neighborhood of a deterministic steady state
= for a system with multiple stationary steady states.
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We consider a deterministic steady state characterized by thethe state of mesoscopic reversibility. We have shown that the

state vecto£ = £stand consider small fluctuations around this

probability diffusion coefficients of second ord@gz)(g), are

state. We expand the chemical action around the maximum valuemeasures of the strength of fluctuations of the total numbers of

J(&SY and keep the first nonvanishing terms, resulting in

L L
> > My G, — 8D, — &) (7.39)
1

Ui=1u,=

F© = FE) + %

where

P sty st
JJ (&)

- 7.39
08, &0, (739

Uty

The normalized probability distribution corresponding to the
guadratic chemical action of the type (7.38) is a Gaussian

P =
[(27)" defMI] ™ ex] ~ V(& ~ &) M(E ~ £ (7.40)
and the covariance matrix
o=, — ENE, — £
of the reaction extents of the lumped reactions is equal to
o=(\VM)* (7.41)

For deriving a set of local fluctuatierdissipation relations we
make use of the condition (6.19) applied for a stochastic
stationary state

Y 7§ =0 (7.42)

By combining eqs 7.7 and 7.42, we obtain

139 st _ = ; i S —
Z[ 2D(S) tanf( 5 aguJ (5)) pu(é)} Slnf(a EUJ t(E)) 0
(7.43)

We expand in eq 7.43 at-dependent functions arou§d— &st
and keep the dominant termsdg, = &, — gﬁ‘ asé — &St We
come to

L
z Ay M Dy, + A (M 7Yy, ] = 200(EM0,, (7.44)
u=1

where

0 .
Pu(E™D
08,

(7.45)

Uyl

By combining egs 7.41 and 7.45, we obtain the fluctuation
dissipation relations derived by Keiz€&tr:

L
v [;Lulu’(o')u’u2 + ;Luzu’(o')u’ul] = ZDEJZR(ESt)auluZ (7-46)
=

In conclusion, in this section we have discussed the physical

meaning of the main functions from our fluctuatiedissipation

reaction events attached to the different lumped reactions. The
fluctuation—dissipation relations have two different physical
interpretations. They are generalized fordleix relationships

that may serve as the basis for a thermodynamic theory of
nonequilibrium processes and at the same time they express
the balance between the fluctuation and dissipation in a
nonequilibrium system. By using an approach suggested by
Klimontovich, we have computed the contributions of fluctua-
tion and dissipation and have shown that for mesoscopic
reversibility they compensate each other. Although our fluctua-
tion—dissipation relations are global, they are compatible with
the local fluctuation-dissipation relations derived in the litera-
ture. In particular, in the case of small fluctuations in the
neighborhood of a stable steady state, our relations can be used
for deriving the local fluctuationdissipation relations intro-
duced by Keizer.

8. Conclusions

In this paper we have introduced a statistical ensemble
approach for multivariable chemical systems far from equilib-
rium, which makes it possible to investigate the stochastic
properties of the numbers of reaction events. We have consid-
ered a reference system for which a condition of mesoscopic
time reversal (mesoscopic reversibility) holds and introduced a
set of norm functions, which measure the distance of an arbitrary
chemical system from a reference state with mesoscopic
reversibility. These norm functions have been used for deriving
a set of fluctuation-disssipation relations for complex chemical
processes far from equilibrium. The main results of our theory
have been summarized at the end of each section of the article
and we are not going to repeat them here. Instead, we give an
outline of the meaning of our results.

We must emphasize that our fluctuatiedissipation relations
are equivalent to the one-system master equation for chemical
fluctuations and to the HamiltenJacobi equation derived from
it in the thermodynamic limit. The main advantage of our
approach is that it makes it possible to look at the information
contained in the master equation from a new point of view and
thus it reveals some features of nonlinear chemical systems that
are hidden in the mathematical formalism. An interesting feature
revealed by our approach is the saturation effect for the
dependence between the fluxes (reaction rates) and thermody-
namic forces (reaction affinities), due to the presence of the
hyperbolic tangent in the fluctuatierdissipation relations. Our
theory shows that the reference systems with mesoscopic
reversibility have some interesting properties. At mesoscopic
reversibility for each lumped reaction the contribution of
fluctuations is exactly compensated by the contribution of
dissipation processes and the dispersions of the net numbers of
reaction events have minimum values.

An important feature of fluctuationdissipation relations is
that they may serve as a basis for the development of a
nonequilibrium thermodynamic theory for chemical systems far
from equilibrium.
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