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A statistical ensemble approach and an ensemble master equation are introduced for the study of concentration
fluctuations in multivariable chemical systems far from equilibrium. The theory describes the stochastic
properties of the numbers of replicas of the system characterized by different compositions. We give a general
analytic solution of the ensemble master equation and investigate the relationships between the ensemble
master equation and the one-system master equation. A condition of mesoscopic time reversal (mesoscopic
reversibility) is introduced for a reference system; mesoscopic reversibility is less restrictive than microscopic
reversibility. For systems with mesoscopic time reversal the general theory turns into a simple form and, in
the thermodynamic limit, we derive an exact expression for the stochastic potential attached to the one-
system master equation. We study the stochastic properties of the numbers of the reaction events both for
system with or without mesoscopic time reversal. The condition of mesoscopic time reversal can be described
by an extremum condition: if the contributions of different reactions to the total number of reaction events
are constant, then the dispersions of the net numbers of the reaction events have minimum values for mesoscopic
reversibility. A set of fluctuation-dissipation relations is derived for multivariable chemical systems, based
on the use of the reaction extents as state variables of the system. We also consider systems that do not obey
the condition of mesoscopic time reversal and measure the departure of a chemical process from mesoscopic
reversibility in terms of a set a functions, which are proportional to the average values of the net numbers of
the reaction events. In terms of these functions we derive a set of fluctuation-dissipation relations that establish
a general relationship among the rates and the reaction affinities of the different reactions occurring in the
system. A component of the dissipation function of the process is computed by using these fluctuation-
dissipation relations.

1. Introduction

Fluctuation-dissipation relations play important roles in the
development of statistical mechanical theories of nonequilibrium
processes:1 they bridge the gap between the microscopic (or
mesoscopic) and macroscopic descriptions of physicochemical
systems and make possible the evaluation of the rate coefficients
for various transport processes from microscopic calculations.

Within the framework of a thermodynamic and stochastic
theory of nonequilibrium processes2-5 we have studied global
fluctuation-dissipation relations for chemical systems far from
equilibrium. Our first attempt dealt with one-variable chemical
systems far from equilibrium described by a mesoscopic master
equation.6 For such systems we derived the following fluctua-
tion-dissipation relation6

wherex is the volume concentration of a chemical species X,
F̃(x,t) is the net rate of formation of the chemical species X,
D(2)(x) is a probability diffusion coefficient,Φ(x) is a stochastic

thermodynamic potential that determines the stochastic non-
equilibrium stationary state of the system,A(x) is a species-
specific reaction affinity,V and T are the volume and the
temperature of the system, andkB is Boltzmann’s constant. The
stochastic potential,Φ(x), is related to the probability density
P̃st(x) of fluctuations at a stochastic steady state by a relation
similar to Boltzmann’s relation for equilibrium thermodynamics

and the species-specific affinity is given by the derivative of
the stochastic potentialΦ(x) with respect to the total numberX
) xV of particles of the X species

The fluctuation-dissipation relation (1.1) has two different
physical interpretations.6 In the first place it is a relationship
between the macroscopic properties of the system for any
nonequilibrium state, expressed by the net reaction rateF̃(x,t)
of the species X and the mesoscopic (fluctuation) properties of
the system, for a stochastic stationary state, expressed by the
stochastic potentialΦ(x). The second interpretation of the
fluctuation-dissipation relation (1.1) is purely macroscopic: eq
1.1 is a force-flux relationship typical for nonequilibrium
thermodynamics, where the net reaction rateF̃(x,t) is a ther-

† Stanford University.
‡ Casa Academiei Romane.

F̃(x,t) ) 2D(2)(x) tanh[- 1
2kBVT

∂

∂x
Φ(x)] )

2D(2)(x) tanh[-
A(x)
2kBT] (1.1)

P̃st(x) ∼ exp[-
Φ(x)
kBT ] (1.2)

A(x) ) ∂Φ(x)/∂X ) V-1
∂Φ(x)/∂x (1.3)
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modynamic flux and the species-specific affinityA(x) is a
thermodynamic force corresponding to a deterministic nonequi-
librium steady state of the system. By using this second physical
interpretation the fluctuation-dissipation relation (1.1) can be
used for computing a component of the rate of dissipation of
the process. We have

Equation1.4 shows that far away from a steady state the
contribution of the system to the dissipation function is
proportional to the absolute value of the species-specific affinity,

whereas close to a steady state, the dissipation function is
proportional to the square of the species-specific affinity

We have attempted to extend the global fluctuation-dissipation
relations to one-variable disordered systems, based on the use
of characteristic functionals.7 The resulting fluctuation-dis-
sipation relations have been used for the study of the fluctuations
of the reaction volume.8

Another class of systems for which we developed fluctua-
tion-dissipation relations is a multivariable closed (but not
isolated) chemical system with multiple reactions of the type9

and for which, due to environmental variations, the rate
coefficients are functions of time. For this type of system we
have shown that, provided that some reasonable assumptions
are fulfilled, the system evolves toward a stochastic normal
regime for which the probability of fluctuations evolves toward
a normal form independent of the initial conditions:9

whereê ) [êu]u)1,2,...is the vector of the reaction extents attached
to the chemical processes (1.7) andJ*(ê,t) is a normal chemical
action which plays the same role as the stochastic potentialΦ(x)
for one-variable systems. We have also derived a fluctuation-
dissipation relation9 similar to eq 1.1:

whereDu(ê,t) is a probability diffusion coefficient attached to
the uth reaction 1.7,F̃u(ê,t) is the net rate of theuth reaction
1.7, and

A component of the dissipation function of the process can be
also computed from eq 1.9. We have9

For a single reaction the fluctuation-dissipation relation 1.9
reduces to

If the normal stochastic regime is stationary, the normal
chemical actionJ*(ê,t) ) J*(ê) and the probability diffusion
coefficient D(ê,t) ) D(ê) are independent of time and the
fluctuation-dissipation relation (1.12) reduces to a form similar
to eq 1.1:

Our previous attempt of deriving global fluctuation-dissipa-
tion relations for multivariable chemical systems has a serious
limitation. Even though the systems of type (1.7) are described
by many state variables, our theory leads to a single fluctuation-
dissipation relation. Although this fluctuation-dissipation equa-
tion (eqs 1.9, 1.12, and 1.13) has a structure similar to the
fluctuation-dissipation relation, (1.1), derived for one-variable
systems, unlike eq 1.1 it cannot be interpreted as a force-flux
relationship. To overcome these limitations of our multivariable
theory, we shall investigate a general feature characteristic for
multivariable systems, which is the lack of detailed balance.
We shall show that for multivariable chemical systems it is
possible to introduce a condition of mesoscopic time reversal
(mesoscopic reversibility), which is less restrictive than the
condition of microscopic reversibility.10-12 The condition of
mesoscopic reversibility leads to semidetailed (mesoscopic)
balance, which is also less restrictive than the condition of
detailed balance10-12 derived in the literature for systems with
microscopic reversibility. We shall develop a statistical ensemble
approach for the study of concentration fluctuations in complex
chemical systems. The systems studied do not generally obey
the condition of mesoscopic reversibility; the condition of
mesoscopic reversibility provides a useful reference state that
serves as the starting point of our computations. On the basis
of this idea, we shall introduce a set of functions that measure
the departure of an arbitrary multivariable chemical system from
mesoscopic reversibility. By using these functions as additional
variables, we derive a set of fluctuation-dissipation relations
that can be interpreted as a set of nonlinear flux-force
relationship that may serve as a basis for developing a nonlinear
thermodynamic approach for chemical systems far from equi-
librium.

The structure of the paper is the following. In section 2 we
give a general formulation of the problem and in section 3 we
introduce a statistical ensemble description for the study of
concentration fluctuations. In section 4 we introduce the
condition of mesoscopic reversibility, show that it leads to the
condition of semidetailed (mesoscopic) balance and study its

d
dt

Φ(x(t)) ) 2VD(2)(x) A(x) tanh[-
A(x)
2kBT] (1.4)

dΦ[x(t)]/dt ∼ -2VD(2)(x)|A(x)| as |A(x)| f ∞
(1.5)

d
dt

Φ(x(t)) ) - V
kBT

D(2)(x) A2(x) as |A(x)| f 0

(1.6)

∑
i

νiu
+X i a ∑

i

νiu
-X i u ) 1, 2, ... (1.7)

P̃*(ê,t) ∼ exp[VJ*(ê,t)] (1.8)

Λ ) V∑
u

{2Du(ê,t) tanh(12 ∂

∂êu

J*(ê,t)) - F̃u(ê,t)} ×

sinh( ∂

∂êu

J*(ê,t)) (1.9)

Λ ) V
∂

∂t
J*(ê,t) (1.10)

-
d

dt
(VJ*(ê,t)) )

V∑
u

F̃u(ê,t) J*(ê,t) + V∑
u

sinh( ∂

∂êu

J*(ê,t)) ×

[F̃u(ê,t) - 2Du(ê,t) tanh[12 ∂

∂êu

J*(ê,t)]] (1.11)

F̃(ê,t) ) 2D(ê,t) tanh(12
∂

∂ê
J*(ê,t)) -

Λ

V sinh( ∂

∂ê
J*(ê,t))

(1.12)

F̃(ê) ) 2D(ê) tanh(12
∂

∂ê
J*(ê)) (1.13)
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main consequences. In section 5 we investigate the stochastic
properties of the number of reaction events and study the main
properties of the systems without detailed balance. In section 6
we derive the dissipation-fluctuation relations, and in section
7 we discuss their physical significance.

2. Formulation of the Problem

Chemical fluctuations in systems far from equilibrium are
usually described in terms of a chemical master equation. Let
us consider a homogeneous chemical system made up ofS1

stable substancesAj, j ) 1, 2, ...,S1, andS2 active intermediates,
Xj, j ) 1, ...,S2 which are involved inR elementary reactions

whereRji
( andâji

( are stoichiometric coefficients andki
( are the

rates of the forward and backward steps, respectively. The rates
of the chemical reactions (2.1) are assumed to obey the
stochastic version of the mass-action law:13

whereV is the volume of the system,ri
( andki

( are the forward
and backward rates and rate coefficients, respectively, andAj

andXj are the numbers of molecular speciesAj andXj.
To prevent the approach of the system to chemical equilib-

rium, one assumes that the numbers ofAj are controlled by
interaction with a system of reservoirs connected to the system
by means of semipermeable walls. If the numbers of theAj

species are known, a simplified description of the system is
possible. By removing from eq 2.1 the stable substancesAj, we
get a set of reduced reactions:14

The corresponding reaction rates are given by

where the apparent rate coefficients

depend onAj.
If we are interested only in the stoichiometry of the active

intermediates, we can rewrite eqs 2.3 in the following form:14

Although the reduced reactions are physically distinct, it is

possible that two or more of them have the same stoichiometry
for the active intermediates. A typical example is the well-known
Schlögl model15

for which the stoichiometry of the X1 intermediate is the same;
that is, it is characterized by the same variation of the
stoichiometric coefficients of X1, f11 ) â11

+ - â11
- ) 3 - 2 ) 1

and f12 ) 1:

The reduced reactions with the same stoichiometry of the Xi

intermediates can be lumped into a single reduced equation of
the type (2.6). The corresponding forward and backward reaction
rates are sums of the individual rates of the reactions lumped
together

where the ratesriR

( are given by eq 2.4.
The state of the system is described in terms of the com-

position vector of the active intermediates

From eq 2.10 we can evaluate the transition rateWN′N from the
stateN′ to the stateN by adding the contributions of the different
reduced reactions with different stoichiometry:

where

are row vectors made up of stoichiometric coefficients.
By assuming that the stochastic process describing the

evolution of the chemical system considered is Markovian, we
can derive a master equation:

with the initial condition

G(N′′,t|N′,t′) is the probability that at timet the state of the
system isN′′, provided that at timet′ the state of the system
wasN′. The ratesWNN′′ are generally time-dependent because
of the possible time dependence ofAj.

As the evolution of the system is assumed to be Marko-
vian, the conditional probabilityG(N′′,t|N′,t′) determines com-
pletely the random time evolution of the composition vector
N. In particular, the joint probability distributionsP1(N1,t1),
P2(N1,t1;N2,t2), ..., are given by

∑
j)1

S1

Rji
+A j + ∑

j)1

S2

âji
+X j {\}

ki
+

ki
-

∑
j)1

S1

Rji
-A j + ∑

j)1

S2

âji
-X j i ) 1, ...,R

(2.1)

ri
( ) Vki

({∏
j)1

S1 [Aj(Aj - 1)...(Aj - Rji
( + 1)

VRji
( ]} ×

{∏
j)1

S2 [Xj (Xj - 1)...(Xj - âji
( + 1)

Vâji
( ]} (2.2)

∑
j)1

S2

âji
+X j {\}

ki
+

ki
-

∑
j)1

S2

âji
-X j i ) 1, ...,R (2.3)

ri
( ) Vκi

({∏
j)1

S2 [Xj (Xj - 1)...(Xj - âji
( + 1)

Vâji
( ]} (2.4)

κi
( ) ki

({∏
j)1

S1 [Aj(Aj - 1)...(Aj - Rji
( + 1)

VRji
( ]} (2.5)

∑
j)1

S2

fji Xj ≡ 0 i ) 1, ...,R, fji ) âji
+ - âji

- (2.6)

A1 + 2X1 a 3X1 (2.7)

A2 a X1 (2.8)

X1 ≡ 0 (2.9)

Fi
( ) ∑

R
riR

( i ) 1, ...,L e R (2.10)

N ) (X1, ...,XS2
) (2.11)

WN′N ) ∑
i,(

Fi
((N ( f i)δN′(N(f i)

(2.12)

f i ) (f1i , ..., fS2i
) (2.13)

∂

∂t
G(N,t|N′,t′) )

∑
N′′*N

[WN′′NG(N′′,t|N′,t′) - WNN′′G(N,t|N′,t′)] (2.14)

G(N′′,t)t′|N′,t′) ) δN′′N′ (2.15)
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Solving the master equation (2.14) is very difficult. Although
some approximate methods of analytic integration are available,
their application is not easy. Sometimes even the finding of
suitable numerical solutions is nontrivial. In the vicinity of
equilibrium the principle of detailed balance allows the reduction
of the integration of the master equation to a Hermitian
eigenvalue problem. Applied to the reaction network (2.1) the
principle of detailed balance10-12 requires that at equilibrium
the forward rate of each elementary reaction equals the
corresponding backward rate

where the ratesri
( are evaluated in terms of the equilibrium

values of the numbers of molecules. The physical explanation
of the occurrence of detailed balance at equilibrium is related
to microscopic reversibility, i.e., to the fact that the classical or
quantum Liouville equations attached to the chemical system
(2.1) are invariant with respect to the change of the sign of the
time variable.

In this paper we are concerned with systems far from
equilibrium for which the condition of microscopic reversibility
is generally invalid. However, it is useful to introduce a
condition of time reversal for a stochastic nonequilibrium steady
state. Although this condition of time reversal is generally not
fulfilled, it simplifies the computations by providing a standard
reference state. By introducing a set of variables, which measure
the distance of a real system from a nonequilibrium stochastic
reference state with time reversal, it is possible to define a set
of fluctuation-dissipation relations for chemical systems far
from equilibrium.

To derive a set of fluctuation-dissipation relations for
complex chemical system described by eqs 2.3-2.6, we shall
develop a statistical approach comprising the following steps:

1. the development of a statistical ensemble description for
the study of chemical fluctuations

2. the introduction of a nonequilibrium standard reference
state that fulfills the condition of time reversal

3. the investigation of the implications of the conditions of
time reversal

4. the study of the statistics of the numbers of the reaction
events occurring in the ensemble

5. the introduction of a set of functions that measure the
distance between an arbitrary nonequilibrium state and a
reference state obeying the condition of time reversal

6. the derivation of a set of fluctuation-dissipation relations
and the study of their main properties

3. Dynamics of Reaction Events and Statistical Ensemble
Description

We introduce a statistical ensemble description by considering
a large numberMΣ of systems, each system being characterized
by different composition vectors,N1, N2, ... . Denoting byMN-
(t) the number of systems characterized by the composition
vectorN at time t, we have

Although the total numberM Σ of systems is by definition

constant, the numbersMN(t) are fluctuating quantities. ForMΣ
f ∞ these fluctuations are negligible and we can approximate
the one-time state probability densityP1(N,t) by a relative
frequency

For a finite number of statistical ensembles the sample fluctua-
tions are finite and the one-time state probability is to be
interpreted as an average value rather than an instantaneous
relative frequency

We can formulate the following problem: what is the probability
of fluctuations of the vector

of the numbers of different systems in the ensemble? By using
a technique suggested by Ramakrishnan,16 we can express the
transition rates in the ensemble by the transition rates for a given
system, defined by eq 2.12

Now we can introduce an ensemble probability distribution

which obeys the master equation

with the initial condition

A detailed description of the ensemble statistics can be given
in terms of the joint probabilities

By introducing the generating function

we can reduce eq 3.7 to a first-order partial differential equation
in L. By solving this equation we come to

from which, we get the following expression forG (M,t|M ′t′):

P1(N,t) = MN(t)/M Σ as M Σ f ∞ (3.2)

〈P1(N,t)〉 = 〈MN(t)〉/M Σ M Σ finite (3.3)

M ) (MN1
, MN2

, ...) (3.4)

W (M f M ′)∆t ) ∑
N,N′*N

δM′(...,M N+1,...,M N′-1,...)MNWNN′∆t

(3.5)

G (M,t|M ′t′) with ∑
M

G (M,t|M ′t′) ) 1 (3.6)

∂

∂t
G (M,t|M ′t′) ) ∑

M ′′
W (M ′′fM ) G (M ′′,t|M ′t′) -

G (M,t|M ′t ′)∑
M ′′

W (M f M ′′) (3.7)

G (M,t ) t′|M ′,t′) ) ∏
N

δM NM ′N
(3.8)

B1(M,t) ) ∑
M 0

G (M,t|M0,t0) B1(M0,t0) (3.9)

B2(M2,t2;M1,t1) ) G (M2,t2|M1,t1) B1(M1,t1), etc.
(3.10)

L (y) ) ∑
M

G (M,t|M ′,t′)∏
u

(yu)
M Nu |yu| e 1

(3.11)

L (y) ) ∏
∀M ′{∏

u′ [∑Nu

G(Nu,t|N′u′,t)yu]M ′N′u′} (3.12)

P1(N,t) ) ∑
N′

G(N,t|N′,t′)P1(N′,t′) (2.16)

P2(N,t;N′,t′) ) G(N,t|N′,t′)P1(N′,t′), etc. (2.17)

ri
+ ) ri

- for Al ) Al
eq, Xl ) Xl

eq i ) 1, ...,R (2.18)

MΣ ) ∑
∀N

MN(t) ) constant (3.1)
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whereO is the number of possible composition vectors and
the sums overmuâ obey two sets of constraints, which specify
the final and initial values of the vectorM:

The dynamics of the reaction events can be described in a
similar way. Denoting byqNN′ the number of reaction events
of the typeN f N′ occurring in the ensemble in the time interval
betweent0 and t, we can introduce the jump rates

where

The one-time joint probability ofM andQ, B 1
/(M,Q;t) obeys

a master equation similar to eq 3.7

with the initial condition

It is easy to show that the generating function of the joint
probability B1

/(M,Q;t),

is the solution of a partial differential equation, which can be
solved analytically. After lengthy calculations we obtain (see
ref 9 for a similar computation)

where the modified Green functionG*(z,Nu,t|N′u′,t0) obeys a
master equation similar to eq 2.14

with the initial condition

Although in general we cannot derive an explicit analytical
expression for the joint probabilityB1

/(M,Q;t), the stochastic
properties of the numbers of reaction events can be derived from
eqs 3.21-3.23.

In conclusion, in this section we have developed a statistical
ensemble approach for the study of concentration fluctuations
in complex chemical systems. We have derived an ensemble
master equation that describes the stochastic properties of the
numbers of replicas of the system characterized by different
composition vectors. We have derived an analytical solution of
the ensemble master equations, which depends on the Green
functions attached to the one-system master equation.

4. Mesoscopic Time Reversal

In statistical mechanics, the condition of microscopic time
reversal10-12 (microscopic reversibility) expresses the invariance
of the microscopic equations of evolution with respect to the
changing of the sign of the time variable. For systems without
solenoidal fields, the application of the condition of time reversal
leads to the conditions of detailed balance, which states that
for each direct process, there is a reverse process and that at
equilibrium the rate of each direct process equals the rate of
the reverse process. For example, in the case of the reduced
reactions (2.3) there areR conditions of detailed balance (eqs
2.18).

Within the framework of our model, the description of
concentration fluctuations is not based on a microscopic
description, but rather on a mesoscopic description, in terms of
the ensemble master equation (3.7). If we impose that the
ensemble master equation (3.7) is invariant with respect to the
change of the sign of the time variable, we obtain a new
condition of time reversal, which is less restrictive than
microscopic reversibility. We suggest the name of “mesoscopic
reversibility” for this new type of condition of time reversal.
Unlike microscopic reversibility, the condition of mesoscopic
reversibility is not introduced for equilibrium but for a stationary
stochastic state that is generally far from equilibrium. For
mesoscopic reversibility, the condition of time reversal is
generally an assumption rather than a consequence of the
underlying microscopic dynamics. The main reason for which
we introduce the condition of mesoscopic reversibility is that it
provides a useful reference state that may serve as the starting
point of our calculations.

For a chemical system, mesoscopic reversibility is less
restrictive than microscopic reversibility, in the sense that it
imposes fewer constraints on the system. For example, for
chemical systems described by the reduced reactions (2.3),
microscopic reversibility leads toR conditions of detailed
balance, eqs 2.18, one condition for each reduced reaction (2.3).
Mesoscopic reversibility leads to a smaller number of restric-
tions, L e R, which requires the equality of the forward and
backward rates (2.10) of theL lumped reactions, which can be
derived from theR reduced reactions (2.3)

In the following we refer to the conditions of type (4.1) as to
semidetailed (mesoscopic) balance. The difference between

G (M,t|M ′t′) )

∑‚‚‚∑
∀muâg0

∏
â)1

O {M ′N′â
!∏

u)1

O [(G(Nu,t|N′â,t′))
muâ

muâ! ]} (3.13)

MNu
) ∑

â

muâ (3.14)

M ′N′â
) ∑

u

muâ (3.15)

W *(M,QfM ′,Q′)∆t )

∑
N,N′*N

δM ′(...,M N+1,...,M N′-1,...) δ(Q′NN′+1)QNN′ ∏
N;N′′*N′,N

{δQ′NN′′QNN′′
}MNWNN′∆t (3.16)

Q ) ||qNuNu′
|| u, u′ ) 1, ...,O (3.17)

∂

∂t
B 1

/(M,Q;t) )

∑
M ′′,Q′′

[W *(M ′′,Q′′ f M ,Q)B1
/(M ′′,Q′′;t) -

W *(M,Q f M ′′,Q′′) B1
/(M ,Q;t)] (3.18)

B1
/(M,Q;t ) t0) ) δQ0B1(M;t ) t0) (3.19)

L *(y,z) ) ∑
∀M,Q

B1
/(M,Q;t)∏

u

(yu)
M Nu∏

u,u′
(zuu′)

qNuNu′

|yu| e 1, |zuu′| e 1 (3.20)

L *(y,z;t) )

∑
∀M ′

B1(M ′,t0){∏
u′ [∑Nu

G*(z,Nu,t|N′u′,t0)yu]M ′N′u′} (3.21)

∂

∂t
G*(z,Nu,t|N′u′,t′) ) ∑

Nu′′*Nu

[zu′′uWNu′′Nu
G*(z,Nu′′,t|N′u′,t′) -

WNuNu′′
G*(z,Nu,t|N′u′,t′)] (3.22)

G*(z,Nu,t ) t′|N′u′,t′) ) δNuNu′
(3.23)

Fi
+ ) Fi

- i.e. ∑
R

riR

+ ) ∑
R

riR

- i ) 1, ...,L e R

(4.1)
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detailed and semidetailed balance can be illustrated by consider-
ing the Schlo¨gl model, eqs 2.7 and 2.8. For this model, detailed
balance provides two conditions:

whereas semidetailed (mesoscopic) balance provides only one
condition:

Concerning the possible existence of mesoscopic time reversal
in real systems, we notice that all systems that obey micro-
scopic reversibility also obey mesoscopic reversibility but the
reverse statement is generally not true. One-variable non-
equilibrium systems, such as the Schlo¨gl model, obey the
condition of mesoscopic reversibility for any nonequilibrium
steady state, but microscopic reversibility is fulfilled only at
chemical equilibrium. Multivariable chemical systems far from
equilibrium obey mesoscopic reversibility only in special cases,
which are nongeneric. Although for multivariable chemical
systems far from equilibrium the occurrence of mesoscopic
reversibility is rather rare, its study is useful, because it provides
a reference state, which is the starting point of our calcula-
tions.

In this section we investigate the implications of mesoscopic
reversibility for the statistical ensemble representation of a
complex chemical process developed in section 3. We shall
customize the methods used in the literature for the study of
microscopic reversibility10-12 for the statistical ensemble de-
scription of a multivariable chemical system far from equilib-
rium that obeys the condition of mesoscopic time reversal.

The general relationships presented in section 3 are valid even
if the transition rates (i.e., the effective rate coefficientsκi

( or
the concentrations of the stable intermediatesAj) are time-
dependent. In most cases analyzed in the literature, however,
one assumes that effective rate coefficientsκi

( are time-
invariant and that the numbers of stable species are held
constant. In this case a stationary probability distribution
eventually emerges provided that all composition vectors are
connected, that is, if for any two composition vectorsN andN′
there are at least two pathsN f N1 f ... f N′ andN′ f N′1
f ... f N for which the corresponding rates are different from
zero. We have

whereP1
st(N) is independent of time and of the initial state of

the system andG(N,t-t′|N′;0) depends onN,N′ and on the time
differencet - t′. Such stationary probability distributions exist
even if the corresponding system of deterministic equations does
not have stationary solutions, for example, in the case of a stable
limit cycle. In the literature there are many proofs of eqs 4.4
and 4.5 based on the Perron-Frobenius theorem, on the use of
H-functions,17 etc. These proofs rely on the fact that the total
numberO of composition vectors, although possibly very large,
is however finite.

From eqs 3.9, 3.l0, and 3.13 we notice that the asymptotic
property expressed by eqs 4.4 and4.5 leads to a similar property
for the ensemble probability distributions

where

and the ensemble Green functionG(M,t-t′|M′,0) is given by
eq 3.13 applied for the particular case where the canonical Green
function G(N,t|N′,t′) is time-invariant:

These equations may be used to evaluate the stochastic
properties of the numbersMN1, ..., MNO

of systems character-
ized by different composition vectors in the stationary regime.
In particular we get the following expressions for the moments
of first and second order

Now we introduce the condition of mesoscopic reversibility by
requiring that

Equations 4.11 and 4.12 are simultaneously fulfilled only if

To investigate the significance of the condition of mesoscopic
reversibility (4.13), we shall try to express it in terms of the
transition ratesWNN′. For simplicity we attach to each vectorN
a labelu and use matrix notation. We have

The time reversal condition (4.13) may be rewritten as

where

On the other hand, the master equation (2.14) becomes

where

and

r1
+ ) r1

-, r2
+ ) r2

- (4.2)

r1
+ + r2

+ ) r1
- + r2

- (4.3)

P1(N,t), G(N,t|N′,t′) f P1
st(N) as t f ∞ (4.4)

P2(N,t;N′;t′) f G(N,t - t′|N′;0) P1
st(N) as

t f ∞, etc. (4.5)

B1(M,t), G (M,t|M ′,t′) f B1
st(M ) as t f ∞

(4.6)

B2(M,t;M ′,t′) f G(M,t - t′|M ′,0)B1
st(M ) as

t f ∞, etc. (4.7)

B1
st(M) )

MΣ!

MN1
!...MNO

!
∏
u)1

O

[P1
st(Nu)]

MNu (4.8)

G(N,t|N′,t′) ) G(N,t-t′|N′,0) (4.9)

〈MNu
(t)〉st ) MΣ P1

st(Nu) (4.10)

〈∆MNu
(t) ∆MNu′

(t′)〉st )

MΣP1
st(Nu′)[G(Nu,t-t′|Nu′,0) - P1

st(Nu)] (4.11)

〈∆MNu
(t) ∆MNu′

(t′)〉st ) 〈∆MNu′
(t) ∆MNu

(t′)〉st for all

Nu, Nu′ (4.12)

G(N,t - t′|N′;0) P1
st(N′) ) G(N′,t - t′|N;0) P1

st(N) (4.13)

N f u, N′ f u′; P(N,t) f Pu(t);

G(N,t|N′,t′) f Gu′u(t-t′) (4.14)

σG ) G+σ (4.15)

G ) ||Guu′|| σ ) ||δuu′Pu
st|| (4.16)

dG(t)/dt ) G(t)(W - Ω) with G(t)0) ) I (4.17)

W ) ||Wuu′|| Wuu ) 0 (4.18)

Ω ) ||δuu′∑
u′′

Wuu′′|| (4.19)
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The formal solution of eq 4.17 is

By taking the time derivative of eq 4.15 at the pointt ) 0 and
using eq 4.20, we come to

The diagonal terms on both sides of eq 4.21 are equal to zero;
the off-diagonal terms lead to

Equation 4.22 or its matrix version (4.21) is equivalent to the
time-reversal condition (4.12)-(4.13). To prove that we evaluate
the general term in the expansion

By using eq 4.21 repeatedly we come to

By combining eqs 4.23 and 4.24, we recover eq 4.15.
Equation 4.15 has an important consequence: there is a

similarity transformation ofW - Ω that leads to a symmetric
matrix

and thus the eigenvalues ofW - Ω are all real and the
determination of the Green functionG reduces, at least in
principle, to an expansion in eigenfunctions.10-12

Now we introduce the thermodynamic limit

We define a scaled probability distribution

and use a method due to Kubo, Matsuo, and Kitahara (KMK18).
In the thermodynamic limit we can write the master equation
for P̃(x,t) in a form similar to a Schro¨dinger equation

where the Hamiltonian operatorH(x,V-1∇x) is given by

The quantitiesF̃b
((x) are the scaled forms of the reaction rates

(2.10) in the thermodynamic limit

with

and

We look for a stationary solution

where the stationary actionJ(x) is volume-independent

We insert eq 4.33 into eq 4.28 and keep the dominant terms in
V. We come to a stationary Hamilton-Jacobi equation inJ(x)

In the thermodynamic limit the condition of mesoscopic
reversibility (4.22) can be written in a form similar to eq 4.35.
We note that to each pair of transitionsN f N′ andN′ f N
there corresponds a single reduced reaction (2.6). By using eqs
2.12, 4.33, and 4.34, the conditions (4.22) of mesoscopic
reversibility become

where

is the contribution of thebth reduced reaction (2.6) to the
Hamiltonian (4.36). We have

Thus, the mesoscopic reversibility implies that not only the total
Hamiltonian of the system expressed in terms of the chemical
action is equal to zero for a stationary solution, but also each
individual contribution of the reduced reaction to the Hamil-
tonian must be equal to zero.

Equation 4.36 are quadratic equations in the functions

By solving these equations inCb and keeping the physically
significant solutions, we get a set of first-order partial differential
equations inJ(x)

The equations (4.40) are redundant: we have many equations
for only one unknown function. This fact shows clearly that
the mesoscopic reversibility is not generally valid: it holds only
if among the different reaction ratesr̃ b

( there are some
relationships so that the different solutions of eqs 4.40 are
equivalent to each other.

Each of the eqs 4.40 can be solved analytically. They are
first-order partial differential equations and for this type of

G(t) ) exp{t(W - Ω)} (4.20)

σ(W - Ω) ) (W+ - Ω)σ (4.21)

WN′NP1
st(N′) ) WNN′P1

st(N) (4.22)

σG ) ∑
m)0

∞ tm

m!
σ(W - Ω)m (4.23)

σ(W - Ω)m ) (W - Ω)+σ(W - Ω)m-1 ) ... )
[(W - Ω)+]m σ ) (W+ - Ω)m σ (4.24)

σ1/2(W - Ω)σ-1/2 ) [σ1/2(W - Ω)σ-1/2]+ (4.25)

Xi, V f ∞ with ∀xi ) Xi /V constant (4.26)

P1(N,t)∆N ) P̃(x,t) dx with ∆N ) [1] (4.27)

∂

∂t
P̃(x,t) ) -H(x,V-1∇x)P̃(x,t) (4.28)

H(x,V-1∇x...) )

∑
b)1;(

b)L {1 - exp[-V-1 ∑
j

fjb
∂

∂xj
]}F̃b

((x) (4.29)

Fb
( ∼ VF̃b

((x) ) V∑
R

r̃ bR
( (x) as V f ∞ (4.30)

r̃ bR
( (x) ) κ̃b

( ∏
j)1

S2

(xj)
âjb

(

(4.31)

κ̃b
( ) kb

(∏
j)1

S1

(Aj /V)Rjb (4.32)

P̃st(x) ∼ exp{VJ(x)} as V f ∞ (4.33)

J(x) ∼ V0 (4.34)

H(x,∇x J(x)) ) 0 (4.35)

Hb(x,∇x J(x)) ) 0 b ) 1,2, ...,L (4.36)

Hb(x,V-1∇x...) ) ∑
( {1 - exp[-V-1∑

j

fjb
∂

∂xj
]}F̃b

((x)

(4.37)

H(x,V-1∇x...) ) ∑
b)1

b)L

Hb(x,V-1∇x...) (4.38)

Cb ) exp(∑
u

fub

∂J(x)

∂xu
) (4.39)

∑
u

fub

∂J(x)

∂xu

) ln[F̃b
+

F̃b
-] b ) 1, ...,L (4.40)

Fluctuations in Multivariable Chemical Systems J. Phys. Chem. A, Vol. 104, No. 14, 20003165



equations the general solution is related to the solution of the
system of characteristic equations

The solution of each of theL equations (4.40) can be represented
implicitly as an arbitrary function of the integrals of motion of
the system of characteristic equations (4.41). Considering a set
of characteristic equations (4.41) for a givenb, we note that
the first S2 - 1 equations

define a straight line in the concentration space. Introducing a
coordinateêb along this straight line, we have

êb is the intensive reaction extent attached to thebth reduced
reaction. Considering the effect of all reactions, we notice that
the concentration vectorx(t) will not move along a straight line,
but in anL-dimensional subspace of the concentration space.
We have

Now the necessary and sufficient conditions for the validity of
mesoscopic reversibility are clear. Equations 4.40, which are
equivalent to the mesoscopic reversibility, provide a set of
expressions for the partial derivatives of chemical action with
respect to the reaction extents. In order that these partial
derivatives are generated by the same expression of the chemical
actionJ ) J(x) ) J(x(ê)), it is necessary and sufficient that

These conditions ensure that the expressions (4.40) are the
derivatives of a potential; they are an alternative form of the
condition of mesoscopic reversibility. Indeed, starting from
equations 4.45 and 4.33, we can recover eq 4.28 and then eq
4.22. If the conditions (4.45) are fulfilled, then the evaluation
of the chemical action reduces to a path integration. The path
can be arbitrary; however, the simplest choice is

By using the path (4.46) we get

It follows that for a system with mesoscopic reversibility the
state probability can be evaluated analytically in the thermo-
dynamic limit. In terms of the reaction extents, we have

whereB is a normalization factor

In terms of concentrations, we have

These equations allow us to clarify the relations between the
condition of mesoscopic reversibility used in this article and
semidetailed (mesoscopic) balance. The macroscopic steady
states correspond to the maximum values ofP1

st, that is, to the
maximum values of the chemical actionJ. The stationarity
condition forJ

implies that

This condition is less restrictive than the condition of detailed
balance (eq 2.18), which requires that all forward and backward
individual processes making up a lumped reduced reaction are
equal to each other, respectively.

For a given steady statexs (or ês) the difference∆J ) J(ê)
- J(ês) is a Lyapunov function of the macroscopic evolution
equations

for the domain of attraction ofês. The proof of this property is
straightforward. For a stable steady stateês, the state probability
and the chemical action have a local maximum and therefore

On the other hand by using eqs 4.45 and 4.53, we have

from which we get

The formulation (4.45) of mesoscopic reversibility has an
advantage: unlike the alternative formulations (4.36) or (4.22),
it can be easily checked. Given a particular model we should
express the ratesF̃b

( in terms of the reaction extentsêb and
verify whether the partial derivatives (4.45) are equal to each
other. By expressing the conditions (4.45) in terms of concentra-
tions we come to

P̃st(ê) ) B exp[VJ(ê)] as V f ∞ (4.48)

B ) {∫exp[VJ(ê)] dê}-1 (4.49)

P̃st(x) ) ∫ê∏
u

δ(xu - xu(0) - ∑
b

fubêb)P̃
st(ê) dê )

∫ê∏
u

δ(xu - xu(0) - ∑
b

fubêb) exp[VJ(ê)] dê/
∫ê

exp[VJ(ê)] dê (4.50)

dJ ) ∑
b

(∂J/∂êb) dêb ) 0 (4.51)

F̃b
+ ) F̃b

- b ) 1, ...,L (4.52)

dêb/dt ) F̃b
+ - F̃b

- b ) 1, ...,L (4.53)

∆J < 0 for ê * ês;
∆J ) 0 for ê ) ês (4.54)

∆J̇ ) ∑
b

(F̃b
+ - F̃b

-) ln(F̃b
+/F̃b

-) (4.55)

∆J̇ > 0 for ê * ês;
∆J̇ ) 0 for ê ) ês (4.56)

∑
u

fb1u

∂

∂xu

ln[F̃b2

+

F̃b2

-] ) ∑
u

fb2u

∂

∂xu

ln[F̃b1

+

F̃b1

-] (4.57)

dx1

f1b
) ... )

dxS2

fS2b
) dJ

ln[F̃b
+/F̃b

-]
i ) 1, ...,S2; b ) 1, ...,L

(4.41)

dx1/f1b ) ... ) dxS2
/fS2b

(4.42)

dêb ) dx1/f1b ) ... ) dxS2
/fS2b

(4.43)

xu ) xu(0) + ∑
b

fubêb (4.44)

∂

∂êb2
{ln[F̃b1

+(ê)

F̃b1

-(ê)]} ) ∂

∂êb1
{ln[F̃b2

+(ê)

F̃b2

-(ê)]} b1, b2 ) 1, ...,L

(4.45)

(ê1(0), ...,êL(0)) f (ê1, ...,êL(0)) f

(ê1, ê2, ...,êL(0)) f ... f (ê1, ...,êL) (4.46)

J(ê) ) J(ê(0)) + ∫ê1(0)

ê1 ln[F̃b2

+(ê1,ê2(0),...,êL(0))

F̃b2

-(ê1,ê2(0),...,êL(0))] dê1 + ... +

∫êL(0)

êL ln[F̃b2

+(ê1,ê2,...,êL)

F̃b2

-(ê1,ê2,...,êL)] dêL (4.47)
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By recalling the definition of the lumped ratesF̃b
( (4.30) we

notice that eq 4.57 is automatically fulfilled at least in two cases.
1. For each distinct reduced reaction (2.6) the corresponding

reaction ratesF̃b
( depend only on one concentration of the

active intermediates, denoted byxub

and is independent of the other concentrationsxub′, b′ * b, which
enter the expressions of other reduced reactions. A special case
corresponds to the conditionS2 ) L andub * ub′ for b * b′.
This situation is fulfilled when the elementary processes
corresponding to a lumped reduced reaction with a given label
b involve only the intermediatexub. In this case in eq 4.57 both
sums are equal to zero. As the numberL of reaction extents is
the same as the numberS2 of reaction intermediates, the passage
from reaction extents to concentrations and vice versa is very
easy. By applying eq 4.47 we get

In particular, forL ) 1 eq 4.59 reduces to an equation derived
by Ross, Hunt, and Hunt for one-variable open chemical
systems.

2. A lumped reduced reaction 2.6 is made up either of a
unique autocatalytic reaction or of multiple noncatalytic reac-
tions with the same stoichiometric coefficientsâub

( of the
active intermediates and with possible different stoichiometric
coefficients Ruba

( for the stable substances. In this case the
ratios of lumped rates can be written in the form

where

for autocatalytic processes and

for nonautocatalytic processes. By inserting eq 4.60 into eq 4.57
we get

which is an identity. The line integral (4.47) can be evaluated
analytically. After some calculations we get

Here we use the convention that the initial integration point is
the reference concentration vectorx(0) with respect to which
the reaction extents are evaluated. This convention corresponds
to

In particular, if x(0) ) xs, wherexs is the composition vector
corresponding to a steady state, we have

and we get the following expression for the Lyapunov function
∆J(ê)

The main results obtained in this section are the following.
We have used the statistical ensemble approach for investigating
the implications of the condition of mesoscopic time reversal.
We have shown that the time reversal condition leads to a
condition of semidetailed balance for the probability fluxes,
which connect two different states of the statistical ensemble.
We have made a connection between these semidetailed balance
conditions and the eikonal approximation of the solutions of
the one-system master equations in the thermodynamic limit.
We obtained an analytical solution for the stochastic stationary
solution of the one-system master equation for systems with
semidetailed balance in the thermodynamic limit. Further
implications of mesoscopic reversibility, related to the statistics
of reaction events, are investigated in the following section.

5. Statistics of Reaction Events

In this section we discuss the ensemble statistics in terms of
the number of reaction events.19 The purpose of our analysis is
to investigate the differences between systems with or without
mesoscopic reversibility and to use these results for the
development of a set of multivariable master equations. We have
shown in section 3 that the dynamics of the reaction events is
described by a modified Green functionG*(z,Nu,t|N′u′,t0), which
is the solution of eqs 3.22 and 3.23. In matrix notation eqs 3.22
and 3.23 become

with the initial condition

where

It is easy to check that the solution of eq 5.1 with the initial
condition (5.2) is also the unique solution of the integral equation

The exact perturbative solution of eq 5.4 is

whereX denotes the temporal convolution product. The series
(5.5) has an important property; theqth term contains the matrix
E q times and thus it is a homogeneous function ofqth order in
zbb′ - 1. It follows that this term determines completely the
derivatives ofqth order ofG*( t) with respect to the variables

F̃b
( ) F̃b

((xub
) (4.58)

J(x) ) J(x(0)) + ∑
b
∫xub(0)

xub ln[F̃b
+(xub

)

F̃b
-(xub

)] dxub
(4.59)

F̃b
+/F̃b

- ) Wb∏
u

(xu)
fub (4.60)

Wb ) κb
+/κb

- (4.61)

Wb ) (∑a

κba

+)/(∑a

κba

-) (4.62)

∑
u

fub1
fub2

/xu ) ∑
u

fub2
fub1

/xu (4.63)

J(ê) ) J(ê(0)) +

∑
u (xu(0) + ∑

b

fubêb)[ln(1 + ∑
b

((fubêb)/xu(0)))] +

∑
b

êb{ln[Wb∏
u

(xu(0))f ub]} (4.64)

ê(0) ) 0 (4.65)

Wb∏
u

((xs)u)
fub ) 1 (4.66)

∆J(ê) ) ∑
u (xu(0) + ∑

b

fubêb) ×

[ln(1 + ∑
b

(( fubêb)/xu(0))) - 1] (4.67)

dG*/dt ) G*(W - Ω) + G*E (5.1)

G*(0) ) I (5.2)

G* ) ||Gbb′
/ || E ) ||Wbb′(zbb′ - 1)|| Ebb ) 0 (5.3)

G*( t) ) G(t) + ∫0

t
G*( t′) EG(t-t′) dt′ (5.4)
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zbb′ in the pointzbb′ - 1. By evaluating these derivatives, we
can compute, at least in principle (cf. eqs 3.20 and 3.21), the
values of all the moments of the reaction events. In particular,
we get the following expressions for the moments of first and
second order of the number of reaction events in stationary
conditions:

We consider a given reduced reaction (2.6) and two composition
vectorsNb andNm ) Nb + fb and evaluate with the help of eqs
5.7 the correlations between the forward and backward reaction
events

If mesoscopic reversibility does not exist, then the dispersions
of the forward and backward reaction events are generally
different. Mesoscopic reversibility leads to the equality between
the two dispersions. This fact suggests that the mesoscopic
reversibility is characterized by an extremum condition. A
simplified analysis of this effect is possible by evaluating the
number of reaction events occurring in a time interval∆t that
is smaller than the chemical relaxation time of the system,τch:

but large enough so that the total number of reaction events is
a large number

The total number of replicas (systems) in the ensemble is
assumed to be much bigger than the total number of reaction
events

The restrictions (5.11)-(5.13) are consistent with each other.
The sum ∑b∑m*bP1

st(b)Wbm in eq 5.12 is smaller than the
reciprocal value of the chemical relaxation time, 1/τch, and thus
from eqs 5.11 and 5.12 it follows that

which is equivalent to eq 4.13. If these conditions are fulfilled,
then the modified Green functionG*(z,Nu,t|N′u′,t0) can be
approximated by

For a stationary ensemble described by the distributionB1
st(M )

(eq 4.8), the generating function of the probability distribution
of reaction events,L *(y ) (1),z:t), may be evaluated as follows

Now we introduce the net numbers of the reaction events
from an initial stateb to a final statem

For a processNb f Nm with Nm ) Nb + fb, corresponding to
a given reduced reaction 2.6,gbm is the difference between the
forward and backward reaction events occurring in the time
interval ∆t. The variablesgbm are somewhat similar to the
extensive reaction extentsVêb. The difference between these
two functions is thatVêb are overall variables attached to the
reactions (2.6), whereasgbm are mesoscopic variables attached
to the same reactions and to the two sets of initial and final
composition vectorsNb andNm ) Nb + fb.

We analyze the behavior of the stochastic variablesgbm in
both continuous and discrete time. In continuous time the
generating function of the probability distribution ofgbm

can be derived from eq 5.16 by means of the substitutionzmb )
(zbm)-1. After lengthy calculations we get the following expres-
sion for ¥(g,∆t):

The cumulants of first and second order corresponding to the
probability distribution (5.19) are given by

We can also analyze the evolution of the random variablesgbm

by using the total number of reaction events

G* ) exp[∆t(W - Ω + E)] ≈ I + ∆t(W - Ω + E) (5.15)

L *(y ) (1),z:t) )

∑
M (0)

B1
st(M (0))∏

m [1 - Ωm∆t + ∑
b

zmbWmb∆t]M m(0) )

{1 - ∑
m

P1
st(m)Ωm∆t + ∑

b
∑
m*b

zmbP1
st(m)Wmb∆t}M Σ (5.16)

gbm ) qbm - qmb (5.17)

¥(g,∆t) with ∑
g

¥(g,∆t) ) 1 (5.18)

¥(g,∆t) )

∑
∀qmb

MΣ!

(MΣ - ∑
m

∑
b*m

qmb)!
(1 - ∑

m

P1
st(m)Ωm∆t)M Σ-ΣmΣb*mqml ×

∏
m

∏
b*m

[(WmbP1
st(m)∆t)qmb

qmb! ]∏
m

∏
b>m

[δgmb(qmb-qbm)] (5.19)

〈gmb(∆t)) ) ∆tMΣ[P1
st(m)Wmb - P1

st(b)Wbm] (5.20)

〈gm1b1
(∆t) gm2b2

(∆t)〉 )

∆tMΣ[(P1
st(m1)Wm1b1

+ P1
st(b1)Wb1m1

)(δm1m2
δb1b2

-

δb1m2
δm1b2

)] + (∆t)2MΣ(MΣ - 1)(P1
st(m1)Wm1b1

-

P1
st(b1)Wb1m1

)(P1
st(m2)Wm2b2

- P1
st(b2)Wb2m2

) (5.21)

q ) ∑
m

∑
b*m

qmb

〈qbm(t)〉 ) tMΣP1
st(b)Wbm (5.6)

〈∆qb1m1
(t)∆qb2m2

(t)〉 )

tMΣP1
st(b1)Wb1m1

(δb1b2
δm1m2

- tP1
st(b2)Wb2m2

) +

MΣWb1m1
Wb2m2

∫0

t
(t - t′)[P1

st(b1) Gm1b2
(t′) +

P1
st(b2) Gm2b1

(t′)] dt′ (5.7)

〈(∆qbm(t))2〉 ) tMΣP1
st(b)Wbm(1 - tP1

st(b)Wbm) +

2MΣ(Wbm)2 ∫0

t
(t - t′)P1

st(b) Gmb(t′) dt′ (5.8)

〈∆qbm(t) ∆qmb(t)〉 ) -t2MΣP1
st(b)WbmP1

st(m)Wmb +

MΣWbmWmb∫0

t
(t - t′)[P1

st(b) Gmb(t′) + P1
st(m) Gbm(t′)] dt′

(5.9)

〈(∆qmb(t))
2〉 ) tMΣP1

st(m)Wmb(1 - tP1
st(m)Wmb) +

2MΣ(Wmb)
2∫0

t
(t - t′)P1

st(m) Gbm(t′) dt′ (5.10)

∆t , τch (5.11)

〈q〉 ) ∑
b

∑
m*b

〈qbm〉 ) ∆tMΣ∑
b

∑
m*b

P1
st(b)Wbm . 1 (5.12)

MΣ . 〈q〉 . 1 (5.13)

〈q〉/MΣ < ∆t/τch , 1 (5.14)
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as a discrete time variable. The generating function of the
probability distribution of the discrete time variableq may be
obtained from eq 5.16 by means of the substitution∀zml f z.
After some calculations we come to a binomial distribution for
this probability:

We introduce the probability distribution

that after the occurrence ofq reaction events the random
variablesgbm have given values. We come to

By combining eqs 5.19, 5.22, and 5.24, we have

where

is the probability that a reaction eventNb f Nm takes place.
The cumulants of first and second order ofg are given by two
relationships similar to eqs 5.20 and 5.21:

The condition of mesoscopic reversibility (4.18) can be
expressed in terms ofηbm by means of the relation

From eqs 5.20 and 5.21 and 5.27 and 5.28 it follows that at
mesoscopic reversibility the average values ofgbm are equal to
zero. If the total contribution of a processNb a Nm to the total
number of reaction events is constant, that is, if

which is equivalent to

then for mesoscopic reversibility the dispersions of the variables
gbm have minimum values

Equations 5.32 and 5.33 may be considered as “variational
principles” that characterize the mesoscopic reversibility. The
corresponding minimum values of the dispersions are equal to

The cross-correlation functions can be analyzed in a similar way.
From eqs. 5.21 and 5.28 it follows that two distinct random
variables,gb1m1 andgb2m2, with b1 * b2, m1 * m2 or b1 * m2, b2

* m1 are generally correlated. At mesoscopic reversibility,
however, they become uncorrelated

Equation 5.36 suggests that at mesoscopic reversibility it might
be possible that the two distinct variablesgb1m1 and gb2m2 are
not only uncorrelated but also independent. By using the
continuous time description, we can prove that this is indeed
the case in the limit on an infinity of replicas,M f ∞. At
mesoscopic reversibility the generating function of the prob-
ability ¥(g;t) is given by

which corresponds to a product of independent modified Bessel
probability distributions

where

is the modified Bessel function ofνth order. Each term in the
product (5.38) is a probability distribution corresponding to a
given random variablegmb.

The main results of this section are the following. We have
derived an ensemble master equation for the numbers of the
reaction events and have shown that the solution of this master
equation can be expressed in terms of the modified Green
function of the ensemble master equation for the numbers of
statistical ensembles. An infinite order perturbation theory has
been developed that makes possible the exact evaluation of the
moments of the numbers of reaction events. We have shown
that the condition of semidetailed balance is characterized by
an extremum condition for the fluctuations of the net numbers

〈(∆gbm(∆t))2〉 ) minimum forP1
st(b)Wbm ) P1

st(m)Wmb

(5.32)

〈(∆gbm(q))2〉 ) minimum forηbm ) ηmb (5.33)

〈(∆gbm(∆t))2〉min ) 2∆tMΣP1
st(b)Wbm (5.34)

〈(∆gbm(∆t))2〉min ) 2qηbm (5.35)

〈∆gb1m1
(q) ∆gb2m2

(q)〉 ) 〈∆gb1m1
(∆t) ∆gb2m2

(∆t)〉 ) 0 for

b1 * b2, m1 * m2 or b1 * m2, b2 * m1 and

∀P1
st(b)Wbm ) P1

st(m)Wmb (5.36)

{1 + ∑
m

∑
b>m

∆tP1
st(m)[zmb + (zmb)

-1 - 2]}M Σ

f exp{MΣ∑
m

∑
b>m

∆tP1
st(m)[zmb + (zmb)

-1 - 2]} as

MΣ f ∞ (5.37)

¥((g;t)) ) ∏
m,b>m

{exp[-2∆tMΣP1
st(m)Wmb] ×

Igmb
(2∆tMΣP1

st(m)Wmb)} (5.38)

Iν(x) ) ∑
m)0

∞

(x/2)2m+ν/[m!Γ(m + ν + 1)] (5.39)

∑
∀M

∑
∀q,q)constant

B1(M,q;∆t) )

MΣ!

(MΣ - q)!q!(∑m P1
st(m)Ωm∆t)q(1 - ∑

m

P1
st(m)Ωm∆t)M Σ-q

(5.22)

Ψ(g;q) with ∑
g

Ψ(g;q) ) 1 (5.23)

Ψ(g;q) ) ¥(g;∆t)/∑∀M
∑

∀q,q)constant

B1(M,q;∆t) (5.24)

Ψ(g;q) ) ∑
∀q

q!∏
b

∏
m*b

[(ηbm)qbm

qbm! ]∏
m

∏
b>m

[δgbm(qbm-qmb)
] (5.25)

ηbm ) P1
st(b)Wbm/(∑b

P1
st(b)Wbm) (5.26)

〈gmb(q)〉 ) q[ηmb - ηbm] (5.27)

〈gm1b1
(q)gm2b2

(q)〉 )

q[(ηm1b1
+ ηb1m1

)(δm1m2
δb1b2

- δb1m2
δm1b2

)] +

q(q - 1)(ηm1b1
- ηb1m1

)(ηm2b2
- ηb2m2

) (5.28)

ηbm) ηmb (5.29)

P1
st(b)Wbm + P1

st(m)Wmb ) constant (5.30)

ηbm + ηmb ) constant (5.31)
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of reaction events: at semidetailed balance the dispersions of
the net numbers have minimum values.

6. Fluctuation-Dissipation Relations for Multivariable
Systems

To derive the fluctuation-dissipation relations for multivari-
able chemical systems we resume the study of the eikonal
approximation for the chemical master equation, by using the
reaction extents as state variables. We rewrite the Schro¨dinger
form of the master equation, eq 4.23, in terms of the reaction
extentsê1, ..., êL of the lumped reactions, resulting in

where the chemical Hamiltonian operatorHê(ê,V-1∇ê) is made
up of the contributionsHê

(u)(ê,V-1∇ê), u ) 1, 2, ...,L of the
different lumped reactions

with

and

We rewrite the master equation (6.1) in the form of a
hydrodynamic continuity equation of a probability fluid:

where theL-dimensional vectorI (ê,t) ) [Iu(ê,t)]u)1,...,L is a
probability current. By comparing eqs 6.1 and 6.5 it follows
that the componentsIu(ê,t), u ) 1, ..., L of the probability
currentI (ê,t) can be evaluated from the differential equations

where

are generalized probability diffusion coefficients of different
ordersm ) 1, 2, ... attached to different lumped reactions,u )
1, ..., L. In particular, form ) 1, these probability diffusion
coefficients are equal to the net ratesF̃u(ê,t) of the lumped
reactions,u ) 1, ...,L:

By integrating Eqs.(6.6) we come to

that is, the componentsIu(ê,t), u ) 1, ...,L of the probability
current I (ê,t) can be evaluated up to a set of integration
constants, constantu, u ) 1, ..., L. To avoid the ambiguities
generated by undetermined integration constants, it is more
advantageous to use the derivatives of the components of the
probability currentI (ê,t) with respect to the reaction extents
êu, u ) 1, ...,L of the lumped reactions

To evaluate the functionsøu
/(ê,t), u ) 1, ..., L, we use the

eikonal approximation applied to the state probabilityP̃(ê,t)
expressed in terms of the reaction extents of the lumped
reactions. We look for a solution similar to (4.33)

where the chemical actionJ(ê,t) is generally time-dependent.
By inserting eq 6.11 into the master eq 6.1 and keeping the
dominant terms in the thermodynamic limitV f ∞, we come
to a Hamilton-Jacobi equation for the chemical actionJ(ê,t):

Similarly, by combining eqs 6.6, 6.10, and 6.11, we get the
following asymptotic expressions for the functionsøu

/(ê,t),
valid in the thermodynamic limitV f ∞:

The functionsøu
/(ê,t) play an important role in the further

development of the theory. In the following section we shall
show thatøu

/(ê,t) is a measure of how far away is theuth
lumped reaction from the mesoscopic reversibility and that these
functions are closely connected to the net average numbers of
the reaction events,〈gmb(∆t)〉, given by eq 5.20. In particular,
for mesosopic reversibility, all functionsøu

/(ê,t), u ) 1, 2, ...
are equal to zero:

To derive the fluctuation-dissipation relations, we try to
express the net reaction ratesF̃u(ê,t) of the lumped reactions in
terms of the probability diffusion coefficients of second order,

∂

∂t
P̃(ê,t) ) -Hê(ê,V-1∇ê) P̃(ê,t) (6.1)

Hê(ê,V-1∇ê) ) ∑
u)1

L

Hê
(u)(ê,V-1∇ê) (6.2)

Hê
(u)(ê,V-1∇ê)... ) {1 - exp[- 1

V
∂

∂êu]}[F̃u
+(ê,t)...] +

{1 - exp[+ 1
V

∂

∂êu]}[F̃u
-(ê,t)...] (6.3)

F̃u
((ê,t) ) ∑

R
r̃uR

( (x(0) + [∑b

fVbêb]) (6.4)

∂

∂t
P̃(ê,t) + ∇êI (ê,t) ) 0 (6.5)

∂

∂êu

Iu(ê,t) ) {1 - exp[-
1

V

∂

∂êu
]}[F̃u

+(ê,t) P̃(ê,t)] +

{1 - exp[+
1

V

∂

∂êu
]}[F̃u

-(ê,t) P̃(ê,t)] )

∑
m)1

∞ (-1)m-1

Vm

∂
m

∂(êu)
m
{Du

(m)(ê,t) P̃(ê,t)} (6.6)

Du
(m)(ê,t) ) 1

m!
[F̃u

+(ê,t) + (-1)mF̃u
-(ê,t)] u ) 1, ...,L

(6.7)

F̃u(ê,t) ) F̃u
+(ê,t) - F̃u

-(ê,t) ) Du
(1)(ê,t) (6.8)

Iu(ê,t) ) constantu + ∑
m)1

∞ (-1)m-1

Vm

∂
m-1

∂(êu)
m-1

{Du(ê,t) P̃(ê,t)}

(6.9)

øu
/(ê,t) ) ∂

∂êu
Iu(ê,t) u ) 1, ...,L (6.10)

P̃(ê,t) ∼ exp{VJ(ê,t)} as V f ∞ (6.11)

∂

∂t
J(ê,t) + ∑

u)1

L {F̃u
+(ê,t){1 - exp[-

∂

∂êu

J(ê,t)]} +

F̃u
-(ê,t){1 - exp[ ∂

∂êu

J(ê,t)]}} ) 0 (6.12)

øu
/(ê,t) ) ∂

∂êu
Iu(ê,t) )

V P̃(ê,t){F̃u
+(ê,t){1 - exp[- ∂

∂êu
J(ê,t)]} +

F̃u
-(ê,t){1 - exp[+ ∂

∂êu
J(ê,t)]}} as V f ∞ (6.13)

øu
/(ê,t) ) 0, u ) 1, 2, ... for mesoscopic reversibility

(6.14)
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and of the chemical actionJ(ê,t). By eliminating F̃u
+(ê,t) and

F̃u
-(ê,t) from eqs 6.8, 6.12, and 6.14 after some calculations we

come to

For a rather general class of chemical systems the state
probability densitiesP̃(x,t) andP̃(ê,t) tend toward normal forms
P̃*(x,t) and P̃*(ê,t), independent of the initial conditions. To
each of these normal probability density corresponds a normal
chemical action,J*(x,t) andJ*(ê,t), respectively. We have

Various conditions for the emergence of the normal solutions
of the chemical master equations have been given in the
literature. In this article we do not give details concerning these
conditions. We only mention that there are two different types
of normal solutions:

1. Stationary normal stochastic solutions, for which the normal
probability densitiesP̃*(x,t) andP̃*(ê,t), and the corresponding
chemical actionsJ*(x,t) andJ*(ê,t), are independent of time.
We emphasize that a stationary normal probability density may
correspond to a time-dependent attractor of the deterministic
kinetic equations. A well-known example is a chemical system
for which the deterministic kinetic equations have an attractor,
which is a stable limit cycle. For such a chemical system the
normal probability densities are stationary and have the shape
of a volcano, and the rim of the volcano corresponds to the
deterministic limit cycle.

2. Variable normal stochastic solutions, for which the normal
probability densitiesP̃*(x,t) andP̃*(ê,t) and the corresponding
chemical actionsJ*(x,t) andJ*(ê,t), are dependent on time. An
example is a closed chemical system with time-dependent rate
coefficients.9

We apply eq 6.16 to the particular case where the state
probability and the chemical action correspond to a stochastic
normal regimeP̃(ê,t) ) P̃*(ê,t) andJ(ê,t) ) J*(ê,t). We come
to a general set of fluctuation-dissipation relations, which
establish a connection among the net reaction rates,F̃u(ê,t), the
second-order probability diffusion coefficients,Du

(2)(ê,t), of the
different lumped reactions, the normal chemical action,J*(ê,t),
the normal probability density,P̃*(ê,t), and the measures,
øu
/(ê,t), of the departure of the different lumped chemical

reactions from mesoscopic reversibility.

By using the functionsøu
/(ê,t) as additional variables, we

have managed to derive a set of many fluctuation-dissipation
relations for multivariable chemical systems far from equilib-

rium. As expected, the fluctuation-dissipation relations (6.18)
are compatible with the single fluctuation-dissipation relation
(1.9) derived in ref 9 (eq 1.9 can be easily derived from eq
6.18). By combining the continuity equation for the probability
fluid, eq 6.5, with the definition (6.10) of the functionsøu

/(ê,t)
and with the scaling condition (6.17) for the normal probability
densityP̃*(ê,t), we get the following identity:

where

By solving eq 6.18 with respect toøu
/(ê,t) and inserting the

resulting equations into eq 6.19 we come to eq 1.9.
The fluctuation-dissipation relations make it possible to

compute a component of the dissipation function of the process.
In terms of the normal form of the chemical action, a component
of the dissipation function is given by

We introduce the affinity of theuth lumped reaction

and evaluate the time derivative of the normal chemical action,
J*(ê,t). We have

Now we take into account that

and use the fluctuation-dissipation relations (6.18). After some
calculations we come to

We notice that the component of the dissipation function can
be expressed as the sum of two different subcomponents:

where

is a main contribution that is different from zero both for systems
with or without detailed balance. The second subcomponent of
the dissipation function

Du
(2)(ê,t) ) 1

2
[F̃u

+(ê,t) + F̃u
-(ê,t)] (6.15)

F̃u(ê,t) ) 2Du
(2)(ê,t) tanh[12 ∂

∂êu
J(ê,t)] +

øu
/(ê,t)

V P̃(ê,t) sinh[ ∂

∂êu
J(ê,t)]

(6.16)

P̃*(ê,t) ∼ exp[VJ*(ê,t)] and
P̃*(x,t) ∼ exp[VJ*(x,t)] (6.17)

F̃u(ê,t) ) 2Du
(2)(ê,t) tanh[12 ∂

∂êu
J*(ê,t)] +

øu
/(ê,t)

V P̃*(ê,t) sinh[ ∂

∂êu
J*(ê,t)]

(6.18)

VP̃*(ê,t)Λ(ê,t) + ∑
u

øu
/(ê,t) ) 0 (6.19)

Λ(ê,t) ) ∂

∂t
J*(ê,t) (6.20)

Θ(t) ) - d
dt

(VJ*(ê,t)) (6.21)

Au(ê,t) ) - ∂

∂êu
J*(ê,t) (6.22)

Θ(t) ) -
∂

∂t
(VJ*(ê,t)) - ∑

u
(∂êu

∂t ) ∂

∂êu

(VJ*(ê,t)) (6.23)

F̃u(ê,t) ) ∂êu/∂t (6.24)

Θ(t) ) -V ∑
u

2Du
(2)(ê,t)Au(ê,t) tanh[12Au(ê,t)] +

1

P̃*(ê,t)
∑

u

øu
/(ê,t){1 +

Au(ê,t)

sinh[-Au(ê,t)]} (6.25)

Θ(t) ) Θ1(t) + Θ2(t) (6.26)

Θ1(t) ) -V ∑
u

2Du
(2)(ê,t)Au(ê,t) tanh[12Au(ê,t)] (6.27)
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is different from zero only for systems without detailed balance.
The asymptotic behavior of these two subcomponents for small
or large affinities is given by

In the linear thermodynamic regime, as all|Au(ê,t)| f 0, both
subcomponents of the dissipation are quadratic functions of the
reaction affinities. In the other extreme of very large reaction
affinities, as all |Au(ê,t)| f ∞, both components display a
saturation effect: the main contributionΘ1(t) is a linear function
of the absolute values of the reaction affinities, whereas the
secondary contributionΘ2(t), due to the violation of the detailed
balance, does not depend directly on the reaction affinities.

7. Physical Significance of Dissipation-Fluctuation
Relations

For simplicity in this section we limit ourselves to the
particular case where the rates of the lumped reactions do not
depend directly on time.

We assume that these rates can depend only indirectly on time,
since the vector of the reaction extents is generally time-
dependent,ê ) ê(t).

We start out by discussing the physical meaning of two sets
of functions in the fluctuation-dissipation relations, the func-
tionsøu(ê,t) and the probability diffusion coefficients of second
order, Du

(2)(ê,t). To clarify the physical meaning of the func-
tions øu(ê,t), we rewrite the master equation (6.1) and the
continuity equation (6.5) in the following forms:

and

where

By comparing eqs 7.2 and 7.3, we notice that

By using the label notation for the master equation developed
in section 3, we can rewrite eq 7.5 in the following form

wherem(ê) is the label attached to the state characterized by
the reaction extent vectorê andm′(u) are the labels attached to
the states that can be reached from the statem(ê), when one
step of theuth lumped reaction occurs, that is, the labelsm′(u)
correspond to the states characterized by the extent vectorsê
+ ϑu andê - ϑu, respectively.

For a system with time-independent rate coefficients, the
normal probability distributionP1*(m(ê);t), and the transition
ratesWm(ê)m′(u), Wm′(u)m(ê) are stationary and thus the functions
øu
/(ê) are also stationary

By comparing eqs 5.20 and 7.7, we notice that

Now the physical interpretation of the functionsøu
/(ê) is

straightforward.øu
/(ê) is the ratio between the rate of variation

of the average net number of reaction events from the statem(ê)
to the statesm′(u), compatible with the occurrence of one step
of the lumped reactionu, and the numberMΣ of statistical
ensembles. Since the average values of the net numbers of
reaction events vanish for mesoscopic reversibility, it follows
that øu

/(ê) can be considered as a normal function that is a
measure of how far away the lumped reactionu is from
mesoscopic reversibility.

Concerning the probability diffusion coefficients of second
order, Du

(2)(ê,t), we can consider a physical interpretation
similar to the one introduced in our former study of one-variable
fluctuation-dissipation relations.6 In this case too, we limit
ourselves to the particular case for which the lumped reaction
rates F̃u(ê,t) depend only on the reaction extents and do not
depend directly on time,F̃u(ê,t) ) F̃u(ê). Under these circum-
stances the probability diffusion coefficients of second order,
Du

(2)(ê,t), depend only on the extent vector:

In the following6 we try to make a connection between
Du

(2)(ê,t) and the statistics of the total numbers of reaction
events,ε1, ...,εL of the different lumped reactions, occurring in
a time interval of lengtht, in a single system. We emphasize
that these numbers of reaction events are different from the
number of reaction events studied in the preceding sections,
which refer to an ensemble of systems.

Θ2(t) )
1

P̃*(ê,t)
∑

u

øu
/(ê,t){1 +

Au(ê,t)

sinh[-Au(ê,t)]} (6.28)

Θ1(t) ) -V ∑
u

2Du
(2)(ê,t)[Au(ê,t)]2 as all

|Au(ê,t)| f 0 (6.29)

Θ1(t) = -V ∑
u

2Du
(2)(ê,t)|Au(ê,t)| as all

|Au(ê,t)| f ∞ (6.30)

Θ2(t) =
1

6P̃*(ê,t)
∑

u

øu
/(ê,t)|Au(ê,t)|2 as all

|Au(ê,t)| f 0 (6.31)

Θ2(t) =
1

P̃*(ê,t)
∑

u

øu
/(ê,t) ) VΛ(ê,t) as all

|Au(ê,t)| f ∞ (6.32)

F̃u
((ê;t) ) F̃u

((ê) (7.1)

∂

∂t
P̃(ê,t) ) ∑

u

{F̃u
+(ê + ϑu) P̃(ê + ϑu,t) +

F̃u
-(ê - ϑu) P̃(ê - ϑu,t)} - ∑

u

[F̃u
+(ê) + F̃u

-(ê)]P̃(ê,t) (7.2)

∂

∂t
P̃(ê,t) + ∑

u

øu(ê,t) ) 0 (7.3)

ϑu ) [δuV/V]V)1,...,L u ) 1, ...,L (7.4)

øu(ê,t) ) [F̃u
+(ê) + F̃u

-(ê)]P̃(ê,t) - F̃u
+(ê + ϑu) P̃(ê + ϑu,t) -

F̃u
-(ê - ϑu) P̃(ê - ϑu,t) (7.5)

øu(ê,t) ) ∑
m′(u)

[Wm(ê)m′(u)P1(m(ê);t) - Wm′(u)m(ê) P1(m′(u);t)]

(7.6)

øu
/(ê) ) ∑

m′(u)

[Wm(ê)m′(u)P1
st(m(ê)) - Wm′(u)m(ê) P1

st(m′(u))]

(7.7)

øu
/(ê) ) lim

∆tf0

1

∆tMΣ
∑
m′(u)

〈gm(ê)m′(u)(∆t)〉 (7.8)

Du
(2)(ê,t) ) Du

(2)(ê) ) 1
2

[F̃u
+(ê) + F̃u

-(ê)] (7.9)
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For one system we introduce the joint probability density of
the vectorê of the reaction extents and the vectorε ) (ε1, ...,
εL) of the total numbers of reaction events, corrsponding to a
stochastic steady-state characterized by a one-system probability
densityP̃st(ê):

and the corresponding conditional probability density density
of the vectorε ) (ε1, ..., εL)

The probability densityA(ê,ε;t) obeys the master equation

We insert eq 7.11 into eq 7.12, take into account thatP̃st(ê) is
the solution of

and notice that in the thermodynamic limit we have

From eqs 7.12-7.14 we come to

By solving eq 7.15 with the initial condition

we obtain a multivariate Poissonian distribution

The physical interpretation of this result is simple. In the
thermodynamic limit for a stochastic steady state the reaction
system behaves as a chemical clock that measures the time in
a uniform way: the numbers of reaction eventsε ) (ε1, ..., εL)
behave as count events that obey Poissonian statistics. The
cumulantscu

(m)(t) of the numbers of reaction events are all
equal to the parametersλu(t) ) 2VDu

(2)(ê)t of the multivariate
Poissonian distribution (7.17)

In particular

Equations 7.19 are similar to the well-known Einstein equation
for the mean square displacement of a Brownian particle
confined in a one-dimensional system,〈∆X2(t)〉 ) 2Dt. From
this similarity between eqs 7.19 and the Einstein equation for
the dispersion of a Brownian particle, it follows thatDu

(2)(ê) are
probability diffusion coefficients in the space of reaction
extents: Du

(2)(ê) is a measure of the strength of fluctuations of
the numberεu of reaction events of typeu. This interpretation
is a generalization of the original interpretation of the probability
diffusion coefficient for the particular case of first-order
reactions at equilibrium.19

Now we can proceed to give a physical interpretation of the
fluctuation-dissipation relations as a whole. We rewrite the
fluctuation-dissipation relations (6.18) for the particular case
of time-independent rate coefficients.

or

where we have assumed the existence of a stationary stochastic
solution of the eikonal type:

andAu(ê), u ) 1, ..., L are the reaction affinities attached to
the different lumped reactions, defined by eqs 6.22.

From the kinetic and thermodynamic point of view the
fluctuation-dissipation relations 7.20 and 7.21 establish a
connection between the net ratesF̃u(ê), u ) 1, ...,L, attached to
the different lumped reactions and the corresponding reaction
affinities Au(ê), u ) 1, ..., L. They may be compared to the
classical rate-affinity relationship of elementary reactions:20

wherer̃ is the net reaction rate,r̃( are the forward and backward
reaction rates, andA is the reaction affinity. Between our
fluctuation-dissipation relations (7.20) and (7.21) and the
classical rate affinity relations (7.23) there is an important
difference. Equationss 7.23 are asymmetric with respect to the
forward and backward rates. This is why there are two equations
(7.23), one depending on the forward rater̃+ and the second
depending on the backward rater̃-, respectively. On the
contrary, in our fluctuation-dissipation relations (7.20) and
(7.21) the individual forward and backward rates of the lumped
reactions,F̃u

+(ê) and F̃u
-(ê), enter in the form of symmetric

combinations, expressed by the probability diffusion coefficients,
Du

(2)(ê) ) 1/2[ F̃u
+(ê) + F̃u

-(ê)], u ) 1, ...,L. Therefore, from the

A(ê,ε;t) with ∑
ε

∫(A(ê,ε;t)) dê ) 1 (7.10)

U (ε|ê;t) ) A(ê,ε;t)/P̃st(ê) with ∑
ε

U (ε|ê;t) ) 1

(7.11)

V-1∂

∂t
A(ê,ε;t) ) - ∑

u

[F̃u
+(êu) + F̃u

-(ê)]A(ê,ε;t) +

∑
u

(1 - δεu0
)[F̃u

+(ê + ϑu)A(ê + ϑu,ε - ϑu;t) +

F̃u
-(ê - ϑu)A(ê - ϑu,ε - ϑu;t) ] (7.12)

∑
u

[F̃u
+(êu) + F̃u

-(ê)]P̃st(ê) ) ∑
u

[F̃u
+(ê + ϑu) P̃st(ê + ϑu) +

F̃u
-(ê - ϑu) P̃st(ê - ϑu)] (7.13)

U (ε|ê ( ϑu;t) = U (ε|ê;t) (7.14)

∂

∂t
U (ε|ê;t) )

∑
u

(1 - δεu0
)2VDu

(2)(ê)U (ε - ϑu|ê;t) -

U (ε|ê;t)∑
u

2VDu
(2)(ê) (7.15)

U (ε|ê;0) ) ∏
u

δεu0
(7.16)

U (ε|ê;0) ) ∏
u

{[2VDu
(2)(ê)t]εu

εu!
exp[-2VDu

(2)(ê)t]} (7.17)

cu
(m)(t) ) 2VDu

(2)(ê)t u ) 1, ...,L, m ) 1, 2, ... (7.18)

〈εu(t)〉 ) 〈[∆εu(t)]
2〉 ) 2VDu

(2)(ê)t (7.19)

F̃u(ê) ) 2Du
(2)(ê) tanh[12 ∂

∂êu
Jst(ê)] +

øu
/(ê)

VP̃st(ê) sinh[ ∂

∂êu
Jst(ê)]

(7.20)

F̃u(ê) ) 2Du
(2)(ê) tanh[- 1

2
Au(ê)] +

øu
/(ê)

VN exp[VJst(ê)] sinh[-Au(ê)]
(7.21)

P̃st(ê) ) N exp[VJst(ê)] with

N ) {∫exp[VJst(ê)]dê}-1 (7.22)

r̃ ) r̃+[1 - exp(-A/kBT)] ) r̃-[exp(A/kBT) - 1] (7.23)
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kinetic and thermodynamic points of view, the fluctuation-
dissipation relations (7.20) and (7.21) are symmetric with respect
to the forward and backward rates of the lumped reactions.

The stochastic interpretation of the fluctuation-dissipation
relations is simple: they express the connection of fluctuation
dynamics, described in terms of the chemical action and
probability diffusion coefficients and the dynamics of chemical
dissipation, expressed in terms of the net reaction rates of the
lumped reactions. The symmetric role played by the forward
and backward rates is also important in connection with the
stochastic interpretation of our fluctuation-dissipation relations.
Our approach is consistent with the Klimontovich representation
of a master equation,21 which is based on the symmetry
properties of the transition rates. To apply Klimontovich’s
representation, we rewrite the master eq 7.2 in the standard form:

where

and express the transition rateWu(êfê′) as the sum of two
additive contributions, a symmetric one,W u

(s)(ê,ê′), and an
antisymmetric one,W u

(a)(ê,ê′), respectively:

where the componentW u
(s)(ê,ê′) is symmetric

and the componentW u
(a)(ê′,ê) is antisymmetric

We have

According to Klimontovich,21 the antisymmetric components
of the transition rates express the dynamics of dissipation,
whereas the symmetric components are related to fluctuations.
In the following we shall try to compute the contributions of
the dissipative (antisymmetric) and fluctuational (symmetric)
components of the transition rates to the fluctuation-dissipation
relations.

The master equation (7.24) can be rewritten in the following
form:

By comparing eqs 7.3 and 7.31, one can express the functions
øu(ê,t) as the sum of the contributions generated by the
symmetric and antisymmetric components of the transition rates,
øu

(s)(ê,t) andøu
(a)(ê,t), respectively:

where

In the particular case of a stochastic stationary state, character-
ized by the state probability densityP̃st(ê) ) N exp[VJst(ê)],
the componentsøu

(s)(ê,t) and øu
(a)(ê,t) can be computed explic-

itly. By combining eqs 7.4, 7.22, 7.25, 7.29, 7.30, 7.33, and
7.34 and keeping the dominant terms in the size of the system,
we obtain

The fluctuation-dissipation relations can be recovered by
inserting the expressions (7.35) and (7.36), forøu

(s)(ê,t) and
øu

(a)(ê,t), into eq 7.32, applied for a stochastic stationary state.
We have

It is easy to check that eq 7.37 is an alternative form of the
fluctuation-dissipation relations (7.20). The fluctuation-dis-
sipation relations (7.37) outline the contributions of the fluctua-
tion (symmetric) and dissipation (antisymmetric) components
of the functionsøu(ê). Equation 7.37 also shows that for systems
with mesoscopic reversibility, for whichøu(ê) ) 0, the fluctua-
tion and dissipation components compensate each other: they
have the same absolute values but different signs.

Our fluctuation-dissipation relations are global; for example,
for a system with multiple deterministic stable attractors, e.g.,
multiple stable stationary states, there is only one set of
fluctuation-dissipation relations for all states. Other fluctua-
tion-dissipation relations developed in the literature are lo-
cal;22,23 that is, for each stable attractor there is another set of
fluctuation-dissipation relations. We conclude this section by
examining the relationships between our global theory and the
local fluctuation-dissipation relations developed in the litera-
ture. For simplicity we limit ourselves to the study of small
fluctuations in the neighborhood of a deterministic steady state
for a system with multiple stationary steady states.

øu(ê,t) ) øu
(s)(ê,t) + øu

(a)(ê,t) (7.32)

øu
(s)(ê,t) ) ∫W u

(s)(ê,ê′)[P̃(ê,t) - P̃(ê′,t)] dê′ (7.33)

øu
(a)(ê,t) ) ∫W u

(a)(ê,ê′)[P̃(ê′,t) + P̃(ê,t)] dê′ (7.34)

øu
(s)(ê) )

-VDu
(2)(ê)[exp(1

V
∂

∂êu
) + exp(- 1

V
∂

∂êu
) - 2]P̃st(ê) )

-4VDu
(2)(ê)P̃st(ê) sinh2[12 ∂

∂êu
Jst(ê)] (7.35)

øu
(a)(ê) ) 1

2
F̃u(ê)[exp(1

V
∂

∂êu
) - exp(- 1

V
∂

∂êu
)]P̃st(ê) )

VF̃u(ê)P̃st(ê) sinh[ ∂

∂êu
Jst(ê)] (7.36)

øu(ê) ) øu
(s)(ê) + øu

(a)(ê) )

-4VDu
(2)(ê) P̃st(ê) sinh2[12 ∂

∂êu
Jst(ê)] +

VF̃u(ê) P̃st(ê) sinh[ ∂

∂êu
Jst(ê)] (7.37)

∂

∂t
P̃(ê,t) ) ∑

u)1

L ∫P̃(ê′,t) Wu(ê′fê) dê′ -

P̃(ê,t)∑
u)1

L ∫Wu(êfê′) dê′ (7.24)

Wu(êfê′) ) F̃u
+(ê) δ(ê′ - ê - ϑu) +

F̃u
-(ê) δ(ê′ - ê + ϑu) (7.25)

Wu(êfê′) ) W u
(s)(ê,ê′) + W u

(a)(ê′,ê) (7.26)

W u
(s)(ê,ê′) ) W u

(s)(ê′,ê) (7.27)

W u
(a)(ê,ê′) ) -W u

(a)(ê′,ê) (7.28)

W u
(s)(ê,ê′) ) 1

2
[Wu(êfê′) + Wu(ê′fê)] (7.29)

W u
(a)(ê,ê′) ) 1

2
[Wu(êfê′) - Wu(ê′fê)] (7.30)

∂

∂t
P̃(ê,t) ) ∑

u)1

L ∫W u
(s)(ê,ê′)[P̃(ê′,t) - P̃(ê,t)] dê′ -

∑
u)1

L ∫W u
(a)(ê,ê′)[P̃(ê′,t) + P̃(ê,t)] dê′ (7.31)

3174 J. Phys. Chem. A, Vol. 104, No. 14, 2000 Vlad and Ross



We consider a deterministic steady state characterized by the
state vectorê ) êst and consider small fluctuations around this
state. We expand the chemical action around the maximum value
Jst(êst) and keep the first nonvanishing terms, resulting in

where

The normalized probability distribution corresponding to the
quadratic chemical action of the type (7.38) is a Gaussian

and the covariance matrix

of the reaction extents of the lumped reactions is equal to

For deriving a set of local fluctuation-dissipation relations we
make use of the condition (6.19) applied for a stochastic
stationary state

By combining eqs 7.7 and 7.42, we obtain

We expand in eq 7.43 allê-dependent functions aroundê - êst

and keep the dominant terms inδêu ) êu - êu
st asê f êst. We

come to

where

By combining eqs 7.41 and 7.45, we obtain the fluctuation-
dissipation relations derived by Keizer:23

In conclusion, in this section we have discussed the physical
meaning of the main functions from our fluctuation-dissipation
relations as well as the meaning of the relations themselves.
We have shown that the functionsøu

/(ê) are norm functions
that measure the distance of the different lumped reactions from

the state of mesoscopic reversibility. We have shown that the
probability diffusion coefficients of second order,Du

(2)(ê), are
measures of the strength of fluctuations of the total numbers of
reaction events attached to the different lumped reactions. The
fluctuation-dissipation relations have two different physical
interpretations. They are generalized force-flux relationships
that may serve as the basis for a thermodynamic theory of
nonequilibrium processes and at the same time they express
the balance between the fluctuation and dissipation in a
nonequilibrium system. By using an approach suggested by
Klimontovich, we have computed the contributions of fluctua-
tion and dissipation and have shown that for mesoscopic
reversibility they compensate each other. Although our fluctua-
tion-dissipation relations are global, they are compatible with
the local fluctuation-dissipation relations derived in the litera-
ture. In particular, in the case of small fluctuations in the
neighborhood of a stable steady state, our relations can be used
for deriving the local fluctuation-dissipation relations intro-
duced by Keizer.

8. Conclusions

In this paper we have introduced a statistical ensemble
approach for multivariable chemical systems far from equilib-
rium, which makes it possible to investigate the stochastic
properties of the numbers of reaction events. We have consid-
ered a reference system for which a condition of mesoscopic
time reversal (mesoscopic reversibility) holds and introduced a
set of norm functions, which measure the distance of an arbitrary
chemical system from a reference state with mesoscopic
reversibility. These norm functions have been used for deriving
a set of fluctuation-disssipation relations for complex chemical
processes far from equilibrium. The main results of our theory
have been summarized at the end of each section of the article
and we are not going to repeat them here. Instead, we give an
outline of the meaning of our results.

We must emphasize that our fluctuation-dissipation relations
are equivalent to the one-system master equation for chemical
fluctuations and to the Hamilton-Jacobi equation derived from
it in the thermodynamic limit. The main advantage of our
approach is that it makes it possible to look at the information
contained in the master equation from a new point of view and
thus it reveals some features of nonlinear chemical systems that
are hidden in the mathematical formalism. An interesting feature
revealed by our approach is the saturation effect for the
dependence between the fluxes (reaction rates) and thermody-
namic forces (reaction affinities), due to the presence of the
hyperbolic tangent in the fluctuation-dissipation relations. Our
theory shows that the reference systems with mesoscopic
reversibility have some interesting properties. At mesoscopic
reversibility for each lumped reaction the contribution of
fluctuations is exactly compensated by the contribution of
dissipation processes and the dispersions of the net numbers of
reaction events have minimum values.

An important feature of fluctuation-dissipation relations is
that they may serve as a basis for the development of a
nonequilibrium thermodynamic theory for chemical systems far
from equilibrium.
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Jst(ê) = Jst(êst) +
1

2
∑
u1)1

L

∑
u2)1

L

Mu1u2
(êu1

- êu1

st)(êu2
- êu2

st) (7.38)

Mu1u2
) - ∂

2

∂êu1

st êu2

st
Jst(êst) (7.39)

P̃st(ê) )

[(2πV)L det|M|]-1/2 exp[- 1
2
V(ê - êst)+

M(ê - êst)] (7.40)

σ ) [〈(êu1
- êu1

st)(êu2
- êu2

st)〉]

σ ) (VM)-1 (7.41)

∑
u

øu
/(ê) ) 0 (7.42)

∑
u

{2Du(ê) tanh(12 ∂

∂êu

Jst(ê)) - F̃u(ê)} sinh( ∂

∂êu

Jst(ê)) ) 0

(7.43)

∑
u′)1

L

[λu1u′(M
-1)u′u2

+ λu2u′(M
-1)u′u1

] ) 2Du1

(2)(êst)δu1u2
(7.44)

λu1u2
) ∂

∂êu2

st
F̃u1

(êst,t) (7.45)

V∑
u′)1

L

[λu1u′(σ)u′u2
+ λu2u′(σ)u′u1

] ) 2Du1

(2)(êst)δu1u2
(7.46)
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