

© Copyright 2000 by the American Chemical Society

VOLUME 104, NUMBER 17, MAY 4, 2000

LETTERS

¹³C NMR Patterns of Odd-Numbered C₁₁₉ Fullerenes

T. Heine,*,[†] F. Zerbetto,[†] G. Seifert,[‡] and P. W. Fowler[§]

Dipartimento di Chimica G. Ciamician, Universitá di Bologna, via Selmi 2, I-40126 Bologna, Italy, Universität-GH Paderborn, Paderborn, FB6 Theoretische Physik, D-33095 Paderborn, Germany, and School of Chemistry, University of Exeter, Stocker Road, Exeter, EX4 4QD, U.K.

Received: November 15, 1999; In Final Form: February 15, 2000

¹³C NMR chemical shifts and relative energies of eight C_{119} isomers are calculated within the density-functionalbased tight-binding (DFTB) and the IGLO-DFTB (individual gauge for local orbitals) models. The calculated ¹³C NMR pattern of one C_2 isomer differs considerably from those of other candidates and has a close match with the spectrum of the experimental species. This isomer has also the lowest energy of those studied.

Fullerenes contain even numbers of trivalent, sp²-like atoms.¹ However, McElvany et al.² observed additional odd-numbered species C₁₁₉, C₁₂₉, and C₁₃₉ by mass spectroscopy, which are expected to be dimeric structures of C₆₀ and C₇₀ fullerenes, where several sp³-like bridging atoms link the two moieties with overall loss of one atom.³ These molecules can be produced, for example, by reacting fullerenes with ozone² or by thermolysis of C₁₂₀O at 550–600 °C with a yield of ~1%.⁴ The C₁₁₉ species has a single predominant isomer for which the ¹³C NMR spectrum was recorded by Gromov et al.⁴ The observed pattern is compatible with an isomer of C₂ symmetry with two signals in the sp³ carbon region accounting for three (2+1) atoms.

Several approaches have been used to generate plausible topologies of C_{119} isomer candidates. Taylor⁵ suggests a construction scheme generating a spiran-like structure of C_s symmetry, which is based on a proposed extrusion mechanism:

 $C_{120}O \rightarrow C_{119} + CO$

This scheme was generalized by Albertazzi and Zerbetto⁶ to produce a total of six candidate isomers, including two of C_2 symmetry. The six isomers are **A**–**F** of Figure 1 and Table 1. They are D₅₆, D₆₆, 4m₅₆, 4m₆₆, 5m₅₆, and 5m₆₆ in the nomenclature of ref 6 where 4m (5m) means that the connection is via a four- (five-) membered ring, D stands for diversely connected, and the subscript indicates whether the junction involves a pentagon–hexagon or hexagon–hexagon bond. The energetically favored isomer is D₅₆ (isomer **A** in this letter).

In a different approach, Adams et al.⁷ start from C_{59} , a C_{60} cage with one atom removed, and identify seven possibilities for locating a second C_{60} cage neighboring the defect site; from these initial geometries quantum molecular dynamics (QMD) simulations lead to four final distinct minima. The most stable isomer is again **A**. A simulated Raman spectrum is presented for this isomer in ref 7.

Lebedkin et al.³ used molecular modeling to produce four low-energy isomers of C_2 symmetry, including the most promising candidate **A** and the second C_2 isomer, **E**. **E** is unstable in the QMD simulations, resulting in a broken-

^{*} To whom correspondence should be addressed. E-mail: Thomas. Heine@chipy.unig.ech. Fax: +41 22 702 6518. Phone: +41 22 702 6539.

[†] Dipartimento di Chimica G. Ciamician.

[‡] Universität-GH Paderborn.

[§] University of Exeter.

Figure 1. Optimized structures of eight isomers of C_{119} , A-H. Each structure is shown in plan and elevation.

symmetry C_1 isomer (isomer III* in ref 3). Calculated energies, and comparison of simulated and measured Raman spectra³ for the four C_2 isomers again support **A** as the best candidate for the experimentally characterized species.

In the present paper, the eight isomers from ref 6 and ref 3 are compared in energy using the DFTB^{8,9} method. ¹³C NMR patterns for all eight distinct isomers are calculated. The spectra

give a clear indication that isomer ${\bf A}$ is indeed the structure produced by Gromov et al.⁴

Geometries and energies are calculated within the DFTB method,⁸ parametrized for carbon as in ref 9 which has been tested for various carbon compounds, and found to perform well for fullerenes¹⁰ even though no fullerene data were used in the parametrization process. Initial geometries were taken from

Figure 2. ¹³C NMR patterns of C_{119} isomers. The idealized experimental C_{119} spectrum (adopted from ref 4) is displayed at the top. **A** includes a signal at 30.7 ppm (half-intensity) and **F** one at 259.1 ppm, resulting from a poor description of this high-energy isomer by a closed-shell configuration. Neither signal is included in the figure. The dashed line gives the position of the C_{60} signal.

previous calculations^{3,6} and optimized employing the steepest descent algorithm without symmetry constraints. ¹³C NMR chemical shifts were calculated using the IGLO-DFTB model.¹¹ All parameters are as in ref 11. A uniform scaling (0.75) of the paramagnetic part of the shielding is applied to give the correct difference of the C₆₀ shielding and the sp³ signal of its dimer.¹²

TABLE 1: Calculated Energies and ¹³C NMR Data for C_{119} Isomers^{*a*}

isomers				energies				NMR spectra		
Ν	$N_{\rm A}$	$N_{\rm L}$	G	$E_{\rm M}$	$E_{\rm Q}$	$E_{\rm D}$	$\Delta_{\rm G}$	Δ	$\overline{\delta_{\mathrm{TMS}}}$	Δ_{sp^2}
Α	D ₅₆	Ι	C_2	0.000	0.000	0.000	1.63	91.5	141.9	133.4-
В	D ₆₆		C_s	1.514		2.970	0.26	127.6	139.4	114.6- 158.3
С	4m ₅₆		C_1	4.535		4.060	1.54	94.5	142.4	133.1-
D	4m ₆₆		C_s	3.690		4.250	1.55	103.8	142.2	128.3 -162.2
Е	5m56	III	C_2	1.952	2.012	1.982	0.86	88.4	139.1	128.7
F	5m ₆₆		C_1	4.615		3.946	0.97	184.1	142.7	120.8-
G		II	C_2		2.192	1.926	1.53	94.5	141.2	131.6-
н		IV	C_2		1.753	2.163	0.89	97.4	139.4	128.5-
experiment			C_2					93.683	141.537	134.913- 150.841

^{*a*} N, N_A, and N_L are codes for the isomers in the nomenclature of this paper, refs 6 and 3, respectively, G indicates the point group. Energies are given relative to the most stable isomer (**A**) at each level, $E_{\rm M}$, $E_{\rm Q}$, and $E_{\rm D}$ are the energies (in eV) obtained with the MNDO,⁶ QMD,³ and DFTB methods. Δ_G is the DFTB HOMO– LUMO gap (in eV), Δ the width of the ¹³ C NMR spectrum, $\overline{\delta}_{\rm TMS}$ the position of its center, and $\Delta_{\rm sp^2}$ the range of the sp² region, all in ppm.

Total shieldings are converted to chemical shifts by taking the C_{60} signal as a reference ($\delta_{TMS}(C_{60}) = 142.68 \text{ ppm}$,¹³ see ref 11). IGLO-DFTB parameters, optimized geometries of C_{119} , and their calculated ¹³C NMR spectra are available as Supporting Information.

The initial topologies are conserved during geometry optimization except in the case of isomer III^* of ref 3 which converges back to **E**. Binding energies are compatible with those from previous MNDO⁶ and QMD³ calculations, as listed in Table 1. The C_2 isomer **A** is clearly favored energetically. The other C_2 isomers from ref 3 are all less stable by $\sim 2 \text{ eV}$, and the isomers of lower symmetry constructed in ref 6 have even higher relative energies. Compared to other carbon species, C_{119} isomer **A** has about the same binding energy per atom as C_{60} and is hence somewhat less stable than (C_{60})₂.

Figure 2 compares the experimental⁴ and calculated ¹³C NMR spectra. Most of the isomers including all non- C_2 forms can be excluded as candidates for the characterized C_{119} isomer by the overall pattern of their spectra. The sp³ signals of the four C_2 isomers are (A) 72.7 and 59.4*,(G) 64.4 and 59.0*, (E) 69.0 and 74.1*, (H) 64.6 and 53.8* in IGLO-DFTB, compared with 73.728 and 57.158* in experiment (in ppm, an asterisk indicates half-intensity signals). The range of the sp² part of the pattern is given in Table 1. The comparison of these details clearly excludes the three C_2 isomers within the expected tolerance of 5 ppm of the IGLO-DFTB method. The best, and excellent, match in the range of the sp² packs and in the order and position of the sp³ signals is given by the computed spectrum of **A**.

In agreement with other calculations, the DFTB method finds the isomer **A** (C_2) to be favored energetically among eight plausible candidates for the structure of C_{119} . The calculated ¹³C NMR chemical shifts are compatible with the experimental spectrum, and identify this isomer as the species obtained experimentally by Gromov et al.⁴

Acknowledgment. The authors are grateful to E. Albertazzi and S. Lebedkin for providing data. The EU TMR scheme is thanked for financial support under contract FMRX-CT97-0126 on Usable Fullerene Derivatives. **Supporting Information Available:** Cartesian coordinates and calculated chemical shifts of reported structures. This material is available free of charge via the Internet at http:// pubs.acs.org.

References and Notes

(1) Fowler, P. W.; Manolopoulos, D. E. An Atlas of Fullerenes; Oxford University Press: Oxford, 1995.

(2) McElvany, R. S. W.; Callahan, J. H.; Lamb, L. D.; Huffman, D. R. Science **1993**, 260, 1632.

(3) Lebedkin, S.; Rietschel, H.; Adams, G. B.; Page, J. B.; Hull, W. E.; Hennrich, F. H.; Eisler, H.-J.; Kappes, M. M.; Krätschmer, W. *J. Chem. Phys.* **1999**, *24*, 11768.

(4) Gromov, A.; Ballenweg, S.; Giesa, S.; Lebedkin, S.; Hull, W. E.; Krätschmer, W. Chem. Phys. Lett. **1997**, 267, 460.

(5) Taylor, R. J. Chem. Soc., Chem. Commun. 1994, 1629.

- (6) Albertazzi, E.; Zerbetto, F. J. Am. Chem. Soc. 1996, 118, 2734.
 (7) Adams, G. B.; Page, J. B.; O'Keeffe, M.; Sankey, O. F. Chem. Phys. Lett. 1994, 228, 485.
- (8) Seifert, G.; Porezag, D.; Frauenheim, T. Int. J. Quantum Chem. 1996, 58, 185.
- (9) Porezag, D.; Frauenheim, T.; Köhler, T.; Seifert, G.; Kaschner, R. Phys. Rev. B 1995, 51, 12947.
- (10) Albertazzi, E.; Domene, C.; Fowler, P. W.; Heine, T.; Seifert, G.; Van Alsenoy, C.; Zerbetto, F. *PCCP* **1999**, *1*, 2913.
- (11) Heine, T.; Fowler, P. W.; Seifert, G.; Zerbetto, F. J. Phys. Chem. A **1999**, 103, 8738. The exponent of the DFTB confinement potential is here n = 2 as in ref 9.
- (12) Wang, G.-W.; Komatsu, K.; Murata, Y.; Shiro, M. Nature 1997, 387, 583.
- (13) Taylor, R.; Hare, J. P.; Abdul-Sada, A. K.; Kroto, H. W. J. Chem. Soc., Chem. Commun. 1990, 1423.