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A mixed molecular orbital and valence bond (MOVB) method for describing the potential energy surface of
reactive systems has been developed and applied to a model proton transfer reaction in aqueous solution. The
MOVB method is based on a block-localized wave function (BLW) approach for defining the diabatic electronic
states. Then, a configuration interaction Hamiltonian is constructed using these diabatic states as the basis
function. It was found that the electronic coupling energy is large with a value of about 30 kcal/mol for the
H3N-H-NH3

+ system, whereas the predicted activation barrier is only 1.2 kcal/mol using the 3-21G basis
set. The MOVB results are found to be in good accord with the corresponding ab initio Hartree-Fock
calculations for the proton transfer process. We have also incorporated solvent effects into the MOVB
Hamiltonian in the spirit of combined QM/MM calculations, and have modeled the proton transfer between
ammonium ion and ammonia in water using Monte Carlo simulations. The potential of mean force was
computed via free energy perturbation coupled with umbrella sampling techniques using (1) an energy gap
mapping approach, and (2) a geometrical mapping procedure. Solvent effects increase the barrier height by
about 2.2 kcal/mol from the MOVB and HF ground state potential energy surface. The present study
demonstrated the feasibility of ab initio MOVB method for studying chemical reactions by incorporating
explicit solvent effects in the description of the reaction coordinate in combined QM/MM simulations.

1. Introduction

Quantum mechanical calculations of reaction rates in solution
represent a great challenge in theoretical chemistry because of
the complexity and the large number of molecules involved in
the system. Furthermore, the traditional approach of transition
structure determination and reaction path following,1-5 typically
used for gas-phase reactions, is complicated by the need for
specific consideration of the fluctuations of the collective solvent
coordinates accompanying the chemical transformation.6,7 Prac-
tical procedures have been established to circumvent the first
problem by partitioning the condensed-phase system into a
reactive region that is treated quantum mechanically (QM) and
a bath region consisting of the rest of the system that is
approximated by molecular mechanics (MM).8-13 Such a
combined QM/MM approach takes advantage of the accuracy
offered by quantum chemical models for chemical reactivity
and computational efficiency of the MM force field. Importantly,
the method can be systematically improved by either increasing
the level of theory in the QM model or enhancing the classical
representation of the solvent.14 Numerous studies have demon-
strated a wide range of applications of combined QM/MM
methods, including chemical reactions in solution and enzymes
and solvent effects on electronic excited states.8-21

To determine a reaction rate in solution, it is necessary to
obtain the free energy of activation in solution. The prerequisite
for such calculations is a reliable and general description of the
potential energy surface (PES) for the reactive system that
undergoes bond breaking and formation. One popular and

successful approach to derive analytical potential energy surface
for molecular dynamics calculations is the semiempirical
London-Eyring-Polanyi-Sato (LEPS) potential function and
its various extensions,22,23 which are based on a valence bond
treatment.24 For condensed-phase simulations, a second issue
arises, which is the treatment and inclusion of the collective
solvent coordinates.6 Thus, the PES should be formulated in
such a way that it can be conveniently used to represent the
solvent reaction coordinate along with the solute reaction path.
Although the method that we propose in this paper provides an
ab initio valence bond (VB)-like treatment of the PES for
polyatomic reactions, our focus in the present study is on the
latter aspect, making use of an energy-gap approach to define
the solvent reaction coordinate. The energy-gap reaction coor-
dinate has been successfully applied to numerous chemical
reactions in the context of empirical valence bond (EVB)
calculations.25-29 Voth and others have further extended the
simple EVB ideas to modeling proton transfer reactions in
aqueous systems with multistate EVB configurations.30,31How-
ever, one shortcoming in the EVB method is a lack of a
systematic path in improving its accuracy, especially when
critical experimental data are not readily available. The difficulty
may be somewhat alleviated using efficient algorithms for
general parametrization from ab initio energy and Hessian
results.27,32,33Nevertheless, there is interest in developing a more
systematic procedure to treat this problem.

In this article, we present an ab initio approach, suitable for
condensed phase simulations, that combines Hartree-Fock
molecular orbital theory and modern valence bond theory
(MOVB) to describe the PES for reactive systems. The MOVB
method is tested in this work on a model proton transfer reaction
in water; however, the approach is general and can be applied
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to any chemical reaction. In what follows, we first review in
section 2 a block-localized wave function (BLW) method that
is used to define diabatic electronic states. Then the MOVB
model is described for computation of the adiabatic PES and
its implementation in combined QM/MM simulations. In section
3, computational algorithms are presented for construction of
the diabatic electronic state functions for carrying out MOVB
free energy simulations and for performing statistical Monte
Carlo calculations. This is followed in section 4 by results and
discussion of the major findings. Conclusions are given in
section 5.

2. Methods

The block-localized wave function (BLW) method was
introduced previously and has been applied to organic com-
pounds to rationalize electronic delocalization effects34,35 to
decompose energy components in intermolecular interactions.35

Here, the BLW method is briefly summarized before the
molecular orbital-valence bond approach is described.

A. The Block-Localized Wave Function Method.It is of
considerable interest to construct diabatic electronic states
representing specific resonance structures of a molecular sys-
tem. Such diabatic states provide the reference point for com-
puting the electronic delocalization energy in the investigation
of intermolecular interactions and chemical bonding.35 Further-
more, the potential energy surface for a chemical reaction can
be described by mixing the individual potential energy sur-
faces for the reactant and product state as well as other im-
portant valence bond (VB) configurations.24 An important
feature of the VB approach is that it is conceptually closely
related to the way in which organic chemists rationalize chem-
ical reactivity, and it has been successfully used by Shaik and
co-workers to describe organic reactions.36-38 In principle,
modern ab initio valence bond theory can be used to construct
the localized wave function for specific diabatic states; how-
ever, ab initio VB calculations are extremely time consuming,
which prevents its application to large molecules of biological
interest.

Here, we construct the localized diabatic state, or resonance
structure, using a strictly block-localized wave function (BLW)
method, which was developed recently for the study of electronic
delocalization.34,35 This approach is similar, but different in
implementation, to ideas that have been developed by Gianinetti
et al. for the study of intermolecular interactions.39,40 Before
we proceed, we note that although it is possible to construct
electronic diabatic states using localized molecular orbitals
derived from unitary transformation of canonical orbitals,41 these
localized MOs are in fact not strictly localized. They contain
both orthogonalization and delocalization tails, the latter of
which makes contribution to the electronic delocalization effect
and is not appropriate for describing diabatic potential energy
surfaces. To avoid these two types of tails in the BLW method,
we impose restrictions on the expansion space of the molecular
orbitals.35

It turns out that it is always possible to partition all electrons
and basis orbitals in a molecular system intok subgroups,
corresponding to a particular form of the Lewis resonance or
VB structure. For simplicity, we assume that each subgroup is
a closed-shell system; theath subgroup containsma basis
functions andna electrons. The extension of the BLW method
to open-shell partitions is straightforward, and the computational
details will be described in a forthcoming paper. Thus, the total
number of primitive basis functions,M, and the total number
of electrons,N, in the system are

Each molecular orbital in a subgroup is written as a linear
combination of the primitive basis functions in that specific
subspace{øa

µ, µ ) 1, ..., ma}

The Slater determinant wave function for resonance structure
s is then constructed as

where Â is an antisymmetrizing operator,Φa is a successive
product of the occupied MOs in theath subgroup (eq 2), andks

is the number of electronic blocks

whereR andâ are spin functions. The wave function defined
in eq 3 is subjected to the restriction that molecular orbitals
within each subgroup are orthogonal, whereas orbitals between
different subgroups are nonorthogonal-a feature of the valence
bond approach42-45

whereOij is the overlap integral between molecular orbitali
and j.

With the definition of eqs 2 and 3, the coefficient matrix for
theoccupiedMOs of the BLW wave function has the following
form:

where the elementCa is anna/2 × ma matrix whose elements
are defined in eq 2. The energy of the localized wave function
(diagonal terms of the Hamiltonian) is determined as the
expectation value of the Hamiltonian H, which is given as
follows:

In eq 7, hµν and Fµν are, respectively, elements of the usual
one-electron and Fock matrices, anddµν is an element of the
density matrix,D, which is evaluated using eq 8

whereS is the overlap matrix of primitive basis functions,{øµ
a;

µ ) 1, ...,ma; a ) 1, ...,kS}.
The molecular orbitals in the BLW wave function can be

optimized in two ways using (1) the Jacobi rotation method,34

or (2) a reorthogonalization technique described by Gianinetti
et al.39 Both approaches have been implemented in our program.
The reorthogonalization method is approximately 10 times faster
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than the successive Jacobi rotation algorithm for the system
investigated here.

B. The Molecular Orbital -Valence Bond Method.The
wave function for a reacting system along the entire reaction
coordinate,Θ[R,X], can be described by the resonance of the
reactantΨ1 and productΨ2 configurations, plus other important
configurations if necessary:

where eachΨr[R,X] represents a specific diabatic state,Θ[R,X]
is an adiabatic state wave function,L is the total number of
diabatic states, and the coefficients{Vr} are determined varia-
tionally analogous to multiconfiguration self-consistent field
(MCSCF) calculations. To emphasize the fact that the diabatic
and adiabatic ground state (as well as excited state) wave
functions depend on the geometry of the reactive system R and
the solute-solvent reaction coordinate X, these variables are
explicitly indicated in eq 9. Since the resonance VB-like
structures defined by eqs 3 and 9 have features both of molecular
orbital theory and modern ab initio VB method, the present
approach is referred to as the molecular orbital-valence bond
(MOVB) method.

The MOVB Hamiltonian in the basis of the valence bond
configurations is constructed by determining the VB integrals
and relevant overlap integrals, and the ground state energy is
obtained by diagonalizing the Hamiltonian of eq 10

whereL is the total number of diabatic states defined in eq 9,
which are also referred to as MOVB configurations. The
diagonal matrix element in eq 10 can be conveniently evaluated
by using eq 7, which has been applied to the study of resonance
effects.35 The off-diagonal element Hst is defined as follows:

Evaluation of Hst (s* t) involves two Slater determinants whose
spin-orbitals are nonorthogonal. A number of algorithms have
been proposed for this problem. Lo¨wdin first described a method
on the basis of the Jacobi ratio theorem,46 whereas Amos and
Hall47 and King et al.48 developed a bi-orthogonalization
procedure for evaluation of matrix elements of nonorthogonal
determinant wave functions. In our implementation, we follow
Löwdin’s Jacobi ratio strategy, which is summarized below.

For convenience of discussion, we rewrite the two BLW
functions appearing in eq 11 for the VB configurations and t
as follows:

whereMs andMt are normalization constants,si andti are spatial
orbitals for configurations and t. Here, we have replaced the
notation for molecular orbitals,æa

i (eq 2), with the cor-
respondence of s1 T æ1

1; s2 T æ1
2, ..., sN/2 T æk

nk/2. A similar
correspondence for configurationt can also be made. Note that
configurations andt may or may not have the same number of
blocks (subgroups) in constructing the BLW wave function,

although the total number of molecular orbitals is identical.
Recognizing that the N× N determinant BLW wave function
(eq 12) can be partitioned into two equivalent N/2× N/2
matrices, one corresponding to theR spin and the otherâ spin,
Hst can be conveniently expressed in terms of only spatial
orbitals. First, the overlap integral betweenΨs andΨt is

whereDst is the determinant of the overlap matrix between the
spatial molecular orbitals inΨs andΨt

To evaluate Hst, we consider the one-electron and two-electron
terms of the Hamiltonian separately. The contribution from the
one-electron part is

where (Sst
-1)ji is an element of the inverse matrix ofSst (eq 14),

which can be conveniently derived using the Jacobi ratio
theorem46

whereDst(sitj) is the algebraic residual corresponding to theith
column,jth row element of the determinantSst in eq 14. Defining
the density matrixP as

eq 16 can be simplified in terms of the primitive orbital integrals
hµν

Similarly, the two-electron Hamiltonian part yields

Combining eqs 19 and 20, we obtain

It is noted that Hst is a function of the geometry and the reaction
coordinate of the reacting system, R(X).

C. Combined Ab Initio QM/MM Simulation Techniques.
Our main goal is to incorporate solvent effects into ab initio
Monte Carlo or molecular dynamics simulations of chemical
processes, making use of combined quantum mechanical and
molecular mechanical (QM/MM) techniques. QM/MM tech-
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niques have been implemented for Hartree-Fock, configuration
interaction, and density functional calculations, and they have
been applied to a variety of chemical systems with remarkable
success. Interested readers may find further computational details
in refs 8-12. The present study extends these solvation
techniques to the MOVB method for reactive systems.

In a combined QM/MM method, the interaction Hamiltonian
between the QM solute and MM solvent is included in the
optimization of the solute wave function by incorporating the
one-electron integral term resulting from the solvent electric
field

wherehµν
o is an element of the usual one-electron matrix for

the isolated “QM” system. The one-electron integralIµν
qm/mm

in eq 22 consists of contributions from all solvent charges10,11

which can be evaluated using standard algorithms for computing
nuclear-attraction integrals. Thus, the MOVB energy automati-
cally includes solute-solvent electrostatic interactions.

3. Computational Details

The present MOVB method for studying chemical reactions
in solution is illustrated by computing the potential of mean
force for the proton-transfer reaction between ammonium ion
and ammonia, [H3N‚‚‚H‚‚‚NH3]+, in water.49-51 Since the
primary goal of the present study is to examine the MOVB
method for describing the potential energy surface in a chemical
reaction in solution, the nuclear quantum mechanical tunneling
effect is not specifically considered. First, we show that the
MOVB method yields reasonable results for the ground state
PES of the proton transfer reaction both in the gas phase and
in solution. Second, we illustrate that the diabatic PES of the
MOVB method can be effectively used as a mapping potential
in potential of mean force calculations.

A. The MOVB Potential Energy for the Proton Transfer
Reaction in [H3N‚‚‚H‚‚‚NH3]+. We use three resonance
configurations to describe the proton transfer reaction in [H3N‚
‚‚H‚‚‚NH3]+

where eachΦ indicates a product of the molecular orbitals
expanded over basis functions located on atoms in the fragment
specified in parentheses. These MOs are optimized for each
resonance structure using the method described in refs 34 and
39 at a given geometry of the molecule. Although the MO
coefficients for each resonance configuration may in principle
be optimized in the MOVB CI calculations, only the configu-
ration coefficients are variationally optimized here. The ground
state energy is obtained by diagonalizing the three-state MOVB
Hamiltonian (eq 10). For comparison, the proton transfer
potential energy curve is also computed at the Hartree-Fock
level.

The diabatic potential energy for each resonance configuration
as well as the adiabatic ground state energy for the reaction in
solution is determined by including the solute-solvent (or qm/
mm) one-electron integrals,Iµν

qm/mm, in the gas phase one-
electron matrix. Thus, both the diagonal, Hss, and off-diagonal,
Hst, matrix element in the MOVB Hamiltonian explicitly include
solvent effects in the calculation. This is in contrast to Warshel’s

EVB approach,25,26 in which the solvent contribution is incor-
porated only into the diagonal elements, whereas the off-
diagonal elements are assumed to be independent of solvent
effects. Although the most significant contribution to the
variation in off-diagonal matrix elements is their dependence
on the solute geometry, it has been pointed out that in many
cases, the solvent dependence of the off-diagonal matrix
elements is not negligible in studying chemical reactions in
solution using a VB approach.28,30 Since our ab initio MOVB
method includes these contributions explicitly in all terms, it
provides a means by which this problem can be assessed in
condensed phase simulations by comparison with studies that
exclude the solvation term in Hst. This study will be reported
in a future publication.

In this work, we have used the 3-21G basis set to demonstrate
the method in liquid simulations, while larger basis functions
are used for gas phase comparisons.

B. Free Energy Perturbation Methods. The potential of
mean force, or free energy profile, as a function of the reaction
coordinate, X, for a chemical reaction in solution can be
computed using the free energy perturbation method.52 A
straightforward approach is to determine free energy differences
for incremental changes of certain geometrical variables that
characteristically reflect the chemical process in going from the
reactants, through the transition state, to the final products.53

For example,X may be defined by some characteristic geometry
variables, specifying the position of the migrating proton in
[H3N‚‚‚H‚‚‚NH3]+, XR ) R1 - R2 (Figure 1). Here, we use the
superscript R to stress the fact that the reaction coordinate is
defined by the solute geometrical parameters. The potential of
mean force is then determined using the free energy perturbation
theory52

where the brackets〈...〉j indicate an ensemble average over the
potential energyE(Xj

R), and n is the number of “bins”
(increments) in going from the reactant state (X0

R) to a value
of Xn

R. This “geometric mapping” approach, which is akin to
studying gas phase reactions through reaction path calculations,
has been successfully applied to numerous organic reactions in
solution.54 Nevertheless, there is concern in this type of simu-
lations because the solvent reaction coordinate is not explicitly
included in the definition of the reaction coordinate.55 A recent
simulation study of the proton transfer in [HO‚‚‚H‚‚‚OH]- in
water indicates that there is considerable difference in the
qualitative appearance of the free energy profile and the height
of the predicted free energy barrier if the solvent reaction
coordinate is explicitly taken into account.55

An alternative approach for obtaining the activation barrier
and the free energy reaction profile is to defineX in such a
way as to reflect both the solute and solvent reaction coordinate.6

Figure 1. Schematic representation of the geometrical parameters for
the [H3N-H-NH3]+ system.

∆G(Xn
R) ) -RT∑

j)1

n

ln 〈e-[E(Xj
R)-E(Xj-1

R )]/RT〉j-1 (24)

hµν
qm/mm) hµν

o + Iµν
qm/mm (22)

Ψ3 ) {H3N:H+:NH3} ) Â[Φ(H3N)Φ(NH3)]

Ψ2 ) {H3N:H-NH3
+} ) Â[Φ(H3N)Φ(H-NH3

+)] (23)

Ψ1 ) {H3N-H+:NH3} ) Â[Φ(H3N-H+)Φ(NH3)]
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Therefore, ifX is chosen as the energy difference between the
energies of the diabatic reactant and product VB states in
solution, the solvent degrees of freedom are adequately defined
because the change in solute-solvent interaction energy reflects
the collective motions of the solvent molecules as the reaction
proceeds6,26,55

whereE1 andE2 are the expectation values of the wave functions
Ψ1 andΨ2, defined in eq 23, and the superscript S emphasizes
explicit treatment of the solvent reaction coordinate. It should
be noted thatXS is negative when the system is in the reactant
state and positive in the product state. Although eq 25 is not
unique in defining the solvent reaction coordinate, it provides
a convenient procedure to monitor the progress of the reaction
in solution.

In practice, a reference potential (RP), or mapping potential,
must be used to enforce the orientation polarization of the
solvent system such that significant time is spent along the entire
reaction path, particularly at the transition state region. One
approach that has been successfully used previously is to linearly
couple the reactant and product VB potential energies shown
in eq 26:

By moving the coupling variableλ from 0 to 1, the system is
driven accordingly from the reactant state E1(Ψ1) to the product
state E2(Ψ2). The free energy change along this RP path can
be determined by using eq 24, except that the perturbation is
made with respect to small increments inλ, typically at intervals
of (0.1.

However, the reference potential (eq 26) is used only to drive
the system to go from configurations corresponding to the
reactant state to the final product state. To obtain the true ground
state potential of mean force, an umbrella sampling procedure
is applied to sample the probability of finding configurations
at a given value ofXS

where ∆GRP(λ) is the free energy change on the reference
potential from 0 toλ, and the average is determined using the
potential, ERP(λ). The quantity F[XS (λ)] in eq 27 is the
normalized distribution of configuration that has a value ofXS

during the simulation using the reference potential. It should
be noted that the umbrella sampling calculation is performed,
on the fly, using the same set of Monte Carlo or molecular
dynamics trajectories in the free energy perturbation calculation.

In eq 27, the ground state potentialEg can be either the
MOVB adiabatic potential energy or any other ab initio quantum
mechanical energies, e.g., the HF, MP2, or DFT values.
Consequently, the present method is not limited to the MOVB
potential energy surface. In the present study, we choose to use
both the MOVB and the Hartree-Fock energy as the ground
state potential to compare the performance of the method.

The simulation procedure described above has been ef-
fectively utilized by Warshel and others to study chemical
reactions in solution and in enzymes.26,29,30In these calculations,
the EVB method is typically used to describe the VB resonance
structure, in which the empirical potential parameters are cali-
brated to reproduce experimental data, and the empirical force
field makes it convenient to describe the diabatic VB states in

solution. It is, however, difficult to use this approach directly
in ab initio QM/MM calculations due to complications in
constructing diabatic VB states.55 The present MOVB method
provides the first practical procedure to directly include the
solvent reaction coordinate in combined ab initio QM/MM
simulation of chemical reactions in solution.

C. Monte Carlo Simulations. Statistical mechanical Monte
Carlo simulations have been carried out for systems consisting
of the ammonium-ammonia pair plus 510 water molecules in
a cubic cell with periodic boundary conditions. Standard
procedures were used, including Metropolis sampling and the
isothermal-isobaric ensemble (NPT) at 25°C and 1 atm. To
facilitate the statistics near the solute molecule, the Owicki-
Scheraga preferential sampling technique was adopted with 1/(r2

+ C) weighting, whereC ) 150 Å2. The intermolecular
interactions were feathered to zero at a spherical cutoff distance
between 9.5 and 10 Å based on heavy atom separations. New
configurations were generated by randomly selecting a molecule,
translating it in all three Cartesian directions, and rotating it
around a randomly chosen axis. For solute moves, all internal
geometric parameters including bond lengths, bond angles, and
dihedral angles are varied, except that the N-H-N atoms are
restricted to being linear with a fixed N-N separation of 2.7
Å, which is slightly longer than the equilibrium distance for
the ammonium-ammonia complex (2.64 Å). The dynamics and
the actual proton transfer pathway are not fully explored
here.49,50 All simulations were maintained with an acceptance
rate of ca. 45% by using ranges of(0.15 Å and 15° for
translation and rotation moves of both the solute and solvent
molecules. For the internal degrees of freedom for [H3N‚‚‚H‚
‚‚NH3]+, the N-H bond distances are restricted to be(0.002
Å, the H-N-N angles are 5°, and the maximum allowed
change in the H-N-N-H dihedral angle is 15°. The range of
the central proton has a translation range of 0.03 Å.

The solute [H3N‚‚‚H‚‚‚NH3]+ is represented quantum me-
chanically at the HF and the MOVB level, the latter of which
is used to construct the diabatic VB configurations. The three
point charge TIP3P model is adopted for water.56 QM/MM
interactions are incorporated into QM calculations via the one-
electron integral term augmented by a nonelectrostatic van der
Waals term. The Lennard-Jones parameters for solute atoms
are taken from ref 57, which are developed for HF/3-21G QM/
MM calculations. The MOVB method has been implemented
into the MCQUB program package, with which combined QM/
MM Monte Carlo simulations can be carried out both at the
semiempirical level and the ab initio level,58 using the GAMESS
programs for the latter calculation.59 The MOVB calculations
were performed using a program developed in our group, which
makes use of the integral routines in the GAMESS code.60

Two sets of simulations were performed at the QM/MM
MOVB and HF level, respectively. In the first calculation, the
MOVB diabatic states are used to define the solvent reaction
coordinate for the proton transfer reaction in water, and the
ground state potential of mean force is determined both at the
MOVB and HF level. Then, the standard HF-QM/MM
geometric mapping procedure was used in a second set of
simulations to obtain the potential of mean force as a function
of the solute reaction coordinate. Five free energy perturbation
windows are used in the MOVB QM/MM calculation, which
are more than sufficient in the present calculation, although it
allows comparison of the convergence from different starting
conditions. In the HF-QM/MM calculation, we used a standard
umbrella sampling method to determine the potential of mean
force.61 Two simulations are deemed to be adequate. Each

XS ) E1(Ψ1) - E2(Ψ2) (25)

ERP(λ) ) (1 - λ)E1(Ψ1) + λE2(Ψ2) (26)

∆G(XS) ) ∆GRP(λ) - RT ln 〈e-[Eg-ERP(λ)]/RT〉λ

-RT ln F[XS(λ)] (27)
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calculation window consisted of at least 2× 106 configurations
of equilibration, followed by 2× 106 configurations of
averaging. All computations are performed on an Origin 2000
computer at the Center for Computational Research at Buffalo.

4. Results and Discussion

A. Gas Phase Potential Energy Surfaces.The diabatic and
MOVB adiabatic potential energy profiles for the proton transfer
reaction of NH4

+ + NH3 f NH3 + NH4
+ in the gas phase are

depicted in Figure 2. The geometries used in the MOVB
calculations are taken from the corresponding HF optimization
with fixed values of the reaction coordinate XR, which is defined
as the difference between the two H-N bond distances (Figure
1). Furthermore, the N-N distance is fixed at a separation of
2.7 Å, which is used in subsequent simulation calculations.

The potential energy profiles for the two diabatic VB
configurations intersect atXR ) 0 Å, corresponding to the
transition structure where the proton is located in the middle
between the two nitrogen atoms (Figure 2). The energy at the
crossing point of the two diabatic states, E1 and E2, is 19.4 kcal/
mol above the minimum configuration (XR ) (0.65 Å) using
the 3-21G basis set, and 28.4 and 26.4 kcal/mol, respectively,
using the 6-31G(d) and cc-pVTZ basis set. Figure 2 depicts the
results obtained using the 6-31G(d) basis set. As expected, the
diabatic potential energy surface for the reactant state (E1)
monotonically increases as the proton migrates to the product
state. Concomitantly, the potential energy for the product state
(E2) mirrors the change of the reactant state in decreasing order.
The potential energy surface for the ionic state,Ψ3 ) [H3N:,
H+, :NH3], has a minimum atXR ) 0 Å, with an energyT )
36.1, 30.4, and 26.9 kcal/mol above the intersection from the
three basis sets.

The adiabatic MOVB ground state potential surface is
significantly lower in energy than the diabatic surfaces, with a
coupling energy of B) 30.8, 30.2, and 28.3 kcal/mol at the
transition state at the MOVB(3)/3-21G, 6-31G(d), and cc-pVTZ
level, respectively (Table 1). The barrier for the proton transfer
is predicted to be 1.2 kcal/mol at the MOVB(3)/3-21G level,
which may be compared with the Hartree-Fock value of 1.1
kcal/mol using the 3-21G basis set. In this notation, MOVB-
(3)/3-21G, the number in parentheses specifies the number of
configurations employed in the MOVB calculation. It should
be noted that the central proton is more localized toward one

of the nitrogen atoms in the minimum energy configurations
for the diabatic states with a value ofXR ) (0.65 Å, whereas
the minimum configuration on adiabatic potential surface is
located atXR ) 0.55 Å. The barrier heights predicted using the
larger basis sets are substantially greater than the 3-21G value,
although the agreement between HF and MOVB results is good
(Table 1). This difference is due to the use of a fixed N-N
distance of 2.7 Å in these calculations, which is longer than
the minimum value at the HF/3-21G level (2.64 Å) but shorter
than the HF/6-31G(d) and HF/cc-pVTZ values (2.82 and 2.81
Å). The inner side of the potential energy surface is much steeper
than the exterior.49 The agreement between MOVB and HF
results demonstrates that given a basis set, the MOVB method
is reasonable in describing the potential energy surface for a
chemical process involving the breaking and formation of
chemical bonds. Interestingly, the predicted coupling energy B
is relatively insensitive to the basis functions used, whereas
the ionic state is significantly stabilized using a large basis set
(Table 1).

We note that the representation of the VB resonance structures
in the MOVB method makes use of a HF description for the
N-H bond in 1 and 2 (eq 23). These configurations can also
be described by two covalent VB structures in a way analogous
to the GVB approach.62 If such a GVB alternative is used to
describe the bonding electron pairs, electron correlation effects
can be included in MOVB calculations.

B. Bimolecular Complexes.To assess the validity of the
MOVB-QM/MM model for simulation of solvent effects on
the proton transfer process in water, hydrogen-bonding com-
plexes of H3NH+‚‚‚NH3 with water have been investigated. The
results are compared with HF/3-21G QM/MM calculations and
full ab initio HF/6-31G(d) calculations. Intermolecular geometry
optimizations for the hybrid potentials are executed using a
simulated annealing technique in Monte Carlo calculations, with
which the temperature is gradually annealed from 25°C to
-273.0°C. For the MOVB QM/MM optimization, interaction
energies are computed both for the diabatic valence bond
configurations and for the adiabatic MOVB ground state
potential. In these computations, the H3NH+‚‚‚NH3 structure is
fixed in the geometry at the HF/3-21G level, while experimental
values are adopted for water.

Computed interaction energies for the interaction between
[H3N‚‚‚H‚‚‚NH3]+ and a water molecule are listed in Table 2.
Full ab initio HF/6-31G(d) results are compared with data
obtained from the hybrid methods at the HF and MOVB levels.
The estimated binding energies from QM-HF/3-21G/MM
calculations are about 3 kcal/mol smaller than the corresponding
full HF/6-31G(d) optimizations. This is a consequence of the
relatively longer hydrogen-bond distance predicted at the hybrid
level. Although the deviation may be alleviated by adjusting
the Lennard-Jones parameters, this optimization was not carried
out further because the relative interaction energy on going from
the ground state to the transition state structure for [H3N‚‚‚H‚
‚‚NH3]+ is in reasonable agreement with full ab initio calcula-
tions. The MOVB interaction energies follow similar trends as
that for the HF/3-21G/TIP3P model, though they are in slightly
better accord with the ab initio results. Overall, combined

Figure 2. Computed potential energy functions for the diabatic and
adiabatic state in the [H3N-H-NH3]+ system in the gas phase using
the 6-31G(d) basis function. The reaction profile at the HF/6-31G(d)
level is shown in dotted curve, which nearly coincides with the MOVB
adiabatic potential energy.

TABLE 1: Computed Activation Energies (kcal/mol) at the
HF and MOVB Level and the Adiabatic Coupling B and the
Ionic State Energy T (kcal/mol)

basis ∆E‡
HF ∆E‡

MOVB B T

3-21G 1.07 1.18 30.8 36.1
6-31G(d) 4.82 4.91 30.2 30.4
cc-pVTZ 4.64 5.10 28.3 26.9
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MOVB/MM calculations yield results similar to those from the
combined HF/MM model.

C. Potential of Mean Force in Aqueous Solution.Figures
3 and 4 show the key findings of the present study, which
illustrate the potential of mean force (pmf) for the proton transfer
reaction in aqueous solution. In Figure 3, the free energy changes
were obtained as a function of the reaction coordinateXS ) E1

- E2, using the HF and MOVB ground state potential energy
surface. For comparison, the potential of mean force was also
determined using a geometrical mapping procedure at the

combined HF/3-21G/TIP3P level (Figure 4, dashed curve).
Figure 5 depicts the diabatic potential energy surfaces using
the 3-21G basis set for the three VB states in the gas phase and
in water.

The effect of solvation on the predicted barrier height is
significant from both HF and MOVB pmf’s in Figures 3.
Importantly, the HF and MOVB results are in excellent
agreement. At the HF level, the computed activation free energy
∆G‡ is 3.3 kcal/mol, representing an increase of 2.2 kcal/mol
over the gas phase process. Similarly, the MOVB activation
energy is determined to be 3.4 kcal/mol, in good accord with
the HF prediction. The error ranges shown in Figure 3 are
estimated from 3 to 5 overlapping windows used in the free
energy simulation, which are about(0.1 to(0.5 kcal/mol. For
comparison, large solvent effects on the activation barrier for
the proton transfer between NH4

+ and NH3 in water have been
found previously.49,51 Chuang et al. described a method that
incorporates a continuum solvation model in electronic structure
and dynamics calculations for reactions in solution by making
the separable equilibrium solvation and the equilibrium solvation
path approximation.51 Applying this method to the NH4+‚‚‚NH3

proton transfer reaction using the PM3 semiempirical model
coupled with the SM5.4 solvation model, Chuang et al. found
that solvation increases the barrier along the adiabatic potential
surface by 4.2 kcal/mol.51 In this case, the PM3 model
significantly overestimates the gas phase reaction barrier in the
gas phase, which is 9.5 kcal/mol. Interestingly, it was found
that quantum mechanical tunneling is dominated by the large-
curvature mechanism.51 In a separate combined QM/MM AM1/
TIP3P Monte Carlo simulation study, the barrier height was
estimated to increase by about 2.5 kcal/mol at an N-N
separation of 2.7 Å.49 The present results suggests that the
MOVB method may be effectively utilized to describe the
potential energy surface for chemical processes in solution.

It is of interest to compare the predicted activation energy
obtained by the geometrical mapping procedure in Monte Carlo

TABLE 2: Combined Bimolecular Interaction Energies (kcal/mol) for [H 3N‚‚‚H‚‚‚NH3]+ and Water Complexes

H2O‚‚‚[H3N-H+‚‚‚NH3]a H2O‚‚‚[H3N‚‚‚H‚‚‚NH3]+ a

R(O-N), Å ∆E R(O-N), Å ∆E

HF/6-31G(d) 1.86 -16.1 1.96 -13.2
HF/3-21G-MM 1.91 -13.2 1.95 -11.1
MOVB/3-21G-MM 1.88 -13.3 1.95 -11.1
MOVB(E1)/3-21G-MM 1.86 -14.2 1.95 -12.6

a Species in square brackets are treated quantum mechanically in QM/MM calculations using the 3-21G basis set.

Figure 3. Computed potentials of mean force using the HF/3-21G
and MOVB(3)/3-21G ground state potential energy surface from ab
initio MOVB/MM Monte Carlos simulations. The N-N distance was
fixed at 2.7 Å in all simulations.

Figure 4. Comparison of computed potentials of mean force from
energy mapping (XS, solid curves) and geometrical mapping (XR, dash
curves) procedures at the HF/3-21G level. The N-N distance was fixed
at 2.7 Å in all simulations. The two reaction coordinates are matched
by scaling the ground state and transition state positions.

Figure 5. Computed diabatic state potential energy curves, averaged
over 2 million configurations, in aqueous solution (solid) and in the
gas phase (dashed). The 3-21G basis set is used.
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simulations at the combined QM-MM HF/3-21G-TIP3P level.
In this case, the solvent reaction coordinate is not explicitly
included in the definition of the reaction coordinate, XR. It
should be noted that if the simulation is carried out sufficiently
long, the computed barrier heights from these two simulation
protocols should be the same. In practice, localization of
electronic wave function in combined QM/MM calculations may
render difficulties of fast convergence near the transition state
region. In the present case of [H3N-H-NH3]+ in water, we
found that the predicted∆G‡ is 3.5 kcal/mol using the geo-
metrical mapping procedure. This is only slightly greater than
that obtained using XS as the reaction coordinate (3.3 kcal/mol).
The present finding is in contrast to a recent study of the proton
transfer of [HO‚‚‚H‚‚‚OH]- system, where significant difference
in the predicted activation barrier was found between the
geometrical and energy mapping procedures.55 In that case, the
overall barrier height (20 kcal/mol) is much greater than that
of the present system, which results in greater dependence of
the computed reaction profile on the solvent reaction coordi-
nate.55

Solvation effects on the potential energy surface of the
individual diabatic states are shown in Figure 5. As expected,
the E1 and E2 diabatic states are more stabilized in the ground
state region than at the transition state by solvation because
charges are more delocalized in the latter state. AtXS ) 0 kcal/
mol, the solvent effect raises the diabatic state energy by ca.
13 kcal/mol over the gas phase value (XR ) 0 Å). A similar
energy increase is obtained for the ionic state across the entire
range of the reaction coordinate. Interestingly, the predicted
activation energy in aqueous solution exhibits a rather small
solvent effect of 2.2 kcal/mol (Figure 3), although the individual
diabatic states consist of much greater increase in energy as
the reaction proceeds from the ground (or product) state to the
transition state. This shows a remarkable coupling effect of
the VB resonance structures. The agreement between HF and
MOVB free energies supports the validity of the MOVB method
in describing the ground state potential energy surface in
solution.

5. Conclusions

We have described a mixed molecular orbital and valence
bond (MOVB) model for describing the potential energy surface
of reactive systems and presented an application of the method
to a model proton transfer reaction in aqueous solution to
demonstrate its feasibility in combined ab initio QM/MM
simulations. The MOVB model is based on the block-localized
wave function (BLW) method, which is used to define the
diabatic electronic state functions. A configuration interaction
Hamiltonian is constructed using these diabatic VB state as the
basis functions. We have presented results showing the change
of the diabatic potential energy surface as a function of the
proton coordinate in the gas phase, and found a strong electronic
coupling energy ofB ) 30 kcal/mol. The ionic state has a
minimum, located at a geometry corresponding to the transition
state on the ground state adiabatic potential energy surface. This
minimum is about 27-36 kcal/mol higher in energy than the
crossing point of the two covalent diabatic states. Solvent effects
are incorporated into the MOVB Hamiltonian in the spirit of
combined QM/MM calculations and have been modeled in
Monte Carlo simulations for the proton transfer between
ammonium ion and ammonia in water. The potentials of mean
force are computed via free energy perturbation coupled with
umbrella sampling techniques using (1) an energy mapping
approach, and (2) a geometrical mapping procedure. Solvent

effects increase the barrier height by about 2.2 kcal/mol from
both the MOVB and the HF ground state potential energy
surface. The diabatic states are more stabilized by aqueous
solvation in the ground state region than at the transition state.
The present study demonstrated the feasibility of ab initio
MOVB, albeit using a modest basis function in the present
investigation, for studying chemical reactions that incorporate
explicitly the solvent reaction coordinate in combined ab initio
QM/MM simulations.
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