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We present a new methodology, working within the framework of the Polarizable Continuum Model, that
derives quantities directly comparable with data from nonlinear optical (NLO) experiments on liquid solutions
through computed molecular properties. The procedure does not require any knowledge of preliminary
experimental data (as do some semiempirical methods) but permits one to obtain the final molar property
(specifically, the macroscopic susceptibilities) in terms of effective molecular dipoles and (hyper)polarizabilities.
The latter are obtained through an ab initio description of the molecule of interest when it is mutually interacting
with the surrounding medium, which is represented by a continuum dielectric. Numerical applications, and
the related comparisons with experiments, are presented for refractive and permittivity first-order processes
and for third-order EFISH (electric-field-induced second harmonic generation) experiments for 4-nitroaniline
(pNA) and 3,5-dinitroaniline (3,5-DNA) in liquid dioxane at room temperature.

1. Introduction

The present paper focuses on the calculation of electric
response functions that correspond to widely used nonlinear
optical (NLO) processes for liquid solutions and on the
connection between these calculations and the quantities that
are actually measured by experiments.

The formal theory and the computational methodologies for
obtaining the NLO properties of isolated molecules are well
developed, and there is now a large body of numerical results
for many classes of compounds. (For a very recent review, rich
with references, see Bishop and Norman.1) On the contrary,
although of major interest to experimentalists, the calculation
of NLO properties for molecules in the condensed phase is much
less advanced with respect to accuracy and reliability than that
for molecules in the gas phase.

The classical approach to incorporating solution effects is to
use the Onsager-Lorentz model2 and to write the measured
susceptibilities (the macroscopic equivalent of the linear and
nonlinear optical molecular properties) in terms of the gas-phase
molecular values multiplied by local field factors. For example,
in the electric-field-induced second harmonic generation (EFISH)
experiment, the third-order susceptibility for a pure liquid is
generally expressed as

whereN is the number density of the molecules andγj is the
averaged molecular second hyperpolarizability. The local field

factors are usually given by the Lorentz expression, for the
frequency-dependent part, and the Onsager expression, for the
static part.2

In the past few years, different models have been proposed
to improve this description. Most of these models are based on
the concept of a solute in a cavity; within this framework, there
have been several theoretical investigations of the interactions
between solute and solvent molecules and the consequent
changes in the solute properties. Frequently, solvent effects are
established by the introduction of so-called reaction terms in
the Hamiltonian (models that employ such terms are also called
effective Hamiltonian, EH, approaches).3 Applications of such
models to NLO properties have been carried out by, among
others, Willets and Rice,4 Yu and Zerner,5 Mikkelsen and co-
workers,6 and our group,7,8 all applying different solvent models,
as well as different levels of quantum theory.

The properties obtained through such models represent an
intermediate step in the progression toward the real systems
used in the experiments. First, the computed quantities are still
molecular, or microscopic, and not macroscopic, exactly as are
the corresponding quantities computed in vacuo, even though
the molecular description has been modified by the solvent
reaction field. In addition, even when the interactions between
solute and solvent are incorporated into calculations, there still
exists a need to take into account the modifications of the applied
macroscopic fields at the local site of the solvated molecule
(the phenomenon historically indicated as “local field effects”).
The combination of these two modifications with respect to the
gas-phase model leads to the definition ofeffectiVe properties,
which reflect the response of the solvated molecules to the
applied field9 and which are more directly comparable to the
experiments.

In parallel, from the experimental point of view, the values
reported in the literature are derived from a concentration series,
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and the data to be used in the comparison with the computed
values must be suitably corrected for this fact. Actually, a
protocol based on the general concept of partial and model molar
polarizabilities10,11 has been applied in a series of experi-
ments,12,13 thus producing sets of data that are more directly
accessible for the theoretical chemist.

Pushed by the efforts made by experimentalists, we have
formulated a new procedure that takes into account all of the
complex features cited above so that one can obtain, in a single
computational run, all of the components needed for a correct
treatment of the computed results. This will lead to the definition
of a quantity that is directly comparable with “pure”, or almost
pure, experimental data. In the next section, we comment in
more detail on the protocol that gives the proper form of the
experimental data to which the computational results should be
compared and on the formal relations to be used in the treatment
of the computed molecular properties. The following three
sections are devoted to a description of the procedures that we
have formulated, within the framework of the solvation model
known as the Polarizable Continuum Model,14,15 for including
the effects of the medium, here treated as an infinite continuous
dielectric, in all the aspects related to experimental measure-
ments. Finally, in section 6, we present some numerical results,
and the related comparisons with experiments, for two NLO
model systems.

2. Macroscopic Susceptibilities and Molecular Effective
Polarizabilities: General Expressions

The electricnth-order susceptibilitiesø(n) describe the polar-
ization of a macroscopic portion of matter (for example, a
dielectric medium) in the presence of an electric field.

If we consider an experimental situation in which a macro-
scopic (or Maxwell) fieldE(t) is generated in a medium by the
superposition of a static and an optical component, that is

then the response of the medium can be represented by the
dielectric polarization vector (dipole moment per unit volume)
P(t), which, in terms of Fourier components, yields

Each Fourier amplitude can be expanded as a power series with
respect to the electric field, so that

where the argument in the parentheses of the susceptibility
tensorsø(n) describes the nature of the frequency dependence
at the given order; in all cases, the frequency of the resulting
wave (which from now on will be denotedωσ) is stated first,

followed by the frequency of the incident interacting waves (two
in a first-order process, three in the second-order analogue, and
four in the third-order case).

The various susceptibilities in eqs 4-6 can be obtained
through specific experiments in linear and nonlinear optics.
Thus, the first-order static susceptibility is related to the
dielectric constant at zero frequency,ε(0), while ø(1)(-ω;ω)
is the linear optical susceptibility related to the refractive
index nω at frequencyω. Moving to nonlinear effects, it is
worth recalling thatø(2)(-2ω;ω;ω) describes the frequency
doubling that is usually called second harmonic generation
(SHG) and ø(3)(-2ω;ω,ω,0) describes the influence of an
external field on the SHG process, which is of great importance,
as we shall see in the following, for the characterization of
second-order NLO properties in solution in electric-field-induced
second harmonic generation (EFISHG).

If we consider, as a macroscopic sample, a liquid solution of
different molecular components, each at a concentrationcJ, then
the effects of the single components are assumed to be additive,
so that the global measured response becomes10-12

where úJ
(n) are the nth-order molar polarizabilities of the

constituentJ. The values of the singleúJ
(n) can be extracted

from measurements ofø(n) at different concentrations.
The molar polarizabilities can be interpreted microscopically

in terms of the NLO response of a molecule to an electric field.
By applying arguments of statistical classical mechanics, we
obtain, for a generalnth-order molar polarizability,16

where we have introduced theZ space-fixed axes of the
laboratory. The expression above implies the consideration of
both rotation (or, classically, orientation) and thermal averaging
over the populated rotational states. Classically, the component
along the laboratory axes of the average dipole moment,µjZ-
(ωσ), of a single molecule of the speciesJ at a temperatureT
and in the presence of the macroscopic fieldE(t) can be written
as

where Einstein summation and the Boltzmann law are assumed;
θ and φ are the usual spherical coordinates that define the
molecular orientation with respect toX, Y, andZ; w is the angle-
dependent part of the energy of the molecule in the presence of
the electric field;kR is the cosine of the angle between the
molecular axisR and the laboratory axisZ; and the bar indicates
an average over a statistical distribution of molecular orienta-
tions.

The molecular dipoleµ̃(ωσ) can be related to the permanent
dipole and the static and dynamic polarizabilities and hyper-
polarizabilities of the molecules of the speciesJ by exploiting
the expressions of its Fourier amplitudes. Namely, we have (up
to the second-order)

E(t) ) E0 + Eω cos(ωt) (2)

P(t) ) P0 + Pω cos(ωt) + P2ω cos(2ωt) + ... (3)

P0 ) ø(0) + ø(1)(0;0)‚E0 + ø(2)(0;0,0):E0E0 +
1
2
ø(2)(0;-ω,ω):EωEω + ø(3)(0;0,0,0)lE0E0E0 + ... (4)

Pω ) ø(1)(-ω;ω)‚Eω + 2ø(2)(-ω;ω,0):EωE0 +
3ø(3)(-ω;ω,0,0)lEωE0E0 + ... (5)

P2ω ) 1
2
ø(2)(-2ω;ω,ω):EωEω +

3
2
ø(3)(-2ω;ω,ω,0)lEωEωE0 + ... (6)

ø(n) ) ∑
J

úJ
(n)cJ (7)

úZZ...
(n) ) NA (µjZ(ωσ)

EZEZ...)E f 0
(8)

µjZ(ωσ) )
∫0

2π∫0

π
µ̃R(ωσ)kR exp(-w/kT) sin θ dθ dφ

∫0

2π∫0

π
exp(-w/kT) sin θ dθ dφ

(9)
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where Eâ
0 and Eâ

ω are the static and frequency-dependent
components of the applied macroscopic (or Maxwell) field,
respectively.

Such expansions, defining all of the properties involved in
the various optical experiments, are well-known for isolated
systems; however, in the condensed phase, some important
specifications are required. The reaction of the solvent will
surely induce changes in the charge distribution of the solute
molecule, thus modifying its response functions. In addition,
whereas in the gas phase, the applied macroscopic field and
the field actually acting at the molecular position coincide, in
solution, the presence of the environment introduces local
modifications (in the past represented in terms of local-field
factors). Both effects will contribute to a modification of the
standard meaning of molecular properties; thus, to recover
expansions with respect to the applied macroscopic field, such
as those reported in eqs 10-12, we need to introduceeffectiVe
(hyper)polarizabilities (the sum of both electronic and nuclear,
or vibrational, components).9,17 Here, the term “effective”
indicates that the related property (denoted with a tilde) has
been modified by the combination of the two different envi-
ronmental effects mentioned above and, historically, has been
represented in terms of “cavity” and “reaction” fields.2,18

In the past, explicit expressions for the effective properties
were formulated by different authors in the case of a spherical
solute molecule described classically (that is, formed by
polarizable point dipoles). The original concept can be referred
to the works of Brown for the static case;19 more recently, the
same idea has been generalized to frequency-dependent pro-
cesses by Wortmann and Bishop.9 Luo et al.20 then proposed a
generalization of similar concepts to a semiclassical model for
properties of molecules in solution, and finally, Cammi et al.17

introduced the evaluation of effective properties in the field of
ab initio calculations for molecular solutes, although limiting
the analysis to the static case only.

In parallel, the angle-dependent energyw of eq 9, which
represents the energy of a molecule of the speciesJ with respect
to the orientation of the Maxwell field (here limited to its static
componentE0), must be modified as follows:

where the quantities with the asterisk correspond to derivatives
of the energy of the system with respect to the static components
of the Maxwell field; see refs 2, 18, and 19 for the original
definition. More details on these quantities will be provided in
section 4.

Returning to the general expression in eq 8, we can now write
the specific equations that give the molar quantities for each

process of interest; in particular, to first-order (both static and
frequency-dependent), we obtain12,23

and for the third-order EFISHG process,12 we obtain

whereNA is Avogadro’s number. In eqs 14-16, R̃is is 1/3 the
trace of the effective polarizability, and in eq 16,γ̃s(-2ω;ω,ω,0)
is the “scalar part” of the third-order polarizability. Parallel
expressions for other NLO processes can be easily formulated,
but they will not be reported here as they are not used in the
numerical analysis.

As the molar polarizabilitiesúJ
(n) represent an easily avail-

able “experimental” set of data, the expressions above become
important for the theoretical evaluation of molecular response
properties; in fact, they represent the most direct quantities to
compare with the computed results obtained by using a given
model for the solvent effects.

In the following sections, we present a method for the
evaluation of the effective molecular properties appearing in
eqs 14-16 within the framework of the PCM continuum model.
As said before, in this approach, the summation of eq 7 is
reduced to two components only (a solute and the solvent). Of
these two components, only the former is treated from a
molecular point of view, whereas the latter is represented by
an infinite continuum medium characterized by its dielectric
constant and refractive index (this model can be associated with
an infinitely dilute solution).

The present work, which can be seen as the natural extension
to frequency-dependent processes of the theory originally
formulated in ref 17 for the static case, is actually a development
toward and a completion of a more direct and correct compari-
son between calculated and experimental results.

3. Effective Polarizabilities of PCM Solutes: The
Electronic Component

The formal theory of PCM molecular solutes in the presence
of external static and oscillating electric fields has been presented
in previous papers7,17,21and then applied to different systems.8

Here, we attempt to complete such a formulation by introducing
all of the missing terms needed for a correct comparison with
experimental results. The analysis will be partitioned into three
separate sections, the first concerning the electronic component
of the (hyper)polarizabilities, the second concerning the orien-
tational energyw, and the last concerning the vibrational
component of the same effective response properties.

For the electronic component of the effective polarizabilities,
we adopt a different formulation than that presented in previous
papers because the new formulation allows a simpler and more
direct description and analysis of the effective properties.

In brief, the PCM model14,15 represents the molecular solute
as a quantum mechanical charge distribution contained in a
volume (the so-called molecular cavity) of the proper shape;
its form and dimension are determined by the number and the

µ̃R(0) ) µ̃R
0 + R̃Râ(0)Eâ

0 + 1
2
ẫRâγ(0;0,0)Eâ

0Eγ
0 +

1
4
ẫRâγ(0;-ω,ω)Eâ

ωEγ
ω + 1

6
γ̃Râγδ(0;0,0,0)Eâ

0Eγ
0Eδ

0 + ... (10)

µ̃R(ω) ) R̃Râ(-ω;ω)Eâ
ω + ẫRâγ(-ω;ω,0)Eâ

ωEγ
0 +

1
2
γ̃Râγδ(-ω;ω,0,0)Eâ

ωEγ
0Eδ

0 + ... (11)

µ̃R(2ω) ) 1
4
ẫRâγ(-2ω;ω,ω)Eâ

ωEγ
ω +

1
4
γ̃Râγδ(-2ω;ω,ω,0)Eâ

ωEγ
ωEδ

0 + ... (12)

w ) µ* ‚E0 + 1
2
R*:E0E0 + ... (13)

ú(1)(0;0) ) NA [µ* ‚µ̃
3kT

+ R̃is(0;0)] (14)

ú(1)(-ω;ω) ) NAR̃is(-ω;ω) (15)

úZZZZ
(3) (-2ω;ω,ω,0) )

NA [ẫ(-2ω;ω,ω)‚µ*
15kT

+ γ̃s(-2ω;ω,ω,0)] (16)
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nature of the atoms constituting the molecule, as they define
the position (the nuclei of selected atoms) and the radii of the
interlocking spheres that yield the final cavity. The cavity is
assumed to be immersed in a continuum dielectric characterized
by the proper macroscopic properties (the permittivity and the
refractive index at the frequencies of interest). When the
dielectric is polarized by the solute, the induced separation of
charges gives rise to a response field (the reaction field) that
modifies the previous state of the solute charge distribution.
Such mutual interaction is introduced in the Hamiltonian that
describes the solute electronic charge (and that determines its
wave functionΨ) through a perturbation operatorV̂MS, which
contains a term linearly depending onΨ. This operator is
represented by the interaction of the solute potential with an
apparent charge distribution,σ, spreading on the cavity surface
and depending both on the solute field and on the macroscopic
characteristics of the continuum solvent.

In the presence of a Maxwell field, the complete Hamiltonian
can be thus written as

whereĤ0 is the Hamiltonian of the solute in vacuo andV̂MS is
the electrostatic interaction between the solute and the solvent
apparent charge, that is

The summation runs over the solute electrons, andV̂(i; s) is
the electronic potential operator calculated on the cavity surface
∑. In eq 18, we have partitioned the solvent response into its
nuclear (that is, nuclei-induced) and electronic (that is, electron-
induced) components,σN(s) andσe(Ψ; s), respectively, indicat-
ing the dependence of the latter on the solute wave function.

The remaining time-dependent perturbationV̂′(t) can be
represented as

where Einstein summation on repeated indices is assumed.
In eq 19, a new apparent surface chargeσex has been

introduced; it can be described as the response of the solvent
to the external field (static or oscillating) when the empty
molecular cavity is created in the bulk of the solvent. This effect
must be summed up to the standard reaction field described by
σN and σe in order to fully consider the effective reaction of
the solvent on the combined action of the internal (due to the
solute) and the external fields. More details on this point can
be found in ref 17. Here, it can be useful to recall that the effects
of σex in the limit of a spherical cavity coincide with those of
the cavity field factors historically introduced to account for
the changes induced by the solvent molecules in the average
macroscopic field (the Maxwell field) at each local position
inside the medium.

Both σ andσex are obtained from analytical expressions in
terms of the acting fields (or equivalently the corresponding
potentials), the intrinsic shape of the cavity, and the macroscopic
characteristics of the solvent. In computational practice, the
charge distributions are discretized into point charges by
partitioning the cavity surface intoK small portions (called

tesserae) of known areaak. To each tesserak is associated a
point chargeqk

x ) akσx(sk), which is placed at the representa-
tive pointsk (the geometrical center) of the tessera; this allows
all of the surface integrals of eqs 18 and 19 to be reduced to
finite summations over theK tesserae.

Approximate solutions of the time-dependent Schro¨dinger
equation associated with the effective Hamiltonian17 can be
obtained by using the Frenkel variational principle, which, in
the PCM method, can be cast in the form7,22

In eq 20,Ĝ represents the free energy operator

where V̂′MS(Ψ) indicates the wave-function-dependent com-
ponent of the reaction potentialV̂MS and where nonlinear
medium response effects are discarded. In the static limit, the
problem is reduced to a time-independent Schro¨dinger equation
whose variational solution coincides with the stationary condi-
tion on the free energy functionalG = 〈Ψ|Ĝ|Ψ〉.

The restriction to a one-determinant wave function with
orbital expansion over a finite basis set leads to the following
time-dependent Hartree-Fock equation

with the proper orthonormality condition;S, C, andε represent
the overlap, the MO coefficient, and the orbital energy matrices,
respectively.

In eq 22, the prime on the Fock matrix indicates that terms
accounting for the solvent effects are included, that is,

wheremR is the matrix containing the dipole integrals along
the three coordinates. The first two solvent-induced terms,j
andX(P), indicate the constant and the wave-function-dependent
(here represented by the one-electron density matrixP) com-
ponents of the reaction potentialV̂MS, while the last two solvent-
induced terms,m̃R

ω and m̃R
0, are the matrices related to the

apparent chargeσex induced by the external oscillating and static
field, respectively; namely,

where V(sk) is the matrix containing the solute electronic
potential integrals computed at the surface positionsk.

A more detailed analysis of all of the solvent-induced terms
introduced in eq 23 can be found in refs 7 and 17; here, it
suffices to recall that all of the related matrices account for the
required details of the distribution of the frequency-dependent
permittivity ε(ω) within the range of frequencies associated with
the resulting external field.

The solution of the time-dependent HF equation (eq 22) can
be obtained within a time-dependent coupled HF (TDHF)
approach by expanding all of the matrices involved in powers
of the field components. For the sake of brevity, we report the

Ĥ ) Ĥ0 + V̂MS + V̂′(t) (17)

V̂MS ) ∫Σ ∑
i

V̂(i; s)[σN(s) + σe(Ψ; s)] ds (18)

V′(t) ) ∑
i

µ̂R(i)[ER
ω(eiωt + e-iωt) + ER

0] +

∫Σ ∑
i

V̂(i; s)[∂σω
ex(s)

∂ER
ω

ER
ω(eiωt + e-iωt) +

∂σ0
ex(s)

∂ER
0

ER
0] ds (19)

δ〈Ψ|Ĝ - i
∂

∂t|Ψ〉 ) 0 (20)

Ĝ ) Ĥ0 + V̂MS + V̂′(t) - 1/2V̂′MS(Ψ) (21)

F′C - i
∂

∂t
SC ) SCε (22)

F′ ) h + j + G(P) + X(P) + mR[ER
ω(eiωt + e-iωt) + ER

0] +

m̃R
ωER

ω(eiωt + e-iωt) + m̃R
0ER

0 (23)

m̃R
x ) - ∑

k

V(sk)
∂qx

ex(sk)

∂ER
x

(24)
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detailed expressions only for the tensorial factors in the
expansion ofF′ as explicitly modified by the solvent; the
expansions of the other matricesC, P, and ε are exactly the
same as in the case of the isolated system subject to the same
external field. Limiting the analysis to third-order, we obtain

where ωx are the frequencies related to the external fields
(eventually static and, thus,ωx ) 0) andPRâ...(ω1, ω2, ...) are
the perturbed density matrices at the various orders. The
elements of the solvent-induced matricesXωσ depend twice on
the frequency-dependent nature of the field, once in the density
matrix PRâ...(ω1, ω2, ...) and again in the value of the dielectric
permittivity at the resulting frequencyωσ ) ∑xωx.

By applyication of standard iterative procedures, all of the
perturbed density matrices can be analytically computed, and
thus, also, the electronic component of the effective properties
(eqs 10-12). Namely, we have

As shown by eqs 25-27, the procedure briefly sketched above
allows one to account for all of the effects of the solvent, both
those intrinsic, that is, due to the reaction potential, and those
related to the presence of the external field, in a compact and
self-consistent form. In this way, no a posteriori corrections,
such as those usually introduced by cavity factors, are required.
Rather, the computed properties can be used as they are and
introduced into the expressions linking the microscopic proper-
ties to the macroscopic observables.

Let us now consider the two additional contributions neces-
sary for obtaining the complete description, starting with the
definition of the angle-dependent energyw13 in the presence of
the solvent effects.

4. Orientational Energy for a PCM Solute

In eq 13, we showed that the angle-dependent part of the
energy in the presence of the externally applied field can be
written in terms of the dipoleµ* (and, at higher order, the
polarizabilityR*). Classically, this expression can be obtained
by expanding the Boltzmann potential energy in terms of the
field (here appearing only through its static components); in
the framework of the PCM solvation model, this energy must
be replaced with the free energy analogue, specifically

whereG0 is the free energy of the solvated system in the absence
of the field.

The components both of the gradient,g, and of the Hessian,
H, must be computed atE0 ) 0; in the framework of the CHF

approach described above, they can be expressed in terms of
the unperturbed density matrix and its derivative with respect
to the static field. Specifically,

wheremR andm̃R
0 are the matrices introduced in eq 23.

Comparing eq 28 with eq 13 and introducing eqs 29 and 30,
we can easily obtain the expressions for the previously
introduced dipole and polarizability, namely,

These expressions are the PCM results for the evaluation of
the orientational averaging required in eq 9.

5. Effective Polarizabilities of PCM Solutes: The
Vibrational Component

In general, the vibrational contribution should contain two
distinct effects,25 the “curvature” that is related to the field
dependency of the vibrational frequencies (that is, the changes
in the potential energy surface in the presence of the external
field) and that includes the zero-point vibrational correction and
the “nuclear relaxation” that originates from the field-induced
nuclear relaxation (that is, the modification of the equilibrium
geometry in the presence of the external field). In the following
analysis and in the related numerical results, however, only the
nuclear relaxation will be considered. In addition, the following
analysis will consider only the static limit; vibrational effects
in the presence of frequency-dependent fields are, in fact, usually
small, and they will be omitted completely here.

The nuclear-relaxation contribution (from now on just
“vibrational”) to the static polarizabilities can be computed in
the double harmonic approximation, that is, assuming that the
expansions of both the potential energy and the electronic
properties with respect to the normal coordinates can be limited
to the quadratic and the linear terms (in other words, assuming
both mechanical and electronic harmonicity).

As shown in the Appendix of ref 21, the double harmonic
procedure can be analytically reformulated within the PCM
model to obtain the analogues of the classical expressions in
terms of summations of derivatives of dipoles and polarizabilities
with respect to normal coordinates but with all of the properties
computed in the presence of the solvent (that is, exploiting
effective properties). Here, however, a new feature must be
introduced as, in the analysis reported in ref 21, no consider-
ations of the effects of the external field on the continuum
dielectric were taken into account.

If we return to the analysis reported in the previous section
(see eqs 28-32), then eqs 9 and 10 of the reference paper21

must be modified by substituting the proper dipole and
polarizability derivatives with the corresponding analogues in
terms of the quantities defined in eqs 31 and 32. If each
vibrational state is defined by the quantum numbers associated
with each of the 3N - 6 normal modes of the system, then the
final expressions for the effective static vibrational polarizabili-
ties and first hyperpolarizability become

gR ) ( ∂G

∂ER
0)

E

0

)0

) -tr[P0(mR + m̃R
0)] (29)

HRâ ) ( ∂
2G

∂ER
0
∂Eâ

0)
E

0

)0

) -tr[Pâ(mR + m̃R
0)] (30)

µR
* ) -tr[P0(mR + m̃R

0)] (31)

RRâ
* ) -tr[Pâ(mR + m̃R

0)] (32)

F′R(-ω; ω) )

G[PR(ω)] + Xω[PR(ω)] + mR + m̃R
ω

F′Râ(-ωσ; ω1, ω2) )

G[PRâ(ω1, ω2)] + Xωσ
[PRâ(ω1, ω2)]

F′Râγ(-ωσ; ω1, ω2, ω3) )

G[PRâγ(ω1, ω2, ω3)] + Xωσ
[PRâγ(ω1, ω2, ω3)]

R̃Râ
el (-ω; ω) ) -tr[mRPâ(ω)] (25)

ẫRâγ
el (-ωσ; ω1, ω2) ) -tr[mRPâγ(ω1, ω2)] (26)

γ̃Râγδ
el (-ωσ; ω1, ω2, ω3) ) -tr[mRPâγδ(ω1, ω2, ω3)] (27)

G(E0) ) G0 + g‚E0 + 1
2
H:E0E0 + ... (28)
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whereωa ) 2πνa is the circular frequency associated with the
normal coordinateQa for the solvated molecule and each partial
derivative is evaluated at the proper equilibrium geometry. We
recall, in fact, that the equilibrium geometry and the vibrational
frequencies, force constants, and normal modes are computed
in the presence of the solvent interactions as derivatives of the
free energy functional with respect to the nuclear coordi-
nates.26,27

The derivatives of the asterisk quantities in eqs 33 and 34
can be obtained by including the contributions due to the
external chargeσex in the expansion ofG with respect to the
field to be used in the derivation of the PCM double harmonic
scheme (see Appendix 1 of ref 21), exactly as we did in the
previous section to evaluate the orientational averaging. Specif-
ically,

wheremR
a andm̃R

a represent the derivatives with respect to the
normal coordinate (and thus the nuclear motions) of the dipole
matrix and the so-called external component of the solvent
reaction, respectively. The matrixm̃R

0 depends on the nuclear
geometry through the form of the molecular cavity, and as a
consequence, its variations with respect to the nuclear motions
should be included. In the numerical results that we report in
the following section, however, such geometry contributions
are neglected, thus limiting eqs 35 and 36 to the first terms
related to the density derivatives only. This approximation
coincides with the limit of fixed cavities.

6. Numerical Results

In this section, we present some numerical results concerning
molar polarizabilities of various orders for two model organic
molecules whose optical properties are experimentally well-
known: 4-nitroaniline (pNA) and 3,5-dinitroaniline (3,5-DNA)
in liquid dioxane. In particular, we focus attention on two
specific experimental processes from which data of first- and
third-order molar polarizabilities have been extracted, namely,
refractometric and EFISH measurements.

Details of the equations and the methods used in the
evaluation of the refractometric and permittivity measurements
have been described repeatedly.23 Here, we only recall that the
specific expressions to be used for the static and the frequency-
dependent related properties are reported in eqs 14 and 15,
respectively, where the exploited frequency is that corresponding
to λ ) 589 nm.

The EFISH technique24 is one of the techniques most often
used to obtain information on the molecular hyperpolarizability,
â; here, once again, we do not report any details but just some

notes. The operating frequency is that corresponding to the
fundamental beam of wavelength 1064 nm from a Q-switched,
mode-locked Nd:YAG laser. A symmetry consideration shows
that the third-order nonlinearity that is measured in the EFISH
experiment for a medium that is isotropic in the absence of any
external electric field has only two independent components.
To determine these tensor elements, two EFISH measurements
are usually performed for the two polarization conditions that
have the electric field vector of the fundamental parallel (|) or
perpendicular (⊥) to the external electric fieldE0. The frequency-
doubled photons are detected with the polarization parallel to
E0 in both cases. The exact expressions for the corresponding
molar polarizabilities can be derived from the general expression
in eq 16, by also taking into account the symmetry of the
molecules under examination, which, in our case, isC2V. In
particular, if we identify thez axis of the molecule-fixed
coordinate system with theC2 axis and thex andy axes within
and perpendicular to the molecular plane, respectively, then the
resulting expressions are12,16

where

and

within the Einstein convention on repeated indices. Usually, the
contributions of the field dependence ofâ, that is,γ̃| and γ̃⊥,
are neglected as much smaller (by at least one order of
magnitude) than the other contributions.

All calculations have been done exploiting the implementation
of the recently revised formulation of the PCM method known
as IEF (Integral Equation Formalism)28 in development versions
of Gaussian29 and GAMESS30 codes. Dioxane solvent is
represented by the two values of its permittivity,ε(0) = 2.209
andε(∞) = 2.022. The results refer to HF calculations with a
Dunning double-ú valence (DZV) basis set for geometry
optimization,31 to which d-orbital (0.2) functions for C, N, and
O and a p-orbital (0.1) function for H have been added for the
calculations of the properties;32 the numbers in parentheses are
the exponents of these extra functions.

The geometry of the two solutes was optimized in the
presence of the solvent using the analytical PCM-IEF gradients26

implemented in Gaussian. All of the effective electronic
properties (both static and dynamic) were computed with the
CPHF/TDHF procedure implemented in GAMESS and were
properly modified to account for the solvent effects, whereas
the vibrational contributions were obtained using the analytical
PCM-IEF Hessians27 implemented in Gaussian. The molecular
cavity containing the solute was obtained in terms of interlocking
spheres centered on the six carbons of the aromatic ring and on
all of the nuclei of the external groups (globally, we have 6+
6 and 6+ 9 spheres for pNA and DNA, respectively). The radii

R̃Râ
ν ) ∑

a

3N - 6(∂µ̃R

∂Qa
)

0
(∂µâ

*

∂Qa
)

0

/ωa
2 (33)

ẫRâγ
ν ) ∑

a

3N - 6 [(∂µ̃γ

∂Qa
)

0
(∂RRâ

*

∂Qa
)

0

+ (∂µ̃â

∂Qa
)

0
(∂RRγ

*

∂Qa
)

0

+

(∂µ̃R

∂Qa
)

0
(Râγ

*

∂Qa
)]/ωa

2 (34)

(∂µR
*

∂Qa
)

0
) -tr[Pa(mR + m̃R

0) + P0(mR
a + m̃r

a)] (35)

(∂RRâ
*

∂Qa
)

0
) -tr[Pa,â(mR + m̃R

0) + Pâ(mR
a + m̃R

a)] (36)

ú(3)(|) ) NA([22ẫ + 1ẫ]‚µ*

15kT
+ γ̃|)

ú(3)(⊥) ) NA([21ẫ - 2ẫ]‚µ*
15kT

+ γ̃⊥)
22ẫ + 1ẫ ) 3ẫzzz(-2ω; ω, ω) + ẫzxx(-2ω; ω, ω) +

ẫxxz(-2ω; ω, ω)

21ẫ - 2ẫ ) ẫzzz(-2ω; ω, ω) - ẫzxx(-2ω; ω, ω) +
2ẫxxz(-2ω; ω, ω)

γ̃| ) [2γ̃êêηη(-2ω; ω, ω, 0) + γ̃êηηê(-2ω; ω, ω, 0)]/15

γ̃⊥ ) [2γ̃êηηê(-2ω; ω, ω, 0) - γ̃êêηη(-2ω; ω, ω, 0)]/15
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of the spheres were derived from the van der Waals radii
multiplied by a scaling factor of 1.2, namely,Rx ) 1.2Rvdw. In
this scheme, the radii centered on the aromatic carbons, and
eventually including a hydrogen atom, were set equal to 2.28
Å, whereas those on the external atoms were derived from
Bondi’s Rvdw

33 to have the valuesRN ) 1.86 Å,RO ) 1.824 Å,
and RH ) 1.44 Å. A different choice, derived from theRvdw

values suggested by Pauling,34 was also checked for the external
groups (those actually in contact with the continuum dielectric,
being the internal carbons almost completely buried). The
calculations (limited to dipoles and static and dynamic polar-
izabilities) performed with this alternative set of radii gave
results almost identical to those obtained with the first choice
(that is, derived from Bondi), thus showing the stability of the
model used. More details on this important aspect of all of the
cavity-based solvation methods can be found in other preceding
papers,35 in which this and other types of properties (such as
nuclear shielding constants, vibrational frequencies, etc.) have
been systematically analyzed with respect to changes in the
cavity size. These analyses clearly show that the solvation model
does, indeed, depend on the choice of the cavity size but that
this size dependence nevertheless preserves the stability of the
results when reasonable ranges of variations are used; no
assurance of equivalently reliable results can be given for
cavities that are very unphysical in size.

In Tables 1-3, we report a collection of computed quantities
for the two systems studied and a comparison with the
experimental data reported by Wortmann et al.12 All of the
calculated molecular properties are in atomic units (au), whereas
the molar polarizabilities are in SI units; the appropriate
conversion factors are the following:

The analysis of the results is usefully partitioned into two
sections, according to the experimental process involved. Thus,
in Table 1 we report the permittivity- and refractometric-related
properties for both molecules.

Here, the relative errors are 2-6% for ú(1)(0) and 13-15%
for ú(1)(ω). These diescrepancies between computedRis

el and
experimentalú(1) values, in our opinion, are due to an inadequate
quantum mechanical (QM) description in which no electronic
correlation is introduced. A comparison of the different accura-
cies obtained for the static and dynamic properties seems to
confirm this opinion. The HF description usually overestimates
dipole values and underestimates polarizabilities. Thus, for the
static quantityú(1)(0), which depends on both the effective
dipoles and the polarizability, there can be a partial compensa-
tion, thereby reducing the error. On the contrary, such com-
pensation is not active for the dynamic quantityú(1)(ω), which
only depends on polarizability. We then repeated the calculation
of both properties at the density functional level of theory using

the B3LYP hybrid functional and the same basis set. The results
obtained in this case appear to confirm our prediction, leading
to an increase of 12-16% in the value ofRis

el(ω) with respect
to HF and thus making the molar polarizability much closer to
the experimental values. The DFT results are reported in Table
2.

In Table 3, we report the EFISH-related properties for pNA
in dioxane.

The most evident aspect to note in the results is the much
better agreement between computed third-order molar polariz-
abilities and experimental EFISH data compared to first-order
results; both the computedú(3)(|) and ú(3)(⊥) values are well
within the experimental error. This very good result, if compared
with the previous results, confirms the difficulty in the analysis
of the eventual errors affecting our model. Roughly, one could
say that the complex nature of the final property (a combination
of the effects of dipoles and first and second hyperpolarizabili-
ties) is characterized by some compensation of errors leading
to an almost exact result. Actually, the contribution given by
the second hyperpolarizabilityγ̃ can be neglected, as it is at
least an order of magnitude smaller that theẫ‚µ* term (as
usually observed by the experimentalists). Thus, an attempted

polarizabilityR :
1.6488× 10-41 C2 m2 J-1 ) 1 au

first-order molar polarizabilityú(1) :
10-16 C m2 V-1 mol-1 ) 9.9291× 10-18 au

first hyperpolarizabilityâ :
3.2064× 10-53 C3 m3 J-2 ) 1 au

second hyperpolorizabilityγ :
6.2354× 10-65 C4 m4 J-3 ) 1 au

third-order molar polarizabilityú(3) :
10-36 C m4 V-3 mol-1 ) 37.5496× 10-42 au

TABLE 1: Effective Dipoles, Frequency-Dependent and
Static Polarizabilities, and First-Order Molar Polarizabilities
of pNA and 3,5-DNA in Dioxanea

pNA 3,5-DNA

calc expb calc expb

µ̃z 3.397 2.850
µz

* 3.763 3.197
µ̃‚µ*/3kT 4517.03 3215.21
R̃is

el(0) 125.76 141.44
R̃is

vib(0) 49.89 39.21
ú(1)(0) 466 449( 7 337 367( 6
R̃is

el(ω) 129.99 144.21
ú(1)(ω) 12.9 15.7( 0.5 14.3 17.3( 1

a All molecular properties are in au, whereas molar polarizabilities
are in SI units (10-16 cm2 V-1 mol-1). The frequency corresponds toλ
) 589 nm.b Ref 12.

TABLE 2: Effective Frequency-Dependent and Static
Polarizabilities and First-Order Molar Polarizabilities of
pNA and 3,5-DNA in Dioxane at the DFT Levela

pNA 3,5-DNA

calc expb calc expb

R̃is
el(ω) 151.36 161.44

ú(1)(ω) 15.0 15.7( 0.5 16.0 17.3( 1

a All molecular properties are in au, whereas molar polarizabilities
are in SI units (10-16 cm2 V-1 mol-1). The frequency corresponds toλ
) 589 nm.b Ref 12.

TABLE 3: Effective SHG Hyperpolarizabilities, EFISHG
Second Hyperpolarizabilities, and Third-order Molar
Polarizabilities of pNA in Dioxanea

calc expb

1ẫ 3554.67
2ẫ 3634.16
(22ẫ + 1ẫ)‚µ*/15kT 2.877673
(21ẫ - 2ẫ)‚µ*/15kT 0.923999
γ̃| 0.061139
γ̃⊥ 0.028079
ú(3)(|) 110 120( 11
ú(3)(⊥) 36 39( 4

a Computed molecular properties are reported in 106 au, whereas
molar polarizabilities are in SI units (10-16 cm2 V-1 mol-1). The
frequency corresponds toλ ) 1064 nm.b Ref 12.
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explanation could be based, once again, on the different
performances of HF approaches in the calculations of dipoles
and higher-order properties. Here, no help from more accurate
QM descriptions, such as that provided by DFT polarizabilities,
can be exploited. For the moment, in fact, no DFT SHG
hyperpolarizabilities can be obtained with the computational
codes with which the PCM model has been implemented.

7. Conclusion

We have presented a formal methodology for a well-known
continuum solvation model (the PCM-IEF model) that allows
one to obtain, from purely computational results (that is, without
the help of any experimental data), complex NLO properties
that can be directly compared with the outcome of experimental
measurements. Actually, the experimental data we have used
do require some manipulations, mainly to extract concentration-
independent values; however, such manipulations, performed
directly by experimentalists, do not imply any modeling
assumptions that, at the end, would lead to a certain “corruption”
of the data. Within this synergic scheme, requiring efforts from
both experimentalists and theoreticians in order to find a point
of contact, the results we have obtained, even if limited to two
single-molecule systems and a few NLO processes, can be
considered encouraging.

Clearly, many important improvements can be introduced.
In the previous section, we emphasized the limits of the QM
calculation used in the numerical applications, both in the choice
of the basis set and in the level of the QM description. In this
direction, the few results obtained using a DFT/B3LYP approach
show the evident improvements one can obtain with limited
efforts.

However, other, completely different, sources of errors, or
of an incomplete description, should also be taken into account,
such as the omission of some interactions among solute and
solvent molecules. The PCM approach, as presented in the
previous sections, accounts for electrostatic solvent effects only;
on the contrary, it is well-known that other forces of a dispersive
and/or repulsive nature always act in liquid solutions. Extensions
of PCM that include these nonelectrostatic terms in the QM
description, and thus in the evaluation of molecular response
properties, have been already presented36 and also applied to
the calculation of static (hyper)polarizabilities.37 For the moment,
however, they have not yet been reformulated for frequency-
dependent processes or generalized to the scheme we have
presented in the previous sections; efforts in this direction are
certainly required.

Other interesting aspects to consider in future developments
are related to the limits of a purely continuum treatment of the
solvent. In some solute-solvent′ pairs, and for some molecular
properties, it is known that specific interactions (such as
hydrogen-bonding), not completely described by a continuum
model, can affect the general behavior of the system and of the
molecular property under scrutiny. In these cases, the consid-
erations of small clusters that include only a few solvent
molecules can represent a good solution.38 However, for the
solvent considered in the present paper (the apolar and aprotic
dioxane at room temperature), a very strong, specific effect,
acting at very short range, is rather unlikely; the good results
obtained with a pure continuum method seem to confirm this
prediction.

Despite the clear limits characterizing the numerical applica-
tions reported in the previous section, the theoretical model we
have formulated presents many important potentialities. First,
as has already been mentioned, this model is completely

generalizable to any kind of QM description. It is also easily
extended to include more detailed descriptions of the solvent
(specifically, through the consideration of interactions of a
different nature and the inclusion of explicit molecules in the
QM system). In addition, the model allows complex effects that
previous semiclassical models cannot describe to be taken into
account. In particular, the use of specific operators representing
the effects of the external field on the dielectric (see eq 19)
permits the description of possible inhomogeneities in the field
acting at the local molecular site, a feature that the more standard
local field factors cannot reproduce.

As a last remark, it is worth noting that the theoretical
methodology presented here only for permittivity and refrac-
tometric measurements at first order and the EFISH process at
third order can be extended to other, still widely used NLO
processes, such as the electro-optical Kerr effect (OKE) and
the intensity-dependent refractive index (IDRI). Progress in this
direction will soon be presented.

All of the considerations above can, thus, be summarized by
saying that this paper represents an attempt to bridge the still-
large gap between experiments and calculations in the sense
that, on one hand, it tries to provide a sufficiently simple
computational tool to also be used by non-theoreticians and,
on the other hand, it presents an incentive for experimentalists
to share an increasingly greater amount of data that is clear in
origin and simple in analysis.
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C.; Krämer, P.; Matschiner, R.; Wolff, J. J.; Kraft, S.; Treptow, B.; Barbu,
E.; Längle, D.; Görlitz, G. Chem. Eur. J.1997, 3, 1765. (c) Wolff, K.;
Längle, D.; Hillenbrand, D.; Wortmann, R.; Matschiner, R.; Glania, C.;
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