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We present a new methodology, working within the framework of the Polarizable Continuum Model, that
derives quantities directly comparable with data from nonlinear optical (NLO) experiments on liquid solutions
through computed molecular properties. The procedure does not require any knowledge of preliminary
experimental data (as do some semiempirical methods) but permits one to obtain the final molar property
(specifically, the macroscopic susceptibilities) in terms of effective molecular dipoles and (hyper)polarizabilities.
The latter are obtained through an ab initio description of the molecule of interest when it is mutually interacting
with the surrounding medium, which is represented by a continuum dielectric. Numerical applications, and
the related comparisons with experiments, are presented for refractive and permittivity first-order processes
and for third-order EFISH (electric-field-induced second harmonic generation) experiments for 4-nitroaniline
(PNA) and 3,5-dinitroaniline (3,5-DNA) in liquid dioxane at room temperature.

1. Introduction factors are usually given by the Lorentz expression, for the
frequency-dependent part, and the Onsager expression, for the

The present paper focuses on the calculation of electric static part

response functions that correspond to widely used nonlinear .
optical (NLO) processes for liquid solutions and on the In the past few years, different models have been proposed

. . " fo improve this description. Most of these models are based on

connection between these calcqlatmns and the quantities '[harthe concept of a solute in a cavity: within this framework, there

are actually measured by expenments.. . have been several theoretical investigations of the interactions
The formal theory and the computational methodologies for

btaining the NLO i f 'solated molecul I between solute and solvent molecules and the consequent
obtaining the Properties ot 1solated molecuies are we changes in the solute properties. Frequently, solvent effects are
developed, and there is now a large body of numerical results

. -~ “established by the introduction of so-called reaction terms in
fo.r many classes of compounds. (For a very recent review, rich the Hamiltonian (models that employ such terms are also called
with references.’ see Bishop and I\_Iorn%;arﬂ_)n the contrary,  gtactive Hamiltonian, EH, approachéshpplications of such
although of major interest to experimentalists, the calculation models to NLO properties have been carried out by, among
of NLO propertie; for molecules in the condenseq p_hgse is mUChothers, Willets and Ric&.Yu and Zernef, Mikkelsen an(; co-
less advanced'wnh respect to accuracy and reliability than thatworkers? and our groug:# all applying different solvent models,
for mOIeCUK‘TS in the gas pha.se. ) . ) as well as different levels of quantum theory.

The classical approach to incorporating ;olunon effectsisto 10 properties obtained through such models represent an
use the Onsager-Lorentz motigind to write the measured ormediate step in the progression toward the real systems
susceptibilities (the macroscopic equivalent of the linear and o4 i the experiments. First, the computed quantities are stil
nonlinear optical molecular properties) in terms of the gas-phase molecular, or microscopic, and not macroscopic, exactly as are
molecular values multiplied by local field factors. For example, .o corres’ponding quantit'ies computed in vacuo. even though
in the electric-field-induced second harmonic generation (EFISH) .0 molecular description has been modified b)’/ the solvent
experiment, the third-order susceptibility for a pure liquid is o4 0tion field. In addition, even when the interactions between

generally expressed as solute and solvent are incorporated into calculations, there still
5 5 exists a need to take into account the modifications of the applied
21 (—2w;0,w,0) = Nf2w)f(w)f(0)y(—2w;0,0,0) (1) macroscopic fields at the local site of the solvated molecule
(the phenomenon historically indicated as “local field effects”).
whereN is the number density of the molecules ands the The combination of these two modifications with respect to the

averaged molecular second hyperpolarizability. The local field gas-phase model leads to the definitioreffectie properties,
which reflect the response of the solvated molecules to the
f Part of the special issue “Electronic and Nonlinear Optical Materials: applied field and which are more directly comparable to the
Theory and Modeling”. experiments
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and the data to be used in the comparison with the computedfollowed by the frequency of the incident interacting waves (two
values must be suitably corrected for this fact. Actually, a in a first-order process, three in the second-order analogue, and
protocol based on the general concept of partial and model molarfour in the third-order case).

polarizabilities®*! has been applied in a series of experi-  The various susceptibilities in eqs—6 can be obtained
ments;>** thus producing sets of data that are more directly through specific experiments in linear and nonlinear optics.
accessible for the theoretical chemist. Thus, the first-order static susceptibility is related to the

Pushed by the efforts made by experimentalists, we have dielectric constant at zero frequenay0), while ¥y (—w;w)
formulated a new procedure that takes into account all of the is the linear optical susceptibility related to the refractive
complex features cited above so that one can obtain, in a singleindex n® at frequencyw. Moving to nonlinear effects, it is
computational run, all of the components needed for a correctworth recalling thaty®?(—2w;w;w) describes the frequency
treatment of the computed results. This will lead to the definition doubling that is usually called second harmonic generation
of a quantity that is directly comparable with “pure”, or almost (SHG) and y®)(—2w;w,w,0) describes the influence of an
pure, experimental data. In the next section, we comment in external field on the SHG process, which is of great importance,
more detail on the protocol that gives the proper form of the as we shall see in the following, for the characterization of
experimental data to which the computational results should be second-order NLO properties in solution in electric-field-induced
compared and on the formal relations to be used in the treatmentsecond harmonic generation (EFISHG).
of the computed molecular properties. The following three  |¢,,o consider, as a macroscopic sample, a liquid solution of

sections are devoted to a description of the procedures that Weyitterent molecular components, each at a concentratithen

Eave formullqated,lwi_thirglthe framework of atgﬁ_) fsol\./atilor;.model the effects of the single components are assumed to be additive,
nown as the Polarizable Continuum Modet>for including so that the global measured response bec#imiés

the effects of the medium, here treated as an infinite continuous
dielectric, in all the aspects related to experimental measure- _ ®
ments. Finally, in section 6, we present some numerical results, ro= ZCJ Gy ()
and the related comparisons with experiments, for two NLO

model systems. ™ R
where &3’ are the nth-order molar polarizabilities of the

constituentJ. The values of the singlé!” can be extracted
from measurements of" at different concentrations.

The molar polarizabilities can be interpreted microscopically

2. Macroscopic Susceptibilities and Molecular Effective
Polarizabilities: General Expressions

~ The electrionth-order susceptibilitieg™ describe the polar-  in terms of the NLO response of a molecule to an electric field.
ization of a macroscopic portion of matter (for example, a By applying arguments of statistical classical mechanics, we
dielectric medium) in the presence of an electric field. obtain, for a generatth-order molar polarizability®

If we consider an experimental situation in which a macro-

scopic (or Maxwell) fieldE(t) is generated in a medium by the ® Urw,)
superposition of a static and an optical component, that is zz. = Na EE, Jeo (8)
E(t) = E° + E” cost) 2)

where we have introduced th2 space-fixed axes of the
laboratory. The expression above implies the consideration of
%oth rotation (or, classically, orientation) and thermal averaging
over the populated rotational states. Classically, the component
along the laboratory axes of the average dipole monient,

0 . o (we), of a single molecule of the speciésat a temperaturé

P(t) = P+ P* cospt) + P™ cos(t) +...  (3) and in the presence of the macroscopic fig{t) can be written

as
Each Fourier amplitude can be expanded as a power series with

respect to the electric field, so that

then the response of the medium can be represented by th
dielectric polarization vector (dipole moment per unit volume)
P(t), which, in terms of Fourier components, yields

ohfon fo(@g)k, €XPpCWIKT) sin 6 do de
fohfoﬂ exp(—w/kT) sin 6 do d¢

P_‘z(wa) = (9)

P° = 79 + 4 (0,0rE° + 4*(0;,0,0)E°E° +
%X@(o;—w,w):EwE“ +49(0:0,0,0E°%€%E° + ... (4)
where Einstein summation and the Boltzmann law are assumed,;
pe =X(l)(—a);w)'Ew + ZX(Z)(—w;a),O):E‘”EO+ 6 and ¢ are the usual spherical coordinates that define the
33— g: 000 molecular orientation with respect ¥ Y, andZ; wis the angle-
(o0, 0,00E°EE + ... (5) dependent part of the energy of the molecule in the presence of
the electric field;k, is the cosine of the angle between the
molecular axisx and the laboratory axig; and the bar indicates
an average over a statistical distribution of molecular orienta-
tions.

The molecular dipoléi(w,) can be related to the permanent
where the argument in the parentheses of the susceptibilitydipole and the static and dynamic polarizabilities and hyper-
tensorsy™ describes the nature of the frequency dependence polarizabilities of the molecules of the speciEby exploiting
at the given order; in all cases, the frequency of the resulting the expressions of its Fourier amplitudes. Namely, we have (up
wave (which from now on will be denoted,) is stated first, to the second-order)

P2 = 2~ 200,0) E"E” +

gX(S)(—Zw;w,w,O)EE’”E”’EO + .. (6)
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process of interest; in particular, to first-order (both static and

- _ .0, A 0, 1 ) 00
fo(0) = ity + Bp(0)E; + Eﬁaﬂy(O'O’OEﬁEV + frequency-dependent), we obt@®

1—" . W =W 1~ . O O= 0 -
> ’ KT Y
fig(®) = Byp(~0;0)Ef + By (—wi0,0ELE) + )
N ~wiw) = Npdi(—w;0) (15)

1. W

E’Vaﬂyé(_w;w,0,0EﬁEgEg + ... (11)
1; and for the third-order EFISHG proce¥sye obtain
ity (2w) = Zﬁaﬁy(—Zw;w,w)E%"Eg‘j +

1.

C(S)
Z)/aﬂya(—Zw;w,w,O)E;‘;E‘y“Eg + ... (12)

7224 —2w;0,0,0) =
B(—2w;0,0)u*

Na 15kT

+ 9(—2w;0,0,0)| (16)

where Ef,’ and E;;’ are the static and frequency-dependent
components of the applied macroscopic (or Maxwell) field, whereNa is Avogadro’s number. In eqs L6, ds is Y3 the
respectively. trace of the effective polarizability, and in eq 3&(—2w;w,w,0)
Such expansions, defining all of the properties involved in is the “scalar part” of the third-order polarizability. Parallel
the various optical experiments, are well-known for isolated expressions for other NLO processes can be easily formulated,
systems; however, in the condensed phase, some importanbut they will not be reported here as they are not used in the
specifications are required. The reaction of the solvent will humerical analysis.
surely induce changes in the charge distribution of the solute  As the molar polarizabilitieign) represent an easily avail-
molecule, thus modifying its response functions. In addition, able “experimental” set of data, the expressions above become
whereas in the gas phase, the applied macroscopic field andmportant for the theoretical evaluation of molecular response
the field actually acting at the molecular position coincide, in properties; in fact, they represent the most direct quantities to
solution, the presence of the environment introduces local compare with the computed results obtained by using a given
modifications (in the past represented in terms of local-field model for the solvent effects.
factors). Both effects will contribute to a modification of the In the following sections, we present a method for the

standard meaning of molecular properties; thus, to recover eyajyation of the effective molecular properties appearing in
expansions with respect to the applied macroscopic field, sucheqs 14-16 within the framework of the PCM continuum model.

as those reported in eqs-102, we need to introduceffectve As said before, in this approach, the summation of eq 7 is
(hyper)polarizabilities (the sum of both electronic and nuclear, (gquced to two components only (a solute and the solvent). Of
or vibrational, component$).” Here, the term “effective”  these two components, only the former is treated from a
indicates that the related property (denoted with a tilde) has molecular point of view, whereas the latter is represented by
been modified by the combination of the two different envi- 4 infinite continuum medium characterized by its dielectric

ronmental effects mentioned above and, historically, has beenconstant and refractive index (this model can be associated with
represented in terms of “cavity” and “reaction” fiel&is an infinitely dilute solution).

In the past, explicit expressions for the effective properties  The present work, which can be seen as the natural extension
were formulated by different authors in the case of a spherical ¢ frequency-dependent processes of the theory originally

solute molecule described classically (that is, formed by formulated in ref 17 for the static case, is actually a development
polarizable point dipoles). The orlglnal concept can be referred {o\yard and a completion of a more direct and correct compari-
to the works of Brown for the static ca¥&more recently, the son between calculated and experimental results.

same idea has been generalized to frequency-dependent pro-
cesses _by \_Nortma_nn_ and Bishbpuo et al® t_hen p_roposed & 3. Effective Polarizabilities of PCM Solutes: The
generalization of similar concepts to a semiclassical model for .

) . . . - Electronic Component
properties of molecules in solution, and finally, Cammi et’al.
introduced the evaluation of effective properties in the field of The formal theory of PCM molecular solutes in the presence
ab initio calculations for molecular solutes, although limiting  of external static and oscillating electric fields has been presented
the analysis to the static case only. in previous papefd’2land then applied to different systefhs.

In parallel, the angle-dependent enengyof eq 9, which Here, we attempt to complete such a formulation by introducing
represents the energy of a molecule of the spekieth respect all of the missing terms needed for a correct comparison with
to the orientation of the Maxwell field (here limited to its static experimental results. The analysis will be partitioned into three
component?), must be modified as follows: separate sections, the first concerning the electronic component
of the (hyper)polarizabilities, the second concerning the orien-
tational energyw, and the last concerning the vibrational
component of the same effective response properties.

For the electronic component of the effective polarizabilities,
where the quantities with the asterisk correspond to derivativeswe adopt a different formulation than that presented in previous
of the energy of the system with respect to the static componentspapers because the new formulation allows a simpler and more

Wzﬂ*‘EO-i‘% *E%E0+ ... (13)

of the Maxwell field; see refs 2, 18, and 19 for the original
definition. More details on these quantities will be provided in
section 4.

direct description and analysis of the effective properties.

In brief, the PCM modéf15represents the molecular solute
as a quantum mechanical charge distribution contained in a

Returning to the general expression in eq 8, we can now write volume (the so-called molecular cavity) of the proper shape;
the specific equations that give the molar quantities for each its form and dimension are determined by the number and the
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nature of the atoms constituting the molecule, as they define tesserae) of known ares. To each tesserk is associated a
the position (the nuclei of selected atoms) and the radii of the point chargeg) = aw*(s), which is placed at the representa-
interlocking spheres that yield the final cavity. The cavity is tive points, (the geometrical center) of the tessera; this allows
assumed to be immersed in a continuum dielectric characterizedall of the surface integrals of eqs 18 and 19 to be reduced to
by the proper macroscopic properties (the permittivity and the finite summations over th& tesserae.

refractive index at the frequencies of interest). When the  Approximate solutions of the time-dependent Sclimger
dielectric is polarized by the solute, the induced separation of equation associated with the effective HamiltoAfacan be
charges gives rise to a response fietie(reaction fielgl that obtained by using the Frenkel variational principle, which, in
modifies the previous state of the solute charge distribution. the PCM method, can be cast in the fd#h
Such mutual interaction is introduced in the Hamiltonian that

describes the solute electronic charge (and that determines its 6@1"6 _ I—‘WD—

wave functionW) through a perturbation operat¥fs, which

contains a term linearly depending 8H. This operator is

represented by the interaction of the solute potential with an In eq 20,G represents the free energy operator
apparent charge distribution, spreading on the cavity surface L N A .

and depending both on the solute field and on the macroscopic G=H"+ Vs T V(1) — 1/2V'MS(1II) (22)
characteristics of the continuum solvent.

In the presence of a Maxwell field, the complete Hamiltonian where V' we(¥) indicates the wave- -function-dependent com-

(20)

can be thus written as ponent of the reaction potentidfys and where nonlinear
. AP R medium response effects are discarded. In the static limit, the
H=H"+Vys+ V() (17) problem is reduced to a time-independent Sdhrger equation
R R whose variational solution coincides with the stationary condi-
whereH? is the Hamiltonian of the solute in vacuo a¥s is tion on the free energy function& = (W|G|WL
the electrostatic interaction between the solute and the solvent The restriction to a one-determinant wave function with
apparent charge, that is orbital expansion over a finite basis set leads to the following

R time-dependent Hartred=ock equation
Vys= [; D Vii: 9lo™(9) + o (Wi 91ds  (18)
' FC— i§3c= SCe 22)

The summation runs over the solute electrons, Mg s) is
the electronic potential operator calculated on the cavity surfacejth the proper orthonormality conditio, C, ande represent
2. Ineq 18, we have partitioned the solvent response into its the overlap, the MO coefficient, and the orbital energy matrices,
nuclear (that is, nuclei-induced) and electronic (that is, electron- respectively.
induced) components(s) ando%(W; s), respectively, indicat- In eq 22, the prime on the Fock matrix indicates that terms
Ing the dependence of the latter on the Solute wave function. accoun“ng for the solvent effects are |nc|uded that |S

The remaining time-dependent perturbatigtt) can be

represented as =h+j+ G(P) + X(P) + m [E2(” + & ") + EJ] +
V() = Zﬂa(l)[Ew( éo + & + E9] + myEg(e” + e ) + MIEY (23)
30%4s) wherem, is the matrix containing the dipole integrals along
f ZV(' s) Ew(elwt + e + O_EO ds (19) the three coordinates. The first two solvent-induced tegjms,
z 9E® * andX(P), indicate the constant and the wave-function-dependent

“ (here represented by the one-electron density m&yigom-

where Einstein summation on repeated indices is assumed. Ponents of the reaction potentiéis, while the last two solvent-

In eq 19, a new apparent surface chara;fé has been induced termsmf;’ and m 0 are the matrices related to the
introduced; it can be described as the response of the solvenfipparent cha_rgeexmduced by the external oscillating and static
to the external field (static or oscillating) when the empty field, respectively; namely,

molecular cavity is created in the bulk of the solvent. This effect

must be summed up to the standard reaction field described by . 3y (s)
oN and ¢® in order to fully consider the effective reaction of m,=— ZV(%) (24)
the solvent on the combined action of the internal (due to the Gl =

solute) and the external fields. More details on this point can

be found in ref 17. Here, it can be useful to recall that the effects where V(s is the matrix containing the solute electronic

of ¢®*in the limit of a spherical cavity coincide with those of potential integrals computed at the surface positon

the cavity field factors historically introduced to account for A more detailed analysis of all of the solvent-induced terms

the changes induced by the solvent molecules in the averageintroduced in eq 23 can be found in refs 7 and 17; here, it

macroscopic field (the Maxwell field) at each local position suffices to recall that all of the related matrices account for the

inside the medium. required details of the distribution of the frequency-dependent
Both o and ¢®* are obtained from analytical expressions in permittivity (w) within the range of frequencies associated with

terms of the acting fields (or equivalently the corresponding the resulting external field.

potentials), the intrinsic shape of the cavity, and the macroscopic  The solution of the time-dependent HF equation (eq 22) can

characteristics of the solvent. In computational practice, the be obtained within a time-dependent coupled HF (TDHF)

charge distributions are discretized into point charges by approach by expanding all of the matrices involved in powers

partitioning the cavity surface int& small portions (called of the field components. For the sake of brevity, we report the
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detailed expressions only for the tensorial factors in the approach described above, they can be expressed in terms of
expansion ofF' as explicitty modified by the solvent; the the unperturbed density matrix and its derivative with respect
expansions of the other matric€ P, ande are exactly the to the static field. Specifically,

same as in the case of the isolated system subject to the same

external field. Limiting the analysis to third-order, we obtain g, = (a_GO) o _ —t[P°(m,, + ™O)] (29)
[ S — 8E E =0
F (o, 0)= o
o o ~ 2 0
GIF (@] + X, [P(w)] + m, + i oy = ( ve ) — P, A0l @0
0y g 05) = 9ESIEY): _o
B a8
G[P¥(wy, )] + X, [P¥ (w4, )] wherem,, andm® are the matrices introduced in eq 23.
E (o . Comparing eq 28 with eq 13 and introducing eqgs 29 and 30,
op (TP W1, Wy 3) = we can easily obtain the expressions for the previously
G[paﬁV(wl, w, wl)] + X, [p“ﬁy(wl, W5, w3)] introduced dipole and polarizability, namely,
where w, are the frequencies related to the external fields w, = —tr[P’(m, + m2)] (31)
(eventually static and, thus), = 0) andP*(w1, wo, ...) are X o
the perturbed density matrices at the various orders. The 0y = —tr[P(m,, + @Y)] (32)

elements of the solvent-induced matricés, depend twice on
the frequency-dependent nature of the field, once in the density These expressions are the PCM results for the evaluation of
matrix P*%--(w1, wy, ...) and again in the value of the dielectric  the orientational averaging required in eq 9.
permittivity at the resulting frequenay, = 3 xwx.

By applyication of standard iterative procedures, all of the 5. Effective Polarizabilities of PCM Solutes: The
perturbed density matrices can be analytically computed, andVibrational Component
thus, also, the electronic component of the effective properties

(egs 16-12). Namely, we have In general, the vibrational contribution should contain two

distinct effects® the “curvature” that is related to the field

ﬁzl/;(—w? w) = —tr[maPﬂ(a))] (25) _dependency _of the vibrational fr_equencies (that is, the changes

in the potential energy surface in the presence of the external
ﬁilﬂ (o, 0, 0,)= —tr[mapﬂy(wl, )] (26) field) and that includ_es the zero.-p.oint vibrational cprregtion and
v the “nuclear relaxation” that originates from the field-induced
jjzlﬂyé(—wg; W1, Wy, Wg) = —tr[maPﬂ”‘s(wl, Wy )] (27) nuclear relaxation (that is, the modification of the equilibrium

geometry in the presence of the external field). In the following

As shown by eqs 2527, the procedure briefly sketched above analysis and in the related numerical results, however, only the
allows one to account for all of the effects of the solvent, both nuclear relaxation will be considered. In addition, the following
those intrinsic, that is, due to the reaction potential, and those analysis will consider only the static limit; vibrational effects
related to the presence of the external field, in a compact andin the presence of frequency-dependent fields are, in fact, usually
self-consistent form. In this way, no a posteriori corrections, small, and they will be omitted completely here.
such as those usually introduced by cavity factors, are required. The nuclear-relaxation contribution (from now on just
Rather, the computed properties can be used as they are andvibrational”) to the static polarizabilities can be computed in
introduced into the expressions linking the microscopic proper- the double harmonic approximation, that is, assuming that the
ties to the macroscopic observables. expansions of both the potential energy and the electronic

Let us now consider the two additional contributions neces- properties with respect to the normal coordinates can be limited
sary for obtaining the complete description, starting with the to the quadratic and the linear terms (in other words, assuming
definition of the angle-dependent enengi? in the presence of ~ both mechanical and electronic harmonicity).

the solvent effects. As shown in the Appendix of ref 21, the double harmonic
procedure can be analytically reformulated within the PCM
4. Orientational Energy for a PCM Solute model to obtain the analogues of the classical expressions in

terms of summations of derivatives of dipoles and polarizabilities
with respect to normal coordinates but with all of the properties
computed in the presence of the solvent (that is, exploiting
effective properties). Here, however, a new feature must be
introduced as, in the analysis reported in ref 21, no consider-
ations of the effects of the external field on the continuum
dielectric were taken into account.

If we return to the analysis reported in the previous section
(see eqs 2832), then eqs 9 and 10 of the reference p#Eper

In eq 13, we showed that the angle-dependent part of the
energy in the presence of the externally applied field can be
written in terms of the dipole* (and, at higher order, the
polarizability o*). Classically, this expression can be obtained
by expanding the Boltzmann potential energy in terms of the
field (here appearing only through its static components); in
the framework of the PCM solvation model, this energy must
be replaced with the free energy analogue, specifically

o 0. 1. _o-o must be modified by substituting the proper dipole and
G(E") =G’ +gE’+ EH:E ETt.. (28) polarizability derivatives with the corresponding analogues in
terms of the quantities defined in eqs 31 and 32. If each
whereGP is the free energy of the solvated system in the absencevibrational state is defined by the quantum numbers associated
of the field. with each of the Bl — 6 normal modes of the system, then the
The components both of the gradiegtand of the Hessian,  final expressions for the effective static vibrational polarizabili-
H, must be computed &° = 0; in the framework of the CHF ties and first hyperpolarizability become
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aN -6 djt,, 3/4;; notes. The operating frequency is that corresponding to the

dpy = —| || l? (33) fundamental beam of wavelength 1064 nm from a Q-switched,

7 \0Q./0\9Q4/0 mode-locked Nd:YAG laser. A symmetry consideration shows

. . that the third-order nonlinearity that is measured in the EFISH

~ 3N-6 aﬁy Lot a/zﬁ 00, experiment for a medium that is isotropic in the absence of any

ﬁ;ﬂy = Z —|— +|— + external electric field has only two independent components.
a |\9Qafo\ 0Qafo  \9Qq/0\ 3Q:a [0 To determine these tensor elements, two EFISH measurements

have the electric field vector of the fundamental parallglof

0Q,/0\9Q perpendicular() to the external electric fiel&°. The frequency-
doubled photons are detected with the polarization parallel to

wherew, = 27v, is the circular frequency associated with the E° in both cases. The exact expressions for the corresponding

normal coordinat€), for the solvated molecule and each partial molar polarizabilities can be derived from the general expression

derivative is evaluated at the proper equilibrium geometry. We in eq 16, by also taking into account the symmetry of the

recall, in fact, that the equilibrium geometry and the vibrational molecules under examination, which, in our caseCis. In

frequencies, force constants, and normal modes are computegarticular, if we identify thez axis of the molecule-fixed

in the presence of the solvent interactions as derivatives of thecoordinate system with th&, axis and thex andy axes within

free energy functional with respect to the nuclear coordi- and perpendicular to the molecular plane, respectively, then the

(aﬁ‘i) (1;;,, are usually performed for the two polarization conditions that
— ||l (34)

nates?6.27 resulting expressions dfe'é
The derivatives of the asterisk quantities in eqs 33 and 34 0% 1m
can be obtained by including the contributions due to the Z;(S)(I h=N ([2 B+ Plu +5 )
external charg@® in the expansion o6 with respect to the A 15T t
field to be used in the derivation of the PCM double harmonic o1p _ 271.,x
scheme (see Appendix 1 of ref 21), exactly as we did in the (M) =N 2p — bl + 5
. : =) ©X . . EH0) =Ny 0
previous section to evaluate the orientational averaging. Specif- 15T
ically, where
L, . . 2p+p=3p (—20; , ®) + B, (—20; ®, ) +
(B_Qo;)o = —t[P(m,, + M2) + PA(m3 + m3)]  (35) “ ) Prod—20; 0, )
Ba;ﬁ a 21[3 - ZB =pj (—2w; v, w) — B (—2mw; v, w) +
= — B 0 a ~a 7z pa's 3
( aQa)o tr[P*(m, + M2) + PA(m3 + m3)] (36) 2ok =20} 0, )

wherem and? represent the derivatives with respect to the and

normal coordinate (and thus the nuclear motions) of the dipole  #, = (27 ¢z, (—20; 0, @, 0) + V¢, (—20; @, ®, 0))/15
matrix and the so-called external component of the solvent . o

reaction, respectively. The matr'ﬁag depends on the nuclear Vo= 27 epe(—20; 0, 0, 0) = Vi, (—20; @, 0, 0))/15
geometry through the form of the molecular cavity, and as a
consequence, its variations with respect to the nuclear motions
should be included. In the numerical results that we report in

the following section, however, such geometry contributions

are neglected, thus limiting eqs 35 and 36 to the first terms
related to the density derivatives only. This approximation

coincides with the limit of fixed cavities.

within the Einstein convention on repeated indices. Usually, the
contributions of the field dependence f@f that is,y, and yp,

are neglected as much smaller (by at least one order of
magnitude) than the other contributions.

All calculations have been done exploiting the implementation
of the recently revised formulation of the PCM method known
as |EF (Integral Equation Formalisfi)n development versions
of Gaussia®® and GAMESSC codes. Dioxane solvent is
represented by the two values of its permittivigfQ) = 2.209

In this section, we present some numerical results concerningand e(e) = 2.022. The results refer to HF calculations with a
molar polarizabilities of various orders for two model organic Dunning doubleZ valence (DZV) basis set for geometry
molecules whose optical properties are experimentally well- optimization3! to which d-orbital (0.2) functions for C, N, and
known: 4-nitroaniline (pNA) and 3,5-dinitroaniline (3,5-DNA) O and a p-orbital (0.1) function for H have been added for the
in liquid dioxane. In particular, we focus attention on two calculations of the properti€dithe numbers in parentheses are
specific experimental processes from which data of first- and the exponents of these extra functions.
third-order molar polarizabilities have been extracted, namely, The geometry of the two solutes was optimized in the
refractometric and EFISH measurements. presence of the solvent using the analytical PCM-IEF gradfents

Details of the equations and the methods used in the implemented in Gaussian. All of the effective electronic
evaluation of the refractometric and permittivity measurements properties (both static and dynamic) were computed with the
have been described repeatetfiyjdere, we only recall thatthe ~ CPHF/TDHF procedure implemented in GAMESS and were
specific expressions to be used for the static and the frequency-properly modified to account for the solvent effects, whereas
dependent related properties are reported in egs 14 and 15the vibrational contributions were obtained using the analytical
respectively, where the exploited frequency is that corresponding PCM-IEF Hessiartd implemented in Gaussian. The molecular
to 4 = 589 nm. cavity containing the solute was obtained in terms of interlocking

The EFISH techniqui# is one of the techniques most often spheres centered on the six carbons of the aromatic ring and on
used to obtain information on the molecular hyperpolarizability, all of the nuclei of the external groups (globally, we have 6
f3; here, once again, we do not report any details but just some6 and 6+ 9 spheres for pNA and DNA, respectively). The radii

6. Numerical Results
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of the spheres were derived from the van der Waals radii TABLE 1: Effective Dipoles, Frequency-Dependent and

multiplied by a scaling factor of 1.2, namelg = 1.2R,qw. In Static Polarizabilities, and First-Order Molar Polarizabilities
this scheme, the radii centered on the aromatic carbons, and®f PNA and 3,5-DNA in Dioxane?

eventually including a hydrogen atom, were set equal to 2.28 pNA 3,5-DNA

A, whereas those on the external atoms were derived from calc exp calc exp
Bondi's R,gw33 to have the valueRy = 1.86 A,Ro = 1.824 A, p 3397 2850

andRy = 1.44 A. A different choice, derived from thR,qw # 3.763 3197

values suggested by Pauliffgyvas also checked for the external gfﬂ%kq— 4517.03 3215.21

groups (those actually in contact with the continuum dielectric,  2(0) 125.76 141.44

being the internal carbons almost completely buried). The &/°(0) 49.89 39.21
calculations (limited to dipoles and static and dynamic polar- ¢®(0) 466 44947 337 367+ 6
izabilities) performed with this alternative set of radii gave  @3(o) 129.99 144.21

results almost identical to those obtained with the first choice  £™(®) 12.9 157405 14.3 17.3:1

(that is, derived from Bondi), thus showing the stability of the 2 All molecular properties are in au, whereas molar polarizabilities
model used. More details on this important aspect of all of the are in Sl units (10*® cn? V! mol™?). The frequency correspondsto
cavity-based solvation methods can be found in other preceding= 589 nm.” Ref 12.

papers’® in_ Wh.iCh this and oth_er ty_pes of propert'ies (such as TABLE 2: Effective Frequency-Dependent and Static

nuclear shielding constants, vibrational frequencies, etc.) havepg|arizabilities and First-Order Molar Polarizabilities of

been systematically analyzed with respect to changes in thepNA and 3,5-DNA in Dioxane at the DFT Levet

cavity size. These analyses clearly show that the solvation model PNA 35-DNA

does, indeed, depend on the choice of the cavity size but that :

this size dependence nevertheless preserves the stability of the cale exp calc exp

results when reasonable ranges of variations are used; no &(w) 151.36 161.44

assurance of equivalently reliable results can be given for {®(®) 15.0 15.7£0.5 16.0 17.3t 1
cavities that are very unphysical in size. a All molecular properties are in au, whereas molar polarizabilities

In Tables 1-3, we report a collection of computed quantities are in Sl units (10 cm? V-1 mol™2). The frequency correspondsto
for the two systems studied and a comparison with the = 589 nm.’Ref 12.
experimental data reported_ by W(?”ma”f? e%Z?A” of the TABLE 3: Effective SHG Hyperpolarizabilities, EFISHG
calculated molecglar properties are in atomic units (au), wh(_ereasSecond Hyperpolarizabilities, and Third-order Molar
the molar polarizabilities are in Sl units; the appropriate Polarizabilities of pNA in Dioxane?
conversion factors are the following:

calc exp
polarizabilitya : Zlg ooaer
1.6488x 10 C?m?J'=1au (22B + 'B)-u*115KT 2.877673
_ R (218 — 2B)-u*/15KT 0.923999
first-order molar polarlzablllt)g( ): i 0.061139
—16 -1 -1_ —18 Yo 0.028079
10 *Cmf vVt mol™t =9.9291x 10 **au e 110 1204 11
first hyperpolarizabilitys : () 36 39+ 4
3.2064x 10 2*C*m*J?=1au aComputed molecular properties are reported ifi 40, whereas
h lori ility - molar polarizabilities are in Sl units (& cnm? V~! mol™). The
second hyperpolorizability : frequency corresponds fo= 1064 nm.> Ref 12.

6.2354x 10 °C'm*J 23 =1au
. L 3). the B3LYP hybrid functional and the same basis set. The results
thlrd-orde_rsgwolaz po_lgrlzaf)illtyz ' 4 obtained in this case appear to confirm our prediction, leading
10 "Cm"V “mol ~ = 37.5496x 10 " au to an increase of 1216% in the value of(w) with respect
to HF and thus making the molar polarizability much closer to
The analysis of the results is usefully partitioned into two the experimental values. The DFT results are reported in Table
sections, according to the experimental process involved. Thus,2,
in Table 1 we report the permittivity- and refractometric-related In Table 3, we report the EFISH-related properties for pNA

properties for both molecules. in dioxane.
Here, the relative errors are-% for {(0) and 13-15% The most evident aspect to note in the results is the much
for {W(w). These diescrepancies between compuigdand better agreement between computed third-order molar polariz-

experimentaf® values, in our opinion, are due to an inadequate abilities and experimental EFISH data compared to first-order
quantum mechanical (QM) description in which no electronic results; both the computeif3)(l) and {®)(0) values are well
correlation is introduced. A comparison of the different accura- within the experimental error. This very good result, if compared
cies obtained for the static and dynamic properties seems towith the previous results, confirms the difficulty in the analysis
confirm this opinion. The HF description usually overestimates of the eventual errors affecting our model. Roughly, one could
dipole values and underestimates polarizabilities. Thus, for the say that the complex nature of the final property (a combination
static quantity¢®(0), which depends on both the effective of the effects of dipoles and first and second hyperpolarizabili-
dipoles and the polarizability, there can be a partial compensa-ties) is characterized by some compensation of errors leading
tion, thereby reducing the error. On the contrary, such com- to an almost exact result. Actually, the contribution given by
pensation is not active for the dynamic quantty(w), which the second hyperpolarizability can be neglected, as it is at
only depends on polarizability. We then repeated the calculation least an order of magnitude smaller that {he* term (as

of both properties at the density functional level of theory using usually observed by the experimentalists). Thus, an attempted
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explanation could be based, once again, on the different generalizable to any kind of QM description. It is also easily
performances of HF approaches in the calculations of dipoles extended to include more detailed descriptions of the solvent
and higher-order properties. Here, no help from more accurate(specifically, through the consideration of interactions of a
QM descriptions, such as that provided by DFT polarizabilities, different nature and the inclusion of explicit molecules in the
can be exploited. For the moment, in fact, no DFT SHG QM system). In addition, the model allows complex effects that
hyperpolarizabilities can be obtained with the computational previous semiclassical models cannot describe to be taken into
codes with which the PCM model has been implemented. account. In particular, the use of specific operators representing
the effects of the external field on the dielectric (see eq 19)
7. Conclusion permits the description of possible inhomogeneities in the field
acting at the local molecular site, a feature that the more standard
local field factors cannot reproduce.
As a last remark, it is worth noting that the theoretical

We have presented a formal methodology for a well-known
continuum solvation model (the PCM-IEF model) that allows

one to obtain, from purely computational results (that is, without methodolo resented here onlv for permittivity and refrac-
the help of any experimental data), complex NLO properties 9y p y P Y

that can be directly compared with the outcome of experimental tometric measurements at first order and the EFISH process at

. Jhird order can be extended to other, still widely used NLO
measurements. Actually, the experimental data we have use rocesses, such as the electro-optical Kerr effect (OKE) and
do require some manipulations, mainly to extract concentration- P X P

independent values; however, such manipulations, performedthe intensity-dependent refractive index (IDRI). Progress in this

. - . . . direction will soon be presented.
directly by experimentalists, do not imply any modeling All of th i : b hus. b ized b
assumptions that, at the end, would lead to a certain “corruption” of the considerations above can, thus, be summarized by
of the data. Within this synergic scheme, requiring efforts from saying that this paper represents an attempt to brlc_ige the still-
both experimentalists and theoreticians in order to find a point Ir;:rge 9ap betvr\]/eeg experiments an('jdcalcula;:cpr?s |r|1 thg selnse
of contact, the results we have obtained, even if limited to two that, on one hand, it tries to provide a sufficiently simple

single-molecule systems and a few NLO processes, can peCOMputational tool to also be used by non-theoreticians and,
considered encouraging on the other hand, it presents an incentive for experimentalists

Clearly, many important improvements can be introduced. to share an increasingly greater amount of data that is clear in

In the previous section, we emphasized the limits of the QM origin and simple in analysis.
calculation used in the numerical applications, both in the choice
of the basis set and in the level of the QM description. In this
direction, the few results obtained using a DFT/B3LYP approach
show the evident improvements one can obtain with limited
efforts.

However, other, completely different, sources of errors, or
of an incomplete description, should also be taken into account,
such as the omission of some interactions among solute andXéferences and Notes
solvent molecules. The PCM approach, as presented in the (1) Bishop, D. M.; Norman, P. litandbook of Adanced Electronic
previous sections, accounts for electrostatic solvent effects only;and Photonic MaterialsNalwa, H. S., Ed.; Academic Press: San Diego,
on the contrary, it is well-known that other forces of a dispersive CA; g‘ pres:;dt her G 1 ETH ¢ Electric PolarizationElseyi
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