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Static and dynamic (hyper)polarizabilities of Sitadical have been calculated by ab initio time-dependent
unrestricted HartreeFock method with the use of a doubleplus polarization basis set. In order to examine

the effect of a Si dangling bond on the polarizabilities, calculations have also been performed on the diamagnetic
SiH, molecule using the same method and the basis set. A comparison of the polarizabilities of the two
systems reveals that a dangling bond at the Si atom causes only a minor change in the value of polarizability,
a. However, a Si-dangling bond in the case of Sitiktorts the symmetry in the charge distribution in such

a way that the dipole momeng, and the first-hyperpolarizability coefficieni, become nonzero. The
calculations also reveal that the contributions of thepin electrons angs-spin electrons to (hyper)-
polarizabilities of the Siklradical substantially differ from each other. The magnitude of hyperpolarizability
coefficient is found to be determined by the contributions from different spins.

Introduction The short-range order or a lack of randomness in the silica
glass can be intrinsic or may result from the presence of defects,
which could themselves be intrinsic or impurity related. The
intrinsic defects ina-SiO, involve O-vacancies, threefold
coordinated Si centers, nonbonded O centers, and trapped
charges? A majority of these defects are also quite stable and
may be responsible for the observed SHG in silica glass. Indeed,
electron spin resonance (ESR) experim&#?2L clearly dem-
onstrate the presence of various intrinsic paramagnetic defects
in the silica samples exhibiting SHG. The experiments per-
formed by Fuziwara et &2 also suggest a good correlation
between the SHG intensity and the density of threefold
coordinated Si/Ge centers in Ge-doped silica glass. These
experiments reinforce the hypothesis that the second-order NLO
effects ina-SiO, are microscopic in nature and possibly involve
defect centers.

As a first-step toward understanding the role of the defect
on the microscopic optical nonlinearity of silica glass, we have
h calculated the (hyper)polarizabilities of a threefold coordinated
paramagnetic Si center. While other defects, such as the OH
radical, H atom, positively charged H, alkali metal ions, and
alkaline earth metal ions, have been detected by various groups
in silica glass and have been the subject of experimeHi#i
and theoreticd?23 studies as potential sources of microscopic
optical nonlinearity of a-SiO,, the role of the threefold
coordinated Si center has not yet been explored. It is important
to note that the threefold coordinated Si centers are the most

continuous random network of fourfold coordinated Si atoms commonly detected and extensively studied intrinsic defects in

_Qi 19
and twofold coordinated O atoms, its dipole moment and a-S10,. o -
second-order NLO coefficients vanish. Observation of SHG in ~ We have calculated the (hyper)polarizabilities of Siedical
a silica sample, therefore, must involve short-range order with @nd Sik molecule using ab Initio time-dependent unrestricted
nonvanising dipole moment in the network. Alignment of these Hartree-Fock (TDUHF) theory* The SiH radical is the
local dipoles in the presence of external electric field would smallest system representing a threefold coordinated Si center.

then result in a net nonzero dipole moment of the sample. ~ While SiHs and Siky molecules are too small to represent
realistic models of Si centers i&SiO,, they do provide the

t Part of the special issue “Electronic and Nonlinear Optical Materials: ©SSential structural features, i.e., a regular fourfold coordinated
Theory and Modeling”. Si in tetrahedral Tg) symmetry (SiH) and a threefold coordi-

Since the first observation of second harmonic generation
(SHG) of the infrared (IR) light in silica fiber by Qerberg and
Margulis} there has been a surge in activities related to the
nonlinear optical (NLO) effects in amorphous silicon dioxide
(a-Si0,). NLO processes, such as the SHG and electrooptic
effects, have been observed in different material compositions
and geometries &-SiO, as well as under different experimental
conditions?~1! While much advance has been made toward
enhancing the NLO efficiency of silica-based materials, the
origin and the physical mechanism of the SH&i8iO, remain
unexplained. Very early on, after the discovery bgt@berg
and Margulis} the second-order NLO effect in silica glass was
hypothesized to originate from macroscopic effects, such as the
creation of local electric field by preferential emission of
electron$? and generation of dc electric field in the glass by
intense laser field® Recent studies on the origin and mechanism
of SHG in thermally poled fused silié&'® also suggest
macroscopic effects that involve generation of dc field, althoug
the exact mechanism of this process remains controversial.

While the macroscopic mechanism involving generation of
dc electric field due either to the intense laser fiéld or to
the transport of ionic species under high-field thermal poling
condition$® does appear to be consistent with the observed SHG
in bulk and fused silica, it fails to explain the observed NLO
effects in other samples, such as the electrically and ultraviolet
(UV) light-poled silica®® Since a high-puritya-SiO, is a
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nated Si with a dangling bond (SiH Therefore, it is hoped
that the results obtained in this study would be useful in
providing new insights into the (a) microscopic mechanism of
second-order NLO effects and (b) the role of threefold coor-
dinated Si centers on the observed SHG in silica glass.

Theory and Calculations

In the time-dependent Hartre€ock (TDHF) approactt26
the elements of the polarizability tensaf—w;w), are calculated
as

. — 1 1
0 —w;w) = —tr[hY D] (1)
wherea, b = x, y, z represent the Cartesian componeniss
the angular frequency of the optical electric fiehf) is the
dipole moment matrix in directioa, andDE}) is theb-direction
component of the first-order perturbed density matrix. In the
TDUHF methoc?* as used here, the density maf#) is written
as the sum of contributions from tlespin electronsD'™®, and
B-spin electronsD'Y. This allows one to write the polarizability,
o(—w;w) as
o(—w;w) = af(—w;a)) + (xl(—w;w) (2)
whereo! represents the contribution to polarizability from spin
quantum numbers = %, electrons ando' represents the
corresponding contribution from= —1, electrons. Equation
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ﬂ,ui(wg;wa,a)b) = /M (5)
ul
where
pi= llsz(ﬂijj + ﬁjii + ﬁjji; Li=XY,2 ©)
]

wi and |u|, respectively, represent thg=x, y, 2 component
and the absolute value of the dipole moment. Unfortunately, a
number of other definitions are used in the literattré® for

the observable part ¢f. Therefore, it is important to provide
the definition used to obtain the reported quantities. Hgxe,
has been calculated according to eq 5.

The calculations on the SiHand SiH molecules were
performed at their theoretically optimized equilibrium geom-
etries2930For the tetrahedral SiHmolecule, a value dR(Si—

H) = 1.4735 A was used. For the pyramidal Sirtolecule,
the geometry used waR(Si—H) = 1.478 A, OH-Si—H =
117°. A double< plus polarization (DZP) basis $étvas used
in the calculations. The TDUHF calculations of (hyper)-
polarizabilities were performed with the XNLOP computer
code“interfaced with PHOTORE ab initio electronic structure
program.

The o values have been calculated at static electric figld (
= o) and at an optical wavelength= 694.3 nm corresponding
to ruby laser. Generally, the SHG experiments are performed

2 provides a convenient and useful means to analyze contribu-at a fundamental wavelength,= 1064 nm of Nd:YAG laser.

tions to the polarizability from electrons of different spins. In

However, in the quantum mechanical calculations on small

the case of closed-shell systems, the contributions from the two ;-honded molecular species, such as Sihd SiH, this
spins are the same. However, in the case of paramagneticyayvelength does not produce discernible changes in polariz-

systems, as has been noted befdtbg electric polarization of
electrons with different spins may vary from each other in sign,

abilities with respect to their values at static electric field.
Therefore, a relatively low wavelengtii & 694.3 nm) was

magnitude, or both. This feature of the paramagnetic systemschosen in this calculation.
often leads to some interesting effects in the presence of external For the SiH molecule, the dipole moment and thgvector

electric field?”:28In the present study, eq 2 is used to analyze
the similarity and differences in the contributions from different
spins to the total polarizability.

Similar to eq 2, the first-hyperpolarizability tensor,
B(—wswa,mp), is written in the TDUHF approaéhas

ﬁ(_a)o;a)a'wb) = ﬁ1(_wa;wa’a)b) + ﬂ¢(—6l)0;6l)a,wb) (3)

In the above equatiom, = (wa + wp), Whereo, a, b represent
the Cartesian componentg, (y, 2. The convention for the
frequency arguments in eq 3 is such that the first term inside

Polarizability
the parentheses represents the angular frequency of the output '
P p d q y pevalue of static polarizabilityq(0) and the dynamic polarizability,

beam of light and the second and the third terms represent th
corresponding frequencies of the input beams. Fheerms
are evaluated from a self-consistent solution of the first-order
TDUHF equations. The same solution also gives the first-order
D® matrix needed to evaluate from eq 1. The details of the
method are given in ref 24.

It is not always possible to measure individual elements of
the (hyper)polarizability tensors, and 3, from experiments.

The quantities often measured in experiments are the mean

polarizability, (&[] and a vector componeng,, of the first-
hyperpolarizability tensor projected along the dipole axis. In
the quantum mechanical calculations, the mean polarizability
is calculated from the elements aftensor as

(= l/32(1&&; a=xVy,z (4)
a

and theg, vector along the dipole axis is calculated as

vanish due to the symmetry{) reasons. However, for the SiH
(Cs,) radical, the dipole moment and the second-order polar-
izability have nonzero values due to the anisotropy in the charge
distribution. For SiH, we calculated thg values corresponding

to the static first-hyperpolarizability, denoted B{0;0,0), and
that corresponding to the electrooptic Pockels effect (EOPE),
denoted bys(—w;0,w). S(EOPE) was calculated at a funda-
mental wavelength, = 694.3 nm.

Results and Discussion
o. The calculated components and the mean

o(w), for the SiH, molecule and Siklradical are listed in Table
1. As expected, the polarizability for the SiHnolecule is
isotropic. In the case of the SiHadical, the component af
along the symmetryGs,) axis is smaller in magnitude than the
nonaxial componentsiy, oyy). These components affor SiHz
radical are larger in magnitude by about 10% than the corre-
sponding components of the Sikholecule. However, the axial
component ofo (o) for the SiH; radical is much smaller in
magnitude by about 25% than the corresponding component in
the case of the SiHmolecule. As a result, the overall change
in polarizability in going from the Sikimolecule to the Sikl
radical is only marginal. This noted trend is both qualitatively
and quantitatively the same for the static and the dynamic
polarizability. Upon examining the molecular orbitals, we note
that that dangling bond on Si that contains a single electron is
much less polarizable than the doubly occupied orbitals. As a
result, the overall polarizability of the SgHadical consisting
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TABLE 1: Calculated Static Polarizability, o(0), and
Dynamic Polarizability, o(®) (in the units of 10724 cm?3), for
S|H4 and SiH3a'b
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TABLE 4: Spin Contributions to the Components of Static
First Hyperpolarizability, £(0;0,0), and EOPE,S(—®;0,m),
for SiH3 Radical®

polarizability o(0) o(w)
component Sik SiH; SiH,4 SiHs
Olx = Qlyy 3.285 3.640 3.339 3.734
040) 3.285 2441 3.339 2.483
[a(0)0 3.285 3.240 3.339 3.317

a Calculated total energy: SHHE = —291.231913 au; SHHE =
—290.611789 au; dipole moment: SiHux = uy = u, = 0; SiHs: uy
= uy=0,u, = 0.1186 auju| = 0.301 debye?Dynamic polarizability,
o(w), calculated af. = 694.3 nm.

TABLE 2: Calculated Components of Static First
Hyperpolarizability, £(0;0,0), and EOPE,f(—;0,m) (in
10732 esu) for SiH; Radical?

component 3(0; 0, 0) f(—w; 0,w) component3(0; 0,0) f(—w; 0, w)

Brox -1.85  —0.20 Bazz -6.97  —7.29
Bz ~ —20.63 —22.35 B —-28.94 —30.82
By 1.85 0.20 Bu -28.94  —30.82
By ~ —2063 —22.35

a f(—w;0,w) calculated at an optical wavelength= 694.3 nm.

TABLE 3: Spin Contributions to the Static and Dynamic
Polarizabilities, o (10724 cmd), of SiH; Radical?

component o-spin  f-spin  component a-spin  (-spin
0(0) 2.337 1.303 O ) 2.419 1.315
04yy(0) 2.337 1.303 Oyy(w) 2.419 1.315
0A0) 1431 1.010 0Aw) 1.455 1.028

@ Dynamic polarizability,a(w), calculated af = 694.3 nm.

of a threefold coordinated Si center is slightly smaller than that
of the fourfold coordinated SiHmolecule.

The polarizability in both molecules exhibits dispersion due
to the frequency of the optical field. The magnitude of
dispersion, however, is larger in the case of thesSiktlical
than that in the case of SiHmolecule. Again, the axial
component of the polarizability,, in the case of Sikiradical
exhibits smaller dispersion than the other two componexis,
and oy

First Hyperpolarizability, f. The components of static first-
hyperpolarizability tensoy3(0;0,0), and those corresponding to
EOPE,S(—w;0,w), along with the vector components and

NLO coefficient $(0; 0, 0) f(—w; 0, )
component o-spin S-spin o-spin p-spin
Prxx 5.86 -7.71 7.62 —7.82
Prxxz —14.80 —5.83 —16.20 6.15
Bryy —5.86 7.70 —7.62 7.82
Byyz —14.80 —5.83 —14.20 —6.15
222 13.10 —20.07 13,55 —20.84

aThe unit for the components ¢fis 1032 esu.

values of these components are quite small. The spin contribu-
tions to the other two componeniky, andpyy, with significant
value have the same (negative) sign. These components
contribute significantly to the observable vectr

Itis clear from the calculated results for the Siiddical that
for a threefold coordinated paramagnetic Si center, not only the
overall symmetry but also the spin contributions play important
roles in determining (hyper)polarizabilities. The spin contribu-
tions to the polarizability have the same sign, although their
magnitudes vary. However, for the first-hyperpolarizabiliy,
the spin contributions to different components do not always
have the same sign. Spin contributions with opposite sign cancel
each other, yielding a substantially reduced value for the
observable,f,. Thus, while a noncentrosymmetric charge
distribution is an essential requirement for a nonzgroalue,
its magnitude in the case of a paramagnetic system is determined
by the relative contributions of the spin components.

Summary

As a first step toward understanding the role of threefold
coordinated Si centers on the microscopic NLO properties of
a-SiO,, we have calculated the polarizabilities of Sitdolecule
and SiH radical with the use of ab initio TDUHF method and
a DZP basis set. A comparison of the calculated static and
dynamic polarizabilities of Silfand SiH reveals that individual
components ofx(w) in the case of the two molecules differ
substantially from each other. However, little change occurs in
the value of the mean polarizabiliti(w)C) between the two
molecular species. The contribution to polarizability due to the
singly filled (dangling) bond at the Si center in Sild somewhat

B are listed in Table 2. For both second-order effects, the tensorunderestimated while those of the doubly filled bonds are

componentgyy, andfyy; have the largest magnitude. Also, due
to the positive sign ofi,, the 5, vector is identical to thes,
vector. Betweer$(0;0,0) and3(—w;0,w), the magnitude ofx,

overestimated with respect to the contributions from corre-
sponding bonds in SiH The presence of a dangling bond at
Si, in the case of Siklradical, however, creates a nonspherical

andp,y; components increases by about 10% due to the optical charge distribution that yields a nonvanishing value for the

field. Components with smaller magnitude do not exhibit a
definite trend. Theg, vector also increases, albeit by small
amount, in going from static case to EOPE.

Spin Contributions to o and f for SiH3z. Calculated spin
contributions too. and 5 values for SiH radical are listed in

dipole momenty, as well as the second-order NLO coefficient,
B

The elements ofo and S exhibit small but noticeable
dispersion due to the frequency of the optical field. In the case
of the paramagnetic Si¢tadical, the spin contributions to the

Table 3 and Table 4, respectively. From Table 3 it is noted that elements of the polarizability tenson(w), and the first-

all components ofr have the same (positive) sign. Therefore,
the polarizability contributions of the two spins simply add to

hyperpolarizability tensofi(w.;wa,wy) differ substantially from
each other. The sign of the spin contributions to the elements

each other. For both static and dynamic cases, the contributionsof a(w) is the same. Therefore, the spin contributions((e)

of the a-spin electrons to various polarizability components are

are additive. In contrast, the spin contributions to the elements

considerably larger than the corresponding contributions of the of 5(w.;wa,wp) do not always have the same sign. The elements

pB-spin electrons.
The spin contributions to the components of the first-
hyperpolarizability tensor3, exhibit somewhat different but

of 5 having spin contributions of opposite sign either completely
cancel out or end up in small magnitude.
The results presented here suggest that threefold coordinated

interesting features. One notes from Table 4 that the sign of Si centers may be responsible for the observed SH&SIO,,

the a-spin contribution t@Bxyx Pxyy, @andBzz-iS opposite to that
of the corresponding-spin contributions. As a result, the net

since their presence results in nonvanishing values for the
second-order NLO coefficients. Furthermore, these results
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provide new insights into the properties of second-order NLO
s, 71,1032,

coefficient,3. We note that in the case of paramagnetic specie

the 8 tensor depends not only on the symmetry of the charge

distribution but also on the spin contributions to various

nonvanishing elements. Further investigation of this effect as
well as the role of threefold coordinated Si centers on the
microscopic optical nonlinearity of silica glass is underway and

will be the subject of a forthcoming communication.

Acknowledgment. The author thanks Professor Henry Kurtz,

Dr. Prakashan Korambath, and Dr. Gerry Lushington for helpful

Karna

(11) Fujiwara, T.; Takahasi, M.; Ikushima, A.Appl. Phys. Lett1997,

(12) Anderson, D.; Mizrahi, V.; Sipe, J. Bpt. Lett.1991, 16, 796.

(13) Dominique, V.; Feinberg, Dpt. Lett.1993 18, 784.

(14) Le Calvez, A.; Freysz, E.; Ducasse, @pt. Lett.1997 22, 1547.

(15) Kazansky, P. G.; Russel, P. StQpt. Commun1994 110 611.

(16) Alley, T. G.; Brueck, S. R. J.; Myers, R. A. Non-Cryst. Solids
1998 242, 165.

(17) Nasu, H.; Okamoto, H.; Mito, A.; Matsuoka, J.; Kamiya, Jon.
J. Appl. Phys1993 32, L406. B

(18) Tsai, T. E.; Saifi, M. A.; Frieble, E. J.; Griscom, D. L.st@rberg,
U. Opt. Lett.1989 14, 1023.

(19) Weeks, R. WJ. Non-Cryst. Solidd994 179, 1.

(20) Takahasi, M.; Fujiwara, T.; Kawachi, T.; Ikushima, A. Kppl.

discussions. The author is also indebted to the referees forphys. Lett1997 71, 993.

valuable suggestions.

References and Notes

(1) Osterberg, U.; Margulis, WOpt. Lett.1986 11, 516.

(2) Stolen, R. H.; Tom, W. KOpt. Lett.1987 12, 585.

(3) Oellette, F.; Hill, K. O.; Johnson, D. @ppl. Phys. Lett1989 54,
1086.

(4) Myers, R. A.; Mukherjee, N.; Brueck, S. R.Qpt. Lett.1991, 16,
1732.

(5) Kester, J. J.; Wolf, P. J.; White, W. Rpt. Lett.1992 17, 1779.

(6) Okada, A.; Ishii, K.; Mito, K.; Sasaki, KAppl. Phys. Lett1992
60, 2853;J. Appl. Phys1993 74, 531.

(7) Kazansky, P. G.; Kamal, A.; Russel, P. StQpt. Lett.1993 18,
693.
(8) Kazansky, P. G.; Kamal, A.; Russel, P. StQpt. Lett.1993 18,

1141.
(9) Fujiwara, T.; Wong, D.; Zhao, Y.; Fleming, S.; Poole, S.; Sceats,
M. Electron. Lett.1995 31, 573.

(10) Henry, L. J.; McGrath, B. V.; Alley, T. G.; Kester, J. J. Opt.
Soc. Am. B1996 13, 827.

(21) Fuziwara, T.; Takahasi, M.; Ikushima, A.Blectron. Lett.1997,
33, 980.

(22) Karna, S. P.; Ferreira, A. M.; Brothers, C. P.; Pugh, R. D.; Singaraju,
B. B. K. SPIE Proc.1996 2811 61.

(23) Ferreira, A. M.; Kurtz, H.; Karna, S. B. Phys. Chemsubmitted
for publication.

(24) Karna, S. PJ. Chem. Phys1996 104, 6590;1996 105 6091.

(25) Sekino, H.; Bartlett, R. J. Chem. Phys1986 85, 97.

(26) Karna, S. P.; Dupuis, Ml. Comput. Cheml991, 12, 487.

(27) Karna, S. PPhys. Re. Lett.1997 79, 379;Int. J. Quantum Chem.
1998 70, 770.

(28) Karna, S. PJ. Comput. Cheml999 20, 1274.

(29) Allen, W. D.; Schaefer Ill, H. AChem. Phys1986 108 243.

(30) Carmichael, IChem. Phys1987 116 351.

(31) Dunning, Jr., T. H.; Hay, P. J. IModern Theoretical Chemistry
IIl; Schaefer Ill, H. F., Ed.; Plenum Press: New York, 1977; Vol. 3, p 1.

(32) PHOTON electronic structure code, written by S. P. Karna, is based
upon the initial work by P. Chandra, S. P. Karna, and V. Keshari at Banaras
Hindu University, India, 1983, and utilizes the atomic integral evaluation
scheme described in: Chandra, P.; Buenker, R. £hem. Phys1983
79, 358, 366.



