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Static and dynamic (hyper)polarizabilities of SiH3 radical have been calculated by ab initio time-dependent
unrestricted Hartree-Fock method with the use of a double-ú plus polarization basis set. In order to examine
the effect of a Si dangling bond on the polarizabilities, calculations have also been performed on the diamagnetic
SiH4 molecule using the same method and the basis set. A comparison of the polarizabilities of the two
systems reveals that a dangling bond at the Si atom causes only a minor change in the value of polarizability,
R. However, a Si-dangling bond in the case of SiH3 distorts the symmetry in the charge distribution in such
a way that the dipole moment,µ, and the first-hyperpolarizability coefficient,â, become nonzero. The
calculations also reveal that the contributions of theR-spin electrons andâ-spin electrons to (hyper)-
polarizabilities of the SiH3 radical substantially differ from each other. The magnitude of hyperpolarizability
coefficient is found to be determined by the contributions from different spins.

Introduction

Since the first observation of second harmonic generation
(SHG) of the infrared (IR) light in silica fiber by O¨ sterberg and
Margulis,1 there has been a surge in activities related to the
nonlinear optical (NLO) effects in amorphous silicon dioxide
(a-SiO2). NLO processes, such as the SHG and electrooptic
effects, have been observed in different material compositions
and geometries ofa-SiO2 as well as under different experimental
conditions.2-11 While much advance has been made toward
enhancing the NLO efficiency of silica-based materials, the
origin and the physical mechanism of the SHG ina-SiO2 remain
unexplained. Very early on, after the discovery by O¨ sterberg
and Margulis,1 the second-order NLO effect in silica glass was
hypothesized to originate from macroscopic effects, such as the
creation of local electric field by preferential emission of
electrons12 and generation of dc electric field in the glass by
intense laser field.13 Recent studies on the origin and mechanism
of SHG in thermally poled fused silica14-16 also suggest
macroscopic effects that involve generation of dc field, although
the exact mechanism of this process remains controversial.

While the macroscopic mechanism involving generation of
dc electric field due either to the intense laser field12,13 or to
the transport of ionic species under high-field thermal poling
conditions16 does appear to be consistent with the observed SHG
in bulk and fused silica, it fails to explain the observed NLO
effects in other samples, such as the electrically and ultraviolet
(UV) light-poled silica.9,18 Since a high-puritya-SiO2 is a
continuous random network of fourfold coordinated Si atoms
and twofold coordinated O atoms, its dipole moment and
second-order NLO coefficients vanish. Observation of SHG in
a silica sample, therefore, must involve short-range order with
nonvanising dipole moment in the network. Alignment of these
local dipoles in the presence of external electric field would
then result in a net nonzero dipole moment of the sample.

The short-range order or a lack of randomness in the silica
glass can be intrinsic or may result from the presence of defects,
which could themselves be intrinsic or impurity related. The
intrinsic defects ina-SiO2 involve O-vacancies, threefold
coordinated Si centers, nonbonded O centers, and trapped
charges.19 A majority of these defects are also quite stable and
may be responsible for the observed SHG in silica glass. Indeed,
electron spin resonance (ESR) experiments18,20-21 clearly dem-
onstrate the presence of various intrinsic paramagnetic defects
in the silica samples exhibiting SHG. The experiments per-
formed by Fuziwara et al.20,21 also suggest a good correlation
between the SHG intensity and the density of threefold
coordinated Si/Ge centers in Ge-doped silica glass. These
experiments reinforce the hypothesis that the second-order NLO
effects ina-SiO2 are microscopic in nature and possibly involve
defect centers.

As a first-step toward understanding the role of the defect
on the microscopic optical nonlinearity of silica glass, we have
calculated the (hyper)polarizabilities of a threefold coordinated
paramagnetic Si center. While other defects, such as the OH
radical, H atom, positively charged H, alkali metal ions, and
alkaline earth metal ions, have been detected by various groups
in silica glass and have been the subject of experimental3,17,18

and theoretical22,23 studies as potential sources of microscopic
optical nonlinearity of a-SiO2, the role of the threefold
coordinated Si center has not yet been explored. It is important
to note that the threefold coordinated Si centers are the most
commonly detected and extensively studied intrinsic defects in
a-SiO2.19

We have calculated the (hyper)polarizabilities of SiH3 radical
and SiH4 molecule using ab initio time-dependent unrestricted
Hartree-Fock (TDUHF) theory.24 The SiH3 radical is the
smallest system representing a threefold coordinated Si center.
While SiH4 and SiH3 molecules are too small to represent
realistic models of Si centers ina-SiO2, they do provide the
essential structural features, i.e., a regular fourfold coordinated
Si in tetrahedral (Td) symmetry (SiH4) and a threefold coordi-
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nated Si with a dangling bond (SiH3). Therefore, it is hoped
that the results obtained in this study would be useful in
providing new insights into the (a) microscopic mechanism of
second-order NLO effects and (b) the role of threefold coor-
dinated Si centers on the observed SHG in silica glass.

Theory and Calculations

In the time-dependent Hartree-Fock (TDHF) approach25,26

the elements of the polarizability tensor,R(-ω;ω), are calculated
as

wherea, b ) x, y, z represent the Cartesian components,ω is
the angular frequency of the optical electric field,ha

(1) is the
dipole moment matrix in directiona, andDb

(1) is theb-direction
component of the first-order perturbed density matrix. In the
TDUHF method,24 as used here, the density matrixD(1) is written
as the sum of contributions from theR-spin electrons,Dv(1), and
â-spin electrons,DV(1). This allows one to write the polarizability,
R(-ω;ω) as

whereRv represents the contribution to polarizability from spin
quantum numbers ) 1/2 electrons andRV represents the
corresponding contribution froms ) -1/2 electrons. Equation
2 provides a convenient and useful means to analyze contribu-
tions to the polarizability from electrons of different spins. In
the case of closed-shell systems, the contributions from the two
spins are the same. However, in the case of paramagnetic
systems, as has been noted before,24 the electric polarization of
electrons with different spins may vary from each other in sign,
magnitude, or both. This feature of the paramagnetic systems
often leads to some interesting effects in the presence of external
electric field.27,28 In the present study, eq 2 is used to analyze
the similarity and differences in the contributions from different
spins to the total polarizability.

Similar to eq 2, the first-hyperpolarizability tensor,
â(-ωσ;ωa,ωb), is written in the TDUHF approach24 as

In the above equation,ωσ ) (ωa + ωb), whereσ, a, b represent
the Cartesian components (x, y, z). The convention for the
frequency arguments in eq 3 is such that the first term inside
the parentheses represents the angular frequency of the output
beam of light and the second and the third terms represent the
corresponding frequencies of the input beams. Theâv,V terms
are evaluated from a self-consistent solution of the first-order
TDUHF equations. The same solution also gives the first-order
D(1) matrix needed to evaluateR from eq 1. The details of the
method are given in ref 24.

It is not always possible to measure individual elements of
the (hyper)polarizability tensors,R and â, from experiments.
The quantities often measured in experiments are the mean
polarizability, 〈R〉, and a vector component,âµ, of the first-
hyperpolarizability tensor projected along the dipole axis. In
the quantum mechanical calculations, the mean polarizability
is calculated from the elements ofR tensor as

and theâµ vector along the dipole axis is calculated as

where

µi and |µ|, respectively, represent thei ()x, y, z) component
and the absolute value of the dipole moment. Unfortunately, a
number of other definitions are used in the literature24-26 for
the observable part ofâ. Therefore, it is important to provide
the definition used to obtain the reported quantities. Here,âµi

has been calculated according to eq 5.
The calculations on the SiH4 and SiH3 molecules were

performed at their theoretically optimized equilibrium geom-
etries.29,30 For the tetrahedral SiH4 molecule, a value ofR(Si-
H) ) 1.4735 Å was used. For the pyramidal SiH3 molecule,
the geometry used wasR(Si-H) ) 1.478 Å, ∠H-Si-H )
111°. A double-ú plus polarization (DZP) basis set31 was used
in the calculations. The TDUHF calculations of (hyper)-
polarizabilities were performed with the XNLOP computer
code24 interfaced with PHOTON32 ab initio electronic structure
program.

The R values have been calculated at static electric field (λ
) ∞) and at an optical wavelength,λ ) 694.3 nm corresponding
to ruby laser. Generally, the SHG experiments are performed
at a fundamental wavelength,λ ) 1064 nm of Nd:YAG laser.
However, in the quantum mechanical calculations on small
σ-bonded molecular species, such as SiH4 and SiH3, this
wavelength does not produce discernible changes in polariz-
abilities with respect to their values at static electric field.
Therefore, a relatively low wavelength (λ ) 694.3 nm) was
chosen in this calculation.

For the SiH4 molecule, the dipole moment and theâµ vector
vanish due to the symmetry (Td) reasons. However, for the SiH3

(C3V) radical, the dipole moment and the second-order polar-
izability have nonzero values due to the anisotropy in the charge
distribution. For SiH3, we calculated theâ values corresponding
to the static first-hyperpolarizability, denoted byâ(0;0,0), and
that corresponding to the electrooptic Pockels effect (EOPE),
denoted byâ(-ω;0,ω). â(EOPE) was calculated at a funda-
mental wavelength,λ ) 694.3 nm.

Results and Discussion

Polarizability, r. The calculated components and the mean
value of static polarizability,R(0) and the dynamic polarizability,
R(ω), for the SiH4 molecule and SiH3 radical are listed in Table
1. As expected, the polarizability for the SiH4 molecule is
isotropic. In the case of the SiH3 radical, the component ofR
along the symmetry (C3V) axis is smaller in magnitude than the
nonaxial components (Rxx, Ryy). These components ofR for SiH3

radical are larger in magnitude by about 10% than the corre-
sponding components of the SiH4 molecule. However, the axial
component ofR (Rzz) for the SiH3 radical is much smaller in
magnitude by about 25% than the corresponding component in
the case of the SiH4 molecule. As a result, the overall change
in polarizability in going from the SiH4 molecule to the SiH3
radical is only marginal. This noted trend is both qualitatively
and quantitatively the same for the static and the dynamic
polarizability. Upon examining the molecular orbitals, we note
that that dangling bond on Si that contains a single electron is
much less polarizable than the doubly occupied orbitals. As a
result, the overall polarizability of the SiH3 radical consisting

âµi(ωσ;ωa,ωb) )
µi‚âi(ωσ;ωa,ωb)

|µ| (5)

âi ) 1/5∑
j

(âijj + âjij + âjji ; i, j ) x, y, z) (6)

Rab(-ω;ω) ) -tr[ha
(1) Db

(1)] (1)

R(-ω;ω) ) Rv(-ω;ω) + RV(-ω;ω) (2)

â(-ωσ;ωa,ωb) ) âv(-ωσ;ωa,ωb) + âV(-ωσ;ωa,ωb) (3)

〈R〉 ) 1/3∑
a

Raa; a ) x, y, z (4)
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of a threefold coordinated Si center is slightly smaller than that
of the fourfold coordinated SiH4 molecule.

The polarizability in both molecules exhibits dispersion due
to the frequency of the optical field. The magnitude of
dispersion, however, is larger in the case of the SiH3 radical
than that in the case of SiH4 molecule. Again, the axial
component of the polarizability,Rzz, in the case of SiH3 radical
exhibits smaller dispersion than the other two components,Rxx

andRyy.
First Hyperpolarizability, â. The components of static first-

hyperpolarizability tensor,â(0;0,0), and those corresponding to
EOPE,â(-ω;0,ω), along with the vector componentsâz and
âµ are listed in Table 2. For both second-order effects, the tensor
componentsâxxzandâyyzhave the largest magnitude. Also, due
to the positive sign ofµz, the âµ vector is identical to theâz

vector. Betweenâ(0;0,0) andâ(-ω;0,ω), the magnitude ofâxxz

andâyyzcomponents increases by about 10% due to the optical
field. Components with smaller magnitude do not exhibit a
definite trend. Theâµ vector also increases, albeit by small
amount, in going from static case to EOPE.

Spin Contributions to r and â for SiH3. Calculated spin
contributions toR and â values for SiH3 radical are listed in
Table 3 and Table 4, respectively. From Table 3 it is noted that
all components ofR have the same (positive) sign. Therefore,
the polarizability contributions of the two spins simply add to
each other. For both static and dynamic cases, the contributions
of theR-spin electrons to various polarizability components are
considerably larger than the corresponding contributions of the
â-spin electrons.

The spin contributions to the components of the first-
hyperpolarizability tensor,â, exhibit somewhat different but
interesting features. One notes from Table 4 that the sign of
theR-spin contribution toâxxx, âxyy, andâzzzis opposite to that
of the correspondingâ-spin contributions. As a result, the net

values of these components are quite small. The spin contribu-
tions to the other two components,âxxzandâyyz, with significant
value have the same (negative) sign. These components
contribute significantly to the observable vectorâµ.

It is clear from the calculated results for the SiH3 radical that
for a threefold coordinated paramagnetic Si center, not only the
overall symmetry but also the spin contributions play important
roles in determining (hyper)polarizabilities. The spin contribu-
tions to the polarizability have the same sign, although their
magnitudes vary. However, for the first-hyperpolarizability,â,
the spin contributions to different components do not always
have the same sign. Spin contributions with opposite sign cancel
each other, yielding a substantially reduced value for the
observable,âµ. Thus, while a noncentrosymmetric charge
distribution is an essential requirement for a nonzeroâµ value,
its magnitude in the case of a paramagnetic system is determined
by the relative contributions of the spin components.

Summary

As a first step toward understanding the role of threefold
coordinated Si centers on the microscopic NLO properties of
a-SiO2, we have calculated the polarizabilities of SiH4 molecule
and SiH3 radical with the use of ab initio TDUHF method and
a DZP basis set. A comparison of the calculated static and
dynamic polarizabilities of SiH4 and SiH3 reveals that individual
components ofR(ω) in the case of the two molecules differ
substantially from each other. However, little change occurs in
the value of the mean polarizability,〈R(ω)〉, between the two
molecular species. The contribution to polarizability due to the
singly filled (dangling) bond at the Si center in SiH3 is somewhat
underestimated while those of the doubly filled bonds are
overestimated with respect to the contributions from corre-
sponding bonds in SiH4. The presence of a dangling bond at
Si, in the case of SiH3 radical, however, creates a nonspherical
charge distribution that yields a nonvanishing value for the
dipole moment,µ, as well as the second-order NLO coefficient,
â.

The elements ofR and â exhibit small but noticeable
dispersion due to the frequency of the optical field. In the case
of the paramagnetic SiH3 radical, the spin contributions to the
elements of the polarizability tensor,R(ω), and the first-
hyperpolarizability tensor,â(ωσ;ωa,ωb) differ substantially from
each other. The sign of the spin contributions to the elements
of R(ω) is the same. Therefore, the spin contributions toR(ω)
are additive. In contrast, the spin contributions to the elements
of â(ωσ;ωa,ωb) do not always have the same sign. The elements
of â having spin contributions of opposite sign either completely
cancel out or end up in small magnitude.

The results presented here suggest that threefold coordinated
Si centers may be responsible for the observed SHG ina-SiO2,
since their presence results in nonvanishing values for the
second-order NLO coefficients. Furthermore, these results

TABLE 1: Calculated Static Polarizability, r(0), and
Dynamic Polarizability, r(ω) (in the units of 10-24 cm3), for
SiH4 and SiH3

a,b

R(0) R(ω)polarizability
component SiH4 SiH3 SiH4 SiH3

Rxx ) Ryy 3.285 3.640 3.339 3.734
Rzz(0) 3.285 2.441 3.339 2.483
〈R(0)〉 3.285 3.240 3.339 3.317

a Calculated total energy: SiH4: E ) -291.231913 au; SiH3: E )
-290.611789 au; dipole moment: SiH4: µx ) µy ) µz ) 0; SiH3: µx

) µy ) 0, µz ) 0.1186 au;|µ| ) 0.301 debye.bDynamic polarizability,
R(ω), calculated atλ ) 694.3 nm.

TABLE 2: Calculated Components of Static First
Hyperpolarizability, â(0;0,0), and EOPE,â(-ω;0,ω) (in
10-32 esu) for SiH3 Radicala

component â(0; 0, 0) â(-ω; 0, ω) component â(0; 0, 0) â(-ω; 0, ω)

âxxx -1.85 -0.20 âzzz -6.97 -7.29
âxxz -20.63 -22.35 âz -28.94 -30.82
âxyy 1.85 0.20 âµ -28.94 -30.82
âyyz -20.63 -22.35

a â(-ω;0,ω) calculated at an optical wavelength,λ ) 694.3 nm.

TABLE 3: Spin Contributions to the Static and Dynamic
Polarizabilities, r (10-24 cm3), of SiH3 Radicala

component R-spin â-spin component R-spin â-spin

Rxx(0) 2.337 1.303 Rxx(ω) 2.419 1.315
Ryy(0) 2.337 1.303 Ryy(ω) 2.419 1.315
Rzz(0) 1.431 1.010 Rzz(ω) 1.455 1.028

a Dynamic polarizability,R(ω), calculated atλ ) 694.3 nm.

TABLE 4: Spin Contributions to the Components of Static
First Hyperpolarizability, â(0;0,0), and EOPE,â(-ω;0,ω),
for SiH3 Radicala

NLO coefficient â(0; 0, 0) â(-ω; 0, ω)

component R-spin â-spin R-spin â-spin

âxxx 5.86 -7.71 7.62 -7.82
âxxz -14.80 -5.83 -16.20 6.15
âxyy -5.86 7.70 -7.62 7.82
âyyz -14.80 -5.83 -14.20 -6.15
âzzz 13.10 -20.07 13.55 -20.84

a The unit for the components ofâ is 10-32 esu.
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provide new insights into the properties of second-order NLO
coefficient,â. We note that in the case of paramagnetic species,
the â tensor depends not only on the symmetry of the charge
distribution but also on the spin contributions to various
nonvanishing elements. Further investigation of this effect as
well as the role of threefold coordinated Si centers on the
microscopic optical nonlinearity of silica glass is underway and
will be the subject of a forthcoming communication.
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