
Electronic Energy Transfer in Multichromophoric Arrays. The Effects of Disorder on
Superexchange Coupling and Energy Transfer Rate

Edwin K. L. Yeow and Kenneth P. Ghiggino*
Photophysics Laboratory, School of Chemistry, The UniVersity of Melbourne, ParkVille,
Victoria 3052, Australia

ReceiVed: NoVember 30, 1999; In Final Form: March 28, 2000

The effects of diagonal (site energy) and off-diagonal (intermolecular interaction) disorder arising from the
distribution of ionization energies on superexchange coupling and the corresponding electronic energy transfer
(EET) rate are considered. The effective donor-acceptor coupling is obtained using the Dyson’s equations-
based solution of the Green’s function for both the orthogonal and nonorthogonal basis sets. In a disordered
multichromophoric array, the effective superexchange coupling is shown to be enhanced. Furthermore, the
competing roles of the multiple pathways when next-to-nearest-neighbor interactions exist behave differently
depending on the type and extent of disorder. It is demonstrated that the exponential falloff of the energy
transfer rate with increasing donor-acceptor distance weakens when disorder is present. Moreover, this
exponential decay is more apparent when the donor-bridge energy gap is reduced. A method to treat EET
at the molecular orbital level using Dyson’s equations is also presented when the coupling between adjacent
bridge sites is either Dexter or through-configuration interaction. We find that the superexchange coupling
derived from the through-configuration interaction is the dominant mode of superexchange EET. The
implications of the results for the design of molecular arrays with optimized energy transfer properties are
considered.

1. Introduction

Both experimental and theoretical studies have recently been
devoted to the elucidation of the mechanisms responsible for
electronic energy transfer (EET) from an initially excited donor
chromophore to an acceptor chromophore.1-4 Such investiga-
tions are of crucial importance to the understanding of energy
transfer dynamics in biological systems such as the photosyn-
thetic unit, and in synthetic light harvesting systems.4 A key
objective is to equip photochemists with the required knowledge
to design optimized structures for application in photomolecular
devices.

Bridge-mediated or superexchange energy transfer has been
proposed to be important in photosynthetic systems whereby
intervening protein molecules are capable of mediating elec-
tronic coupling between the localized donor (D) and acceptor
(A) molecules. It is now established that when through-space
coupling is negligible between D and A, the excitation energy
is still able to tunnel across the bridge states to the acceptor
chromophore.5 An example was given in paper 1 in this series1a

where it was concluded that through-bond interaction is the
dominant mechanism in the EET dynamics for a rigidly linked
naphthalene dimer with the chromophores separated by six
sigma bonds. This rate is nonadiabatic and is given by the classic
Fermi’s golden rule expression

whereHDA is the bridge mediated electronic coupling and the
Dirac delta term ensures energy conservation between the two
states.

The most common analytical expression used to describe this
indirect coupling is the McConnell model6

whereV is the coupling of A and D to the bridge,V is the
coupling between the bridge components,ω is the excitation
energy difference between the donor/acceptor and the bridge,
and m is the number of bridge units. Equation 2 predicts an
exponential decay of the magnitude ofHDA with increasing
bridge length. The superexchange interaction results primarily
from the short-range orbital-overlap dependent interaction be-
tween the constituent molecules. The effective overlap between
the wave functions of the donor and acceptor thus arises from
the mixing of these wave functions with the bridge orbitals.
Several electronic factors such as Dexter’s exchange integral,
penetration terms, and through-configuration interaction have
been proposed to promote such mixing.7 The commonly invoked
Dexter’s theory and the through-configuration interaction have
recently been examined closely.7 We shall study the roles of
both mechanisms here using a different approach.

The McConnell model suffers from approximations which
can be removed when the Green’s function formalism is used
to treat superexchange coupling. Evenson and Karplus8 have
managed to use the partitioning technique to evaluate a closed
form expression forHDA which reduces to the McConnell’s
equation in the limit of|ω| . |2V|. The Green’s function method
has been extensively used in the problem of electron transfer.8-12

Of great interest to us is the solution of the Green’s function
elements via the Dyson’s equations, first introduced by da
Gama12 to obtain the superexchange electron transfer rate. As
demonstrated by da Gama and others,13,14 this powerful* Corresponding author. E-mail: k.ghiggino@chemistry.unimelb.edu.au.
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technique eliminates the need to perform tedious matrix
inversion and leads naturally to the tunneling pathway method.

When energy transfer measurements are conducted in the
condensed phase, disorder in the form of diagonal site energy
and off-diagonal intersite coupling fluctuations may occur.15 The
former corresponds to a fluctuation of transition frequencies of
the individual molecules due to different molecular environ-
ments, while the latter implies a variation of the intermolecular
interaction brought about by physical irregularity (e.g., positional
disorder) of the molecular chain itself. It will be shown in this
work that both diagonal and off-diagonal disorders can result
from a perturbation of the ionization potential energies. Such
heterogeneity has been known to affect the optical properties
of polymers,16 molecular aggregates,17 and even photosynthetic
systems.18,19 In particular, through-space energy transfer rates
and lifetimes are affected in disordered systems.20,21On the other
hand, the effects of disorder on the superexchange coupling
involved in EET have attracted little attention. Studies in this
area have usually considered electron transfer.22-24 In this paper,
we shall emphasize superexchange EET and show the nexus
between energy transfer and electron transfer.

We shall employ the Dyson’s equations-based solution to the
Green’s function to demonstrate the behavior of the superex-
change energy transfer rate in the presence of disorder. One-
dimensional chain systems with only nearest-neighbor (NN)
interactions are first considered. This is then extended to a
system where next-to-nearest-neighbor (NNN) interactions exist.
Such interactions give rise to multiple pathways for the transfer
of excitation energy between donor and acceptor.1c Constructive
and destructive interferences between different routes are
possible and the effects of disorder on the competing roles of
these pathways will be investigated.

An inspiration for this paper is also derived from the
continuous effort to offer plausible explanations for the unprec-
edented ultrafast energy transfer rates observed in real molecular
systems studied in this laboratory. Such anomalous rapid energy
transfer is evident in dimethoxynaphthalene-norbornane bridge-
ketone molecules25 and the complex poly(acenaphthalene)
polymers.1b,26In these systems, through-space coupling between
the donor and acceptor chromophores is unable to completely
explain the energy transfer mechanism. Through-bond interac-
tion, on the other hand, is subject to the distance attenuation
factor. This leads to another purpose of this paper, namely an
investigation of the dependence of the attenuation factor on
varying amounts of disorder. Working with real systems
involves the nonorthogonality of the orbital basis which will
be included in our Dyson’s equations.

Several questions pertaining to the superexchange coupling
and the corresponding energy transfer rate can therefore arise
when disorder effects are considered.

1. What are the effects of diagonal and off-diagonal disorder?
How would increasing the disorder affect the transfer rate?

2. What is observed when disorder is introduced into a system
where NNN interaction exists? In particular, how would the
effective donor-acceptor coupling contributions of individual
pathways be affected?

3. Through-medium energy transfer is known to fall off
exponentially with increasing donor-acceptor separation with
a decay rate ofâ. Would â change with disorder?

4. How would the superexchange coupling change when
either Dexter interaction or through-configuration interaction
is used to describe adjacent bridge interaction?

These issues will be addressed in this paper which is
organized as follows. In section 2, the Dyson’s equations-based

Green’s function method is introduced and applied to the
orthogonal and nonorthogonal basis systems. Methods for
calculating Dexter’s and through-configuration interaction are
developed at the molecular orbital level. The Monte Carlo
computational results are presented in section 3 along with the
discussion. Finally, section 4 summarizes the results and
implications of this work, and discusses possible experimental
applications.

2. Theory and Method

(a) Orthogonal Basis. We consider a one-excitation Hamil-
tonian for our system

Here the|n〉 represents the state in which moleculen (n ) 1, 2,
..., N) is excited and all other molecules are in their ground
state. εn is the energy of the excited moleculen and Vn,m

describes the intermolecular interaction between moleculesn
andm. Direct through-space coupling between the donor and
acceptor will be ignored throughout this work.

The Green’s function elements for the above Hamiltonian
can be easily obtained from the Dyson’s equations. Equation 4
gives the Dyson’s equations when orthogonal basis is consid-
ered12

andE is the tunneling energy for the excitation. For the case of
only nearest-neighbor (NN) interactions between the molecules,
the set of Dyson’s equations for our model system consisting
of a donor (site 1) and an acceptor (site 7) connected by 5
bridges (sites 2, 3, ..., 6) (see Figure 1) is given as

Stepwise renormalization of the above equations reduces all
information onto the single site 1 (the donor)

Figure 1. Schematic energy level diagram for a one-dimensional chain
consisting of a donor (site 1) and an acceptor (site 7) connected via a
five bridge sites system (sites 2, 3, 4, 5, and 6). The nearest-neighbor
interaction (NN) is denoted byVi while the next-to-nearest-neighbor
interaction (NNN) between bridge units is denoted byVj.

H ) ∑
n

εn|n〉〈n| + ∑
n,m

∑
n*m

Vn,m|n〉〈m| (3a)

) ∑
n,m

Hn,m|n〉〈m| (3b)

EGi,j ) δij + ∑
k

Hi,kGk,j (4)

(E - ε1)G11 ) 1 + H12G21

(E - ε2)G21 ) H21G11 + H23G31

(E - ε3)G31 ) H32G21 + G34G41

(E - ε4)G41 ) H43G31 + H45G51

(E - ε5)G51 ) H54G41 + H56G61

(E - ε6)G61 ) H65G51 + H67G71

(E - ε7)G71 ) H76 (5)
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The effective superexchange coupling between the donor and
acceptor is thus given by

where

∆i is defined to be the self-energy part of site i and accounts
for all the information on the sites removed during the
renormalization procedure. An obvious advantage of the cou-
pling form given in eq 7 is that the through-medium coupling
attenuation between sites i and i+1 is conveniently given by

When next-to-nearest-neighbor (NNN) interactions (V1, V2, and
V3 of Figure 1) between the bridge sites are included, the whole
system can again be reduced to the donor site using the
renormalization method. In this case, different pathway contri-
butions to the effective superexchange coupling can be achieved.
In particular, a five-bridge system gives rise to 43 different
possible pathways of which only two of them will be examined
here (Figure 2). The route which includes only nearest-neighbor
interactions (1f 2 f 3 f 4 f 5 f 6 f 7) is chosen to be
pathway 1 whereas pathway 2 has a NNN subroute replacing
two NN subroutes (1f 2 f 4 f 5 f 6 f 7). Pathway 2 is
said to be an order smaller than pathway 1 since the number of
sites visited is one smaller (i.e., site 3 is not encountered in
pathway 2). Both pathways are ideal to investigate as their total
path lengths are reasonably short and hence are vital routes taken
by the excitation to go from donor to acceptor. Furthermore,
the pathways’ contributions to the effective superexchange
coupling are of opposite sign, resulting in destructive interfer-
ence effects. The superexchange coupling contributions for each
pathway are given by

Because of the NNN interactions, the site-energy parts in eqs
10 and 11 are different from eq 8. An example is given below

where

(b) Nonorthogonal Basis.Analogous to electron transfer
(ET), the Green’s function method using Dyson’s equations can
be used to treat electronic energy transfer at the molecular orbital
level. Appropriate treatment and inclusion of orbital overlap
integrals for nonorthogonal basis states must be considered when
formulating the superexchange coupling term. It will be shown
here that the main difference between EET and ET is the
involvement of two orbital overlap integrals in the former. This
would therefore necessitate a more complex approach to
correctly describe the superexchange rate in EET.

Until quite recently, many workers have been relying on the
classical Dexter interaction to interpret EET kinetics between
chromophores which are in close proximity. This has been
shown by Harcourt et al.7 to be an erroneous description of the
energy transfer dynamics. In their analysis, the need to consider
the interactions between ionic charge transfer configurations and
locally excited states was advanced. This results in through-
configuration interaction between donor and acceptor molecules.
The contribution from the Dexter exchange integral is canceled
out during the derivation of the through-configuration interaction
term when the Mulliken approximation is employed.7 It is
therefore worth investigating how the superexchange coupling
is affected by considering each mechanism and the effects of
disorder. We begin by first deriving the superexchange coupling
when only Dexter interaction occurs between adjacent bridge
sites before proceeding on with the through-configuration
interaction.

We define (a,a′) and (b,b′) to be the (HOMO,LUMO) of
molecules A and B, respectively. The Dexter-type exchange
integral contribution to the overall electronic coupling between
A and B separated by a distance ofrAB is given by27

Using the Mulliken approximation28

Figure 2. Schematic depiction of two possible pathways taken for
the transfer of excitation energy from the donor to the acceptor. (a)
and (b) represent pathway 1 and pathway 2, respectively, as discussed
in the text.

(E - ε1 - ∆1)G11 ) 1 + H17G71 (6)

H17 ) [∏i)1

5 Hi,i+1

(E - εi+1 - ∆i+1)]H67 (7)

∆i )
Hi,i+1Hi+1,i

E - εi+1 - ∆i+1
(8)

ti )
Hi,i+1

E - εi+1 - ∆i+1
(9)

H17
pathway1) [∏i)1

5 Hi,i+1

(E - εi+1 - ∆i+1)]H67 (pathway 1) (10)

H17
pathway2 )

H12H24H45H56H67

(E - ε2 - ∆2)(E - ε4 - ∆4)(E - ε5 - ∆5)(E - ε6)

(pathway 2) (11)

∆4 )
H46H64

(E - ε6)
+

H45H54

(E - ε5 - ∆5)
+

H45H56H64

(E - ε6)(E - ε5 - ∆5)
+

H46H65H54

(E - ε6)(E - ε5 - ∆5)
+

H46H65H56H64

(E - ε6)
2 (E - ε5 - ∆5)

(12a)

∆5 )
H56H65

E - ε6
(12b)

HAB
Dexter) -〈a′b| 1

rAB
|b′a〉 (13a)

) -(a′b′|ba) (13b)

HAB
Dexter)

- 1
4
sabsa′b′[(a′a′|bb) + (a′a′|aa) + (b′b′|bb) + (b′b′|aa)]

(14)
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where (a′a′|bb) is the Coulomb repulsion between electrons on
a′a′ and bb and sab (sa′b′) is the overlap integral of orbitalsa
(a′) andb (b′) (i.e., sab ) 〈a|b〉). We can approximate the one-
center integral by

whereIi is the ionization potential of orbitali. Electron affinity
terms are taken to be zero for ease of analysis without affecting
the overall conclusions. The two-center integral is approximated
via the Mataga-Nishimoto formula29 such that

HAB
Dexter is thus given by eq 18

As espoused by Harcourt et al.,7 the Dexter term may not be
the dominant electronic factor in the “short-range” orbital-
dependent coupling. Instead, at close proximity, it was found
that the more important factor is the through-configuration
interaction term arising from the mixing between the locally
excited and ionic configuration states. In this case7

whereAh is the energy gap between the locally excited state and
the charge transfer state. The bond integralsâab and âa′b′ are
given in eqs 20

hii is taken as-Ii from Koopmans’ Theorem30 and hij is
approximated using the Wolfsberg-Helmholz formula:31

The Huckel constantK assumes a value of 1.75 in this work.
Equation 21 is the usual formula used to compute the off-
diagonal Hamiltonian elements in electron transfer. It is clear
from eqs 18 and 19-21 that two overlap integrals (sab, sa′b′)
are necessary to effectively describe energy transfer hence
distinguishing EET from ET.

Using Löwdin’s partitioning method,32 we arrive, for a
nonorthogonal basis at the interaction term for the coupling
between the donor (site 1) and the acceptor (siteN) connected
via N - 1 bridges (sites 2, 3, ...,N - 1)33

The Green’s function elements for the bridge system can be
derived from Dyson’s equations

such that for a model system with five bridge units,G26 is given
by

where

Now

where EX(i) is the excitation energy of moleculei andSii ) 1.
Since the tunneling energy cannot assume the unreasonably large
value of the locally excited configuration energyH11, which
increases rapidly with the number of bridges,E is naturally
chosen to be EX(1). The configuration overlap integral is
obtained via7

Similar expressions can also be derived for different bridge
lengths.

(c) Disorder and Computation Method. We assume a
Gaussian disorder distributionF(x) with standard deviationD
for both the offset bridge energiesεi (diagonal disorder) and
the bridge-bridge couplingsVi (off-diagonal disorder) in the
case of the orthogonal basis system

D varies from 0 to 0.4 eV (3226 cm-1) for diagonal fluctuation
and 0 to 0.1 eV (806 cm-1) for off-diagonal fluctuation. This
assumption has been successfully used in studies of aggregates15

and photosynthetic light harvesting systems34 where uncorrelated
fluctuations are induced.

Disorder is added into the nonorthogonal basis system via
the ionization potential energies,Ii. Using Koopmans’ theorem,
we can write the singlet transition energy for an excited molecule
as35

whereR andR′ are the HOMO and LUMO of the chromophore
andT consists of Coulombic and exchange integrals. If disorder
causes EX to be normally distributed with a Gaussian density
function, thenIR and IR′ can also be assumed to be displaced

(a′a′|aa) ) (Ia + Ia′)/2 (15)

(b′b′|bb) ) (Ib + Ib′)/2 (16)

(a′a′|bb) ) e2

rAB + 2e2

Ia′ + Ib

(17)

HAB
Dexter) - 1

4
sabsa′b′[ e2

rAB + 2e2

Ia′ + Ib

+ e2

rAB + 2e2

Ia + Ib′

+

1
2
(Ia + Ia′ + Ib + Ib′)] (18)

HAB
tc )

2âabâa′b′

Ah
(19)

âab ) hab - sabhaa (20a)

âa′b′ ) ha′b′ - sa′b′ha′a′ (20b)

hij ) 0.5K(hii + hjj)sij (21)

H1,N ) (H12 - ES12)G2,N-1(HN-1,N - ESN-1,N) (22)

∑
l

Gil(ESlj - Hlj) ) δij (23)

G26 )
{(ES23 - H23)(ES34 - H34)(ES45 - H45)(ES56 - H56)}/

{R̂ - â̂γ̂} (24)

R̂ ) -[(ES54 - H54)(ES45 - H45)(ES66 - H66)][-(ES32 -
H32)(ES23 - H23) + (ES22 - H22)(ES33 - H33)] (25a)

â̂ ) (ES22 - H22)(ES43 - Ḣ43)(ES34 - H34) -
{(ES44 - H44)[-(ES32 - H32)(ES23 - H23) + (ES22 - H22)

(ES33 - H33)]} (25b)

γ̂ ) [-(ES65 - H65)(ES56 - H56) +
(ES55 - H55)(ES66 - H66)] (25c)

ESii - Hii ) H11Sii - Hii ) EX(1)Sii - EX(i) (26)

SAB ) {-sabsa′b′ A * B, |A - B| ) 1
0 A * B, |A - B | * 1
1 A ) B

(27)

F(x) ) 1

Dx2π
exp[- 1

2(x - µ
D )2] (28)

EX ) IR - IR′ + T (29)
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according to eq 28. It is important to note that using the approach
introduced here (see eqs 19-21) off-diagonal disorder can arise
from a distribution of ionization potential energies and a
probability distribution of interchromophoric distances. The
latter significantly affects the orbital overlap integrals. In section
3b, off-diagonal disorder is solely induced from a distribution
of ionization potential energies, while keeping the interchro-
mophoric distances, and hence the orbital overlap integrals fixed.

Monte Carlo simulations were performed on ensembles of
linear chains. All relevant parameters were obtained by averag-
ing over 100 000 chains, and the inverse transform method36

was employed to generate random variables with a Gaussian
probability distribution. Computations were all carried out on
a Cray J916 computer.

3. Results and Discussion

(a) Orthogonal Basis. We start our discussion by first
examining the tunneling excitation energyE which can be
obtained by repeated diagonalization of the Schro¨dinger equation
in the partitioning method.33 Often it is just assumed to be the
effective donor and acceptor term without including any vibronic
states or vibronic coupling effects. This is an incomplete
description of the tunneling energy since EET proceeds between
the continua, rather than single, vibronic states of the donor
and acceptor chromophores.1c To correct for this neglect, a small
complex parameteriκ̃ () 0.001i) is introduced such that the
tunneling energy becomes37,38

Though this treatment is phenomenological in nature and lacks
rigorous finesse, it has been shown in previous works that it is
usually adequate to avoid undue divergences in the resonance
region.11,38

To illustrate the effects of diagonal and off-diagonal disorder
on the rate of superexchange energy transfer, a simple system
consisting of chemically similar donor and acceptor chro-
mophores with donor-bridge energy gap of 3 eV (24 195 cm-1)
is considered. Interchromophoric interactions are assumed to
be 0.1 eV (806 cm-1) throughout the chain andε1 ) 2 eV. An
insight into the behavior of the superexchange coupling with
disorder can be obtained by first examining the coupling

attenuation factor between sitesi and i + 1, ti. Say, wheni )
1, eq 9 can be rewritten for the average oft1 over disorder

The spectrum for the real (Re〈t1〉) and imaginary (Im〈t1〉) parts
of 〈t1〉 are presented in Figure 3. Disorder is present in the form
of fluctuation of the coupling between bridges 2 and 3,V2. It is
shown that the absolute magnitudes of Re〈t1〉 and Im〈t1〉 increase
with disorder and the primary factor of〈t1〉 is the real component.

The above observation can be further appreciated by deriving
the analytical expression for Re〈t1〉. We can rewrite eq 31 to
give

where the simplified form of∆2 is used

This simplification is valid because all other omitted terms (e.g.,
∆3) in ∆2 are relatively insignificant. Re〈t1〉 is therefore given
by

Using the virtual-crystal approximation39 where self-averaging
is assumed, the value obtained from any configuration is similar
to the ensemble averaged value over all possible configurations.
Since our sample size is reasonably large, the above assumption
holds. In this case, eq 34 is recast into

From standard Gaussian integrals, we obtain

Figure 3. The effects of disorder on the real (Re〈t1〉) and imaginary (Im〈t1〉) components of〈t1〉. The analytical Re〈t1〉 obtained from eqs 35 and
36 is given as the solid line.

E ) ε1 + iκ̃ (30)

〈t1〉 ) 〈 H12

E - ε2 - ∆2
〉 (31)

〈t1〉 ) 〈 V1(ε1 - ε3)

(E - ε2)(ε1 - ε3) - V2
2〉 (32)

∆2 )
V2

2

ε1 - ε3
(33)

Re〈t1〉 ) 〈 V1(ε1 - ε3)[(ε1 - ε2)(ε1 - ε3) - V2
2]

[(ε1 - ε2)(ε1 - ε3) - V2
2]2 [κ̃(ε1 - ε3)]

2〉 (34)

Re〈t1〉 ) {V1(ε1 - ε3)[(ε1 - ε2)(ε1 - ε3) - 〈V2
2〉]}/

{[(ε1 - ε2)(ε1 - ε3)]
2 - 2(ε1 - ε2)(ε1 - ε3)〈V2

2〉 + 〈V2
4〉 +

[κ̃(ε1 - ε3)]
2} (35)
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where upon substituting into eq 35 gives the final analytical
form for Re〈t1〉. The graph of Re〈t1〉 thus obtained using eqs 35
and 36 is given by the solid line in Figure 3b. The analytical
form of Re〈t1〉 agrees well with the Monte Carlo result and again
shows the enhancement of the coupling attenuation factor when
disorder is slowly increased.

By applying the Green’s function method introduced in
section 2, we demonstrate that diagonal (Figure 4) and off-
diagonal (Figure 5) disorder can result in an increase in the
effective superexchange coupling. This is easily rationalized
from the constituent attenuation terms (ti) of H17 which
experience the same effects of disorder as discussed above. For
aN-bridged system where eq 33 is applicable, the rate of change
of the superexchange coupling with energy gap (E - ε - ∆) is
roughly proportional to-N(E - ε - ∆)-(N+1). When the
excitation site energyεi is displaced by an equal amount either
away from or closer to the tunneling energy, the resulting

increase in the superexchange coupling from the latter is greater
than the reduction caused by an increased in the energy band
gap. This means that diagonal disorder effectively lowers the
energy gap between the donor and the bridge sites, thus
facilitating the superexchange mechanism. Similarly, the rate
of change of the superexchange coupling with intersite interac-
tion V is proportional toNV(N-1) so that an enhanced effective
energy transfer rate is also achieved with off-diagonal disorder.
Another feature worth noting in Figures 4 and 5 is that the
effects of fluctuations on all bridge energies or all interbridge
couplings are more apparent than that on either singleVi or εi

since an ensemble average of allti’s are now needed to treat
〈|H17|2〉. A study on molecular wires reported by Ratner and
co-workers38a revealed that electron conductance in molecular
wires is affected in an analogous fashion by disorder. In
particular, when the Fermi level lies outside the wire bandwidth,
the superexchange conductance increases initially with energetic
disorder before decaying away.

We now turn our attention to the effects of next-to-nearest-
neighbor interaction and in particular on the relative contribu-
tions of pathway 1 (eq 10) and pathway 2 (eq 11) to the effective

Figure 4. Variation of 〈|H17|2〉 with diagonal disorder (a) when disorder occurs at all bridge sites and (b) when disorder occurs at bridge 2.

Figure 5. Variation of 〈|H17|2〉 with off-diagonal disorder (a) for all adjacent site interactions and (b) for interaction between bridge 2 and bridge
3.

〈V2
2〉 ) µ2 + D2 (36a)

〈V2
4〉 ) µ4 + 6µ2D2 + 3D4 (36b)
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superexchange coupling in the presence of disorder. Notice from
the McConnell model, when the NNN and NN interactions are

of the same sign, a destructive interference occurs between the
two pathways. Figure 6a describes〈|H17|2〉 as a function of

Figure 6. Effects ofdiagonaldisorder on the contribution to the effective superexchange coupling of pathway 1 (〈|H17
pathway1|2〉) and pathway 2

(〈|H17
pathway2|2〉) along with their resultant contribution (〈|H17

pathway1+ H17
pathway2|2〉) when (a) the next-to-nearest-neighbor interaction NNN) 0.003337

eV, (b) NNN ) 0.005 eV, and (c) NNN) 0.001 eV.
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bridge energy disorder for the two pathways (i.e.,H17
pathway1and

H17
pathway2) and their resultant contribution to the superexchange

coupling (i.e., H17
pathway1 + H17

pathway2). In this case, the NN
interaction is 0.1 eV while the NNN interaction between sites

Figure 7. Effects ofoff-diagonaldisorder between adjacent bridge coupling on the contribution to the effective superexchange coupling of pathway
1 (〈|H17

pathway1|2〉) and pathway 2 (〈|H17
pathway2|2〉) along with their resultant contribution (〈|H17

pathway1 + H17
pathway2|2〉) when (a) the next-to-nearest-

neighbor interaction NNN) 0.003337 eV, (b) NNN) 0.005 eV, and (c) NNN) 0.001 eV.
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2 and 4 in pathway 2 is 0.003337 eV. Both pathways are of
equal importance in the absence of disorder which gives rise to
a near-complete destructive interference and a diminished
resultant contribution to the energy transfer rate. In this case,
we name the NNN interaction as the optimum interaction. With
the introduction of disorder,H17

pathway1, H17
pathway2 and H17

pathway1

andH17
pathway1+ H17

pathway2increase in magnitude with the longer
pathway 1 becoming the dominant route. We can assign
-(E - ε - ∆) ) ú when the bridge sites are energetically far
removed from the donor. From eqs 10 and 11, we get

for D ) 0 eV. Pathway 1 is the primary factor in the resultant
contribution when (H17

pathway1+ H17
pathway2)< 0 is satisfied. For a

disordered system, this condition can be translated intoúD)0 >
úD which is easily fulfilled since fluctuation of the site energies
has been shown to reduce the energy band gapúD.

As expected, when the NNN interaction is now increased to
0.005 eV, the shorter pathway 2 becomes the more important
route taken by the excitation energy (Figure 6b) whereas when
H24 is reduced to 0.001 eV, the longer pathway 1 prevails
(Figure 6c) throughout all degrees of disorder. In general, when
the next-to-nearest-neighbor interaction,H24, is greater (smaller)
than the optimum interaction, pathway 2 (pathway 1) is the
dominant pathway.

Next we consider a system where fluctuation is centered on
adjacent bridge couplings. The disorder-dependent behavior of
the mean of the square ofH17

pathway1, H17
pathway2 and H17

pathway1 +
H17

pathway2 are presented in Figures 7a, 7b and 7c for NNN
coupling) 0.003337, 0.005, and 0.001 eV respectively. Again
an increase in〈|H17|2〉 is observed when disorder sets in. Given
the two possible nonexclusive pathways, we note that whenH24

is either 0.003337 or 0.001 eV, the dominant energy tunneling
path is pathway 1. This is also observed in the diagonal
disordered system mentioned in the previous paragraph. An
interesting feature is revealed when the next-to-nearest-neighbor
interaction between bridges 2 and 4 is 0.005 eV (see Figure
7b). Even though the expected pathway 2 remains the principal
pathway, its role in energy tunneling is reversed when the degree

of disorder D is greater than 0.07 eV. At this region, the
fluctuation is able to create a system where the NNN interaction
becomes smaller than the optimum interaction brought about
by an effective increase in the NN couplings. Pathway 1
therefore gains significance. WhenH24 is now allowed to
undergo fluctuation, the shorter pathway 2 becomes the
dominant route for all three cases of NNN interactions. We
choose NNN coupling) 0.001 eV to illustrate this point. Figure
8 shows that pathway 1 is the dominant path at small degree of
disorder but is negligible whenD > 0.0025 eV. This is due to
a relatively smaller optimum interaction formed when compared
to the disordered NNN coupling. Note that an equal amount of
NN disorder is unable to compensate for the decline in
|H17

pathway1| relative to|H17
pathway2|.

The above results emphasize the importance of disorder
effects on the tunneling dynamics of excitation energy. The
implications in this section are especially relevant for photo-
chemists in pursuit of the ideal photomolecular device. Morrison
et al.40 have recently studied the kinetics of long-range through-
bond energy transfer for a series of molecular photonic devices.
More recently, we have reported1a the need to invoke the
superexchange mechanism to fully explain the EET dynamics
in a rigidly linked naphthalene dimer. Incorporation of high-
energy gates and relays can help to facilitate or impede the rate
of superexchange energy transfer. Therefore, by careful selection
of these units, various pathways via the gates or relays will
contribute differently to the superexchange coupling depending
on disorder effects. One has the potential to control the rates of
energy transfer in such systems.

(b) Nonorthogonal Basis. It is well-known that the rate of
superexchange energy transferk decreases exponentially with
an increasing donor-acceptor separationR, such that

whereâ is the effective decay constant per bond. In the first
half of this section, we shall examine the effects of disorder on
the attenuation factorâ. To mimic a real molecular system, the
bridge molecule used in our study was chosen to closely
resemble ethene.7b Ab initio studies of the electronic factors
responsible for excitation transfer within an ethene dimer have
previously been performed.7b The average HOMO ionization

Figure 8. Effects of off-diagonal disorder between adjacent bridge coupling and non-nearest-neighbor interaction on the contribution to the effective
superexchange coupling of pathway 1 (〈|H17

pathway1|2〉) and pathway 2 (〈|H17
pathway2|2〉) along with their resultant contribution (〈|H17

pathway1+ H17
pathway2|2〉)

when the next-to-nearest-neighbor interaction NNN) 0.001 eV.

k ∝ exp(-âR) (38)

úD)0 )
H23H34

H24
(37)
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potential of each bridge was set at 22 eV while the LUMO
ionization potential (Ii′) was varied from 30 to 28 eV. This
corresponded to an energy gap of 3 eV (24 195 cm-1) to 1 eV
(8065 cm-1), respectively. The orbital overlap terms,sab and
sa′b′, and Ah required to compute the through-configuration
interaction between adjacent chromophores are 0.01, 0.005, and
1 eV, respectively. The donor (acceptor)- bridge coupling is
fixed at 0.001 eV.

The dependence of the superexchange transfer rate (i.e.,
〈|HDA|2〉) on the bridge length is illustrated in Figure 9 forIi′ )
28 eV. A straight line is obtained irrespective of the amount of
disorder operating in the system. This suggests that even at the
maximum disorder (D ) 0.3 eV), the energy is tunneling
through a barrier at a rate that decreases exponentially with an
increase in the separation distance between donor and acceptor
(i.e., superexchange mechanism). The most striking feature
observed is the weaker falloff ofk with distance when the
fluctuation is gradually increased. This is easily followed from
the gradient,g, of the lines in Figure 9 sinceâ is simply
-1.1515g. The attenuation factor can be easily shown to be

where V relates to adjacent bridge coupling. Since disorder
effectively reduces (enhances) the magnitude of donor-bridge
energy gapú (V), â would naturally decrease.

To investigate what happens when the donor-bridge energy
gap is changed, we first define

whereâD andâD)0 are the decay constants for disorderD and
D ) 0 eV, respectively. Figure 10 showsâ̂ as a function ofD
for energy gaps of 1 eV (Ii′ ) 28 eV), 2 eV (Ii′ ) 29 eV), and
3 eV (Ii′ ) 30 eV). In general,âD and henceâ̂ decrease with
disorder with a more prominent change inâ̂ observed when
the energy gap is reduced. This implies that when the bridge
molecules are modestly removed from the donor, the rate of
decay of the superexchange coupling with an increase in donor-
acceptor distance is greatly impeded in the presence of disorder.
The tunneling mechanism via chemical bridges is therefore still

Figure 9. Bridge length dependence of log〈|H17|2〉 for different values of disorder. The gradients of the linear lines decrease with increasing
disorder, indicating a weaker exponential falloff in a more disordered system.

Figure 10. Plot of attenuation factor ratioâD/âD ) 0 as a function of disorderD.

â ≈ -ln(|V/ú|) (39)

â̂ )
âD

âD)0
(40)
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highly feasible in long disordered chains. We have recently
shown1a that bath coupling with bridge molecules in systems
with modest enough energy gap can activate a sequential energy
transfer mechanism via the bridges. The competition between
sequential and superexchange mechanisms would therefore take
on a new dimension with the introduction of static disorder.
Studies exploring the dual effects of bath fluctuation and static
disorder on long-range energy transfer kinetics are underway.41

We conclude this section by comparing the superexchange
coupling derived from through-configuration interaction (eq 19)
and classical Dexter coupling (eq 18) between nearest bridge
molecules. The calculated|H17

Dexter| and|H17
tc | whenIi′ ) 30 eV

are 7.29× 10-4 and 3.71× 10-2 eV, respectively. Clearly, the
through-configuration interaction is about 50 times larger
than the Dexter interaction. By plotting log〈|H17

tc |2〉/〈|H17
Dexter|2〉)

against disorderD in Figure 11, it is evident from the positive
values obtained that the through-configuration interaction is the
principal mode of “virtual” energy transfer throughout all
degrees of disorder.

4. Conclusion

We have examined the effects of disorder on the superex-
change coupling for several possible systems. An important
conclusion is the remarkable enhancement of the effective
donor-acceptor coupling when fluctuation is introduced into a
disorder-free system. Molecular bridge arrays can be chemically
designed with gate and relay units that allow next-to-nearest-
neighbor interactions. The competing roles of individual path-
ways derived from the NNN interactions can be artificially
manipulated by either changing the surrounding environment
conditions (i.e., solvent polarity) or utilizing bridge molecules
whose intermolecular couplings favor certain pathways. Ex-
perimentally, this means that one has the ability to control and
optimize the rate of superexchange energy transfer. Our
contribution in this paper should therefore provide some
framework for the development of the optimized synthetic
“light-harvesting” system.

Of great interest to us is the design of dendrimers as photon-
harvesting arrays. We have recently shown42 that electronic
energy is efficiently transferred within a series of novel
porphyrin funtionalized dendrimers with minimal loss during
the energy migration process. Beratan et al.43 have discussed
some unique characteristics of the electronic communication

between sites in these macromolecules. A well-designed den-
drimer, in light of the “pathway control” model proposed here,
can provide a critical study of the efficiency of energy funneling
from the peripheral groups on the surface of the dendrimer to
an interior energy trap.

We have also shown that the exponential falloff of the energy
transfer rate with increasing donor-acceptor distance weakens
when disorder is present. This may shed some light on the
unprecedented ultrafast energy transfer observed in systems
where the donor and acceptor are substantially separated (see
the Introduction for the systems studied in this laboratory).
Moreover, the impeded exponential decay of the superexchange
coupling with distance is more apparent in a system where the
bridge is only modestly removed from the donor. Finally, it is
demonstrated that the superexchange coupling derived from
through-configuration interaction is the dominant mode of
superexchange energy transfer.
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