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Dynamical Chirality and the Quantum Dynamics of Bending Vibrations of the CH
Chromophore in Methane Isotopomers‡
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The time-dependent quantum dynamics of the CH chromophore is investigated by calculations of the wave
packet evolution after coherent excitation of the bending modes using realistic potential energy surfaces and
electric dipole moment functions for the methane isotopomers CHD3, CHD2T, and CHDT2 derived previously
from ab initio calculations and high-resolution spectroscopic information. Results include discussions on
different excitation pathways depending on the bending direction in an internal coordinate frame, the role of
quasiclassical and delocalized intramolecular vibrational redistribution on these processes, and a possibility
of controlling the dynamics by localization of the wave packet motion in subspaces of the relevant configuration
space. Bending excitation is also used to generate dynamical chirality, which is quantified by the enantiomeric
excess. The subsequent free evolution of the wave packet after generation of a chiral molecular structure
corresponds to a stereomutation reaction on the femtosecond time scale superimposed by a racemization
reaction, which is understood as arising from quantum delocalization effects due to intramolecular vibrational
redistribution.

1. Introduction

The study of the primary physical processes of intramolecular
dynamics on the femtosecond time scale is a fundamental step
toward the understanding of molecular structure, its time
dependence, and, potentially, the subsequent chemical reaction
dynamics.1 The investigation of such processes has become an
important modern branch of chemical kinetics, as demonstrated
by the attention received in a series of conferences and special
issues during the last two decades.2-9 One approach to this
investigation aims at the observation of structural changes during
the chemical reaction with time-resolved spectroscopic tech-
niques10-15 (“time-dependent approach”) with much current
emphasis on condensed-phase work and biochemical pro-
cesses.16-22 In a second, “time-independent” approach,23 the
nuclear motion is determined from the analysis of experimental
data from time-independent high-resolution spectroscopy by
calculation of the molecular quantum dynamics. It is in the
context of this approach that, during nearly two decades, work
in our and in other laboratories has been directed toward the
study of the short-time primary intramolecular dynamics of CH
chromophores in polyatomic organic molecules (see for instance
the reviews24-29). The present investigation is carried out with
a similar goal in mind but stresses quite new aspects of
dynamical chirality.

The intramolecular vibrational redistribution (IVR) between
the stretching and bending vibrations of the alkyl CH chro-

mophore is one of the essential primary processes (see refs 24-
27 and 30 for recent reviews on some basic concepts and also
some critical discussion of current misconceptions of IVR). Of
particular importance is the determination of the wave packet
motion in configuration space to obtain the full information on
the time evolution of state populations and relative phases in
the underlying quantum dynamics.30,31In this context, one early
result for the manifestation of IVR was that the initial excitation
of a narrow range of energies, ideally localized along one of
the possible vibrational manifolds of the alkyl CH chromophore
in CHF3 and CHD3, would lead to a spreading of the probability
density distribution in configuration space toward a quasimi-
crocanonical distribution in less than 1 ps.31 In further
investigations,32-34 the coherent infrared multiphoton excitation
of states in the stretching manfold was investigated, which led
to an initially semiclassical motion of the wave packet, localized
along the stretching coordinate, and occupation of the bending
manifolds after 100-500 fs by an irregular spreading of the
probability density.

In the present work we ask: What is the motion of the wave
packet of the alkyl CH chromophore if the excitation occurs
along the bending manifolds? The answer to this question has
potential immediate consequences for two current aspects of
our interest in molecular dynamics: (i) the generation of
dynamical chirality and the nature of vibrationally induced
stereomutation and racemization dynamics;35 (ii) the (coherent)
control of the wave packet dynamics and mode-selective laser
chemistry36-43 (see also ref 44 and many other contributions in
ref 7).

In each of these aspects, the intramolecular vibrational
redistribution can play an important role, and the investigation
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of the vibrational dynamics in the CH chromophore subspace
provides a realistic platform for this discussion.

In this context, we will also discuss the nature of the nearly
isoenergetic effective Hamiltonian wave functions (basis states)
of the alkyl CH chromophore, which are strongly coupled by a
2:1 Fermi resonance. Effective basis states are frequently used
to study the quantum dynamics with effective Hamiltonians to
describe the data derived from high-resolution spectroscopy, and
a recent example of this is the investigation of large amplitude
bending motion of acetylene,45 quite related to our own work.24

However, the relation of such basis states to true molecular wave
functions, which can be defined as projections on configuration
space, is often difficult to establish when the underlying potential
energy surface is unknown. In the case of the effective basis
states for the alkyl CH chromophore, these wave functions have
been studied in previous publications,32,46where they were called
“Fermi modes”. However, some questions remained open and
are addressed in the present work.

Dynamical chirality can be defined by a time-dependent non
planar molecular structure ofC1 symmetry35 (some other
symmetries, such asC2 are chiral as well). In principle, any
molecular structure withC1 symmetry is chiral, where two chiral
enantiomers are defined by their relation through inversion of
the coordinates of all atoms at the origin. The observable
“chirality” quantum number can be introduced,39,47which takes
the valuesL for left-handed andR for right-handed. The
probabilitiesPL andPR ) 1 - PL are time-dependent functions,
which can be used to define the time-dependent absolute degree
of chirality (or enantiomeric excess)

The type of time evolution of this quantity can, in principle,
range between periodic stereomutation and racemization. Per-
haps the most obvious approach to study dynamical chirality
would consider molecules that are chiral in their equilibrium
geometries, but show fast tunneling stereomutation because of
a low barrier for enantiomerization. Recent examples for this
are the spectroscopic and exact dimensional quantum wave
packet study in H2O2 isotopomers40,41as well as stereomutation
in aniline-NHD.42,43 Less obvious examples, studied here, are
molecules that are achiral in their equilibrium geometries.
Questions are then: How fast are stereomutation and race-
mization processes? If racemization exists, how is it related to
the intramolecular dynamics? These questions could be ad-
dressed by studying the dynamical chirality induced for instance
by localized stretching excitations of CH bonds in CH2FD
(“local modes”,48 see ref 35). In the present work, dynamical
chirality is generated by preparation of dissymmetric (C1)
molecular structures through excitation of the bending modes
perpendicular to theCs mirror planes in CHXY2 type of
molecules. The two enantiomers can then be interconverted one
into the other by mirroring at the symmetry plane.

Coherent infrared multiphoton excitation of polyatomic
molecules is one possibility of controlling nuclear motion,49,50

and has been explored in the past, to some extent, by calculation
of the wave packet motion of forced one-dimensional harmonic
and anharmonic oscillators.51,52 In our previous work on the
coherent multiphoton excitation of the CH chromophore,32 we
have concluded that the wave packet can be forced to move
semiclassically along the stretching manifold at least during the
initial 50-100 fs of the excitation process. The semiclassical
motion is destroyed thereafter due to the strong anharmonic
couplings. In ref 25, this was called “delocalization by intramo-
lecular vibrational redistribution” (DIVR), in contrast to the

quasiclassical intramolecular vibrational redistribution (CIVR),
inferred a long time ago.53 For a model system of very weakly
coupled stretching and bending vibrations, CIVR was ob-
served.32 In the present work we shall explore the possibility
of forcing the wave packet to move along the bending manifold
and discuss the relationship of DIVR and CIVR with regard to
the control of nuclear motion and time-dependent molecular
structure.

Our method for determining the nuclear motion has been
described in-depth several times.24,25,54 Specifically for the
present investigation, we will study the vibrational short time
dynamics of the CH chromophore in isotopically substituted
methanes CHD3, CHD2T, and CHDT2. To study the bending
excitation, we have used realistic potential energy55 and dipole
moment surfaces56 of methane, which are available as global,
analytical, nine-dimensional hypersurfaces able to describe
nuclear motion of large amplitudes. The multiphoton excitation
process and wave packet dynamics of the CH chromophore were
calculated within the program package URIMIR,57,58 using
spectroscopic states obtained by calculation of the CH chro-
mophore eigenstates on the potential energy surface within a
three-dimensional DVR calculation59,60and transition moments
as corresponding matrix elements of the dipole moment surface.
Details of the method of calculation are described in Section 2.

2. Theory

2.1. Potential Energy and Dipole Moment Surface.The
three-dimensional subspace of the CH chromophore in CHD3,
CHD2T, and CHDT2 is spanned by the mass-weighted normal
coordinatesQs, Qb1, and Qb2. These were obtained from a
complete normal coordinate analysis of the global potential
surface. The results from this analysis are listed in Table 1,
including the cartesian displacement matrixl together with
masses, the equilibrium geometry, and wave numbers of normal
vibrations, which correspond to the currently best available,
experimentally determined values.56,61

In CHD2T Qs ) Q1, Qb1 ) Q6, Qb2 ) Q5, in CHDT2 Qs )
Q1, Qb1 ) Q5, Qb2 ) Q6, and in CHD3 Qs ) Q1, Qb1 ) Q6, Qb2

) Q5, such thatQb1 ∼ x corresponds to an in-plane bending
motion andQb2 ∼ y to an out-of-plane bending motion relative
to a Cs mirror plane (see Figure 1 and Table 1).

The potential energy used has been defined as METPOT 3
in ref 55 as a function of the bond angles and bond lengths in
methane. In order to obtain the reduced potentialV(Qs, Qb1, Qb2),
we first calculated the cartesian coordinates

(for n ) 1, ..., 5, the number of atoms, andk ) 1, ..., 3, the
three directions of space) in the space of normal coordinates
for the CH chromophore. Then we calculated the bond lengths

for n ) 1, ..., 4 (n ) 5 being the central carbon atom) and bond
angles

Dabs) |PL - PR| (1)

xnk
) xnk

eq + ∑
j)1

9

lnkj
Qj (2)

rn ) x∑
k

(xnk
- x5k

)2 (3)
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(xik
- x5k

)(xjk
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)

rirj
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TABLE 1: Harmonic Wavenumbersa (in cm-1) and l Matrix ( l ij, in u-1/2)

j

ib 1 (3128.) 2 (2336.) 3 (2336.) 4 (2185.) 5 (1335.) 6 (1335.) 7 (1070.) 8 (1070.) 9 (1042.)

CHD3

dx(H) 1 0.000000 0.000000 0.010119 0.000000 0.000000 0.812715 0.148452 0.000000 0.000000
dy(H) 2 0.000000 0.010119 0.000000 0.000000 -0.812715 0.000000 0.000000 -0.148452 0.000000
dz(H) 3 0.956000 0.000000 0.000000 -0.105105 0.000000 0.000000 0.000000 0.000000 0.121485
dx(D) 4 0.020902 0.000000 -0.491165 0.373889 0.000000 0.049341 -0.128815 0.000000 0.158992
dy(D) 5 0.000000 0.004311 0.000000 0.000000 0.072595 0.000000 0.000000-0.504958 0.000000
dz(D) 6 -0.001131 0.000000 -0.175709 0.131607 0.000000 -0.295795 0.080458 0.000000 -0.309342
dx(D) 7 -0.010451 -0.214547 -0.119558 -0.186944 -0.052800 -0.042111 0.346514 0.274432 -0.079496
dy(D) 8 -0.018102 -0.367296 -0.214547 -0.323797 -0.018857 0.052800 -0.274432 -0.029628 -0.137691
dz(D) 9 -0.001131 0.152169 0.087855 0.131607 -0.256166 0.147898 -0.040229 0.069678 -0.309342
dx(D) 10 -0.010451 0.214547 -0.119558 -0.186944 0.052800 -0.042111 0.346514 -0.274432 -0.079496
dy(D) 11 0.018102 -0.367296 0.214547 0.323797 -0.018857 -0.052800 0.274432 -0.029628 0.137691
dz(D) 12 -0.001131 -0.152169 0.087855 0.131607 0.256166 0.147898-0.040229 -0.069678 -0.309342
dx(C) 13 0.000000 0.000000 0.121716 0.000000 0.000000-0.062402 -0.107162 0.000000 0.000000
dy(C) 14 0.000000 0.121716 0.000000 0.000000 0.062402 0.000000 0.000000 0.107162 0.000000
dz(C) 15 -0.079721 0.000000 0.000000 -0.057437 0.000000 0.000000 0.000000 0.000000 0.145551

equilibrium geometry (Å)

masses(u) xn1

eq ≡ xn
eq xn2

eq ≡ yn
eq xn3

eq ≡ zn
eq

H 1.007825 0.000000 0.000000 1.085800
D 2.014000 -1.023702 0.000000 -0.361933
D 2.014000 0.511851 0.886552 -0.361933
D 2.014000 0.511851 -0.886552 -0.361933
C 12.000000 0.000000 0.000000 0.000000

j

ib 1 (3127.63) 2 (2336.26) 3 (2254.17) 4 (1913.67) 5 (1335.46) 6 (1298.42) 7 (1064.15) 8 (987.54) 9 (973.56)

CHD2T
dx(H) 1 -0.000094 0.000000 -0.004977 0.015352 0.000000 0.832574 0.141577-0.106611 0.000000
dy(H) 2 0.000000 0.010143 0.000000 0.000000 -0.818115 0.000000 0.000000 0.000000 -0.115927
dz(H) 3 0.956413 0.000000 0.070771 -0.076631 0.000000 -0.007957 0.033373 -0.123113 0.000000
dx(T) 4 0.010891 0.000000 0.096899 0.475303 0.000000-0.008529 -0.086024 -0.158814 0.000000
dy(T) 5 0.000000 0.002750 0.000000 0.000000 0.037071 0.000000 0.000000 0.000000-0.373025
dz(T) 6 -0.001712 0.000000 0.035441 0.167787 0.000000-0.188347 -0.009659 0.251762 0.000000
dx(D) 7 -0.010425 -0.214442 0.213378 -0.057827 -0.043574 -0.022711 0.318047 0.184840 0.304784
dy(D) 8 -0.018313 -0.367307 0.373348 -0.110067 -0.019957 0.062255 -0.299060 0.055773 -0.030721
dz(D) 9 -0.001009 0.152220 -0.151752 0.048651 -0.253886 0.180417 -0.118667 0.273823 0.091045
dx(D) 10 -0.010425 0.214442 0.213378 -0.057827 0.043574 -0.022711 0.318047 0.184840 -0.304784
dy(D) 11 0.018313 -0.367307 -0.373348 0.110067 -0.019957 -0.062255 0.299060 -0.055773 -0.030721
dz(D) 12 -0.001009 -0.152220 -0.151752 0.048651 0.253886 0.180417 -0.118667 0.273823 -0.091045
dx(C) 13 0.000770 0.000000 -0.095560 -0.101340 0.000000 -0.060157 -0.097027 -0.013175 0.000000
dy(C) 14 0.000000 0.121750 0.000000 0.000000 0.066091 0.000000 0.000000 0.000000 0.113803
dz(C) 15 -0.079556 0.000000 0.036087 -0.052066 0.000000 -0.012553 0.039457 -0.144851 0.000000

equilibrium geometry (Å)

masses(u) xn1

eq ≡ xn
eq xn2

eq ≡ yn
eq xn3

eq ≡ zn
eq

H 1.007825 0.000000 0.000000 1.085800
T 3.016050 -1.023702 0.000000 -0.361933
D 2.014000 0.511851 0.886552 -0.361933
D 2.014000 0.511851 -0.886552 -0.361933
C 12.000000 0.000000 0.000000 0.000000

j

ib 1 (3127.27) 2 (2299.91) 3 (1994.00) 4 (1856.43) 5 (1316.27) 6 (1273.12) 7 (1004.87) 8 (959.31) 9 (902.62)

CHDT2

dx(H) 1 0.000090 -0.007859 0.000000 0.014812 -0.825874 0.000000 0.000000 -0.147692 -0.025329
dy(H) 2 0.000000 0.000000 -0.012138 0.000000 0.000000 -0.860274 0.057026 0.000000 0.000000
dz(H) 3 0.956843 -0.046296 0.000000 0.092639 -0.005247 0.000000 0.000000 0.119650 -0.060888
dx(D) 4 0.021245 0.602069 0.000000 -0.137653 -0.059515 0.000000 0.000000 0.216526 0.058745
dy(D) 5 0.000000 0.000000 -0.004779 0.000000 0.000000 0.036376 0.544255 0.000000 0.000000
dz(D) 6 -0.000883 0.213914 0.000000 -0.057209 0.317807 0.000000 0.000000 -0.312252 0.025384
dx(T) 7 -0.005559 0.023918 -0.164244 0.177850 0.028793 -0.011686 -0.211583 -0.169101 -0.208233
dy(T) 8 -0.009462 0.045070 -0.287669 0.302952 -0.002296 0.004050 -0.003040 -0.005149 0.268043
dz(T) 9 -0.001643 -0.018996 0.115608 -0.126213 -0.086799 -0.182647 -0.061275 -0.192403 0.141348
dx(T) 10 -0.005559 0.023918 0.164244 0.177850 0.028793 0.011686 0.211583-0.169101 -0.208233
dy(T) 11 0.009462 -0.045070 -0.287669 -0.302952 0.002296 0.004050 -0.003040 0.005149 -0.268043
dz(T) 12 -0.001643 -0.018996 -0.115608 -0.126213 -0.086799 0.182647 0.061275 -0.192403 0.141348
dx(C) 13 -0.000779 -0.112410 0.000000 -0.067542 0.064876 0.000000 0.000000 0.061067 0.096942
dx(C) 14 0.000000 0.000000 0.146426 0.000000 0.000000 0.064109-0.094605 0.000000 0.000000
dz(C) 15 -0.079387 -0.022465 0.000000 0.065266 -0.009266 0.000000 0.000000 0.139074 -0.070199
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which were finally used for the calculation of the energy on
the nine-dimensional potential energy surface.

Sections of the potential energy surface along the normal
coordinates are shown in Figure 2. The two-dimensional sections
give an almost complete description of the chromophore
potential up to energies corresponding to 30000 cm-l (roughly
0.6 aJ; 1 aJ) 10-18 J). The equidistant contour lines are
separated by 3000 cm-l. The stretching-bending potential has
a characteristic form related to the strong coupling which is at
the origin of the Fermi resonance between the stretching and
bending modes.46

The short-time dynamics of the CH chromophore in CHD3

and other isotopomers of methane can be well described by this
three-dimensional potential up to evolution times of 1 ps,
probably even longer. From a first estimation of the high-
resolution spectra for CHD3,46 we found that other modes are
probably participating in the dynamics only at later times, which
was also confirmed later,62,63 for CHD3 as well as for other
related compounds.64-68 Calculations of this effect using the
global, full-dimensional potential surface of methane are cur-
rently being carried out in our laboratory.

The analytical, nine-dimensional vector valued dipole moment
function was derived in refs 56 and 69 from an analysis of the
electronic structure calculated ab initio and a direct adjustment
to the experimental data for the overtone intensities of the CH
chromophore in CHD3. We used the following expression:

whereµb is a generalized bond dipole function which depends
on the bond lengthsri and on the three neighboring valence
bond anglesRij, Rik, Ril for j, k, l * i:

The parameter values determined in ref 69 areµb
0 ) 0.4 D, µb

1

) -0.7 D Å-1, µb
2 ) -0.7744 D Å-2, µb

3 ) -0.1079 D Å-3, â
) 0.8922 Å-1, µa

1 ) 0.0570 D,µa
2 ) 0.0243 D,re ) 1.0858 Å.

The reduced dipole moment function in the subspace of the CH
chromophore can be calculated in the same way as the reduced
three-dimensional potential surface by calculation of cartesian
coordinates (eq 2).

Equation 5 defines the components of the dipole moment
vector in a molecule-fixed frame, such as that given by thex,
y, andz axes in Figure 1, and the projectionsxik - x5k of the
bond vectors onto these axes define the overall dipole moment
in that direction. In our convention,µz leads to parallel-type
transitions,µx and µy to perpendicular-type transitions of a
symmetric top like CHD3. µz and µx lead to transitions
conserving theCs symmetry of the equilibrium structure,µy leads

TABLE 1: (Continued)

equilibrium geometry (Å)

masses(u) xn1

eq ≡ xn
eq xn2

eq ≡ yn
eq xn3

eq ≡ zn
eq

H 1.007825 0.000000 0.000000 1.085800
D 2.014000 -1.023702 0.000000 -0.361933
T 3.016050 0.511851 0.886552 -0.361933
T 3.016050 0.511851 -0.886552 -0.361933
C 12.000000 0.000000 0.000000 0.000000

a Given in parenthesis for eachj. b Axes convention shown in Figure 1.

Figure 1. Internal “angular” coordinates and axes convention used to
describe the wave packet dynamics of the CH chromophore in CHD3,
CHD2T, and CHDT2.

µ̂k ) ∑
i)1

4 xik
- x5k

ri

× µb(ri, Rij, Rik, Ril) (5)

Figure 2. Potential energy cuts along the normal coordinate subspace
pertaining to the CH chromophore in CHD3. Qb1 is anA′ coordinate in
Cs-symmetry, essentially changing structure along thex-axis in Figure
1, andQb2 is an A′′ coordinate, essentially changing structure along
the y-axis. Contour lines show equidistant energies at wave number
differences of 3000 cm-1 up to correspondingly 30000 cm-1. The upper
curves are one-dimensional cuts alongQb2 (left) and Qs (right). The
interrupted lines in the two upper figures show the corresponding
harmonic potential curves.

µb(ri, Rij, Rik, Ril) ) [µb
0 + µb

1(ri - re) + µb
2(ri - re)

2 +

µb
3(ri - re)

3 + µa
1(cos(Rij) + cos(Rik) + cos(Ril) + 1) +

µa
2((2 cos(Rij) - cos(Rik) - cos(Ril))

2 + 3(cos(Rik) -

cos(Ril))
2)] × exp(-â2(ri - re)

2) (6)
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to transitions where this symmetry is broken and is thus adequate
for the generation of dynamical chirality.

2.2. Calculations of Eigenstates and Effective Hamilton
Matrix. The three-dimensional eigenstates (eigenfunctions
φNi(Qs, Qb1, Qb2) and eigenvaluesENi) were calculated with a
discrete variable representation (DVR) technique in normal
coordinates developed previously in our laboratory59,60 (the
nomenclatureNi will be explained below). The Hamiltonian is
given by

whereh is Planck’s constant. The relevant Hilbert subspace is
spanned by product states

where{Qix | ix ) 1, ..., Ix} is a grid of equidistant points in the
normal coordinate manifoldQx and δ(Q) is such thatδ(Q -
Q0) ) 0, if Q * Q0 and δ(Q - Q0) ) 1, if Q ) Q0. The
Hamiltonian is represented by the matrixH of rank I3d ) Is ×
Ib1 × Ib2, and was calculated with the matrix elements

Is is the number of grid points along the stretching manifold,
and∆s is the interval between them (analogous expressions hold
for ∂/∂Qb1 and∂/∂Qb2). The I3d eigenvalues solve the equation

whereZ is the transformation matrix from the basis of product
states to the eigenstates. The eigenfunctions are given by

wherek is an index running over all product basis states in the
column Nj of Z. In the present calculations, effects from
rotational motion and vibrational angular momentum couplings
are neglected, since they are expected to be small compared
with the vibrational couplings under investigation and are thus
insignificant on the time scale of consideration here (however,
the pseudopotential in Watson’s hamiltonian was considered).
Other effects from rotational motion will be discussed below.

Results for the eigenvalues of the three isotopomers CHD3,
CHD2T and CHDT2 are given in units of wave numbers in Table
2. These values can be described by an effective Hamilton
matrix Heff. This matrix is defined for a general type CH
chromophore within aCs or C1 environment60 by the diagonal
elements

and off-diagonal elements

Heff is block diagonal in the chromophore quantum numberN
) Vs + (1/2)Vb1 + (1/2)Vb2. The quantitiesVs, Vb1, andVb2 are
stretching and bending vibrational quantum numbers.N may
be an integer number, in which case there are(N + 1)2 diagonal
elements in each matrix block, orN may be a half odd integer,
with (N + 1/2)(N + 3/2) diagonal elements. For CH chro-
mophores in molecules of the type CHX3 with C3V symmetry,
the bending vibrations are degenerate and one may transform
the matrix to a representation with only one bending vibrational
quantum number (Vb) and the quantum numberlb of the
vibrational angular momentum,46 which is approximately a good
quantum number (see our discussion below).

The eigenstates within each block of the Hamilton matrix
are denoted byNj where the indexj numbers states in order of
decreasing energy. Their projection on configuration space is
given by eq 12. These functions can similarly be written as

wherek is now an index running over alleffectiVe basis states.
Zeff is the transformation matrix from the effective basis states
to the eigenstates. The effective basis states form a set of zero-
order states, which is different from the product basis states of
eq 8. The nature of the corresponding wave functions can be
revealed, for instance, by inverting the transformation eq 18,
and inserting the result from eq 12 (here, we use the vector
notationO ) (..., φNj, ...)T, ø ) (..., øk, ...)T, øeff ) (..., øk

eff, ...)T):

ZeffT is the transposed matrix ofZeff. The calculation of effective
basis functions from eq 20 is in principle straightforward.
However, since the absolute phase of column vectorsZNj )
(..., Zk;Nj, ...)T (and similarly ZNj

eff) is undefined from the
solution of the eigenvalue problem, there are many possible
combinations of phases which lead to effective basis functions
with the same spectrum and Hamilton matrixHeff. Since all
matrix elements are real, possible phases are(1. We shall see,
in Section 3, that some combinations may indeed lead to
regularly structured effective basis functions which can have
an interesting physical interpretation.

2.3. Calculation of Coherent Multiphoton Excitation. The
vibrational excitation dynamics of molecules due to the absorp-

Ĥ ) -
h2

8π2
∑

k)s,b1,b2
( ∂

∂Qk
)2

+ V(Qs, Qb1
, Qb2

) (7)

øis,ib1
,ib2

(Qs, Qb1
, Qb2

) )

δ(Qs - Qis
) × δ(Qb1

- Qib1
) × δ(Qb2

- Qib2
) (8)

〈ijk | V | i′j′k′〉 ) δii ′δjj ′δkk′V(Qis
, Qjb1

, Qkb2
) (9)

〈ijk | ∂

∂Qs
| i′j′k′〉 ) δjj ′δkk′

π
Is∆s

(-1)i-i′ × 1

sin(πi - i′
Is
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TABLE 2: Wave Numbers of the Overtone Spectrum of the CH Chromophore and Symmetry Classification for CHD3, CHD2T,
and CHDT2 (in cm-l)

Ṽthe

Nj
a Nj

b{lb} Ṽobs (CHD3) CHD3 C3V
c CHD2T Cs CHT2D Cs

(1/2)2 (1/2)1{1} 1292.50 [96] 1307.666 E 1271.014 A′ 1246.197 A′′
(1/2)1 (1/2)1 {1} 1292.50 [96] 1307.688 E 1305.412 A′′ 1288.487 A′
14 12{0} 2564.67 [46] 2595.546 A1 2529.916 A′ 2480.439 A′
13 2612.546 E 2573.649 A′′ 2532.555 A′′
12 2612.634 E 2600.310 A′ 2566.288 A′
11 11{0} 2992.75 [46] 2985.819 A1 2984.868 A′ 2984.02 A′
(3/2)6 (3/2)2{1} 3881.185 E 3778.036 A′ 3703.701 A′′
(3/2)5 (3/2)2{1} 3881.328 E 3827.066 A′′ 3762.483 A′
(3/2)4 3914.978 E 3867.598 A′ 3809.863 A′′
(3/2)3 3915.179 E 3885.948 A′′ 3834.494 A′
(3/2)2 (3/2)1{1} 4262.10 [46] 4266.217 E 4228.460 A′ 4202.599 A′′
(3/2)1 (3/2 )1{1} 4262.10 [46] 4266.257 E 4262.696 A′′ 4244.738 A′
29 23{0} 5147.910 A1 5015.761 A′ 4916.298 A′
28 5164.781 E 5069.634 A′′ 4981.194 A′′
27 5164.854 E 5113.872 A′ 5034.318 A′
26 5215.260 E 5154.227 A′′ 5079.397 A′′
25 5215.262 E 5164.357 A′ 5094.730 A′
24 22{0} 5515.70 [46] 5527.112 A1 5460.256 A′ 5409.593 A′
23 5544.287 E 5503.828 A′′ 5461.436 A′′
22 5544.317 E 5530.365 A′ 5495.100 A′
21 21{0} 5864.98 [46] 5857.786 A1 5855.193 A′ 5852.914 A′
(5/2)12 (5/2)3{1} 6412.250 E 6243.273 A′ 6118.351 A′′
(5/2)11 (5/2)3{1} 6412.593 E 6301.043 A′′ 6188.736 A′
(5/2)10 6445.844 E 6351.736 A′ 6248.713 A′′
(5/2)9 6446.602 E 6388.444 A′′ 6294.584 A′
(5/2)8 6513.350 E 6435.158 A′ 6342.714 A′′
(5/2)7 6513.351 E 6439.033 A′′ 6349.954 A′
(5/2)6 (5/2)2{1} 6786.271 E 6681.702 A′ 6606.041 A′′
(5/2)5 (5/2)2{1} 6786.320 E 6730.542 A′′ 6664.515 A′
(5/2)4 6820.228 E 6770.921 A′ 6711.596 A′′
(5/2)3 6820.459 E 6789.201 A′′ 6736.246 A′
(5/2)2 (5/2)1{1} 7115.48 [46] 7111.831 E 7071.899 A′ 7044.067 A′′
(5/2)1 (5/2)1{1} 7115.48 [46] 7111.941 E 7106.254 A′′ 7086.440 A′
316 34{0} 7657.616 Al 7460.538 A′ 7309.853 A′
315 7674.557 E 7521.723 A′′ 7385.370 A′′
314 7674.700 E 7576.368 A′ 7450.642 A′
313 7725.454 E 7624.300 A′′ 7506.246 A′′
312 7725.464 E 7649.759 A′ 7541.434 A′
311 7809.499 E 7712.130 A′′ 7601.610 A′′
310 7809.501 E 7713.086 A′ 7603.974 A′
39 33{0} 8005.40 [46] 8026.664 Al 7893.184 A′ 7792.245 A′
38 8043.718 E 7946.833 A′′ 7856.824 A′′
37 8043.803 E 7990.896 A′ 7909.664 A′
36 8094.647 E 8031.134 A′′ 7954.348 A′′
35 8094.648 E 8041.212 A′ 7969.737 A′
34 32{0} 8347.10 [46] 8346.470 Al 8277.083 A′ 8224.013 A′
33 8364.152 E 8320.938 A′′ 8276.059 A′′
32 8364.191 E 8347.509 A′ 8309.947 A′
31 31{0} 8623.32 [46] 8616.279 Al 8611.112 A′ 8606.624 A′
(7/2)20 (7/2)4{1} 8899.868 E 8667.447 A′ 8490.806 A′′
(7/2)19 (7/2)4{1} 8900.459 E 8731.492 A′′ 8571.027 A′
(7/2)18 8933.513 A2 8790.372 A′ 8641.457 A′′
(7/2)17 8935.267 Al 8839.765 A′′ 8700.978 A′
(7/2)16 9002.483 E 8888.049 A′ 8754.319 A′′
(7/2)15 9002.485 E 8901.139 A′′ 8776.248 A′
(7/2)14 9103.833 E 8986.529 A′ 8857.719 A′′
(7/2)13 9103.833 E 8986.687 A′′ 8858.277 A′
(7/2)12 (7/2)3{1} 9265.009 E 9094.805 A′ 8968.274 A′′
(7/2)11 (7/2)3{1} 9265.240 E 9152.298 A′′ 9038.349 A′
(7/2)10 9299.035 E 9202.818 A′ 9097.997 A′′
(7/2)9 9299.881 E 9239.298 A′′ 9143.609 A′
(7/2)8 9367.453 E 9286.074 A′ 9191.198 A′′
(7/2)7 9367.454 E 9289.883 A′′ 9198.444 A′
(7/2)6 (7/2)2{1} 9579.937 E 9472.337 A′ 9393.845 A′′
(7/2)5 (7/2)2{1} 9579.990 E 9521.502 A′′ 9452.573 A′
(7/2)4 9614.964 E 9562.153 A′ 9499.767 A′′
(7/2)3 9615.242 E 9580.379 A′′ 9524.611 A′
(7/2)2 (7/2)1{1} 9852.76 [46] 9845.523 E 9801.733 A′ 9770.708 A′′
(7/2)1 (7/2)1{1} 9852.76 [46] 9845.721 E 9836.794 A′′ 9813.921 A′
425 45{0} 10122.546 A1 9863.961 A′ 9661.409 A′
424 10139.702 E 9930.250 A′′ 9745.730 A′′
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tion of coherent monochromatic infrared radiation can be
described by the propagation of the vibrational wave function

In the present case,φn corresponds to the spectroscopic states
φNj from Section 2.2. The time-dependent coefficientsb(t) )
(..., bn(t), ...)T solve the time-dependent Schro¨dinger equation

where

(δnm is the Kronecker symbol) and the matrix elements

give the coupling between the electric dipole moment vectorµ̂f

and the electric field amplitudeE0 of the linearly polarized
coherent light.ωn are the spectroscopic frequencies, given by

(2πENj)/h from Section 2.2, and the matrix elements in eq 24
can be calculated by summation on the grid of points defined
in eq 8.

Equation 21 represents the time evolution of a quantized
molecular system interacting with a classical electromagnetic
field, described in eq 22 by a light pulse with carrier frequency
ωL and pulse shape functionf(t). In the present paper,f(t) is a
Heaviside unit step function, but it can in general be any other
integrable function. The semiclassical approximation for the
molecule-field interaction eq 22 is assumed to be valid, here,
since the number of photons is very large at the intensities used
for our calculations.

In eq 22 µ̂f is the space-fixed dipole moment vector. For
molecules in the gas phase, this vector changes orientation
continuously. In order to discuss such effects as dynamical
chirality, which are induced by an external, space-fixed field,
the molecules need to be oriented with respect to the space-
fixed coordinate system prior to the preparation and stay oriented
during the probing of the internal, time-dependent structure.
Such orientation schemes have received much attention recently,
both experimentally and theoretically70-73 (see also the review
of Felker and Zewail in ref 74).

Oriented states can be described as superposition states of

TABLE 2: (Continued)

Ṽthe

Nj
a Nj

b{lb} Ṽobs (CHD3) CHD3 C3V CHD2T Cs CHT2D Cs

423 10139.959 E 9992.482 A′ 9820.667 A′
422 10191.567 E 10048.190 A′ 9886.065 A′′
421 10191.595 E 10087.537 A′′ 9937.250 A′
420 10277.268 E 10144.874 A′′ 9994.551 A′′
419 10277.279 E 10149.096 A′ 10004.484 A′
418 10396.450 E 10259.076 A′′ 10112.054 A′′
417 10396.450 E 10259.093 A′ 10112.160 A′
416 44{0} 10484.001 A1 10286.423 A′ 10134.073 A′
415 10501.317 E 10347.225 A′′ 10209.232 A′′
414 10501.481 E 10401.639 A′ 10274.165 A′
413 10553.315 E 10449.466 A′′ 10329.389 A′′
412 10553.323 E 10474.489 A′ 10364.233 A′
411 10638.954 E 10537.479 A′′ 10423.911 A′′
410 10638.956 E 10538.389 A′ 10426.226 A′
49 43{0} 10794.426 A1 10657.998 A′ 10553.824 A′
48 10812.200 E 10712.033 A′′ 10618.743 A′′
47 10812.302 E 10756.286 A′ 10671.754 A′
46 10865.076 E 10796.981 A′′ 10716.441 A′′
45 10865.077 E 10806.856 A′ 10731.904 A′
44 42{0} 11063.60 [46] 11054.887 A1 10981.039 A′ 10923.954 A′
43 11073.999 E 11026.090 A′′ 10976.993 A′′
42 11074.051 E 11052.973 A′ 11011.505 A′
41 41{0} 11268.80 [46] 11262.393 A1 11253.211 A′ 11245.377 A′
l l l l
(9/2)2 (9/2)1{1} 12476.12 [97] 12469.865 E
(9/2)1 (9/2){1} 12476.12 [97] 12470.177 E
l l l l
54 52{0} 13664.68 [98] 13654.888 A1

51 51{0} 13799.35 [98] 13799.62 A1

l l l l
(11/2)6 (11/2)2{1} 14856.82 [97] 14840.618 E
(11/2)5 (11/2)2{1} 14856.82 [97] 14840.855 E
(11/2)2 (11/2)1{1} 14990.69 [97] 14992.413 E
(11/2)1 (11/2)1{1} 14990.69 [97] 14992.884 E
l l l l
64 62{0} 16156.91 [99] 16147.966 A1

61 61{0} 16230.67 [100] 16243.506 A1

l l l l
713 73{0} 18465.56 [99] 18465.56 Al

78 72{0} 18531.23 [99] 18528.95 Al

a Nj as defined in the text of the present work.b Nj as defined in ref 46 in theC∞V approximation (the number in brackets gives the corresponding
value of lb). c The small deviations from equality in strictly degenerate levels in CHD3 are due to round-off errors and mirror the expected quality
of the calculations despite the quality of the convergence.

ψ(t) ) ∑
n

bn(t)φn (21)

i
d
dt

b(t) ) {W + f(t)VC cos(ωLt)} b(t) (22)

Wnm ) δnmωn (23)

Vnm
C ) - 〈φn | 2π

h
µ̂f‚E0 | φm〉 (24)
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several eigenstates of the angular momentum operator with
different angular momentum quantum numbers. In the present
as well as in our previous paper,32 we neglect rotational states.
The neglect of rotational states and its role on the excitation
process is discussed below. However, this approximation can
be used to represent the essence of the purely vibrational motion
of molecules that are oriented in a space-fixed system and the
assumption that it leads to a correct description of the vibrational
wave packet motion was verified by full-dimensional quantum
dynamical calculations of the wave packet motion of a diatomic
molecule during excitation in an intense infrared field.75 As long
as the rotational motion is slow enough compared to the
vibrational motion, we may choose the molecule-fixed and the
space-fixed axes to coincide and neglect rotational states and
reorientation aspects. Thusµ̂f may be calculated directly from
the expressions given in eq 5 above forµ̂. Depending on the
polarization axis of the electric field, the molecule can be excited
alongx, y, or z axes in Figure 1. Because of the large rotational
constant of methane, the time scales on which an initially
oriented state of the free molecule stays so are comparatively
short and it would be also desirable to do calculations including
rotational states explicitly. Such calculations were done early
on for ozone at modest excitations,76-78 but they would be quite
difficult for the methane isotopomers at the high excitations
considered here. Once feasible, they would provide interesting
additional insights into rovibrational wave packet dynamics. An
alternative would be to design electromagnetic fields that rotate
with the molecule in space, semiclassically. In any case the
present calculations should describe the main features of the
short-time vibrational motion and going beyond this to include
rovibrational motion will be difficult at present for methane. It
should be made clear, however, that the present calculations
are not meant to precisely model a particular real experimental
situation for field-free, isolated methane molecules.

Solutions of eq 22 can be obtained by direct numerical
integration. However, this can be very time consuming, when
the number of coupled states becomes larger than 10. In the
present paper, we are treating systems of roughly 1000 coupled
states. In such situations, direct numerical integration becomes
prohibitively expensive and, for long time propagations, pre-
sumably also quite inaccurate.32 Equation 22 can also be solved
by the Floquet (Liapunoff) method.50,58,79,80This method can
also be time consuming for calculations with many coupled
states, as in the present case. For treating the sequential
multiphoton excitation of a many level system it is a good choice
to use the quasiresonant approximation (QRA),50,57,79,81which
is a good approximation if the coupling strength|Vij

C| and the
resonance defectsXk ≡ ωk - nkωL are both much smaller than
the carrier excitation frequencyωL (nk is an appropriate integer,
such that|Xk|<ωL/2). This approximation consists in solving
the equation

whereX ) Diag(..., Xk, ...), Vkj
QRA ) Vkj

C, if |nk - nj| ) 1 and
Vkj

QRA ) 0, if |nk - nj| * 1. The exact solution is then
approximated by

2.4. Rotational States.When rotational motion and excitation
is also considered, a more general wave functionΨ(t) must be
used in eq 21, which depends on internal (vibrational) and
rotational degrees of freedom.76-78 In addition, the coupling

operator in eq 22 acts on both rotational (through the direction
cosine matrix λ̂ssee Table I-1 in ref 82) and vibrational
coordinates (through the molecule fixed dipole moment operator
µ̂):

Generally, inclusion of rotational degrees of freedom involves
thus at least two aspects. First, the number of transitions
(excitation channels) into the same vibrational level is increased.
Since rotational level spacings are normally much smaller than
vibrational level spacings, this leads to an increase of the
effective coupling strength between vibrational levels at the same
irradiation intensity. Alternatively, intensity can be reduced,
when rotations are included, to achieve the same effective
excitation as without rotations.76-78

A second, more relevant aspect for the discussion in the
present paper involves the reorientation of the molecular frame
with respect to the excitation field during the excitation process.
In an adiabatic separation picture, one might think of a time-
dependent effective coupling of vibrational states, induced by
re-orientation, the time scale of which could be estimated from
the change of expectation values〈Ψ(t)|λ̂|Ψ(t)〉. Clearly, our
assumption is that such changes occur on the time scale of
rotational motion and are slower than the vibrational motion
induced by the excitation at a given moment.

3. Results and Discussion

3.1. Potential Surfaces and Spectral Structure.At a first
sight, the one-dimensional section of the potential surface along
the out-of-plane CH bending normal coordinate in CHD3, shown
in Figure 2, is clearly less anharmonic than its one-dimensional
stretching counterpart, also shown in that figure, even up to
energies in the wave number region of 30000 cm-l. Furthermore,
the two-dimensional section in the CH bending subspace,
spanned by the normal coordinates in the lower part of Figure
2, is approximately isotropic. This corresponds to an almost
perfectC∞V symmetry with respect to the azimuthal angleæ
(see Figure 1), and is related to the approximate conservation
for the bending vibration angular momentumlb. While the first
observation suggests that coherent multiphoton excitation of the
CH bending manifold in CHD3 might lead to a quasiclassical
motion of the wave packet along that manifold,51,52which lives
significantly longer than the motion induced along the stretching
manifold under similar conditions,32 the second observation
suggests that the coupling among the bending manifolds is weak
and raises the question to what extent such a weak coupling
might lead to a motion of the wave packet with quasiclassical
exchange of vibrational energy between the two bending
manifolds, following paths which could be described by
Lissajous figures of classical vibration mechanics, corresponding
to CIVR.32,53 Understanding quasiclassical exchange mecha-
nisms of large-amplitude vibrational motion would clearly open
one desirable route of controlling molecular vibrational motion
and reaction dynamics.

The coherent excitation dynamics has been calculated with
the spectroscopic data obtained with the methods described in
Section 2. Details of the calculation are also described in that
section. Wave numbers of spectroscopic states pertaining to the
CH chromophore vibrations are collected in Table 2, together
with experimental data from literature for comparison (a detailed
discussion of the comparison is given in ref 83). We have
included, as horizontal lines, the positions of these energies in
the one-dimensional sectionV(Qb2) shown in Figure 2. These

i
d
dt

a(t) ) {X + 1
2
VQRA}a(t) (25)

b(t) ≈ bQRA(t) ) a(t) exp(-i × nkωLt) (26)

µ̂f ) λ̂µ̂ (27)
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lines correspond to a total number of 800 states up to 25000
cm-1, which were all included in the present calculation of the
dynamics. The energies of the spectroscopic states may be
grouped into semi-isoenergetic shells defined by multiplets of
states with constant chromophore quantum numberN. These
multiplets are also called polyads and can be well distinguished
in the lower energy region, where the density of states is low.
They are also distinguishable in the potential sectionV(Qs), on
the right hand side of Figure 2, where we show only the subset
of states withA1 symmetry in theC3V point group. This subset
leads to parallel type bands and contains 105 states up to 20000
cm-1, which were used in our previous work on the excitation
dynamics along the stretching manifold. In order to test those
results, we have reproduced them in the present work with the
full set of states including perpendicular type bands, which will
be discussed below.

Comparison of the calculated vibrational eigenvalues for
CHD3 with the known experimental values by means of Table
2 shows that the energetically highest states in a polyad are
predicted almost always a few wave numbers lower than found
experimentally, while the lower-lying states of a polyad are
predicted systematically at slightly higher wave numbers than
obtained experimentally. The calculated polyad structure is thus
somewhat more compact than the experimental one. However,
we expect no significant influence of this small difference on
the time-dependent dynamics of the wave packet. The calculated
E states of CHD3 are not exactly degenerate, as should be
expected, although the quality of the convergence with respect
to the number of basis functions included has been extensively
checked. The splitting is due to round-off errors which
artificially break the symmetry. This is not significant for the
wave packet evolution on short times considered here, as
calculated splittings of about 0.02 to 0.2 cm-1 correspond to
times of more than 0.1 to 1 ns.

At this point, we would like to draw the attention to the
eigenstates of CHD3 denoted as (7/2)18 and (7/2)17 at 8933.513
and 8935.267 cm-1 in Table 2. They are classified asA2 and
A1 states, respectively, within theC3V symmetry group. In case
of an exact isotropic potential surface of CHD3 with respect to
the azimuthal angleæ (see Figure 1), these two states should
be degenerate, with bending vibrational angular momentumlb
) 3 conserved. The small energy difference of 1.754 cm-1

between them is a demonstration of the anisotropy of the
potential and the only approximate conservation oflb. In ref
84, the influence of the anisotropy of the potential surface on
the spectrum has been studied for model potentials of the CH
chromophore in CHD3, which are functions of theQb andQs

normal coordinates. In order to quantify the deviation from an
isotropic potential, an anisotropy parameter as defined in ref
84 has been introduced. Comparison of the above energy
difference with the results for the corresponding eigenstates in
ref 84 implies that an anisotropy parameter of roughly-1000
cm-l is expected, if the potential surface used here, which is a
function of bond lengths and angles, is expressed as a function
of Qb andQs similar to the model potentials studied in ref 84.

The structure of the molecular eigenfunctionsφi (eq 12) is
very similar to that shown in ref 46 and will be addressed in
our discussion of effective basis functions from eq 20 below.
In Table 3 we list also some of the transition matrix elements
µij(R) ) 〈φi| µ̂R|φj〉 (R is one direction in a molecule-fixed
frame), which are important for the sequential infrared mul-
tiphoton excitation.

3.2. Population Dynamics.Coherent multiphoton excitation
of the bending motion is efficient with a carrier frequency in

the region of the bending fundamentals. Classically, this
corresponds to forcing the oscillators to oscillate resonantly at
their own frequencies. Figure 3 shows the time evolution of
populations

of CH polyad eigenstates in CHD3 (the indexn stands for any
of the statesNj) during the excitation with a carrier frequency
corresponding toν̃L ) 1300 cm-1 and an intensityI0 ) 10 TW
cm-2. The pulse shape function is rectangular, which means
that for pulses long enough the calculations can be used to
simulate the excitation with a CW laser. Initially, the system is
in the vibrational ground state and the molecule is assumed to
be oriented such that the electric field is parallel to they-axis.
In Figure 3a, the curves show the total population of states
Σnpn(t) which fall in certain wave number intervals as indicated
in the figure. We see that considerable excitation of states above
7000 cm-1 sets in after 200 fs, and above 14000 cm-1 after
nearly 500 fs at these conditions. As a check of convergence,
each curve was calculated twice: For a system containing 800
states up to 25000 cm-1, as shown in Figure 2, and for a smaller
system with nearly 600 states up to 21000 cm-1. The two sets
of curves are identical on the scale of the figure in the first 500

Figure 3. Time evolution of coarse grained level populations of the
CH chromophore in CHD3 during excitation along they-axis (see Figure
1) with a laser tuned at 1300 cm-1 and an intensity of 10 TW cm-2.
(a) Coarse grained populationsΣnpn(t), for states with wave numbers
Ṽn falling in the regions below 7000 cm-1 (solid continuous line), 7000
and 14000 cm-1 (interrupted line), 14000 and 21000 cm-1 (solid-dotted
interrupted line) and above 21000 cm-1 (dotted line); (b) coarse grained
populationspN(t) ) ΣjpNj(t) of levels of semi-isoenergetic states defined
by the chromophore quantum numberN (see text). The insert shows
the time averaged absorbed energy spectrum after 500 fs, as calculated
with eq 29.

pn(t) ) bn(t)*bn(t) (28)
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TABLE 3: Electric Dipole Matrix Elements a for CHD 3, CHD2T, and CHDT2 (in Debye)

〈Nj|µR|N′j〉the/Debyea

CHD3 CHD2T CHDT2

Nj N′j R ) x R ) y R ) z R ) x R ) y R ) z R ) x R ) y R ) z

01 (1/2)2 -0.4863× 10-1 -0.5078× 10-1 0.5454× 10-1

01 (1/2)1 -0.4863× 10-1 -0.5154× 10-1 0.5299× 10-1 -0.9173× 10-2

01 14 -0.7849× 10-2 0.3388× 10-3 -0.5331× 10-2 -0.8497× 10-3 0.4811× 10-2

01 13 0.1079× 10-2 -0.1461× 10-2 0.1026× 10-2

01 12 -0.1080× 10-2 -0.1539× 10-4 0.8356× 10-3 -0.1265× 10-2 0.4690× 10-2

01 11 -0.5325× 10-1 0.4097× 10-3 -0.5312× 10-1 -0.3977× 10-3 -0.5297× 10-1

(1/2)2 14 0.4981× 10-1 0.7216× 10-1 0.1512× 10-1 -0.7757× 10-1

(1/2)2 13 -0.4886× 10-1 0.5165× 10-1 0.5318× 10-1 -0.9010× 10-2

(1/2)2 12 -0.4872× 10-1 0.2445× 10-3 0.8517× 10-2 0.1858× 10-2 0.8583× 10-3

(1/2)2 11 0.1013× 10-2 -0.4770× 10-3 -0.1406× 10-2 0.8582× 10-3

(1/2)1 14 0.4954× 10-1 0.9750× 10-2 -0.8489× 10-2 0.1202× 10-2

(1/2)1 13 -0.4886× 10-1 -0.2430× 10-3 0.5104× 10-1 0.1112× 10-1 0.5477× 10-1

(1/2)1 12 0.4900× 10-1 -0.7299× 10-1 0.7531× 10-1 -0.1295× 10-1

(1/2)1 11 0.1003× 10-2 -0.1582× 10-2 0.1363× 10-2 -0.1248× 10-2

14 (3/2)6 0.7052× 10-1 0.8909× 10-1 0.1825× 10-1 0.9570× 10-1

14 (3/2)5 0.7032× 10-1 0.5266× 10-1 0.5396× 10-1 -0.8949× 10-2

14 (3/2)4 0.8117× 10-2 0.1657× 10-2 0.7624× 10-2

14 (3/2)3 0.7979× 10-4 -0.5620× 10-3 0.2069× 10-2 -0.2851× 10-3

14 (3/2)2 -0.1701× 10-2 0.2623× 10-2 -0.1706× 10-2

14 (3/2)1 0.7113× 10-2 0.1209× 10-2 0.1933× 10-2 -0.5219× 10-3 0.1572× 10-3

14 29 -0.2129× 10-4 0.1591× 10-1 0.1198× 10-2 -0.1244× 10-1 -0.2105× 10-2 -0.1124× 10-1

14 28 0.1902× 10-2 -0.2296× 10-2 -0.1822× 10-2

14 27 0.1903× 10-2 0.1096× 10-3 0.9870× 10-3 0.4025× 10-2 -0.1374× 10-2 0.3859× 10-2

14 26 0.1320× 10-3 -0.1204× 10-4 -0.4475× 10-3 0.3396× 10-3

14 25 -0.1289× 10-3 0.2067× 10-3 0.5463× 10-3 -0.2157× 10-3 0.4221× 10-3

14 24 0.5276× 10-1 0.4446× 10-3 -0.5297× 10-1 -0.3084× 10-3 -0.5293× 10-1

14 23 -0.1490× 10-4 -0.3111× 10-4 -0.7747× 10-5

14 22 0.1399× 10-4 -0.1628× 10-3 0.2955× 10-4 -0.1543× 10-4 -0.4480× 10-4

14 21 0.7132× 10-3 -0.3956× 10-4 0.3621× 10-3 0.2760× 10-4 0.2412× 10-3

13 (3/2)6 -0.3573× 10-1 0.1347× 10-1 -0.1200× 10-1 0.1603× 10-2

13 (3/2)5 -0.3596× 10-1 -0.3097× 10-3 0.7063× 10-1 0.1496× 10-1 -0.7649× 10-1

13 (3/2)4 -0.6000× 10-1 -0.7261× 10-1 0.7505× 10-1 -0.1269× 10-1

13 (3/2)3 0.6012× 10-1 0.1831× 10-1 0.4028× 10-2 -0.1628× 10-1

13 (3/2)2 0.1211× 10-2 0.7399× 10-4 0.1790× 10-2 0.1547× 10-2 -0.1211× 10-2

13 (3/2)1 -0.1199× 10-2 0.6035× 10-3 0.1450× 10-2 0.9894× 10-3

13 29 -0.1127× 10-2 -0.5078× 10-3 0.4017× 10-3

13 28 -0.4850× 10-4 -0.1375× 10-1 0.4106× 10-3 -0.1079× 10-1 -0.1133× 10-2 -0.9607× 10-2

13 27 -0.6651× 10-4 0.2420× 10-2 -0.1892× 10-2

13 26 -0.1852× 10-2 0.1522× 10-2 0.6789× 10-2 -0.2258× 10-2 0.6578× 10-2

13 25 0.1853× 10-2 0.7582× 10-4 0.1263× 10-2 -0.7915× 10-3

13 24 -0.1059× 10-4 0.1074× 10-3 -0.1222× 10-3

13 23 -0.1617× 10-4 0.5273× 10-1 0.4867× 10-3 -0.5277× 10-1 -0.4100× 10-3 -0.5277× 10-1

13 22 0.1761× 10-4 -0.4631× 10-4 0.2332× 10-4

13 21 -0.3122× 10-4 0.2115× 10-4 -0.1334× 10-4

12 (3/2)6 -0.3569× 10-1 0.3102× 10-3 0.2480× 10-2 0.3647× 10-3 0.2056× 10-2

12 (3/2)5 0.3585× 10-1 -0.1828× 10-1 -0.1566× 10-1 0.2353× 10-2

12 (3/2)4 -0.6018× 10-1 0.5192× 10-1 0.1142× 10-1 0.5546× 10-1

12 (3/2)3 -0.6003× 10-1 0.8872× 10-1 0.9201× 10-1 -0.1574× 10-1

12 (3/2)2 -0.1208× 10-2 -0.2423× 10-3 0.1934× 10-3 0.1834× 10-3

12 (3/2)1 -0.1207× 10-2 0.7968× 10-4 -0.2822× 10-2 0.2444× 10-2 -0.1787× 10-2

12 29 0.1126× 10-2 -0.8955× 10-4 0.1216× 10-3 -0.1583× 10-3 -0.9941× 10-4 -0.1288× 10-3

12 28 0.5339× 10-4 0.4725× 10-3 -0.3299× 10-3

12 27 -0.3919× 10-4 0.1375× 10-1 -0.3410× 10-3 -0.9993× 10-2 -0.8568× 10-4 -0.8372× 10-2

12 26 -0.1853× 10-2 0.4296× 10-4 -0.2426× 10-2 0.1735× 10-2
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fs of excitation, and start bifurcating at 600-700 fs, from which
we conclude that calculations are converged, under the given
conditions and for the purposes of the present work, during the
first 600 fs of excitation. We expect the evolution to be
qualitatively correct also at later times shown in the figure.

If we use, for the bending excitation, the same irradiation
intensity as for the stretching excitation in our previous work
(I0 ) 30 TW cm-2), the uppermost states at 25000 cm-1 are
already significantly populated after the first 300 fs of excitation,
which disables converged calculations at that intensity for later
times. However, calculations in our previous work were fully
converged. This shows that coherent excitation along the
bending manifolds (eitherx- or y-axis) is indeed much more
efficient than excitation along the stretching manifold at similar
conditions. There are at least two reasons for this: first, the
bending potentials are less anharmonic and the resonance defects
Xk of bending states (cf. eq 25) increase at a somewhat lower
rate with energy than for stretching states; secondly, the effective
density of near resonant states for the sequential multiphoton
process is obviously much larger for the bending than for the
stretching manifolds, as shown in Figure 2. Bending excitation
may be expected to be more efficient than stretching excitation
even when rovibrational transitions are considered.

In Figure 3b we show the time evolution of populationspN

) ΣjpNj for the valuesN ) 0, 1/2, 1, 3/2, and 2 of the
chromophore quantum number. We also show in this figure the
short-time absorption spectrum

as a function of the irradiation wave number, whereT ≈ 500 fs
and

is the absorbed energy. The short time used is imposed by the
convergence limit of our calculations and the result is a broad
spectrum with a maximum near 1300 cm-1, which is related to
the position of the spectroscopic states in Table 2 and explains
the preference for the chosen carrier wave number for the
excitation process in this example under the given conditions.

The populationspN correspond to level populations of polyads
which are nearly resonant with multiples of the bending
harmonic wave number. As shown in the figure, the initial time
evolution of populations is indeed very similar to that of a driven
one-dimensional harmonic oscillator.52 This behavior was found
for the stretching excitation32 only in the initial 50 fs of
excitation, for the sequence of even chromophore quantum
numbersN ) 0, 1, 2, ..., which correspond to multiples of the
stretching harmonic wave number. From this result we could
conclude that the bending motion might indeed be quasiclassical
for substantially longer times than the stretching motion, at least
during the initial 500 fs of excitation. However, before drawing
final conclusions, the motion of the wave packet in configuration
space must also be investigated.

For symmetric tops like CHD3 one might expect the bending
excitation along thex-axis to be a similar process. The question
is, whether such processes can be distinguished and, if yes, how
can this be used for the purpose of guiding nuclear motion along
different directions in the molecule-fixed frame. While the
theoretical treatment of such questions might have a direct
bearing on experiments where molecules have well-defined
orientations, for instance on surfaces85 or in external fields,86 itT
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E(t) ) ∑
j

(pj(t) - pj(0))Ej (30)
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is certainly more complex for gas-phase experiments, when
rotations of the molecules must be considered in addition to
the internal vibrational motion, as discussed in Section 2.
Discrimination between the molecule-fixed axes require pre-
orientation along the appropriate axis before the excitation
process takes place. Such experiments have become feasible in
the gas phase with techniques from time-resolved spectroscopy
on the femtosecond time scale (see, for example, the review of
Felker and Zewail74).

For asymmetric tops with significantly different frequencies
of vibrational motion along selected axes, discrimination might
be efficient without pre-orientation by choosing the excitation
irradiation in the corresponding wave number region of the
vibration of interest. Figure 4 shows the time evolution of polyad
populations in the case of CHD2T at an intensity of 10 TW
cm-2 along they-axis (Figure 4a), with the laser tuned at 1270
cm-1, and along thex-axis (Figure 4b), with the laser at 1230
cm-1. We also show the short-time absorption spectrum as
defined in eq 29, which explains the choice of these carrier wave
numbers at the maximum absorption position. The discrimina-
tion of axes is not apparent from observation of the time
evolution of polyad populations. However, in a high-resolution
experiment one would probably observe differences in the time
evolution of single states within one polyad. In the next section
we shall discuss the difference of wave packet motion between
excitation along thex- andy-axes.

3.3. Wave Packet Motion.The wave packet motion of the
CH chromophore is represented by snapshots of the time-

dependent probability density distribution|ψ(t, Qs, Qb1, Qb2)|2,
where the probability amplitudeψ is defined in eq 21 as an
expansion in the basis of spectroscopic states, which in turn
were defined by eq 12. More specifically, and for practical
purposes, we show simultaneous two-dimensional representa-
tions

and

Such a sequence of snapshots, calculated in intervals of 4 fs,
is shown as a series of contour line plots on the left-hand side
of Figure 5; the outermost column shows the evolution of|ψbb(t,
Qb2, Qb1)|2, the innermost column is|ψsb(t, Qs, Qb1)|2 at the same

Figure 4. Time evolution of coarse grained level populationspN(t) )
ΣjpNj(t) of the CH chromophore in CHD2T during excitation with an
intensity of 10 TW cm-2. (a) Excitation along they-axis (laser tuned
at 1270 cm-1); (b) excitation along thex-axis (laser tuned at 1230 cm-1).
The insert in each figure shows the time averaged absorbed energy
spectrum after 500 fs for the corresponding excitation, as calculated
with eq 29.

Figure 5. Snapshots of the time evolution of reduced two-dimensional
probability densities|ψbb|2 and|ψsb|2 (see eqs 32 and 31, respectively),
for the excitation of CHD3 under the same conditions as discussed above
in Figure 3, between 50 and 70 fs. The dark solid curve is a cut of the
potential energy surface at the currently absorbed energy eq 30, which
is roughly constant and corresponds to 3000 cm-1 during the time
interval shown here (≈6000 cm-1, if zero-point energy is included).
The dark dotted curves show the energy uncertainty eq 33 of the time-
dependent wave packet, approximately 500 cm-1 in the present case.
(Left-hand side) Excitation along thex-axis. The vertical axis in the
two-dimensional contour line representations is theQb1-axis, the
horizontal axes areQb2 andQs, for |ψbb|2 and|ψsb|2, respectively. (Right-
hand side) Excitation along they-axis, but with the field vector pointing
into the negativey-axis. In the two-dimensional contour line representa-
tions, the vertical axis is theQb2-axis, the horizontal axes areQb1 and
Qs, for |ψbb|2 and|ψsb|2, respectively. The lowest contour line has the
value 44× 10-5 u-1 pm-2, the distance between them is 7× 10-5 u-1

pm-2. Maximal values are nearly constant for all snapshots in this figure,
and correspond to 140× 10-5 u-1 pm-2 for |ψbb|2 and 180× 10-5 u-1

pm-2 for |ψsb|2.

|ψsb(t, Qs, Qbi
)|2 ) ∫Qbj

dQbj
|ψ(t, Qs, Qbi

, Qbj
)|2 (i * j) (31)

|ψbb(t, Qb1
, Qb2

)|2 ) ∫Qs
dQs|ψ(t, Qs, Qb1

, Qb2
)|2 (32)
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time steps. This is the wave packet motion in CHD3 for
excitation with a linearly polarized field along thex-axis at 1300
cm-1 and 10 TW cm-2 after 50 fs of excitation.

In our convention, nuclear displacements alongQb1 occur
along thex-axis, displacements alongQb2 are directed along
they-axis. One observes a semiclassical, nearly periodic motion
of the wave packet along the excited manifold with a period of
approximately 24 fs, corresponding to the frequency of CH
bending vibrations in the wave number region around 1500
cm-1. At this stage of the excitation process, the motion of the
wave packet is essentially one dimensional, as seen from the
trajectory followed by the maximum of the probability distribu-
tion and its practically unchanged shape during the forth and
back oscillations between the turning points. The latter lie on
the potential energy section defined by the actual energyE(t)
of the wave packet, which is defined in eq 30, and describes
the classically accessible region in configuration space. These
potential energy sections are shown by the continuous curves
in the figures, which are surrounded by dotted curves describing
the energy uncertainty

of the wave packet (see legend to Figure 5 for values).
The sequence on the right hand side of Figure 5 shows wave

packets|ψbb(t, Qb1, Qb2)|2 and |ψsb(t, Qs, Qb2)|2 during the
excitation along they-axis. Here, we have chosen to excite
antiparallel to they-axis (E0 | -µy). We can see that this choice
induces a phase shift ofπ between the two wave packets shown
in the figure, in addition to forcing oscillations along different
directions.

Figure 6 shows the continuation of the wave packet motion
at later times. We can still recognize an approximately oscil-
latory behavior along the excitation manifold (Qb1 or x-axis on
the left-hand side,Qb2 or y-axis on the right-hand side). On top
of this, there is now also an alternating squeezing and spreading
of the wave packet. During the spreading, it covers much of
the second bending manifold, which has not initially been
excited. This covering is not complete. However, the motion
of the wave packet in the bending manifold (bending-bending
representation) is clearly not of the simple Lissajous type. In
the stretching-bending representation, the shape of the wave
packet changes less, although the creation of ripples can be
observed at some times, and we can say that the center-of-mass
of the wave packet moves essentially along the path of least
action, as for a classical motion. The initially induced phase
shifts along the different excitation directions prevail up to this
stage. The energy values in Figure 6 are〈E(t)/hc〉 ≈ 12700 cm-1

(for all snapshots; including zero-point energy) and∆E(t)/hc
≈ 2200 cm-1.

For the asymmetric top CHD2T we initially also observe a
semiclassical wave packet motion of the CH chromophore which
is very similar to that in CHD3 shown in Figure 5, including a
π phase shift induced by antiparallel excitation along they-axis,
and we will not reproduce this result here. Differences become
evident when vibrational redistribution processes had time to
set in, typically after 100 to 200 fs. This is shown in the series
of snapshots in Figure 7. Excitation conditions are basically the
same as for CHD3, apart for the excitation wave number, which
is 1230 cm-1 here, for excitation along thex-axis, and 1270
cm-1, for excitation along they-axis, corresponding to the
maximum positions in Figure 4. The energy values in Figure 7
are 〈E(t)/hc〉 ≈ 12500 cm-1 (zero-point energy included) and

∆E(t)/hc ≈ 3800 cm-1. The motion of the wave packet is still
oscillatory, as before. However, the superposed squeezing and
spreading of the wave packet is much stronger for the excitation
along they-axis than for thex-axis. Excitation along they-axis
leads to a significantly larger, delocalized occupation of the not
directly excitedx-manifold, while the inverse is not true. This
distinction of wave packet motion is absent in the case of CHD3,
where excitation along any of the axes leads to delocalization
of the wave packet after some typical time. A second difference
is that theπ phase shift between thex andy excitation, which
we invoked initially by antiparallel excitation, has vanished at
this stage of the dynamics.

Spreading of probability density becomes even more evident
after 500 fs of excitation (Figure 8), when it is replacing
oscillatory motion due to DIVR.32 The probability distribution
starts to fill the energetically accessible region, with exception
of the bending-bending representation duringx-axis excitation.
The wave packet motion seems thus to be confined to the{Qs,
Qb1} subspace after excitation along thex-axis. However, a
closer inspection of the figure suggests that leaking out of
probability density into theQb2-manifold might start at later
times from those regions of configuration space where|Qb1| is
maximal. In Figure 8,〈E(t)/hc〉 ≈ 16300 cm-1, including zero-
point energy (for all snapshots), and∆E(t)/hc ≈ 4800 cm-1.

These results can be understood partly after inspection of
atomic displacements during the motion, described by thel
matrix in Table 1, CHD2T. We assume that redistribution
processes are likely to be more efficient at larger displacements

∆E(t) ) x∑
j

pj(t)(Ej - E(t))2 (33)

Figure 6. Snapshots of the time evolution of reduced two-dimensional
probability densities during the excitation of CHD3 under the same
conditions as in Figure 5 (see also the legend to that figure), but for a
time interval between 360 and 380 fs. The absorbed energy corresponds
to 9700 cm-1 (starting from the zero-point level), the uncertainty to
2200 cm-1. The lowest contour line has the value 4× 10-5 u-1 pm-2,
the distance between them is 7× 10-5 u-1 pm-2. Maximal values are
variable according to the number of contour lines shown.
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from equilibrium. For CHD2T, excitation along thex-axis is
equivalent to forcing the wave packet to move along theQb1

manifold () Q6 in Table 1, CHD2T). Along this manifold,
significant displacements from equilibrium are possible, apart
from the H-atom displacement along thex-axis, for the T- and
the two D-atoms along thez-axis with nearly the same
magnitude∆z≈ 0.18|Qb1| but in opposite directions. Excitation
along they-axis corresponds to changingQb2 () Q5 in Table 1,
CHD2T), and leads to somewhat larger displacements of the
deuterium atoms (∆z ≈ (0.25Qb1), which could be the reason
for a more efficient redistribution. If this idea is correct, axes
should have inverted roles upon excitation of CHDT2. Indeed,
inspection of Table 1, CHDT2 shows that displacements of the
D-atom alongQb2 () Q6 in Table 1, CHDT2), corresponding to
y-axis excitation, are small (∆y ≈ 0.04Qb2), while they are large
for excitation along thex-axis (∆z≈ 0.32Qb1, Qb1 ) Q5 in Table
1, CHDT2). Accordingly, the wave packet motion should be
localized in the{Qs, Qb2}-manifold in CHDT2, after excitation
along they-axis, while it spreads efficiently into all three
dimensions after excitation along thex-axis. Our calculations
confirm this result.

In the following we discuss this aspect further in a more
detailed analysis of the out-of-symmetry-plane bending excita-
tion (y-excitation) in CHD2T and CHDT2 and the generation of
dynamical chirality. For this purpose, we use a rectangular pulse
with 30 TW cm-2 intensity at the wave numbers 1270 cm-1,
for CHD2T, and 1200 cm-1, for CHDT2. Under these conditions

we obtain efficient excitation and assure converged calculations
in the first 300 fs of the excitation process. Figure 9 shows
snapshots of the wave packet motion in CHD2T during the
excitation phase. We observe clearly that the superposition of
an alternating squeezing and spreading of the wave packet on
top of its semiclassical oscillations sets in smoothly, it is weaker
at early stages (between 150 and 170 fs) and becomes stronger
later (between 180 and 200 fs). The energy values in Figure 9
are 〈E(t)/hc〉 ≈ 10600 cm-1 (∆E(t)/hc ≈ 2600 cm-1), for all
snapshots on the left- hand side, and〈E(t)/hc〉 ≈ 13100 cm-1

(∆E(t)/hc ≈ 3300 cm-1), for all snapshots on the right-hand
side (averaged values in the corresponding 20 fs time intervals,
zero-point energy included).

At 200 fs the laser is switched off, and the wave packet is
highly localized on one side of the symmetry plane, which can
be defined here by the conditionQb2 ) 0. In Figure 10 we show
the time evolution of the wave packet thereafter. Immediately
after the laser has been switched off (200-224 fs), the wave
packet first continues the semiclassical oscillatory motion,
whereby the superposed, alternating spreading and squeezing
becomes more pronounced, which is seen best in the bending-
bending representation. The contour lines in the representations
of the wave packets are equidistant. The lowest value shown is
at 4 × 10-5 u-1 pm-2, the distance between the lines is 7×
10-5 u-1 pm-2, and the maximal value is variable. It is lowest
for a widely spread out wave packet, e.g., in the snapshot at
220 fs. Each wave packet yields unit probability if integrated
over all coordinates. More values are listed in the figure captions.

Figure 7. Snapshots of the time evolution of reduced two-dimensional
probability densities during the excitation of CHD2T under the same
conditions as in Figure 4 (see also the legend to Figure 5), for a time
interval between 360 and 380 fs. The absorbed energy corresponds
approximately to 9200 cm-1 in x and 9800 cm-1 in y direction, the
uncertainty to 3900 cm-1 in x and to 3600 cm-1 in y direction. The
lowest contour line has the value 4× 10-5 u-1 pm-2, the distance
between them is 7× 10-5 u-1 pm-2. Maximal values are variable
according to the number of contour lines shown.

Figure 8. Snapshots of the time evolution of reduced two-dimensional
probability as in Figure 7 (see also legend to that figure), but for a
time interval between 480 and 500 fs. The absorbed energy corresponds
to 13100 cm-1 in x and 13500 cm-1 in y direction, the uncertainty to
5300 cm-1 in x and to 4400 cm-1 in y direction. The lowest contour
line has the value 4× 10-5 u-1 pm-2, the distance between them is 7
× 10-5 u-1 pm-2. Maximal values are variable according to the number
of contour lines shown.
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For much longer times, e.g., between 806 and 826 fs (right-
hand side of Figure 10), the motion has become irregular, the
original oscillations can hardly be recognized and the probability
density is highly redistributed among all degrees of freedom of
the CH chromophore system, both in the bending-bending and
stretching-bending representations. The populations of spec-
troscopic states were determined by the excitation process at
the time step 200 fs and are shown in Figure 13. These values
remain constant throughout all snapshots after the excitation
laser has been switched off.

As discussed above, in CHDT2 the wave packet motion is
localized after excitation along they-axis. This is shown in
Figure 11. The squeezing and spreading is clearly less pro-
nounced here than for CHD2T. At 212 fs the laser is switched
off. The wave packet motion thereafter is shown in Figure 12.
Redistribution of probability density occurs only into the
stretching manifold, after long times. The probability density
is then approximately homogeneously distributed in the{Qb2,
Qs} subspace, theQb1 manifold remains nearly unoccupied. The
energy values in Figure 12 are〈E(t)/hc〉 ≈ 13200 cm-1 and
∆E(t)/hc≈ 3200 cm-1, very similar to the case of CHD2T. The
distribution of populations, which is constant after the laser has
been switched off, is shown in Figure 14.

The comparison of Figures 13 and 14 shows that, in CHDT2,
only the lowest state within each polyad is populated, whereas
for CHD2T at least two to three states more in the center of

each polyad can be efficiently populated by excitation along
the y-axis. In the polyad with chromophore quantum number
N, the lowest states are essentially those states with approximate
bending quantum numbersVb1 ≈ 2N, Vb2 ≈ 0 or Vb1 ≈ 0, Vb2 ≈
2N, andVs ≈ 0 for stretching vibrations. These quantum numbers
are only approximate, since the stretching and bending manifolds
are anharmonically coupled. Central states can be mixed with
Vb1 ≈ N, and Vb2 ≈ N. The confinement of the wave packet
motion in the{Qs, Qb2} subspace, in case of CHDT2, and the
full three-dimensional redistribution of probability density for
CHD2T is related to the population distribution within each
polyad. The stronger delocalization in CHD2T can thus also be
understood as arising from a broader distribution of population
among semi-isoenergetic states which are strongly mixed.

One could expect that a more selective excitation in CHD2T
might be possible also upon excitation of they-axis, if the
excitation laser is tuned to lower wave numbers falling into the
lower end of each polyad. However, excitation efficiency
decreases very rapidly, as seen from the inserts in Figure 4a,b,
which is directly related to excitation selection rules. Excitation
along they-axis requires anA′′ state in the first step of the
sequential multiphoton process. From Table 2 we see that the
A′′ state of CHD2T is at the upper end of the first excited polyad
(N ) 1/2), while it is at the lower end for CHDT2. This is an
additional explanation for the inverted roles of selectivity upon
x-axis excitation, which requires anA′ state in the polyadN )
1/2. Excitation selectivity is thus also strongly linked with
excitation efficiency.

Figure 9. Snapshots of the time evolution of reduced two-dimensional
probability densities during the excitation of CHD2T along they-axis
with a laser tuned at 1270 cm-1 at an intensity of 30 TW cm-2 between
150 and 170 fs (left-hand side) and 180 to 200 fs (right-hand side; see
also legend to Figure 5; here, all two-dimensional contour line
representations have as vertical axis theQb2-coordinate, and horizontal
axesQb1 and Qs). The absorbed energy corresponds to 7600 cm-1

between 150 and 170 fs and 10100 cm-1 between 180 and 200 fs, the
uncertainties 2600 cm-1 and 3300 cm-1, respectively. The lowest
contour line has the value 4× 10-5 u-1 pm-2, the distance between
them is 7× 10-5 u-1 pm-2. Maximal values are variable according to
the number of contour lines shown.

Figure 10. Snapshots of the free time evolution of reduced two-
dimensional probability densitiesafter the excitation of CHD2T shown
previously in Figure 9 (see also legend to that figure). The laser has
been switched off at 200 fs. Absorbed energy and energy uncertainty
are constant for all snapshots and have the same value as for the
snapshot at 200 fs in Figure 9. The lowest contour line has the value
4 × 10-5 u-1 pm-2, the distance between them is 7× 10-5 u-1 pm-2.
Maximal values are variable according to the number of contour lines
shown.
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Before closing the section of wave packet motion we discuss,
for completeness, the stretching excitation of the CH chro-
mophore in CHD3 under similar conditions as in Figures 5 and
6. As shown in the snapshot sequences of Figure 15, stretching
excitation at 10 TW cm-2 is nearly as efficient as the excitation
along the bending manifold during the initial excitation phase
(between 50 and 60 fs, left-hand side in the figure). However,
for later times (right-hand side in the figure), it is significantly
less efficient than the bending excitation at comparable intensi-
ties. Energy values in Figure 15 are〈E(t)/hc〉 ≈ 6080 cm-1 and
∆E(t)/hc ≈ 1090 cm-1, for all snapshots on the left-hand side,
and〈E(t)/hc〉 ≈ 6660 cm-1 with ∆E(t)/hc≈ 2120 cm-1, on the
right-hand side. The snapshots are separated by time intervals
of 2 fs to account for the twofold faster stretching oscillations
(Ṽs ≈ 3000 cm-1), and show that bending motion is less involved
in this process up to this time interval.

At the intensity I0 ) 30 TW cm-2, excitation along the
z-manifold is significantly more efficient, as discussed in our
previous work.32 Here we have tested those results with
calculations performed within the full CH chromophore space.
The results are shown in Figure 16 and allow us to confirm the
former results within the CH chromophore model.

3.4. Time-Dependent Enantiomeric Excess.The wave
packet shown in the snapshot at 200 fs in Figure 9 is highly
localized. It describes a chiral molecular structure with a well-
defined chirality quantum number, sayR, and enantiomeric
excessDabs ) 1 from eq 1. As time evolves, the wave packet

moves to the other side of the symmetry planeQb2 ) 0 implying
a change of chirality. In the context of the present work, the
enantiomeric excess can be defined by the probabilities

for left-handed (“L”) and right-handed (“R”) chiral structures,

Figure 11. Snapshots of the time evolution of reduced two-dimensional
probability densities during the excitation of CHDT2 along they-axis
with a laser tuned at 1200 cm-1 at an intensity of 30 TW cm-2 between
150 and 170 fs (left-hand side) and 192 to 212 fs (right-hand side; see
also legend to Figure 9). The absorbed energy corresponds to 7700
cm-1 between 150 and 170 fs and 11000 cm-1 between 192 and 212
fs, the uncertainties 2700 and 3700 cm-1, respectively. The lowest
contour line has the value 4× 10-5 u-1 pm-2, the distance between
them is 7× 10-5 u-1 pm-2. Maximal values are variable according to
the number of contour lines shown.

Figure 12. Snapshots of the free time evolution of reduced two-
dimensional probability densitiesafter the excitation of CHDT2 shown
previously in Figure 11 (see also the legend to that figure). The laser
has been switched off at 212 fs. Absorbed energy and energy uncertainty
are constant for all snapshots and have the same value as for the
snapshot at 212 fs in Figure 11. The lowest contour line has the value
4 × 10-5 u-1 pm-2, the distance between them is 7× 10-5 u-1 pm-2.
Maximal values are variable according to the number of contour lines
shown.

Figure 13. Population profilePj(t0) at t0 ) 200 fs after excitation of
CHD2T along they-axis as described in Figure 10.

PL(t) ) ∫0

∞
dQb2

|ψb2
(t, Qb2

)|2 (34)

PR(t) ) ∫-∞

0
dQb2

|ψb2
(t, Qb2

)|2 (35)

) 1 - PL(t) (36)
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where

The time evolution ofPR(t) is shown in Figure 17 for the
subsequent field-free motion of the wave packets described
above in Figures 10, for CHD2T, and 12, for CHDT2. It should
be stressed, that the dynamical chirality of a localized wave
packet of CHD2T or CHDT2 corresponding to a bent structure

of C1 symmetry has a well-defined, time-dependent, intrinsic
sense of chirality, independent of external orientation in space
(it would be conventionally classified as eitherR or S.87).

In the main part of each figure, the evolution ofPR calculated
within the stretching and bending manifold of states for the CH
chromophore is shown (solid continuous line). For the purpose
of the following discussion, we also show the evolution ofPR

within a one-dimensional model, where only theQb2 bending
manifold is considered (interrupted line). The left-hand side
insert shows a survey of the evolution ofPR for the one-
dimensional case during a longer time interval of 2 ps, while
the right-hand side insert shows the evolution ofPR for the
calculation within the full three-dimensional stretching and
bending manifold of states during the same time interval of 2
ps.

From the three-dimensional calculations, we observe a fast,
initially nearly periodic evolution, with an approximate period
of 30 fs, which is superimposed by a slower decay of probability
corresponding to an overall decay of enantiomeric excess
|Dabs(t)| ) |1 - 2PR(t)| on a time interval of 300-400 fs for
both CHD2T and CHDT2. The decay is clearly more pronounced
for CHD2T (Figure 17a). The first type of evolution corresponds
to a stereomutation reaction, while the second can be interpreted
as racemization. Comparison with the wave packet motion
allows us to conclude that racemization is induced in this case
by the presence of DIVR between the vibrational degrees of

Figure 14. Population profilePj(t0) at t0 ) 212 fs after excitation of
CHDT2 along they-axis as described in Figure 12.

Figure 15. Snapshots of the time evolution of reduced two-dimensional
probability densities during the excitation of CHD3 along thez-axis
with a laser tuned at 2815 cm-1 at an intensity of 10 TW cm-2 between
50 and 60 fs (left-hand side) and 360 to 370 fs (right-hand side; see
also the legend to Figure 9). The absorbed energy corresponds
approximately to 3200 cm-1 between 50 and 60 fs and 3819 cm-1

between 360 and 370 fs, the uncertainties 1100 and 2100 cm-1,
respectively. The lowest contour line has the value 44× 10-5 u-1 pm-2,
the distance between them is 7× 10-5 u-1 pm-2. Maximal values are
variable according to the number of contour lines shown.

|ψb2
(t, Qb2

)|2 ) ∫Qs
∫Qb1

dQsdQb1
|ψ(t, Qs, Qb1

, Qb2
)|2 (37)

Figure 16. Snapshots of the time evolution of reduced two-dimensional
probability densities during the excitation of CHD3 along thez-axis
with a laser tuned at 2815 cm-1 at an intensity of 30 TW cm-2 between
50 and 60 fs (left-hand side) and 620 to 630 fs (right-hand side; see
also legend to Figure 9). The absorbed energy corresponds ap-
proximately to 4050 cm-1 between 50 and 60 fs and 13400 cm-1

between 620 and 630 fs, the uncertainties 2000 and 2700 cm-1,
respectively. The lowest contour line has the value 44× 10-5 u-1 pm-2,
the distance between them is 7× 10-5 u-1 pm-2. Maximal values are
variable according to the number of contour lines shown.
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freedom. Racemization is stronger for CHD2T, for which DIVR
occurs in the full three-dimensional subspace of the CH
chromophore, under the present conditions. It is less pronounced
for CHDT2, which has a higher degree of localization of the
wave packet motion.

According to the 1D calculations, an initial periodic evolution
with a period of 30 fs and a decay of the overall enantiomeric
excess is observed for CHD2T, as well as for CHDT2. The decay
takes place on a time scale of 500-600 fs. As before, we
interpret the periodic evolution as a stereomutation reaction
while the decay corresponds to a racemization. The enantiomeric
decay is now slightly slower than in the three-dimensional case.
Since in the one-dimensional calculations the bending mode
considered is as anharmonic as in the three-dimensional
calculations, it can be further concluded that the one-dimensional
bending anharmonicity qualitatively describes racemization on
longer time scales whereas it is of secondary importance for
the enantiomeric decay in the first 200 fs.

3.5. Effective Basis States.In this section we discuss the
nature of the effective basis statesøk

eff calculated by eq 20. We
shall show that, indeed, such states can be identified with the
“Fermi modes” introduced in our previous work, if appropriate
phase conventions are assumed. For brevity, the discussion will
be restricted to the subset of the 7 effective basis states
{ø(Vs,Vb)|Vs + (1/2)Vb ) 6, lb ) 0} in CHD3 which are defined

by the chromophore quantum numberN ) 6 and the quantum
numberlb ) 0.

Figure 18 shows probability densities

in a cylindrical representation of wave functions, whereQb )

xQb1

2 +Qb2

2 andφb ) arctan(Qb1/Qb2). The column at the right-
hand side shows the densities of the eigenstates{φNj|N ) 6, lb
≈ 0}. The solid lines are sections of the potential energy surface
at the average energy of these states (corresponding roughly to
16000 cm-1). The eigenstates have a well-defined nodal
structure along curvilinear coordinates, which may be calledFs

and æb.46 To identify these coordinates, we look at the
eigenfunction with lowest energy within this polyad, shown in

Figure 17. Evolution of the probablility for right-handed chiral
structurePR(t) (see eq 35) of the CH chromophore in CHD2T (a) and
CHDT2 (b) after preparation of chiral structures with multiphoton laser
excitation, as discussed in Figures 9 and 11 (solid continuous line).
For comparison, the time evolution ofPR according to one-dimensional
model calculations including only theQb2 bending mode (interrupted
line) are also shown. The left-hand insert shows the time evolution of
PR within the one-dimensional calculations for a longer time interval,
while the right-hand insert shows thePR time evolution within the three-
dimensional calculation for the same time interval (see text).

Figure 18. Probability densities|ψ(Qs,Qb|2 in cylindrical coordinates
corresponding to eq 38 for vibrational states of CHD3 belonging to the
energy level defined by the chromophore quantum numberN ) 6 and
the vibrational angular momentum quantum numberlb ) 0. Right-
most column: EigenstatesN7 to N1 (Nj nomenclature inC∞V symmetry,
see Table 2 and ref 46). Mid column: Effective basis states defined
by eq 20 and convention 1 (see text). Left-most column: Effective
basis states defined by eq 20 and convention 2 (see text).

|ψ(Qs, Qb)|2 ) ∫0

2π
Qbdφb|ψ(Qs, Qb,φb)|2 (38)
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the uppermost row: It has 6 nodes alongæb and 0 nodes along
Fs. The eigenfunction with highest energy is shown at the bottom
row and has 6 nodes alongFs and 0 nodes alongæb. These
coordinates are of the hyperspherical type88,89and the total nodal
pattern is such thatns + nb ) 6, wherens is the number of
nodes alongFs andnb is the number of nodes alongæb.

The center column shows representations of effective basis
states. Here, we have chosen the convention that the sign of
the largest element in all column vectorsZ and Zeff must be
positive, which we call ourconVention 1(see Section 2 for the
definition of column vectors). The nodal pattern is clearly less
well defined here, apart perhaps for a few states. Although these
states correspond to physically accessible states, since they are
superpositions of eigenstates, they do not provide a direct and
physically meaningful interpretation of the effective Fermi
resonance Hamiltonian.

In contrast to that, the column on the left-hand side shows a
well-defined nodal structure. This shows effective basis states,
which were calculated within ourconVention 2: sign(Zk*,Nj) )
sign(Zk*,Nj

eff ), wherek* represents the effective basis state with
Vs ) N andVb ) 0. Within this convention, we found that the
same result is obtained, if one takes fork* the basis state with
Vs ) 0 andVb ) 2N. The nodal structure can be used to define
a new set of curvilinear coordinatesRs and Rb, which are
evidently quite different from the curvilinear coordinatesFs and
æb. An approximate analytical representation of these coordi-
nates has been modeled by us previously,32 and can be cast into
the form

where A and B are transformation parameters related to the
Fermi resonance coupling constantK′sbb. In ref 32, these
coordinates were called “Fermi modes”.

Indeed, once an appropriate convention for the relative phases
between the column vectors ofZ andZeff has been established,
the procedure proposed by eq 20 allows one to calculate
effective basis states and make a one-to-one correspondence to
the eigenstates with respect to the nodal structure. The diago-
nalization of the underlying effective Hamilton matrix can then
also be performed, to a certain approximation, by an appropriate
rotation of the effective basis states in the{Qs,Qb} space, since
they are nearly degenerate.90,91

4. Conclusions and Outlook

The analysis of high-resolution infrared spectra in conjunction
with ab initio calculations provides accurate “experimental”
Hamiltonians and potential energy and electric dipole hyper-
surfaces for polyatomic molecules even of the complexity of
methane.55,56Using these results, we have investigated the time-
dependent quantum dynamics of the CH chromophore in the
methane isotopomers CHD3, CHD2T, and CHDT2 by calculation
of the wave packet motion during and after coherent multiphoton
excitation of vibrational motion at wave numbers in the region
of the bending fundamentals. At present, within the CH
chromophore model, we neglect the influence of large amplitude
molecular vibrations other than the CH stretching and bending
modes. The amplitude of those vibrations are small, under the
conditions of our calculations, and they are likely to become
important at later times than considered here.32 We also
disregard the slower reorientation in space due to the overall
molecular rotational motion in the laboratory frame.

The following main conclusions can be drawn from our
investigations:

1. Coherent excitation of bending modes is more efficient
than stretching excitation.32 Larger displacements of the wave
packet from equilibrium can be achieved with less intensity.

2. Intramolecular vibrational redistribution of the classical
type (CIVR)25 exists and is represented by a semiclassical
motion of the wave packet in the multidimensional configuration
space. It is similar to a Lissajous type of motion53 along a path
in the stretching-bending representation in accordance with the
principle of least action. CIVR is more long lived and more
pronounced for the bending excitation than for stretching.
However, as observed before for the stretching excitation,32 the
delocalized type of intramolecular vibrational redistribution
(DIVR)25 sets in at later stages of the dynamics, roughly after
300-500 fs of excitation.

3. Isotopic substitution leads to separation of excitation
pathways. Excitation of bending modes along thex- andy-axis
in a molecule-fixed frame are then differently efficient. While
excitation along they-axis leads to full three-dimensional DIVR
in CHD2T, vibrational redistribution in CHDT2 is only two-
dimensional, within the time scale of our calculation. Excitation
along thex-axis inverts the roles for the two isotopomers.

4. A relative phase difference of the wave packet motion
between the bending directions of CHD3, induced by locking
the phase between thex- andy-excitation, remains unaltered,
even after the spreading of the wave packet and the collapse of
the semi-classical dynamics. For CHD2T and CHDT2 this phase
shift changes during the evolution of the wave packet.

5. Dynamical chirality can be generated upon multiphoton
excitation of a large amplitude, semi-classical wave packet
motion of the out-of-plane bending vibration of the CH
chromophore in the asymmetric tops CHD2T and CHDT2. The
free evolution of such a prepared wave packet leads initially to
a nearly periodic exchange of right- and left-handed chiral
structure, corresponding to a stereomutation reaction on the time
scale of 30 fs. On top of this motion, for times of 300-400 fs
and with the start of DIVR, racemization starts substituting the
evolution and leads to small values of the enantiomeric excess
Dabs. This effect is entirely due to the coherent quantum
dynamics in our calculations and is more pronounced for
CHD2T, where DIVR occurs in a larger subspace than for
CHDT2, at least in the time scales and conditions considered
here. These results on stereomutation and racemization within
the framework of quantum chemical kinetics can be considered
to provide the extreme limit of low barrier enantiomerization
(i.e., zero barrier). It can be compared to low barrier tunneling
stereomutation in multidimensional kinetics40-43 as well as to
our earlier 1d model of controlling stereomutation.39

6. The set of wave functions corresponding to the basis states
which give rise to the effective Hamiltonian have been finally
identified after an appropriate choice of phases between
transformation matrices. They have a regular nodal pattern along
curvilinear coordinates which we have called “Fermi modes”.

Clearly, CIVR is at the heart of a redistribution process which
sets in after 100-200 fs already, leading to a wave packet
motion along both stretching and bending manifolds, although
still highly localized in shape. One question is then, whether
the stretching parts of this wave packet can be eliminated, for
example within an intelligent manipulation of the wave packet
evolution in such a way as to force the wave packet to move in
a direction orthogonal to the stretching manifold to reach even
larger amplitudes of bending motion. One strategy for such a
control mechanism would be the generation of “bending” and

Rs ≈ Qs + AQb
2exp(2BQs) (39)

Rb ≈ Qb exp(BQs) (40)
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“stretching” pulse sequences to cool down the stretching motion.
The idea is that “bending” pulses, i.e., at wave numbers in the
region of the bending fundamentals of the CH chromophore
will mainly excite the bending modes, with some leaking out
into the stretching manifolds due to IVR. “Stretching” pulses,
i.e., at wave numbers in the region of the stretching fundamentals
could then potentially be used as a damping procedure for the
stretching contamination.

It is possible that the differences observed for the intramo-
lecular vibrational redistribution after bending excitation of
CHD2T and CHDT2 become less pronounced, if the excitation
process takes much more time, i.e., at an apparently more
unfavorable excitation wave number which would lead to
stronger mixing of states also in case of CHDT2. Also, we have
not yet considered the possibility of exciting CHD3 with a
circularly polarized pulse (in the molecule-fixedxy-plane), rather
than with linearly polarized pulses as treated here. This has the
potential of producing localized wave packet motion of large
amplitude in the bending manifold of symmetric molecules.92

Another interesting extension of the present investigation of
methane isotopomers (or derivative) quantum dynamics concerns
stereomutation in the high barrier limit (say, for the CHDTMu
isotopomer55,83) with very long time wave packet evolution
including potential effects from the parity violating weak nuclear
interaction.93-95
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