Nitrogen-15 NMR Study of Solid Cobaloximes Containing ¹⁵N-Labeled Pyridine and Aniline

Robert W. Schurko and Roderick E. Wasylishen*

Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3 Received: December 3, 1999; In Final Form: January 20, 2000

Solid-state ¹⁵N NMR spectra of spinning and stationary samples of four cobaloximes containing either pyridine-¹⁵N or aniline-¹⁵N as ligands are presented. The cobaloximes investigated are pyCo(DH)₂Cl (1), pyCo(DH)₂Br (2), $pyCo(DH)_2CH_3$ (3), and $anilCo(DH)_2Cl$ (4) where DH = the dimethylglyoxime anion, py = pyridine, and anil = aniline. Nitrogen-15 CPMAS NMR spectra exhibit ¹⁵N, ⁵⁹Co residual dipolar coupling, due to the breakdown of the high-field approximation for the ⁵⁹Co (S = 7/2) nuclei. These spectra are analyzed to yield the one-bond cobalt-nitrogen indirect spin-spin coupling constant, ¹J(⁵⁹Co,¹⁵N), as well as the magnitude and sign of the ⁵⁹Co nuclear quadrupole coupling constant, C_Q, and the orientation of the electric field gradient tensor at the ⁵⁹Co nucleus with respect to the molecular frame. Nitrogen-15 NMR spectra of stationary samples are analyzed using the dipolar-chemical shift method, providing the principal components of the nitrogen chemical shift tensors and information concerning their orientations with respect to the molecular frame. The sign of ${}^{1}J({}^{59}\text{Co}, {}^{15}\text{N})$ is also determined from these spectra. The ab initio gauge-independent atomic orbital (GIAO) method is used to calculate the nitrogen chemical shielding tensors for three of the cobaloximes, as well as for free pyridine and aniline. Comparison of experimental and theoretical data reveals qualitative agreement, and supports the experimentally proposed nitrogen chemical shielding tensor orientations. The nitrogen coordination shifts and chemical shielding tensor orientations of pyridine- and aniline-substituted cobaloximes can qualitatively be accounted for using molecular orbital theory.

Introduction

Cobaloximes are a class of compounds containing the $Co^{(III)}(DH)_2^+$ moiety, where DH is a monoanion of dimethylglyoxime (Figure 1). The nitrogen atoms of the glyoxime moiety are situated in an approximately rectangular planar arrangement about the central cobalt atom. Typical cobaloximes have one neutral ligand (L) and one anionic ligand (X) in the axial positions, and a pseudo-octahedral arrangement about the central cobalt atom. Most cobaloximes possess an approximate C_2 axis and have near- C_{2v} symmetry. Cobaloximes have been of great interest to chemists for the past 40 years for two major reasons. First, the coordination chemistry of these complexes is farreaching, with almost unlimited possibilities for substituents in the axial positions and variations on the nature of the equatorial ligands.¹ Second, there are many organometallic cobaloxime derivatives which have been used as model compounds for the study of biologically important systems, such as vitamin B_{12} .² Though there have been a large number of solution NMR studies on the cobaloximes³ and related compounds,⁴ only four solidstate NMR studies on the cobaloximes have been reported in the literature.⁵⁻⁷ LaRossa and Brown reported the results of a comprehensive 59Co (spin 7/2) NQR investigation of cobaloximes.8 Values of the 59Co nuclear quadrupole coupling constant, C_0 , and the asymmetry parameter, η , were reported; however, the orientation of the electric field gradient (EFG) tensor at the cobalt nucleus could only be predicted in a qualitative manner. It is also noted that a solid-state ⁵⁹Co NMR study has been conducted on a single crystal of vitamin B_{12} , in which the orientations of the electric field gradient tensor and chemical shift tensor have been determined unambiguously.9

Figure 1. The molecular structure of cobaloximes, with anionic species (X) and neutral ligands (L) substituted into the axial positions.

The purpose of this paper is to demonstrate the wealth of information that is available from solid-state ¹⁵N NMR studies on cobaloximes, $LCo(DH)_2X$, in which $L = {}^{15}N$ -enriched pyridine or aniline, and $X = Cl^{-}$, CH_{3}^{-} , and Br^{-} . Nitrogen-15 magic-angle spinning (MAS) NMR spectra obtained under conditions of cross-polarization (CP) provide much information not available from solution NMR studies. Specifically, the first values of ¹J(⁵⁹Co, ¹⁵N) in cobaloximes are reported. Furthermore, it is demonstrated that information regarding the orientation of the ⁵⁹Co EFG tensor can be extracted indirectly by examining the ¹⁵N CPMAS NMR spectra, due to the presence of residual dipolar coupling between the ¹⁵N and ⁵⁹Co nuclei.^{10–12} To the best of our knowledge, there are only three other reports of ¹J(⁵⁹Co, ¹⁵N), all of which were obtained from solution ¹⁵N NMR studies.^{13,14} The only other *J*-couplings available for comparison are ¹J(¹⁰³Rh,¹⁵N) values reported for the rhodium analogues of

^{*} Author to whom correspondence should be addressed. Phone: 902-494-2564. Fax: 902-494-1310. E-mail: rodw@is.dal.ca.

cobaloximes, the rhodoximes,¹⁵ and other six-coordinate rhodium complexes.¹⁶

In addition, nitrogen chemical shielding (CS) tensors of the pyridine and aniline ligands are characterized via analysis of the ¹⁵N NMR spectra of stationary samples using the dipolarchemical shift method.¹⁷ Results are compared with those recently reported for the free pyridine-¹⁵N ligand.¹⁸ A large number of nitrogen CS tensors in a variety of organic and inorganic complexes have been reported in the literature.^{19,20} More specifically, there have been several accounts of nitrogen CS tensors of nuclei directly coordinated to transition metals.²¹⁻²⁴ Recent reports include nitrogen CS tensors in tetraphenylporphyrin complexes by Grant and co-workers,²⁵ and in nitrosoarene-metal complexes²⁶ and metalloporphyrins²⁷ by Oldfield et al. Ab initio calculations of nitrogen shielding tensors have also been conducted on such systems by Oldfield and coworkers,^{26,27} as well as de Dios et al.²⁸ Though nitrogen CS tensor orientations are available from ab initio calculations, we are aware of only one transition-metal compound where the nitrogen chemical shift tensor has been inferred from experiment.²⁴

Finally, modern first-principles calculations of nitrogen CS tensors in pyridine- and aniline-substituted cobaloximes are presented, along with calculations on the uncoordinated ligands. The ab initio calculations provide insight into the experimentally determined nitrogen CS tensor principal components, as well as the orientation of the CS tensor with respect to the molecular frame.

Experimental Section

Nitrogen-15-labeled (99%) pyCo(DH)₂Cl (1) and anilCo-(DH)₂Cl (4) were synthesized from Co(DH)(DH₂)Cl₂²⁹ and ¹⁵Nlabeled pyridine and aniline according to standard literature methods.^{3a,30} Pyridine-¹⁵N and aniline-¹⁵N (99%) were obtained from Cambridge Isotope Laboratories and used without further purification. Samples of ¹⁵N-pyCo(DH)₂Br (2) and ¹⁵NpyCo(DH)₂CH₃ (3) (¹⁵N-labeling, ca. 25%) were synthesized from Co(DH)(DH₂)Br and pyridine-¹⁵N using an adaptation of a recently published synthetic method.³¹ Due to the small amounts of starting material for complexes 2 and 3 (ca. 30–50 mg), the ¹⁵N-labeled compounds were mixed with freshly prepared, natural abundance samples in order to provide enough material to fill the NMR rotors. Crystalline samples were powdered and packed into 7 mm o.d. and 4 mm o.d. zirconium oxide rotors.

Solid-state ¹⁵N CP NMR spectra of both spinning (MAS) and stationary samples were acquired at 20.3 MHz (4.7 T) and 40.5 MHz (9.4 T) on Bruker MSL-200 and AMX-400 NMR spectrometers. Typical spinning rates for the 7 mm o.d. rotors were between 2.0 and 3.5 kHz; for the 4 mm rotors, spinning rates ranged from 5.0 to 10.5 kHz. Contact times were between 5 and 10 ms, and 90° pulses of 6.0 to 6.5 μ s were applied. All spectra were acquired with high-power proton decoupling. Nitrogen-15 CPMAS NMR spectra were acquired with ca. 2000–8000 scans, while spectra of stationary samples were acquired with 13000–22000 scans. All ¹⁵N NMR spectra were referenced to liquid NH₃ (20 °C), $\delta = 0$ ppm, by setting the isotropic ammonium ¹⁵N NMR peak of crystalline ¹⁵NH₄¹⁵NO₃ to 23.8 ppm.^{32,33}

Prior to analysis of MAS spectra, the spinning sidebands were summed to produce a pattern representative of the isotropic MAS NMR spectrum.³⁴ All spectra were analyzed using the WSolids software package, which was developed in this laboratory. WSolids incorporates the space-tiling algorithm of Alderman et al. for the efficient generation of powder spectra.³⁵ Best-fit spectra and uncertainties in parameters were determined by visual comparison of experimental and calculated spectra.

Ab initio chemical shielding calculations were carried out for 1, 3, 4, pyridine, and aniline, on an IBM RISC 6000 Work Station using Gaussian 94.36 The molecular structures used in the calculations on the cobaloximes were taken from reported X-ray structures.^{30,37,38} For pyridine and aniline, calculations were done on the ground-state MP2/6-311G* geometryoptimized structures, which are very close to experimentally determined geometries.^{39,40} All chemical shielding calculations were performed using the gauge-independent atomic orbital (GIAO) method,⁴¹ with both restricted Hartree-Fock (RHF) theory and density functional theory (DFT). Cobalt is a heavy fourth row element, and is subject to relativistic effects; thus, the cobalt atoms were treated with effective core potentials (ECPs), using the LANL2DZ basis set.⁴² Due to the large size of the cobaloxime systems, locally dense basis sets were used.43 In general, all atoms directly bonded to cobalt, as well as atoms in the axial moieties, were assigned large basis sets (6-31G** and 6-311G**). The remaining atoms were assigned the 3-21G basis set. DFT calculations were carried out using Becke's threeparameter hybrid⁴⁴ and the correlation functional of Lee, Yang, and Parr (B3LYP).⁴⁵ Absolute chemical shieldings, σ , were converted to the ¹⁵N chemical shift scale relative to the reference compound, NH₃ (*l*, 20 °C), by applying the formula $\delta = \sigma_{ref}$ – σ , where $\sigma_{ref} = 244.6$ ppm.⁴⁶ The aniline N–H bond lengths in 4 were set to 0.998 Å, which is the N-H bond length determined from a microwave study of aniline.³⁹

Results and Discussion

1. Nitrogen-15 CPMAS NMR Spectra of Cobaloximes. Before presenting the results of this investigation, it is necessary to briefly outline the procedure used to analyze the ¹⁵N NMR spectra obtained with MAS. In particular, the influence of neighboring quadrupolar ⁵⁹Co nuclei is considered. The effects of a quadrupolar nucleus, spin S, on the solid-state MAS NMR spectrum of a spin-spin coupled spin-1/2 nucleus are now well understood.^{10–12,47–50} Qualitatively, the high-field approximation is not strictly valid for quadrupolar nuclei; thus, the eigenstates of the quadrupolar nuclei are not completely quantized in the direction of the magnetic field, and are described by linear combinations of the pure Zeeman states. In this regime, MAS does not average the direct dipolar interaction between the quadrupolar and spin-1/2 nuclei to zero. As a result, a distorted multiplet comprised of 2S + 1 peaks is observed for the spin-1/2 nucleus.

First-order perturbation treatments have been developed to address this problem for cases in which the absolute value of $C_Q/(4S (2S - 1)) \ll v_S$. Here C_Q is the nuclear quadrupolar coupling constant and v_S is the Larmor frequency of the quadrupolar nucleus.^{48,49,51} The transition frequencies of the spin-1/2 nucleus, v_m , are shifted by a residual dipolar coupling, d, such that

$$\nu_m = \nu_{\rm iso} - mJ + \frac{S(S+1) - 3m^2}{S(2S-1)}d$$
 (1)

where J is the indirect spin-spin coupling constant, m = S, S - 1, ..., -S, and d is expressed as (in Hz)

$$d = \left(\frac{3C_{\rm Q}R_{\rm eff}}{20\nu_{\rm s}}\right) \left[(3\cos^2\beta^{\rm D} - 1) + \eta\,\sin^2\beta^{\rm D}\cos2\alpha^{\rm D}\right] \quad (2)$$

Figure 2. The isotropic peak in the experimental and calculated ¹⁵N CPMAS NMR spectra of ¹⁵N-enriched pyCo(DH)₂Cl (1) at (A) 4.7 T, $v_{rot} = 2729$ Hz and (B) 9.4 T, $v_{rot} = 2557$ Hz; of ¹⁵N-enriched pyCo(DH)₂CH₃ (3) at (C) 4.7 T, $v_{rot} = 3035$ Hz and (D) 9.4 T, $v_{rot} = 3491$ Hz; and of anilCo(DH)₂Cl (4) at (E) 4.7 T, $v_{rot} = 2251$ Hz and (F) 9.4 T, $v_{rot} = 3371$ Hz.

TABLE 1: Parameters Obtained from Analysis of the ¹⁵N CPMAS NMR Spectra of ¹⁵N-Enriched Cobaloximes

		•	-					
compound	$\delta_{\rm iso}({\rm ppm})$	¹ <i>J</i> (⁵⁹ Co, ¹⁵ N) (Hz) ^{<i>a</i>}	$R_{\rm eff}({\rm Hz})^b$	$C_{\rm Q}({ m MHz})^c$	η^c	β^{D}	$\alpha^{\rm D}$	$d (\mathrm{Hz})^d$
¹⁵ N-pyCo(DH) ₂ Cl (1)	207.9(2)	74(2)	-378(20)	+64.82*	0.63*	0°		78
¹⁵ N-pyCo(DH) ₂ Br (2)	213.0(3)	73(1)	-378(30)	+62(2)	n/a	0°		74
¹⁵ N-pyCo(DH) ₂ CH ₃ (3)	265.7(2)	36(1)	-324(20)	+29.52*	0.22*	90°	0°	-12
¹⁵ N-anilCo(DH) ₂ Cl (4)	-7.9(1)	63(3)	-353(20)	+80(3)	n/a	0°		90

^{*a*} The sign of ¹*J*(⁵⁹Co,¹⁵N) cannot be determined from analysis of the MAS NMR spectra. ^{*b*} Effective dipolar coupling constant, $R_{\text{eff}} = R_{\text{dd}} - \Delta J/3$. ^{*c*} Parameters marked with an asterisk were reported in an NQR study by LaRossa and Brown.⁸ ^{*d*} Calculated for $\nu_{\text{Co}-59} = 94.5$ MHz ($B_0 = 9.4$ T).

If d is positive, the "sense" of the spectrum is said to be positive, with the spacing between adjacent peaks increasing from high to low frequency. Conversely, if d is negative, the spacing decreases from high to low frequency. In eq 2, α^{D} and β^{D} are polar angles describing the orientation of the dipolar vector, \mathbf{r}_{IS} , with respect to the principal axis system (PAS) of the EFG tensor at the S nucleus, and η is the quadrupolar asymmetry parameter. The EFG tensor is traceless and is described by three principal components in its own principal axis system, defined such that $|V_{33}| \ge |V_{22}| \ge |V_{11}|$, with $C_Q = eQV_{33}/h$ and $\eta =$ $(V_{11} - V_{22})/V_{33}$. $R_{\rm eff}$ is the effective dipolar coupling constant, $R_{\rm eff} = R_{\rm dd} - \Delta J/3$, where the direct dipolar coupling constant, $R_{\rm dd} = (\mu_0/4\pi)(\gamma_I\gamma_S \hbar/2\pi)\langle r_{\rm IS}^{-3}\rangle$, and the anisotropy in the indirect spin-spin coupling is given by $\Delta J = J_{\parallel} - J_{\perp}$ for an axially symmetric J-tensor. 52,53 Here, the motionally averaged inverse cube of the internuclear distance is designated by $\langle r_{\rm IS}^{-3} \rangle$.

Recently, Olivieri and co-workers have emphasized that eqs 1 and 2 are dependent upon the relative signs of the magnetogyric ratios of the spin-1/2 and quadrupolar nuclei.^{50,54} Equations 1 and 2 can be modified for cases when γ_1 is negative (as in the case of γ_{N-15}) by (i) removing the negative sign in front of "*mJ*" in eq 1, and (ii) placing a negative sign in front of the right-hand side of eq 2. This ensures that the transitions correspond to the proper spin states of the quadrupolar nucleus, and the same definitions for the "sense" of the multiplet are maintained. The signs of *J* and *R*_{eff} cannot be determined from the analysis of MAS NMR spectra using first-order perturbation theory; however, when first-order perturbation theory is not valid, observed spectra depend on the signs of these parameters.⁵⁰ A. Nitrogen-15 CPMAS NMR Spectra of ¹⁵N-Enriched pyCo-(DH)₂Cl (1). Experimental and calculated ¹⁵N CPMAS NMR spectra of 1 at both 4.7 and 9.4 T are shown in Figure 2A and 2B, respectively. The distorted multiplets result from the presence of residual dipolar coupling between ¹⁵N and ⁵⁹Co. Since the degree of distortion is inversely dependent upon the ⁵⁹Co Larmor frequency (see eq 2), the spectrum acquired at 4.7 T is more distorted than the corresponding spectrum at 9.4 T (i.e., five peaks are resolved at 9.4 T, as opposed to four at 4.7 T). The spacing between adjacent peaks increases from high to low frequency (left to right), meaning that the sense of the spectrum is positive. The parameters used to simulate these spectra are given in Table 1.

The analysis of the ¹⁵N CPMAS NMR spectra of 1 is aided by the availability of structural and nuclear quadrupole data obtained from various sources (vide infra). The 59Co, 15N direct dipolar coupling constant calculated from the Co, Nax internuclear distance, $r(Co, N_{ax}) = 1.965(3) \text{ Å},^{37} \text{ is } R_{dd} = -378 \text{ Hz}.$ Values of $C_0 = +64.82$ MHz and $\eta = 0.63$ are reported for 1, from the 59Co NQR study of LaRossa and Brown.8 The sign of C_0 was predicted by a rough "donated charge" model, based on comparison of the relative partial field gradients of the axial and equatorial ligands. Using this same model, LaRossa and Brown also propose that the largest component of the EFG, V_{33} , is oriented along the L-Co-X axis. The $C_{2\nu}$ symmetry of the molecule dictates that if one of the EFG principal components is aligned in the direction of the axially bonded species, then the remaining components must lie in the plane of the DH moieties, with one component bisecting the dimethylglyoximecobalt ring, and the other bisecting the inter-ring N-Co-N bond

TABLE 2: Comparison of ¹J(⁵⁹Co,¹⁵N) and ¹J(¹⁰³Rh,¹⁵N) in Cobaloximes and Rhodoximes (LRh(DH)₂X)

L, X	¹ J(⁵⁹ Co, ¹⁵ N)	${}^{1}K(\text{Co,N})^{a}$	¹ J(¹⁰³ Rh, ¹⁵ N)	$^{1}K(\text{Rh,N})^{b}$	¹ <i>K</i> (Rh,N)/
	(Hz)	(N A ⁻² m ⁻³) × 10 ²¹	(Hz)	(N A ⁻² m ⁻³) × 10 ²¹	¹ <i>K</i> (Co,N)
py, Me	-36	1.26	7.2	1.87	1.48
py, Cl	-75	2.62	17.8	4.62	1.76

^{*a*} Reduced indirect spin-spin coupling, $K(A,B) = (4\pi^2) J(A,B)/\gamma_A \gamma_B h$. ^{*b*} Data from ref 15.

angles.⁵⁵ This proposed orientation corresponds to $\beta^{D} = 0^{\circ}$, for which α^{D} is undefined.

Several comments should be made about the NMR parameters extracted from our analysis. The magnitude of ${}^{1}J({}^{59}Co, {}^{15}N)$, 74(2) Hz, is comparable to previously reported values of 62.5(1.0) Hz and 63.8(1.0) Hz in [Co(NH₃)₅(¹⁵NH₃)]³⁺ and tris-(ethylenediamine[¹⁵N,¹⁵N])-cobalt(III), respectively.¹³ The spectrum can be simulated using the known EFG parameters, $\beta^{D} =$ 0°, and $R_{\rm eff} \simeq R_{\rm dd}$; thus, anisotropy in the *J*-coupling is assumed to be small, i.e., $\Delta J \simeq 0$. This is a reasonable assumption, since $|\Delta J|$ is generally less than |J|, in cases where ΔJ has been determined unambiguously.⁵⁶ If the same is true here, then the contribution from ΔJ is minimal (i.e., $|\Delta J/3| < 25$ Hz) compared to the much larger value of R_{dd} . This assumption is in place for the remainder of the complexes examined in this paper. The polar angle $\beta^{\rm D}$ indicates that the largest component of the EFG tensor, V_{33} , is oriented along the direction of the Co, N_{ax} internuclear vector, in agreement with the proposed EFG tensor orientation of LaRossa and Brown.⁸ In cases where $\beta^{\rm D} = 0^{\circ}$, η has no effect on the appearance of the spectrum, since the last term of eq 2 is zero. The isotropic chemical shift of pyridine has been reported in the solid state as $\delta_{iso} = 299 \text{ ppm}^{57}$ and 319 ppm.¹⁸ The latter value is likely more reliable, since spectra were acquired using a modern NMR spectrometer at a higher applied field. The coordination of pyridine to the cobalt center in 1 results in a shielding of the nitrogen by approximately 111 ppm (coordination shift, $\Delta = \delta_{\text{complex}} - \delta_{\text{free ligand}} = -111$ ppm). Further comparison of the nitrogen magnetic shielding tensors of pyridine and **1** are made in section 2 of this paper.

B. Nitrogen-15 CPMAS NMR Spectra of ¹⁵N-Enriched pyCo- $(DH)_2Br$ (2). In this case, neither the crystal structure nor quadrupolar parameters are available. However, a reasonable simulation of the ¹⁵N MAS NMR spectrum is possible provided that some prudent suppositions are made about the possible values of the unknown parameters. Slight structural changes have been observed in a comparison of the trans-influencing strengths of chlorine and iodine in pyCo(DH)₂Cl and pyCo-(DH)₂I.⁵⁸ Assuming that the bromine atom acts as a weak transinfluencing ligand, it is expected that despite its larger size, the overall effects on structure (e.g., $r(Co, N_{ax})$) will be similar to that of chlorine. Hence, R_{dd} is assumed to be on the order of that for 1. Comparison of the ¹⁵N CPMAS NMR spectra of 1 and 2 (not shown) reveal that these spectra are remarkably similar in appearance, with the only noticeable difference being the isotropic ¹⁵N chemical shift, with the N_{ax} nucleus deshielded by 5 ppm in 2. Calculations of these spectra yield parameters which are very similar (in fact, within experimental error) to those of 1.

C. Nitrogen-15 CPMAS NMR Spectra of ¹⁵N-Enriched pyCo-(DH)₂CH₃ (**3**). Replacement of weak *trans*-influencing anionic species such as halogens with strong σ -donors such as CH₃⁻ is known⁵⁹ to have significant effects on the structure of cobaloximes, including a lengthening of the Co, L bond distance.^{1,38} The analysis of the MAS NMR spectra of **3** is facilitated by the availability of both NQR and X-ray diffraction data. LaRossa and Brown report $C_Q = -29.52$ MHz and $\eta =$ 0.22.⁸ In addition, these authors suggest that the intermediate component of the EFG tensor, V_{22} , is aligned along the direction of the Co, N_{ax} bond, which corresponds to $\beta^{\rm D} = 90^{\circ}$ and $\alpha^{\rm D} =$ 90°. The magnitudes of the quadrupolar parameters were confirmed by a recent solid-state ⁵⁹Co NMR study by Frydman et al., who report $|C_Q| = 29.6(4)$ MHz and $\eta = 0.3(2).^6$ Randaccio and co-workers³⁸ report $r(\text{Co},\text{N}_{ax}) = 2.068(3)$ Å from which $R_{\rm dd} = -324.4(5)$ Hz is calculated.

The ¹⁵N CPMAS NMR spectra of **3** (Figure 2C, 2D) are more symmetrical than those of 1 and 2, with seven of the eight peaks of the multiplet resolved at 9.4 T. This is in accord with the smaller C_Q observed in **3** relative to the former compounds. In addition, the sense of the spectrum is opposite to that for 1 and 2 (i.e., d is negative). The spacings between the peaks are reduced, and in contrast to the previous two cases, the indirect spin-spin coupling can be measured directly from the splitting between the two central peaks of the multiplet, as $|{}^{1}J({}^{59}\text{Co},{}^{15}\text{N})| = 36(1)$ Hz. Using the proposed sign of C_Q and the EFG tensor orientations of LaRossa and Brown, we found that it was impossible to properly simulate the MAS spectra; in fact, the entire sense of the spectrum is reversed (i.e., mirror images of the spectra pictured in Figure 2C,D). Our analyses reveal that the smallest component of the EFG tensor, V_{11} , is oriented along the Co, N internuclear vector, and that the sign of C_0 is positive. Similar disagreement was found in a previous analysis of the ³¹P CPMAS NMR spectrum of PPh₃Co- $(DH)_2CH_3$. In this case, V_{11} , as opposed to V_{22} , is oriented in the direction of the Co, P bond.⁵ The substitution of the methyl anion into the axial position clearly has a marked effect on both the magnitude of the J-couplings, C_0 and η , and the relative orientation of EFG and dipolar tensors.

There are not enough data available to make any definitive statements about the correlation between molecular structure and the magnitude of ${}^{1}J({}^{59}\text{Co},{}^{15}\text{N})$, though in this work we observe an increase in $|{}^{1}J({}^{59}\text{Co},{}^{15}\text{N})|$ with decreasing Co, N separation. Such relationships have been found in some cases for indirect spin—spin couplings between light and heavy nuclei, where the Fermi-contact mechanism⁶⁰ is thought to predominate.⁶¹ However, there is increasing evidence that mechanisms other than the Fermi-contact mechanism are in general important and particularly, for example, if one member of the spin pair is a heavy nucleus, and the other is a second-row nucleus.^{56,62}

A comparison of ${}^{1}J({}^{59}\text{Co},{}^{15}\text{N})$ in **1** and **3** and ${}^{1}J({}^{103}\text{Rh},{}^{15}\text{N})$ in the isostructural rhodoximes¹⁵ is given in Table 2. As anticipated, the metal, nitrogen reduced spin-spin coupling constants increase with increasing atomic number, $Z.{}^{63,64}$

Using the theory of Townes and Dailey,⁶⁵ the values of $C_Q(^{59}\text{Co})$ in 1 and 2 relative to that in 3 can in part be attributed to the *s*-character involved in the Co, C and Co, N_{ax} bonds. As the *s*-bonding character in a covalent bond increases, the EFG at the nucleus decreases, according to

$$eq_{zz} = (1 - s - i - \pi)eq_{at}$$
 (3)

where eq_{zz} is the largest component of the EFG tensor, eq_{at} is the atomic EFG (available from atomic data), and *s*, *i*, and π are the *s*-, ionic, and π -bond characters. The decreased value

of C_Q in **3** is consistent with the increased *s*-bonding character in the Co, C bond, which results from the presence of the strongly σ -donating axial methyl substituent. This methyl group is also believed to exhibit a strong electronic *trans*-influence, resulting in an increase in the Co, N_{ax} bond length in **3**.^{1,38} Due to reduced steric interactions between the pyridine and the planar DH moieties, it is expected that the cobalt atom will not be displaced from the plane to the same extent as in **1**, and that the DH nitrogen atoms should adopt an increasingly planar arrangement with respect to one another in **3**. Thus, the decrease in C_Q in **3** can also be attributed to heightened symmetry about the Co atom.

D. Nitrogen-15 CPMAS NMR Spectra of ¹⁵N-Enriched anilCo(DH)₂Cl (**4**). From the X-ray structure of **4**,³⁰ the Co, N_{ax} bond length is 2.010 Å, corresponding to $R_{dd} = -353$ Hz. Unlike compounds **1** and **3**, $C_Q(^{59}Co)$ and η have not been measured for this complex. Thus, analysis of the MAS NMR spectra requires some well-founded assumptions in order to estimate the unknown quadrupolar parameters.

Comparison of the ¹⁵N CPMAS NMR spectra of 1 and 4 (Figure 2E,F) reveals that there are increased quadrupolarinduced distortions in the spectra of 4, possibly indicating that $C_{\rm Q}$ is larger in this complex (since $R_{\rm dd}$ in 4 is smaller than in 1). A large number of trial spectral simulations yielded the best fit parameters $|{}^{1}J({}^{59}Co, {}^{15}N)| = 63(3)$ Hz and $\delta_{iso} = -7.9(1)$ ppm. Comparison with the isotropic chemical shift of neat liquid aniline, $\delta_{iso} = 58.2$ ppm,⁶⁶ demonstrates a similar coordination shift effect to that observed for the pyridine-substituted cobaloximes, with $\Delta = -66$ ppm (i.e., the coordinated aniline is more shielded than the free ligand). There are, however, several degenerate solutions which involve different values of C_0 and distinct EFG orientations relative to the dipolar vector. The first and most reasonable solution has $C_Q = +80(3)$ MHz, with V_{33} along the Co, N internuclear vector ($\beta^{\rm D} = 0^{\circ}$). If $\beta^{\rm D}$ is set to 90°, there are a range of possible solutions involving changes in $\alpha^{\rm D}$ and η . If $\alpha^{\rm D} = 0^{\circ}$ (V_{11} along Co, N), the magnitude of η has no effect on the appearance of the MAS spectrum; however, $C_{\rm Q} = -160(4)$ MHz. Given the range of $C_{\rm Q}$ reported by LaRossa and Brown for octahedral cobaloxime complexes (i.e., $|C_0(^{59}\text{Co})| = 28$ to 76 MHz), this solution is unlikely. When $\alpha^{\rm D} = 90^{\circ}$ (V₂₂ along Co, N), a variety of C₀ and η can be used for spectral calculations, ranging from $C_Q = -80$ MHz, $\eta \simeq 1$ to $C_Q = -160$ MHz, $\eta \simeq 0$. Decreasing the asymmetry parameter requires that the magnitude of C_0 be increased well above the range of known $C_{\rm Q}$ values (e.g., for $\eta = 0.7$, $C_{\rm Q} \simeq 100$ MHz; $\eta = 0.5, C_{\rm Q} \simeq 120$ MHz, etc.). Thus, from all the possible solutions, the most sensible is the first, with $\beta^{\rm D}=$ 0° and $C_{0} = +80(3)$ MHz.

A detailed comparison of the molecular structures of 1 and 4 may provide an explanation for the significantly larger C_Q in 4.^{37,30} The increased EFG in 4 can in part be attributed to the *s*-character involved in the Co, N bond, according to the theory of Townes and Dailey (vide supra). In compound 1, the pyridine nitrogen may crudely be regarded as an *sp*²-hybridized nitrogen, while in 4, the aniline nitrogen hybridization more closely resembles that of an *sp*³ nitrogen. The decreased *s*-bonding character in 4 results in an increase in eq_{zz} , and therefore an increase in C_Q . In addition, the presence of the aniline group in 4 reduces the overall symmetry of the molecule to less than C_{2v} , since the aromatic ring of aniline is tilted over one of the DH moieties, with $\angle Co-N_{ax}-C = 120.7^{\circ}$. This reduction in symmetry should lead to larger EFGs at the ⁵⁹Co nucleus in 4, also contributing to the increased C_Q relative to that of 1.

2. Analysis of Nitrogen-15 NMR Spectra of Stationary Samples - Application of the Dipolar-Chemical Shift Method to ⁵⁹Co, ¹⁵N Spin Pairs. In its own principal axis system, the chemical shielding tensor is expressed in terms of three principal components which are defined from least to most shielded, $\sigma_{11} \leq \sigma_{22} \leq \sigma_{33}$ (or in terms of chemical shift, $\delta_{11} \geq$ $\delta_{22} \geq \delta_{33}$). The orientation of the CS tensor in the molecular frame can be determined from single-crystal NMR studies.⁶⁷ However, in most instances single crystals suitable for such NMR studies are not available, and experiments must be conducted upon microcrystalline powder samples in which the molecules, and therefore the CS tensors, assume random distributions with respect to the applied magnetic field. Analysis of such spectra yield information on the principal components of the CS tensor, but not on the orientation of the CS tensor with respect to the frame of the molecule.

In situations where an isolated dipolar coupled spin pair is present, it is possible to gain information on the orientation of the CS tensor with respect to the internuclear dipolar vector, and therefore with respect to the molecular frame, using the dipolar chemical shift method.^{17,68–72} At each of the discontinuities in the spectrum which correspond to the principal components of the CS tensor, there will be 2S + 1 splittings which are dependent upon the magnitudes and relative sign of $R_{\rm eff}$ and $J_{\rm iso}$, as well as the orientation of the dipolar vector with respect to the chemical shielding tensor (given by the polar angles $\beta^{\rm C}$ and $\alpha^{\rm C}$). The approximate dipolar splittings, Δv_{ii} , at each principal component, δ_{ii} , are given by

$$\Delta \nu_{11} = R_{\text{eff}} (1 - 3 \cos^2 \alpha^{\text{C}} \sin^2 \beta^{\text{C}})$$

$$\Delta \nu_{22} = R_{\text{eff}} (1 - 3 \sin^2 \alpha^{\text{C}} \sin^2 \beta^{\text{C}})$$

$$\Delta \nu_{33} = R_{\text{eff}} (1 - 3 \cos^2 \beta^{\text{C}})$$
(4)

These expressions are strictly valid in cases where \mathbf{r}_{IS} is aligned along any of the three principal components of the CS tensor.^{72d,f} In addition, the overall splitting at each discontinuity will have a contribution from the isotropic *J*-coupling, observable only if it is of appreciable magnitude with respect to Δv_{ii} . As well, it has been demonstrated that relatively large quadrupolar interactions have minimal effects on the positions of the CS principal components or spectral extremities; however, some intensity redistribution over the powder pattern may occur.^{72d,f,73} Thus, if \mathbf{r}_{IS} is along the direction of one of the CS principal components, it is expected that eight (2*S* + 1) evenly spaced splittings should be observed at the discontinuities in the ¹⁵N NMR spectra of stationary samples.

A. Nitrogen-15 NMR of Stationary Samples of ¹⁵N-Enriched $pyCo(DH)_2Cl$ (1). In this section, a detailed discussion of the interpretation of the stationary ¹⁵N NMR spectra of 1 is presented. The experimental and calculated ¹⁵N NMR spectra obtained at 9.4 T are pictured in Figure 3A. Analogous spectra were obtained at 4.7 T. The measurement of the dipolar splittings and the fitting of the spectra is abetted by the use of firstderivative NMR spectra (Figure 3B). It is useful to consider what information is already known about the NMR parameters and molecular structure of 1. As discussed earlier, the effective dipolar coupling constant is approximated by R_{dd} , calculated from the known Co, N bond length, hence $R_{\rm eff} = -378$ Hz. The magnitude of the indirect spin-spin coupling and the isotropic chemical shift have been measured from the MAS NMR spectra as $|{}^{1}J({}^{59}Co, {}^{15}N)| = 74(2)$ Hz and $\delta_{iso} = 207.9(2)$ ppm. Thus, the unknown parameters are the span ($\Omega = \delta_{11} - \delta_{11}$

Figure 3. (A) Experimental and calculated ¹⁵N NMR spectra of stationary samples of ¹⁵N-enriched pyCo(DH)₂Cl at 9.4 T. (B) Corresponding first-derivative spectra.

 δ_{33}) and skew of the CS tensor ($\kappa = 3(\delta_{22} - \delta_{iso})/\Omega$),⁷⁴ and the polar angles β^{C} and α^{C} .

A suitable starting point for the analysis of these spectra is to measure the splittings at the discontinuity corresponding to δ_{33} , which are $\pm 441(15)$ Hz. No information is initially available on the signs of these splittings, but since the dipolar tensor is traceless, the sum of the measured Δv_{ii} must be zero. Considering both positive and negative signs for ${}^{1}J({}^{59}Co, {}^{15}N)$, it is determined that the best solution is $\Delta v_{33} = -367(15)$ Hz, $\beta^{\rm C} = 84.3^{\circ}$, which places δ_{33} approximately perpendicular to the dipolar vector. This orientation is in accordance with the high symmetry of the cobaloxime complex, and the perpendicular positioning of the pyridine ring with respect to the planar DH moieties, where it is expected that one of the CS tensor components at the pyridine nitrogen is oriented in the direction of the Co, N internuclear vector, with the remaining components perpendicular to the internuclear vector, oriented perpendicular to and in the plane of the pyridine ring.

With the new information on the apparent signs of J and Δv_{33} , the angle α^{C} can be determined from the measurements of the splittings at δ_{11} or δ_{22} . Measurements made at δ_{11} reveal a splitting of $\pm 666(15)$ Hz. This corresponds to $\Delta v_{11} = +740$ Hz, from which α^{C} is calculated to be ca. 4°, corresponding to an orientation in which δ_{11} is aligned approximately in the direction of the Co, N bond.

Refinement of the parameters was achieved by calculating the ¹⁵N NMR spectra at both applied magnetic field strengths, with the final results presented in Table 3. The close agreement of the experimental and calculated spectra is especially apparent from close examination of the first-derivative spectra. Best-fit spectra were obtained with ¹*J*(⁵⁹Co, ¹⁵N) = -75(2) Hz. The powder pattern approaches axial symmetry as indicated by the skew, $\kappa = 0.70(2)$. The span observed at the pyridine nitrogen in **1**, $\Omega = 485(2)$ ppm, is notably reduced compared to that observed in the low-temperature solid-state NMR spectra of pyridine ($\Omega = 622(7)$ ppm).¹⁸ Based on the CS tensor orientations from the solid-state ¹⁵N NMR study of pyridine,^{57,18} it is likely that δ_{33} is oriented perpendicular to the pyridine ring plane. This is supported by the theoretical calculations presented in Section 3 of this paper.

B. Nitrogen-15 NMR of Stationary Samples of ¹⁵N-Enriched $pyCo(DH)_2Br$ (2). The ¹⁵N NMR spectra of stationary samples of 2 were obtained at 4.7 and 9.4 T, and analyzed as described for 1 (spectra are not shown). The final parameters are presented in Table 3. The similarity of the NMR parameters of 1 and 2 obtained from spectra of stationary samples indicates that the substitution of bromine for chlorine into the axial position has very little effect on the molecular structure of the cobaloxime, in agreement with observations made earlier from the ¹⁵N MAS NMR spectra.

C. Nitrogen-15 NMR of Stationary Samples of ¹⁵N-Enriched $pyCo(DH)_2CH_3$ (3). Analysis of ¹⁵N NMR spectra of stationary samples of **3** yielded the parameters given in Table 3. The span of the ¹⁵N CS tensor is similar to that observed in **1**, indicating that the presence of the axial methyl group does not influence the magnitude of the span significantly. However, the appearance of the spectra (not shown) indicates that the ¹⁵N CS tensor is very close to axial symmetry, with $\kappa = 0.96(4)$. The pyridine nitrogen nucleus in 3 is on average deshielded by ca. 58 ppm $(\delta_{iso} = 265.7(2) \text{ ppm})$ with respect to that in **1**. The intermediate component, δ_{22} , is 103 ppm larger in **3**, whereas δ_{11} and δ_{33} are about 35 ppm larger. Despite the absence of resolved dipolar splittings, the spectra can only be simulated with β^{C} set to 90°(4°), indicating that the orientation of the nitrogen CS tensor is similar to that in **1**. Varying α from 0° to 90° does not have any significant effects on the appearance of calculated spectra, since the magnitude of δ_{11} is very close to that of δ_{22} . Changing the sign of ${}^{1}J({}^{59}Co, {}^{15}N)$ from negative to positive does not have

 TABLE 3: Parameters Obtained from Dipolar-Chemical Shift Analysis of the ¹⁵N NMR Spectra of Stationary Samples of ¹⁵N-enriched Cobaloximes

compound	$\delta_{ m iso}(m ppm)^a$	Ω (ppm)	К	$\delta_{11}({ m ppm})$	δ_{22} (ppm)	δ_{33} (ppm)	$\beta^{\rm C}$	α^{c}	$R_{\rm eff}$ (Hz)	¹ J(⁵⁹ Co, ¹⁵ N) (Hz)
¹⁵ N-pyCo(DH) ₂ Cl (1)	207(1)	484(2)	0.70(2)	393	320	-92	85°	3°	-375	-75(2)
15 N-pyCo(DH) ₂ Br (2)	212.5(2.0)	485(7)	0.72(2)	396	328	-89	88°	2°	-372	-73(2)
$^{15}N-pyCo(DH)_2CH_3$ (3)	265(4)	488(10)	0.96(4)	430	423	-58	90°	b	-324	-36(7)
15 N-anilCo(DH) ₂ Cl (4) ^c										
Site 1	-7.0(2.0)	175(5)	0.19(5)	75	4	-100	89(2)°	3(1)°	-353	-63(3)
Site 2	-8.0(2.0)	169(5)	0.28(5)	69	8	-100	89(2)°	$6(1)^{\circ}$	-353	-63(3)

^{*a* 15}N chemical shifts are referenced with respect to liquid NH₃ at 20 °C ($\delta_{iso} = 0.0$ ppm) by setting the chemical shift of the ¹⁵N ammonium resonance of ¹⁵NH₄NO₃ to 23.8 ppm. ^{*b*} α^{C} not determined, since $\delta_{11} \simeq \delta_{22}$. ^{*c*} Two magnetically nonequivalent sites with similar isotropic chemical shifts; δ_{33} can be determined precisely, but there is some overlap due to different values of δ_{11} and δ_{22} for each site, making exact determination of these parameters difficult.

Figure 4. Experimental and calculated ¹⁵N NMR spectra of stationary samples of ¹⁵N-enriched anilCo(DH)₂Cl at (A) 4.7 T and (B) 9.4 T.

a noticeable effect on the spectral simulations, but given the sign of the previously determined *J*-couplings it is assumed that the sign of ${}^{1}J({}^{59}\text{Co},{}^{15}\text{N})$ in **3** is negative.

D. Nitrogen-15 NMR of Stationary Samples of ¹⁵N-Enriched $anilCo(DH)_2Cl$ (4). X-ray diffraction indicates that there are two crystallographically nonequivalent molecules in the unit cell of 4.30 Indeed, it was impossible to simulate the experimental spectrum shown in Figure 4 assuming one unique site. While the two nitrogen nuclei have very similar isotropic chemical shifts, there are differences in the principal components of the CS tensors. The values of δ_{33} are effectively identical, accounting for the well-defined splittings visible in the low-frequency region of the static spectrum. The high-frequency regions of the ¹⁵N powder patterns at both applied magnetic fields do not display well-defined splittings, due to an offset in the powder pattern of the two nonequivalent ¹⁵N nuclei in the regions corresponding to δ_{11} and δ_{22} . This hampers the precise determination of δ_{11} , δ_{22} , and α^{C} ; nonetheless, clearly visible splittings in the δ_{33} regions of the spectra allow for determination of the nitrogen CS tensor orientations. Experimental information on the orientation of the nitrogen CS tensor in uncoordinated aniline is not currently available; therefore, assumptions about the orientation dependence of the chemical shielding cannot be made as easily as in the cases of 1, 2, and 3. Ab initio calculations on aniline (vide infra) reveal that the span of the nitrogen CS tensor is ca. 80 ppm larger in the case of coordination of aniline to the cobalt atom.

The best-fit parameters defining the nitrogen CS tensor of the aniline nitrogen in **4** are given in Table 3. Spectral simulations incorporating a positive value of ${}^{1}J({}^{59}\text{Co},{}^{15}\text{N})$ result in smaller splittings in the δ_{22} and δ_{33} regions; accordingly, the value of ${}^{1}J({}^{59}\text{Co},{}^{15}\text{N})$ is negative as in the previous examples. The polar angles $\beta^{C} = 89^{\circ}$ and $\alpha^{C} = 3^{\circ}-6^{\circ}$ reveal that δ_{11} is

Figure 5. Nitrogen chemical shielding tensor orientations as determined by experimental methods and GIAO calculations in (A) ^{15}N -pyCo(DH)₂-Cl, side view of the molecule, with the pyridine ring perpendicular to the page, and (B) ^{15}N -pyCo(DH)₂CH₃, side view of the molecule, with the pyridine ring in the plane of the paper.

aligned approximately along the direction of the Co, N bond, with δ_{33} approximately perpendicular to the dipolar vector. It is likely that either δ_{22} or δ_{33} bisects the H–N–H bond angle. Ab initio calculations support this hypothesis, and are presented in the following section.

3. Ab Initio Chemical Shielding Calculations. In this section, comparison is made between experimental and calculated CS tensors in compounds **1**, **3**, and **4** (Table 4). The calculations correctly predict a negative coordination shift (i.e., increased nitrogen shielding upon coordination), and an increase in the span of the nitrogen CS tensor for uncoordinated pyridine with respect to that in **1** and **3**. Qualitative explanations are given which account for changes in the nitrogen CS tensors upon coordination to the cobalt atom.

The RHF calculations overestimate the span of the ¹⁵N CS tensor in 1 by over 100 ppm, with most of the contribution to the span arising from the δ_{33} component, which is predicted to be ca. 75 ppm less than the experimental value (note, a more negative chemical shift principal component indicates shielding at the nitrogen nucleus along the direction of that component; conversely, a positive shift in the principal component indicates deshielding along that direction). Moreover, the nitrogen nucleus is predicted to be shielded by 43 ppm (6-31G*) and 19 ppm (6-311G*). In the B3LYP/6-311G* calculations, the span is considerably closer to the experimental value, resulting from an overestimation of δ_{33} , and a corresponding increase in δ_{iso} by ca. 70 ppm. The skews predicted by all of the calculations are in reasonable agreement with the experimental skew, confirming that the quasi-unique component is δ_{33} . Given that these calculations are conducted on large, isolated molecules using a number of approximations (given in the Experimental Section), the qualitative agreement between theory and experiment is reasonable.

The most useful features of these calculations are the predicted CS tensor orientations in the molecular frame. In the RHF calculations with both basis sets, δ_{11} is oriented 0.7° from the Co, N bond, in good agreement with the experimentally determined orientations (see Figure 5A). The most shielded component, δ_{33} , is found to lie perpendicular to the pyridine ring (88.2° with respect to the Co, N bond), in agreement with the experimentally determined CS tensor orientations in uncoordinated pyridine^{18,57} and consistent with the experimental observation of $\beta^{C} = 85^{\circ}$. This leaves δ_{22} oriented approximately in the ring plane (0.9° out of the plane). The B3LYP/6-311G*

TABLE 4: Comparison of Experimental and Calculated Nitrogen Chemical Shielding Tensors^a

	$\delta_{ m iso}(m ppm)$	Ω (ppm)	К	$\delta_{11}(\text{ppm})$	δ_{22} (ppm)	δ_{33} (ppm)
$pyCo(DH)_2Cl(1)$						
experimental	207(1)	484(2)	0.70(2)	393	320	-92
RHF/6-31G*	164	595	0.43	419	249	-177
RHF/6-311G*	188	623	0.44	453	279	-170
B3LYP/6-311G*	273	506	0.9	454	416	-52
$pyCo(DH)_2CH_3$ (3)						
experimental	265(4)	488(10)	0.97(8)	430	423	-58
RHF/6-31G*	230	542	0.72	437	360	-105
RHF/6-311G*	257	570	0.73	472	396	-98
B3LYP/6-311G*	291	533	0.75	491	423	-42
$anilCo(DH)_2Cl(4)$						
experimental	-7.0(3.0)	175(3)	0.18(2)	75	4	-100
RHF/6-31G*	-59	224	-0.34	65	-84	-159
RHF/6-311G*	-51	230	-0.33	77	-77	-154
B3LYP/6-311G*	40	73	0.58	70	54	-3
pyridine						
experimental ^b	299	782	0.44	633	414	-149
experimental ^c	319	622	0.46	582	415	-40
RHF/6-31G*	321	694	0.40	623	413	-72
RHF/6-311G*	353	738	0.39	674	448	-64
B3LYP/6-31G*	311	657	0.35	601	388	-56
B3LYP/6-311G*	352	720	0.34	671	435	-49
LORG/[3s3p1d/2s] ^d	338	691	0.40	638	430	-54
IGLO/[5s4p1d/3s1p] ^e	349	721	0.43	658	451	-63
SOLO/[3s3p1d/2s] ^d	317	664	0.30	616	383	-49
aniline						
experimental ^f	58.2					
RHF/6-31G*	26	76	0.79	54	46	-21
RHF/6-311G*	35	91	0.86	67	61	-24
B3LYP/6-31G*	46	82	0.87	75	70	-7
B3LYP/6-311G*	56	103	0.92	92	87	-11

^{*a*} Absolute chemical shieldings, σ , were converted to the ¹⁵N chemical shift scale relative to liquid NH₃ (20 °C) with the formula $\delta = \sigma_{ref} - \sigma$, where $\sigma_{ref} = 244.6$ ppm, the absolute chemical shielding of NH₃ at 20 °C.⁴⁶ ^{*b*} Data from ref 57. ^{*c*} Data from ref 18. ^{*d*} Data from ref 75. ^{*e*} Data from ref 77b. ^{*f*} Data from ref 66.

calculation, however, predicts that δ_{22} is 0.7° from the Co, N bond, and δ_{11} at 0.7° with respect to the pyridine ring, corresponding to polar angles of $\beta^{C} \simeq 90^{\circ}$ and $\alpha^{C} \simeq 90^{\circ}$, with δ_{33} still perpendicular to the pyridine ring plane. Spectral simulations were attempted with this relative tensor orientation without success, suggesting that the hybrid DFT method used here fails to correctly predict the nitrogen CS tensor orientations. This is not as serious as it might seem as the observed span of the nitrogen CS tensor is 484 ppm and δ_{11} and δ_{22} differ by only 73 ppm.

The best correspondence between theory and experiment is found for **3**. All calculations come close to predicting the span, skew, and isotropic shifts, with RHF and DFT calculations underestimating and overestimating δ_{33} , respectively. RHF theory predicts that δ_{11} is along the Co, N bond, with δ_{33} perpendicular to the pyridine ring plane, and δ_{22} in the plane of the ring (Figure 5B), in excellent agreement with the experimental results. The calculations also correctly predict the overall deshielding of the nitrogen nucleus in **3** compared to **1**.

To qualitatively explain the nitrogen CS tensor orientations in **1** and **3**, it is worthwhile to consider the shielding in uncoordinated pyridine. Ab initio nitrogen CS tensors in pyridine are in very good agreement with the recently reported experimental values of Grant and co-workers.¹⁸ There is also close agreement with the nitrogen CS tensors of pyridine calculated using IGLO and LORG methods (Table 4).⁷⁵ All of the calculations predict a larger span and deshielding of the uncoordinated pyridine nitrogen relative to nitrogen in **1** and **3**, in accordance with experimental observations. The predicted orientation of the nitrogen CS tensor in pyridine has δ_{33} perpendicular to the ring plane, and δ_{22} and δ_{11} in the plane with δ_{22} bisecting the ring (in the direction of the lone pair of

Figure 6. Nitrogen CS tensor components and associated molecular orbitals in pyridine and pyridine-substituted cobaloximes. See text for discussion.

electrons at nitrogen, Figure 6). Upon coordination, the least shielded component is now in the direction of the nitrogen lone pair, with δ_{22} perpendicular to the Co, N bond and in the ring plane. The orientation of δ_{33} remains perpendicular to the

pyridine ring, since there are no low-lying unoccupied states contributing to paramagnetic deshielding in this direction.

Grant and co-workers¹⁸ have explained the nitrogen shielding tensor orientation in pyridine by considering contributions to chemical shielding from mixing of the ground- and excitedstate molecular orbitals in Ramsey's equations for chemical shielding.⁷⁶ The paramagnetic contribution to shielding (i.e., normally deshielding) is inversely proportional to the energy difference between the ground- and appropriate excited-state orbitals; thus, the smaller the energy difference, the larger the deshielding at the nucleus. The principal components of the CS tensor are oriented perpendicular to the mixing molecular orbitals (vide infra), due to the nature of the angular momentum operators in Ramsey's equation.

In pyridine, the nitrogen nucleus is least shielded in the plane of the ring perpendicular to the nitrogen lone pair (Figure 6). This is due to paramagnetic deshielding dominated by contributions from low-energy $n \rightarrow \pi^*$ mixing (mixing orbitals are highlighted in the figure). Conversely, δ_{33} is oriented perpendicular to the ring plane, since there are no low-lying unoccupied states contributing to paramagnetic deshielding in this direction. Upon coordination to cobalt, the nitrogen lone pair occupies a high-energy bonding orbital with the cobalt nucleus. The absence of low-energy $n \rightarrow \pi^*$ mixing means that the nitrogen nucleus is generally more shielded in 1 (or 2, 3) than in pyridine. The nitrogen nucleus is deshielded along the direction of the Co, N bond. Here, δ_{11} is dominated by contributions from $\sigma_{N-C} \rightarrow$ π^* mixing. The δ_{22} component is oriented in the plane of the ring perpendicular to the Co, N bond, and is dominated by $\sigma_{\rm N-Co} \rightarrow \pi^*$ mixing, which is slightly higher in energy than the corresponding $\sigma_{N-C} \rightarrow \pi^*$ mixing.

Calculations for **4** yield NMR parameters which are somewhat further from experimental results than those for **1** and **3**. RHF calculations overestimate the span by more than 55 ppm, and the DFT calculation underestimates the span by 102 ppm. In the former case, the calculated δ_{22} and δ_{33} components are much less than the experimental values, accounting for the larger span and increased nitrogen shielding. The DFT calculation suffers from an overestimation of δ_{11} , resulting in the reduced span. None of the calculations predict the observed skew accurately.

RHF calculations once again predict a CS tensor orientation in good agreement with experimental data, with δ_{11} oriented 5.4° from the Co, N bond (Figure 7). The δ_{33} component is predicted to bisect the H–N–H bond angle of the aniline moiety, and lies perpendicular to the Co, N bond. The B3LYP calculation predicts that δ_{11} is oriented 20° from the Co, N bond, with the orientations of the remaining components having little correspondence to the local symmetry in the molecule. The agreement between RHF calculations and experimental results suggests that the former orientations are the most probable.

At this time, there is no experimental CS tensor information for aniline, though the nitrogen shielding tensor has been calculated using IGLO methods.⁷⁷ Our calculations reveal that δ_{11} is approximately perpendicular to the ring plane (Figure 8). All calculations predict that δ_{22} is 2.1° out of the aromatic plane at an angle (δ_{22} -N-C) of 90°. Finally, δ_{33} bisects the H-N-H bond angle, and is oriented at an angle δ_{33} -N-C = 175°. According to both RHF and DFT calculations, the nitrogen CS tensor of aniline changes only slightly upon coordination in a cobaloxime complex, with δ_{11} along the direction of the Co, N bond.

A qualitative explanation of the CS tensor orientations in aniline and in 4 is somewhat more complicated than for pyridine, 1 and 3, since there is not an orthogonal arrangement of

Figure 7. Nitrogen chemical shielding tensor orientation in ${}^{15}N$ -anilCo(DH)₂Cl as determined by experimental methods and GIAO calculations. Top view of the molecule, with the dimethylglyoxime moieties in the plane of the page.

Figure 8. Nitrogen chemical shielding tensor orientations in (A) ammonia, (B), (C) aniline, and (D) aniline-substituted cobaloxime. See text for discussion.

molecular orbitals and CS tensor principal components. As a starting point, it is useful to consider ammonia (chemical shielding components: $\sigma_{11} = 237.7$ ppm and $\sigma_{22} = \sigma_{33} = 278.0$ ppm).⁷⁸ The least shielded component, σ_{11} , is along the direction of the lone pair, and is dominated by high-energy $\sigma \rightarrow \sigma^*$ mixing (Figure 8A). The low-energy $n \rightarrow \pi^*$ mixing, which results in large paramagnetic shielding contributions, is absent in ammonia, since the p-orbital character is very low. As a result, the nitrogen nucleus in ammonia is quite shielded. There is even less of a paramagnetic shielding contribution perpendicular to the lone pair, with σ_{22} and σ_{33} dominated by higher-energy $n \rightarrow \sigma^*$ mixing. In aniline, there is increased p-character at the nitrogen atom, since it is bound to an aromatic carbon (Figure 8B,C). As a result, the shielding at the nitrogen nucleus is governed by mixing of occupied states with virtual π^* states,

hence, the nitrogen nucleus of aniline is deshielded compared to that of ammonia. The magnitudes of δ_{11} in aniline and **4** are very similar; however, in **4**, δ_{11} is oriented along the direction of the Co, N bond (Figure 8D). Magnetic shielding increases perpendicular to the Co, N bond, with reductions in both δ_{22} and δ_{33} . This is due to the presence of high-energy $\sigma_{N-Co} \rightarrow \pi^*$ mixing, which accounts for the decreased isotropic shift in **4** relative to unbound aniline.

Conclusions

The analysis of solid-state ¹⁵N NMR spectra of both spinning and stationary samples of the ¹⁵N-enriched cobaloximes has provided much information about the ⁵⁹Co, ¹⁵N spin pair in these complexes. The magnitudes and signs of four previously unreported ${}^{1}J({}^{59}Co, {}^{15}N)$ have been determined through combined analyses of ¹⁵N MAS NMR spectra influenced by residual dipolar coupling and ¹⁵N NMR spectra of stationary samples exhibiting splittings resulting from direct dipolar coupling to the ⁵⁹Co nucleus. The magnitudes of the ⁵⁹Co quadrupole coupling constants, asymmetry parameters, and the orientations of the ⁵⁹Co EFG tensors are also reported. The orientations and chemical shift parameters of four ¹⁵N CS tensors have been determined, providing one of the first reports of CS tensor orientations for nitrogen nuclei directly bound to a transition metal center. The NMR parameters elicited from these spectra are very dependent upon the local and overall molecular geometry. The pyridine and aniline nitrogen nuclei experience greater shielding upon coordination to the cobalt center. Comparison of experimental CS tensors and those obtained via ab initio methods aids in confirming CS tensor orientations in the cobaloximes. There is a considerable amount of disparity between the experimental and theoretical CS principal components; nonetheless, the qualitative predictions made by the ab initio methods are in agreement with our experimental observations.

The acquisition of solid-state NMR spectra of a spin-1/2 nucleus coupled to a quadrupolar nucleus demonstrates that much information can be gained from such spectra that cannot be realized through analogous solution NMR experiments. It is hoped that this paper will encourage more work in determining NMR parameters from these solid-state methods, since they are capable of evoking detailed information on complex molecules.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for funding (REW) and the Atlantic Region Magnetic Resonance Centre (ARMRC) for the solid-state NMR facilities. R.W.S. thanks the Killam Trust and Walter C. Sumner Foundation for graduate fellowships. R.E.W. thanks the Canada Council for a Killam Research Fellowship. We are very grateful to Dr. Klaus Eichele for the development of the WSOLIDS software package, which is used extensively in our laboratory. Dr. Mike Lumsden and Ms. Myrlene Gee are thanked for acquiring some of the NMR spectra presented herein. We also thank Mr. Guy Bernard, Dr. Scott Kroeker, and Mr. David Bryce for their many helpful comments. Ms. Elinor Cameron is also given thanks for many crystal structure database searches.

References and Notes

(3) (a) Hill, H. A. O.; Morallee, K. G. J. Chem. Soc. (A) 1969, 554.
(b) Trogler, W. C.; Stewart, R. C.; Epps, L. A.; Marzilli, L. G. Inorg. Chem. 1974, 13, 1564. (c) Gaus, P. L.; Crumbliss, A. L. Inorg. Chem. 1976, 15, 739. (d) Stewart, R. C.; Marzilli, L. G. Inorg. Chem. 1977, 16, 424. (e) Cartano, A. V.; Ingraham, L. L. Bioinorg. Chem. 1977, 7, 351. (f) Kargol, J. A.; Crecely, R. W.; Burmeister, J. L.; Toscano, P. J.; Marzilli, L. G. Inorg. Chim. Acta 1980, 40, 79. (g) Huet, J.; Gaudemer, A. Org. Magn. Reson. 1982, 20, 4. (h) Tavagnacco, C.; Balducci, G.; Costa, G.; Täschler, K.; von Philipsborn, W. Helv. Chim. Acta 1990, 73, 1469. (i) Brown, K. L.; Satyanarayana, S. J. Am. Chem. Soc. 1992, 114, 5674. (j) Moore, S. J.; Iwamoto, M.; Marzilli, L. G. Inorg. Chem. 1988, 37, 1169.

(4) Some recent solution NMR studies on cobalamins and cobalamides are (a) Brown, K. L.; Zou, X.; Webb, B. M. *Inorg. Chem.* **1994**, *33*, 4189. (b) Brown, K. L.; Zou, X. *Magn. Reson. Chem.* **1997**, *35*, 889. (c) Polson, S. M.; Cini, R.; Pifferi, C.; Marzilli, L. G. *Inorg. Chem.* **1997**, *36*, 314. (d) Kofod, P.; Harris, P.; Larsen, S. *Inorg. Chem.* **1997**, *36*, 2258. (e) Marzilli, L. G.; Polson, S. M.; Hansen, L.; Moore, S. J.; Marzilli, P. A. *Inorg. Chem.* **1997**, *36*, 3854.

(5) (a) Schurko, R. W.; Wasylishen, R. E.; Nelson, J. H. J. Phys. Chem.
 1996, 100, 8057. (b) Schurko, R. W.; Wasylishen, R. E.; Moore, S. J.;
 Marzilli, L. G.; Nelson, J. H. Can. J. Chem. 1999, 77, 1973.

(6) Medek, A.; Frydman, V.; Frydman, L. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 14237.

(7) Asaro, F.; Gobetto, R.; Liguori, L.; Pellizer, G. Chem. Phys. Lett. 1999, 300, 414.

(8) LaRossa, R. A.; Brown, T. L. J. Am. Chem. Soc. 1974, 96, 2072.
(9) Power, W. P.; Kirby, C. W.; Taylor, N. J. J. Am. Chem. Soc. 1998, 120, 9428.

(10) Harris, R. K.; Olivieri, A. C. Prog. NMR Spectrosc. 1992, 24, 435.

(11) (a) Harris, R. K. In *Encyclopedia of Nuclear Magnetic Resonance*; Grant, D. M., Harris, R. K., Eds.; John Wiley & Sons: Chichester, U.K., 1996; pp 2909–2914. (b) McDowell, C. A. In *Encyclopedia of Nuclear Magnetic Resonance*; Grant, D. M., Harris, R. K., Eds.; John Wiley & Sons: Chichester, U.K., 1996; pp 2901–2908.

(12) Grondona, P.; Olivieri, A. C. Concepts Magn. Reson. 1993, 5, 319.

(13) Yamasaki, A.; Miyakoshi, Y.; Fujita, M.; Yoshikawa, Y.; Yamatara, H. J. Inorg. Nucl. Chem. **1979**, 41, 473.

(14) (a) Bell, L. K.; Mingos, D. M. P.; Tew, D. G.; Larkworthy, L. F.;
Sandell, B.; Povey, D. C.; Mason, J. J. Chem. Soc. Chem. Commun. 1983, 125. (b) Bultitude, J.; Larkworthy, L. F.; Mason, J.; Povey, D. C.; Sandell, B. Inorg. Chem. 1984, 23, 3629.

(15) Rentsch, G. H.; Kozminski, W.; von Philipsborn, W.; Asaro, F.; Pellizer, G. Magn. Reson. Chem. 1997, 35, 904.

(16) Bose, K. S.; Abbott, E. H. Inorg. Chem. 1977, 16, 3190.

(17) Wasylishen, R. E.; Curtis, R. D.; Eichele, K.; Lumsden, M. D.; Penner, G. H.; Power, W. P.; Wu, G. In *Nuclear Magnetic Shieldings and Molecular Structure* – NATO ASI Series Vol. 386; Tossell, J. A., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993; pp 297– 314.

(18) Solum, M. S.; Altmann, K. L.; Strohmeier, M.; Berges, D. A.; Zhang, Y.; Facelli, J. C.; Pugmire, R. J.; Grant, D. M. J. Am. Chem. Soc. **1997**, *119*, 9804.

(19) Mason, J. In *Nuclear Magnetic Shieldings and Molecular Structure* – NATO ASI Series Vol. 386; Tossell, J. A., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993; pp 449–471.

(20) Duncan, T. M. In *Principal Components of Chemical Shift Tensors: A Compilation*, - 2nd ed.; Farragut Press: Chicago, 1994.

(21) Mason, J.; Mingos, D. M. P.; Schaefer, J.; Sherman, D.; Stejskal, E. O. J. Chem. Soc. Chem. Commun. 1985, 444.

(22) Santos, R. A.; Chien, W.-J.; Harbison, G. S.; McCurry, J. D.; Roberts, J. E. J. Magn. Reson. 1989, 84, 357.

(23) Groombridge, C. J.; Larkworthy, L. F.; Marécaux, A.; Povey, D. C.; Smith, G. W.; Mason, J. J. Chem. Soc., Dalton Trans. **1992**, 3125.

(24) Groombridge, C. J.; Larkworthy, L. F.; Mason, J. Inorg. Chem. 1993, 32, 379.

(25) Strohmeier, M.; Orendt, A. M.; Facelli, J. C.; Solum, M. S.; Pugmire, R. J.; Parry, R. W.; Grant, D. M. J. Am. Chem. Soc. **1997**, *119*, 7114.

(26) Salzmann, R.; Wojdelski, M.; McMahon, M.; Havlin, R. H.; Oldfield, E. J. Am. Chem. Soc. **1998**, 120, 1349.

(27) Godbout, N.; Sanders, L. K.; Salzmann, R.; Havlin, R. H.; Wojdelski, M.; Oldfield, E. J. Am. Chem. Soc. **1999**, *121*, 3829.

(28) de Dios, A. C.; Roach, J. L. J. Phys. Chem. A 1999, 103, 3062.

(29) Trogler, W. C.; Stewart, R. C.; Epps, L. A.; Marzilli, L. G. Inorg. Chem. 1974, 13, 1564.

(30) Solans, X.; Font-Bardia, M.; López, C.; Alvarez, S. Acta Crystallogr. 1996, C52, 63.

- (31) Jameson, D. J.; Grzybowski, J. J.; Hammels, D. E.; Castellano, R. K.; Hoke, M. E.; Freed, K.; Basquill, S.; Mendel, A.; Shoemaker, W. J. J. Chem. Educ. 1998, 75, 447 and references therein.
- (32) Hayashi, S.; Hayamizu, K. Bull. Chem. Soc. Jpn. 1991, 64, 688. (33) Witanowski, M.; Stefaniak, L.; Webb, G. A. Ann. Rep. NMR Spectrosc. 1993, 25, 1.
- (34) Wu, G.; Wasylishen, R. E. J. Phys. Chem. 1993, 97, 7863 and references therein.
- (35) Alderman, D. W.; Solum, M. S.; Grant, D. M. J. Chem. Phys. 1986, 84, 3717.
- (36) Gaussian 94, Revision B.2; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.;
- Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrewski, V. G.; Ortiz, J. V.; Foresman, J. B.;
- Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng,
- C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E.
- S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.;
- Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A., Gaussian, Inc., Pittsburgh, PA, 1995
- (37) López, C.; Alvarez, S.; Aguilo, M.; Solans, X.; Font-Altaba, M. Inorg. Chim. Acta 1987, 127, 153.
- (38) Bigotto, A.; Zangrando, E.; Randaccio, L. J. Chem. Soc., Dalton Trans. 1976, 96.
- (39) Lister, D. G.; Tyler, J. K. J. Chem. Soc. Chem. Commun. 1966, 152
- (40) Bak, B.; Hansen-Nygaard, L.; Rastrup-Andersen, J. J. Mol. Spectrosc. 1958. 2. 361.
- (41) (a) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251. (b) Ditchfield, R. Mol. Phys. 1974, 27, 789.
- (42) (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. (b) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
- (43) (a) Chesnut, D. B.; Moore, K. D. J. Comput. Chem. 1989, 10, 648. (b) Chesnut, D. B.; Rusiloski, B. E.; Moore, K. D.; Egolf, D. A. J. Comput. Chem. 1993, 14, 1364.
 - (44) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
 - (45) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
- (46) Jameson, C. J.; Jameson, A. K.; Oppusunggu, D.; Wille, S.; Burrell, P. M.; Mason, J. J. Chem. Phys. 1981, 74, 81.
- (47) Menger, E. M.; Veeman, W. S. J. Magn. Reson. 1982, 46, 257. (48) Olivieri, A. C.; Frydman, L.; Diaz, L. E. J. Magn. Reson. 1987,
- 75. 50.
- (49) Apperly, D. C.; Haiping, B.; Harris, R. K. Mol. Phys. 1989, 68, 1277.
- (50) Alarcón, S. H.; Olivieri, A. C.; Harris, R. K. Solid State Nucl. Magn. Reson., 1993, 2, 325.
- (51) Olivieri, A. C. J. Magn. Reson. 1989, 81, 201.
- (52) Tutunjian, P.; Waugh, J. S. J. Magn. Reson. 1982, 49, 155.

- 1996; pp 1685-1695 (54) Olivieri, A. C. Magn. Reson. Chem. 1996, 34, 365.
- (55) Weil, J. A.; Buch, T.; Clapp, J. E. Adv. Magn. Reson. 1973, 6, 183.
- (56) (a) Kroeker, S.; Hanna, J. V.; Wasylishen, R. E.; Ainscough, E. W.; Brodie, A. M. J. Magn. Reson. 1998, 135, 208 and references therein.
- (b) Bryce, D. L.; Wasylishen, R. E. J. Am. Chem. Soc., in press.
- (57) Schweitzer, D.; Speiss, H. W. J. Magn. Reson. 1974, 15, 529. (58) Geremia, S.; Dreos, R.; Randaccio, L.; Tauzher, G. Inorg. Chim. Acta 1994, 216, 125.
- (59) Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coord. Chem. Rev. 1973, 10, 335.
- (60) Ramsey, N. F. Phys. Rev. 1953, 91, 303.
- (61) (a) Kunz, R. W. Helv. Chim. Acta 1980, 63, 2054. (b) Eichele, K.; Wasylishen, R. E. Inorg. Chem. 1994, 33, 2766.
- (62) Lumsden, M. D.; Wasylishen, R. E.; Britten, J. F. J. Phys. Chem. 1995, 99, 16602 and references therein.
- (63) Jameson, C. J. Multinuclear NMR; Mason, J., Ed.; Plenum Press: New York, 1987; pp 89-131.
- (64) Dalling, D. K.; Gutowsky, H. S. J. Chem. Phys. 1971, 55, 4959. (65) Dailey, B. P.; Townes, C. H. J. Chem. Phys. 1955, 23, 118.
- (66) Lichter, R. L.; Roberts, J. D. Org. Magn. Reson. 1974, 6, 636.
- (67) (a) Kennedy, M. A.; Ellis, P. D. Concepts in Magn. Reson. 1989,
- 1, 35. (b) Kennedy, M. A.; Ellis, P. D. Concepts in Magn. Reson. 1989, 1, 109.
- (68) Oas, T. G.; Hartzell, C. J.; McMahon, T. J.; Drobny, G. P.; Dahlquist, F. W. J. Am. Chem. Soc. 1987, 109, 5956.
- (69) Harris, R. K.; Packer, K. J.; Thayer, A. M. J. Magn. Reson. 1985, 62, 284.
 - (70) Zilm, K. W.; Grant, D. M. J. Am. Chem. Soc. 1981, 103, 2913.
- (71) VanderHart, D. L.; Gutowsky, H. S. J. Chem. Phys. 1968, 49, 261.
- (72) (a) Eichele, K.; Wasylishen, R. E. J. Magn. Reson. A 1994, 106, 46. (b) Power, W. P.; Wasylishen, R. E.; Curtis, R. D. Can. J. Chem. 1989, 67, 454. (c) Wasylishen, R. E.; Penner, G. H.; Power, W. P.; Curtis, R. D. J. Am. Chem. Soc. **1989**, 111, 6082. (d) Eichele, K.; Lumsden, M. D.; Wasylishen, R. E. J. Phys. Chem. 1993, 97, 8909. (e) Wasylishen, R. E.; Wright, K. C.; Eichele, K.; Cameron, T. S. Inorg. Chem. 1994, 33, 407. (f) Wu, G.; Lumsden, M. D.; Ossenkamp, G. C.; Eichele, K.; Wasylishen, R.
- E. J. Phys. Chem. 1995, 99, 15806. (73) (a) Casabella, P. A. J. Chem. Phys. 1964, 41, 3793. (b) VanderHart,
- D. L.; Gutowsky, H. S.; Farrar, T. C. J. Am. Chem. Soc. 1967, 89, 5056.
 - (74) Mason, J. Solid State Nucl. Magn. Reson. 1993, 2, 285.
 - (75) Bouman, T. D.; Hansen, A. E. Chem. Phys. Lett. 1992, 197, 59.
 - (76) Ramsey, N. F. Phys. Rev. 1950, 78, 699.
- (77) (a) Schindler, M. J. Am. Chem. Soc. 1987, 109, 5950. (b) Schindler, M. Magn. Reson. Chem. 1988, 26, 394.
- (78) Kukolich, S. G. J. Am. Chem. Soc. 1975, 97, 5704.