NO₃ Yield in the $O(^{3}P)$ + BrONO₂ Reaction

James B. Burkholder*

Aeronomy Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80303

Received: December 7, 1999; In Final Form: April 3, 2000

The NO₃ product yield in the reaction $O(^{3}P) + BrONO_{2}$ was measured to be >0.85 at 298 K. Yield measurements were made using the technique of laser-pulsed photolysis with long-path transient absorption detection of NO₃. $O(^{3}P)$ atoms were produced in the presence of BrONO₂ by the 248-nm photolysis of O₃ in a N₂ bath gas. The photolysis laser fluence was calibrated using N₂O₅ as an actinometer.

Introduction

Soller et al.¹ have recently reported rate coefficient measurements for the reaction

$$O(^{3}P) + BrONO_{2} \rightarrow Products$$
 (1)

where $k_1(T) = 1.99 \times 10^{-11} \exp(205/T) \text{ cm}^3$ molecule $^{-1} \text{ s}^{-1}$. As described by Soller et al., reaction 1 represents a significant loss process relative to photolysis for BrONO₂ in the upper stratosphere. Reaction 1 is currently not included in recommendations for atmospheric modeling.² A number of energetically accessible product channels are available for reaction 1

$$\Delta H (\text{kcal mol}^{-1})$$

$$O(^{3}\text{P}) + \text{BrONO}_{2} \rightarrow \text{BrNO} + \text{O}_{3} \qquad -17 \qquad (1a)$$

$$\rightarrow \text{BrO} + \text{NO} + \text{O}_{2} \qquad -19 \qquad (1b)$$

$$\rightarrow \text{BrO} + \text{NO}_{3} \qquad -23 \qquad (1c)$$

$$\rightarrow \text{OBrO} + \text{NO}_{2} \qquad -26 \qquad (1d)$$

$$\rightarrow \text{Br} + \text{O}_{2} + \text{NO}_{2} \qquad -36 \qquad (1e)$$

$$\rightarrow$$
 BrOO + NO₂ -37 (1f)

$$\rightarrow$$
 BrONO + O₂ -45 (1g)

$$\Rightarrow \operatorname{PrNO} \pm \operatorname{O} \qquad -54 \qquad (1b)$$

$$\Rightarrow BrNO_2 + O_2 \qquad -54 \qquad (1h)$$

where the thermochemical data used to calculate ΔH were taken from DeMore et al.² and Chase³ (BrOO and OBrO). This list is based on energetics alone and includes reaction products that may not correlate with the reactants. To our knowledge, there are no studies of the products of reaction 1 reported in the literature.

The NO₃ yield in the ClONO₂ reaction

$$O(^{3}P) + CIONO_{2} \rightarrow CIO + NO_{3}$$
(2)

has been measured to be near unity.⁴ Therefore, by analogy, we expect channel (1c), $BrO + NO_3$, to be a major product

channel for reaction 1. In this study, we have examined the products of reaction 1 using the technique of laser pulsed photolysis with long-path transient absorption detection of NO₃.

Experimental Section

The NO₃ product yield from reaction 1 was measured by producing a known concentration of O atoms via the pulsedlaser photolysis of O₃ in the presence of BrONO₂. The NO₃ temporal profile was measured quantitatively following the photolysis pulse by long-path (92-cm) diode laser transient absorption at 662 nm. The experimental apparatus and methods used are similar to those used in our recent study of the NO₃ product yield for reaction 2.^{4,5} Therefore, only a brief overview of the details pertinent to the present study is provided below.

The concentrations of BrONO₂ and O₃ were measured directly in the reactor/absorption cell by UV absorption. Absorption measurements were made over the range 200–365 nm using a D₂ lamp and a 0.5-m spectrometer equipped with a diode array detector. BrONO₂ and O₃ concentrations were determined by fitting the measured spectrum using reference spectra recorded separately and literature cross sections.^{2,6} Estimates of the possible Br₂O and Br₂ impurities in the BrONO₂ sample were also made from this analysis, with cross sections taken from Orlando and Burkholder⁷ for Br₂O and Maric et al.⁸ for Br₂.

A diode laser was used to monitor the formation of NO₃ by absorption following the photolysis pulse. The diode laser was nominally operated at the peak of the NO₃ absorption spectrum [662 nm, $\sigma(NO_3) = 2.23 \times 10^{-17} \text{ cm}^{2.9}$] and operated in single mode. The wavelength of the diode laser was stable to better than ± 0.01 nm during all of the measurements. The intensity of the diode laser was stable to 2 parts in 10⁵ over the duration of the measurements, 10 ms. The photolysis and diode laser beams co-propagated the full length of the reactor/absorption cell (92 cm). NO₃ absorption measurements were made by first recording the intensity of the diode laser before the photolysis laser pulse, taken to be I_0 . The diode laser intensity after the photolysis laser pulse, I_t , was then used with I_0 to calculate the absorbance $[A = -\ln(I_t/I_0)]$, as a function of time. In this system, NO₃ is the only species with significant absorption at 662 nm so that the calculated absorbance can be directly related to the NO₃ concentration.

Only a small photolysis laser fluence (in the reactor) was desired (i.e., low radical concentrations) to minimize secondary

10.1021/jp9942926 This article not subject to U.S. Copyright. Published 2000 by the American Chemical Society Published on Web 07/01/2000

^{*} Correspondence should be sent to: James Burkholder, NOAA R/AL2, 325 Broadway, Boulder, CO 80303. E-mail: burk@al.noaa.gov.

chemistry of the photolysis products. This was achieved by operating the photolysis laser at the minimum high voltage setting along with stacked neutral density filters (OD \sim 1) in the beam path. The laser fluence was measured to be \sim 9 × 10¹⁴ photon cm⁻² (see calibration method below), which kept the fractions of O₃ and BrONO₂ photolyzed to less than 1% and 0.1%, respectively. The photolysis wavelength, 248 nm, was chosen over other possible excimer laser wavelengths (193, 308, and 351 nm) to minimize the amount of BrONO₂ photolysis relative to O₃.

 $O(^{1}D)$ and $O(^{3}P)$ atoms were produced by the 248-nm photolysis of O_{3}

$$O_3 + h\nu \rightarrow O(^1D) + O_2 \tag{3a}$$

$$\rightarrow O(^{3}P) + O_{2}$$
 (3b)

The O(¹D) atoms were quenched to ground-state O(³P) atoms within the first 0.1 μ s by 100 Torr of N₂ bath gas

$$O(^{1}D) + N_{2} \rightarrow O(^{3}P) + N_{2}$$

$$(4)$$

where $k_4 = 2.6 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at 298 K.² Therefore, every photon absorbed by O₃ produced a groundstate O atom on a time scale faster than the subsequent O atom chemistry of interest.

The data used to determine the NO₃ yield in reaction 1 were acquired as follows. A D₂ lamp spectrum, I_0 , was measured with only N₂ flowing through the reactor/absorption cell. O₃ and BrONO₂ were added to the N₂ flow, and a second spectrum, I, was recorded. The intensity of the diode laser beam exiting the reactor was measured. The photolysis laser was fired, and the diode laser intensity was recorded over the next 4 ms. Typically, 5–20 measurements were coadded to improve the signal-to-noise ratio of the measurement. The concentrations of O₃ and BrONO₂ were remeasured after the completion of the signal averaging and compared with the initial values. The concentrations typically agreed to better than 5%.

Laser Fluence Calibration. Determination of the NO₃ yield in reaction 1 requires an accurate determination of the initial O atom concentration, $[O]_0$. This initial O atom concentration was determined from the photolysis laser fluence and the concentration of ozone, $[O_3]$. The O₃ concentration was measured directly with the diode array spectrometer during the yield measurements. As used in our previous studies,^{4,10} N₂O₅ photolysis

$$N_2O_5 + h\nu \rightarrow NO_2 + NO_3 \tag{5}$$

with NO₃ detection (as described above) was used for the laser fluence calibration measurements. The N₂O₅ actinometer was chosen to enable both the calibration and kinetic measurements to detect the same species, NO₃. This approach minimizes systematic errors in the calibration measurements due to such things as uncertainties in the NO₃ cross section.

The excimer laser fluence, LF in units of photon cm⁻², was determined from the slope of a plot of $[NO_3]$ vs $[N_2O_5]$

$$LF = [NO_3] / \{ [N_2O_5] \sigma(N_2O_5) \Phi(NO_3) \}$$
(6)

where [NO₃] is the NO₃ concentration produced by the laser pulse and σ (N₂O₅) is the N₂O₅ absorption cross section at the photolysis wavelength (248 nm), 4.19×10^{-19} cm² molecule⁻¹. The NO₃ quantum yield, Φ (NO₃), for reaction 5 at 248 nm has been measured to be $0.80 \pm 0.10^{4,11}$ The N₂O₅ concentration was measured by UV absorption using the diode array spectrometer. Each calibration consisted of measurements using at least five different N₂O₅ concentrations within the range (0.3–3) × 10¹⁵ molecule cm⁻³ at a total pressure of 100 Torr. A small correction, <5%, was applied to the calibration data to account for attenuation of the photolysis laser beam along the length of the reactor/absorption cell.

Materials. N₂O₅ was prepared in a slow flow by reacting excess O₃, from an ozonizer, with NO₂ at atmospheric pressure. NO₂ was prepared by reacting purified NO with excess O₂, which had been passed through a molecular sieve trap at dry ice temperature. NO₂ was collected in a dry-ice-cooled trap and purified by trap-to-trap distillation in an excess O₂ flow until a pure white solid remained. The N₂O₅ was trapped and stored at 195 K. N₂O₅ was introduced into the experimental chamber by passing a small N₂ flow through the trap. The temperature of the N₂O₅ trap was varied between 253 and 268 K during the calibration measurements.

BrONO₂ was synthesized by the reaction of BrCl with ClONO₂ using the method described by Spencer and Rowland¹² and used in our previous BrONO₂ UV/vis absorption crosssection study.⁶ The BrONO₂ sample was stored in the dark at 195 K. BrONO₂ was added to the gas flow from its reservoir by flowing N₂ through the trap, which was maintained at temperatures in the range 240–250 K. BrONO₂ decomposes in the storage trap over a period of days, as indicated by the formation of Br₂. Any Br₂ that built up during the storage of the BrONO₂ sample was removed before the experiments by flowing N₂ through the trap while monitoring the UV absorption spectrum. The Br₂ impurity level was less than 5% during the NO₃ yield measurements. O₃ was stored in a silica gel trap at dry ice temperature and was introduced into the gas flow by passing a small N₂ flow through the trap.

 N_2 (UHP, 99.9995%) was used as the buffer gas. The linear gas flow velocity in the absorption cell was ${\sim}10~{\rm cm~s^{-1}}$. The reactor/absorption cell was flushed with a fresh gas mixture between laser pulses (0.08 Hz). All gases were mixed before they entered the reaction/absorption cell.

Results and Discussion

The NO₃ temporal profiles measured following photolysis of BrONO₂/O₃ gas mixtures are shown in Figure 1. The O₃ and BrONO₂ concentrations associated with each of these NO₃ profiles are given in Table 1. In general, the largest NO₃ concentrations are associated with the highest O₃ concentrations. The photolysis laser fluence used in these measurements was measured to be $(9.0 \pm 0.3) \times 10^{14}$ photon cm⁻² using the methods described in the Experimental Section and taking Φ -(NO₃) = 0.8, eq 6. The quoted error limit is the 2 σ error of the linear least-squares fit to the calibration data.

The NO₃ yield from reaction 1 was determined by fitting each of the NO₃ profiles shown in Figure 1 with the reaction mechanism outlined in Table 2. The majority of the reaction rate coefficients for the mechanism in Table 2 are well-known and were taken directly from the literature, as indicated. The exception is for the reaction

$$O + Br_2 O \rightarrow Products$$
 (7)

for which no kinetic data are available. The significance and uncertainties associated with this reaction are discussed below.

Figure 1. NO₃ concentration profiles measured (dots) following the photolysis of $BrONO_2/O_3/N_2$ gas mixtures at 298 K. The $BrONO_2$ and O₃ concentrations are given in Table 1. The solid lines represent the best fits to the data using the reaction mechanism given in Table 2, as discussed in the text.

TABLE 1: Experimental Concentrations and NO₃ Yields

$[BrONO_2]$ 10^{14} molecule cm ⁻³	$[O_3]$ 10 ¹⁴ molecule cm ⁻³	[NO ₃] yield
1.63	3.27	1.0
3.04	6.34	0.95
3.80	4.98	0.97
2.21	3.50	1.0
1.50	4.41	0.82
1.35	2.82	0.90
2.10	1.94	1.0
1.59	1.88	0.95
1.30	2.63	0.90
1.30	3.79	1.0
4.30	3.98	1.0
5.10	2.22	0.93

Also, data for the photolysis quantum yields for BrONO_2 at 248 nm

$$BrONO_2 + h\nu \rightarrow Br + NO_3$$
 (8a)

$$\rightarrow$$
 Br + NO₂ + O (8b)

$$\rightarrow$$
 BrO + NO₂ (8c)

$$\rightarrow$$
 BrO + NO + O (8d)

is limited to two recent studies.^{1,11} Harwood et al.¹¹ measured the NO₃ quantum yield (channel 8a), whereas Soller et al.¹ measured the Br (channels 8a and 8b) and O (channels 8b and 8d) atom yields. Combining the results from these two studies provides a reasonably good estimate of the quantum yields for the different channels (see Table 2). In this study, we have also performed BrONO₂ photolysis experiments (without O₃) to confirm the NO₃ quantum yield reported by Harwood et al.¹¹ and verify our methodology. In two measurements (Figure 2), we obtained an average value of $\Phi(NO_3) = 0.23$, in good agreement with the value of 0.28 ± 0.08 reported by Harwood et al.¹¹ Through an analysis of the increase in the concentration of NO₃ due to secondary chemistry (Table 2), these measure-

TABLE 2: Reaction Mechanism Used in Data Analysis

reaction	rate coefficient ^a (298 K)	quantum yield	ref
$O_3 + h\nu \rightarrow O(^1D) + O_2$	_	0.90	2
$\rightarrow O(^{3}P) + O_{2}$	_	0.10	2
$BrONO_2 + h\nu \rightarrow Br + NO_3$	_	0.28	11
\rightarrow Br + NO ₂ + O	-	0.07	1
\rightarrow BrO + NO ₂	-	0.06	b
\rightarrow BrO + NO + O	_	0.59	1
$O(^{1}D) + N_{2} \rightarrow O(^{3}P) + N_{2}$	2.6×10^{-11}		2
$O + BrONO_2 \rightarrow BrO + NO_3$	3.96×10^{-11}		1
$O + Br_2 \rightarrow BrO + Br$	1.4×10^{-11}		13
$O + O_3 \rightarrow O_2 + O_2$	8×10^{-15}		2
$O + Br_2 O \rightarrow BrO + BrO$	2×10^{-10}		see text
$Br + BrONO_2 \rightarrow Br_2 + NO_3$	6.7×10^{-11}		11
$Br + O_3 \rightarrow BrO + O_2$	1.2×10^{-12}		2
$Br + NO_3 \rightarrow BrO + NO_2$	1.6×10^{-11}		2
$Br + Br_2O \rightarrow Br_2 + BrO$	2×10^{-10}		14
$BrO + BrO \rightarrow Br_2 + O_2$	5.02×10^{-13}		2
$BrO + BrO \rightarrow Br + Br + O_2$	2.75×10^{-12}		2

^{*a*} Units of cm³ molecule⁻¹ s⁻¹. ^{*b*} Calculated (see text).

Figure 2. NO₃ concentration profiles measured (dots) following the photolysis of BrONO₂/N₂ mixtures at 298 K. The BrONO₂ concentrations used were 2.21 and 5.19×10^{14} molecule cm⁻³. The solid lines are the modeled fit (Table 2) using the photolysis laser fluence measured, as described in the text. The dashed lines represent the model using the limits for the O atom yield in BrONO₂ photolysis quoted by Soller (0.66 \pm 0.15).¹

ments also confirm the Br and O atom yields reported by Soller et al.¹ as discussed below.

In our experiments, the direct photolysis of BrONO₂ at 248 nm was unavoidable. NO₃ produced from the photolysis of BrONO₂, $[NO_3]_p$ (where subscript p is used to indicate a photolysis product), will appear instantaneously with the photolysis pulse. The contribution of $[NO_3]_p$ to the total concentration of NO₃ is determined by the $[O_3]/[BrONO_2]$ ratio and the NO₃ yield in reaction 1. The $[O_3]/[BrONO_2]$ ratio was varied between measurements and fell between 0.46 and 2.56. Therefore, the initial O atom concentration, $[O]_0$, will be between 20 and 115 times greater than $[NO_3]_p$. As shown in Figure 1, the amount of NO₃ produced by BrONO₂ photolysis is small compared to that generated through reaction 1 (the contribution from Br atom reactions is discussed below). The fact that the

concentration of NO₃ after reaction 1 has gone to completion, ~600 μ s, is significantly greater than [NO₃]_p gives us an early indication that the NO₃ yield from reaction 1 is reasonably high, as expected.

The other BrONO₂ photoproducts that need to be accounted for include BrO, Br, and O. The quantum yield for BrO radicals was not measured directly by either Harwood et al.¹¹ or Soller et al.¹ We have inferred a BrO quantum yield of 0.65 from their measurements of other species. It should be noted that BrONO₂ photolysis does not represent the only source of BrO radicals in this system. In fact, reaction 1 will most likely be the major source of BrO in our experiments. The dominant loss process for BrO radicals in our experiments is the self-reaction

$$BrO + BrO \rightarrow Br_2 + O_2$$
 (9a)

$$\rightarrow 2Br + O_2$$
 (9b)

The generation of Br atoms in reaction 9b will lead to secondary generation of NO₃ via the reaction

$$Br + BrONO_2 \rightarrow Br_2 + NO_3$$
 (10)

Harwood et al.¹¹ have shown the NO₃ yield in reaction 10 to be unity. However, reaction 9 does not greatly influence the interpretation of the NO₃ profiles in our experiments. Reaction 9 occurs on a longer time scale than reaction 1 because of the low BrO radical concentrations (reaction 9 is second-order in BrO radicals) generated and the slower rate coefficients for reaction 9 (see Table 2).

The quantum yields for Br and O atoms from BrONO₂ photolysis, 0.38 and 0.66, respectively, will lead to NO₃ formation through reactions 10 and 1. Following the same reasoning presented above for $[NO_3]_p$, the $[O]_0/[O]_p$ ratio will range from 8.8 to 49 for the $[O_3]/[BrONO_2]$ ratios used in our experiments, whereas $[O]_0/[Br]_p$ will range from 15 to 85. Therefore, the contribution of $[O]_p$ to the NO₃ signal through reaction 1 will be at most 11%. The contribution of $[Br]_p$ to the NO₃ signal through reaction 10 will depend on the NO₃ yield in reaction 1 (i.e., it would be a maximum of 7% for a NO₃ yield of one but higher if the yield is less than one). Therefore, unless the NO₃ yield in reaction 1 is significantly less than unity, the photolysis of BrONO₂ will not limit the analysis but needs to be included.

Upper limits to the Br_2 and Br_2O impurity levels in the reactor/absorption cell were determined by UV absorption. Br_2O was determined to be <0.5% of the BrONO₂ concentration. The rate coefficient for reaction 7 is not known, but the reaction is expected to be slower than the nearly gas kinetic Br atom reaction

$$Br + Br_2 O \rightarrow Br_2 + BrO \tag{11}$$

We expect the products of reaction 7 to be two BrO radicals. Therefore, the potential complication from reaction 7 is not through the secondary generation of NO₃, which would occur on a longer time scale than reaction 1, but through the consumption of O atoms. However, even if reaction 7 had a rate coefficient equal to that of reaction 11, 2×10^{-10} cm³ molecule⁻¹ s⁻¹, it would consume <3.5% of the O atoms. In analogy with Cl₂O and its rate coefficients for Cl and O atom reactions, we would expect k_7 to be about a factor of 5 smaller than k_{11} . This would make the upper limit for O atom consumption through reaction 7 negligible in our experiments. For fitting and data analysis purposes, we have taken k_7 to be equal to k_{11} .

The Br₂ impurity level was determined by UV absorption to be <5% of the BrONO₂ concentration. The reaction

$$O + Br_2 \rightarrow BrO + Br \tag{12}$$

will affect the O atom loss through reaction 1 and will also lead to rapid formation of NO₃ from the Br atom product through reaction 10. Reaction 12 will lead to <2% loss of O atoms. Fitting calculations were made assuming the maximum Br₂ impurity level.

The fitting results, NO₃ yield, are given in Table 1. The fits reproduced the measured NO₃ profiles within the uncertainties in the initial concentrations, rate coefficients, and laser fluence very well. The fits are shown as the solid lines in Figure 1. The NO₃ yields were independent of the [O₃]/[BrONO₂] ratio, with an average value of 0.95 ± 0.12 for the 12 measurements. The uncertainty is the 2σ precision of the fitted values.

The absolute uncertainty in the reaction yield is determined by the uncertainties in the NO₃ measurements and the laser fluence determination. The uncertainty in the NO₃ measurements appears in the deviations of the individual measurements, as quoted above. The uncertainty in the laser fluence is determined by the uncertainties in the quantities used in eq 6. The uncertainty in the NO₃ yield, $\Phi(NO_3)$, is estimated to be ~15%. Although the uncertainty in the NO₃ absorption cross section contributes to the uncertainty in the absolute laser fluence, it cancels in the product yield analysis. The uncertainty in the absorption cross sections for N₂O₅ in the concentration determination and at the laser photolysis wavelength also nearly cancel, i.e., the relative N₂O₅ absorption cross sections are more accurate than the values at a given wavelength. We estimate the uncertainty in the relative N_2O_5 cross sections to be <3%. Therefore, the accuracy of the laser fluence determination is primarily limited by the accuracy of the NO₃ yield in N₂O₅ photolysis. Although N2O5 is well suited as an actinometer for these experiments (direct detection of NO₃), the NO₃ yield in reaction 5 is less than unity. An actinometer with a unit quantum yield would be ideal for our measurements. The uncertainty, \sim 15%, in the reaction 5 NO₃ yield will translate directly into the uncertainty in the NO₃ yield determination for reaction 1. Therefore, the absolute 2σ uncertainty in our NO₃ yield is taken to be $\sim 25\%$.

The possible products of reaction 1 were outlined in the Introduction. Only reaction channels 1c, 1e, and 1f would lead to NO₃ production in our experiments. Channels 1e and 1f are indistinguishable in our experiments because BrOO would rapidly decompose to Br + O₂ on a time scale faster than reaction 1. Channel 1c leads to the direct formation of NO₃, whereas channels 1e and 1f would lead to its formation through reaction 10. In our measurements, channels 1e and 1f will manifest themselves as a decrease in the rate of NO₃ formation. A sensitivity analysis of our fits indicates that a 10% yield for channels 1e + 1f would be detectable (taking the rate coefficient for reaction 1 reported by Soller et al.).¹ Therefore, we conclude the yield for channels 1c, 1e, and 1f is 0.95 ± 0.12, with that for channel 1c >0.85 at 298 K.

References and Notes

(1) (a) Soller, R., Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, 1998. (b) Soller, R.; Nicovich J. M.; Wine P. H. *J. Phys. Chem.* **2000**, submitted.

⁽²⁾ DeMore, W. B.; Sander, S. P.; Goldan, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J. *Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling*; JPL Publication No. 97-4; Jet Propulsion Laboratory: Pasadena, CA, 1997.

(3) Chase, M. W. J. Phys. Chem. Ref. Data 1996, 25, 1069.

- (4) Goldfarb, L.; Harwood, M. H.; Burkholder, J. B.; Ravishankara, A. R. J. Phys. Chem. 1998, 102, 8556.
- (5) Yokelson, R. J.; Burkholder, J. B.; Goldfarb, L.; Fox, R. W.; Gilles,
- M. K.; Ravishankara, A. R. J. Phys. Chem. 1995, 99, 13976.
 (6) Burkholder, J. B.; Ravishankara, A. R.; Solomon, S. J. Geophys. Res. 1995, 100, 16793.
- (7) Orlando, J. J.; Burkholder, J. B. J. Phys. Chem. 1995, 99, 1143. (8) Maric, D.; Burrows, J. P.; Moortgat, G. K. J. Photochem. Photobiol.
- A: Chem. 1994, 83, 179.

(9) Yokelson, R. J.; Burkholder, J. B.; Fox, R. W.; Talukdar, R. K.; Ravishankara, A. R. J. Phys. Chem. 1994, 98, 13144.

- (10) Burkholder, J. B.; Ravishankara, A. R. J. Phys. Chem. A 2000, in press.
- (11) Harwood, M. H.; Burkholder, J. B.; Ravishankara, A. R. J. Phys. Chem. 1998, 102, 1309.
 - (12) Spencer, J. E.; Rowland, F. S. J. Phys. Chem. 1978, 82, 7.
 - (13) Nicovich, J. M.; Wine, P. H. Int. J. Chem. Kinet. 1990, 22, 379.
 - (14) Burkholder, J. B. Int. J. Chem. Kinet. 1998, 30, 571.